
CORRIGENDUM TO THE ARTICLE: ON KONTSEVICH’S CHARACTERISTIC

CLASSES FOR HIGHER-DIMENSIONAL SPHERE BUNDLES II: HIGHER

CLASSES

TADAYUKI WATANABE

Abstract. We fix an error in the proof of Theorem 6.1 (ii) in [5], and extend the main result of [5]
to all odd dimensions at least 5.

The second paragraph of the proof (p.648) of [5, Theorem 6.1] is the proof of the following.

Claim 1. The map f̃(πΓ) : (Sk−1)×2n → B̃Diff(DM , ∂) is oriented bordant to a map from S2n(k−1).

Here, B̃Diff(W,X) is the abbreviation of B̃Diff(W,X ; τ), the classifying space for framed (W,X)-

bundles ([5, §2.1] for definition). In that proof, it was proved only that the composition f̃(πΓ) ◦ incli :

Sk−1 → (Sk−1)×2n → B̃Diff(DM , ∂) is null-homotopic for each i, which is not sufficient for 2n ≥ 4,
or equivalently if Γ has at least 4 vertices. The argument given below not only fills the gap, but also
allows us to extend the main result of [5] to all odd dimensions at least 5. The extended result is the
following.

Theorem 2. For n ≥ 1 and for dimDM = 2k+1 ≥ 5, the evaluation of the Kontsevich characteristic

class gives an epimorphism π2n(k−1)(B̃Diff(DM , ∂))⊗ R→ A2n,3n ⊗ R.

In [5], this was proved as part of [5, Theorem 6.1] and was proved only for 2k + 1 ≥ 5 with the
restriction that k is odd. To prove Claim 1, we need only to consider the case DM = D2k+1 since the
graph surgery is performed in a small (2k + 1)-disk in DM . In this case, we shall prove the following
stronger claim, instead of Claim 1.

Claim 3. The map f̃(πΓ) : (Sk−1)×2n → B̃Diff(D2k+1, ∂) factors up to homotopy into a degree 1

map (Sk−1)×2n → S2n(k−1) and a map S2n(k−1) → B̃Diff(D2k+1, ∂).

We shall prove Claim 3 by proving two lemmas (Lemmas A and B). The first one is an improvement
of [5, Proposition 4.2]. Let Q2k+1 = Dk × Dk+1 and let i : (Dk)⊔3 →֒ Q2k+1 be the inclusion
Dk × {p1, p2, p3} →֒ Dk ×Dk+1 for some fixed distinct points p1, p2, p3 ∈ IntDk+1. Let Npℓ

⊂ Dk+1

(ℓ = 1, 2, 3) be open (k + 1)-disks about pℓ of small radius h < 1
100 min{|pλ − pµ|;λ 6= µ} and let

NDk = Dk ×Uk+1
h , where Uk+1

h is the open (k+1)-disk of radius h. Let ĩ : (NDk)⊔3 →֒ Q2k+1 be the

inclusion Dk × (Np1
⊔Np2

⊔Np3
) →֒ Dk ×Dk+1. Let V be the complement of the image of ĩ. This is

a standard model of V0 in [5, p.634]. For ℓ ∈ {1, 2, 3}, let iℓ and ĩℓ be the embeddings of (Dk)⊔2 and

(NDk
)⊔2 into Q2k+1 obtained by forgetting the ℓ-th component from i and ĩ, respectively. Let V[ℓ] be

the complement of the image of ĩℓ, in particular V ⊂ V[ℓ].
The complements V and V[ℓ] come with standard framings ‘st’ induced by restricting the canonical

framing of Q2k+1 ⊂ R2k+1. In these terms, the element δ(α′) ∈ πk−1(BDiff(V, ∂)) of [5, p.638] arises

as the image of a long Borromean rings construction α′ ∈ πk−1(Embf∂((D
k)⊔3, Q2k+1)i)

† under the
map δ induced on homotopy groups by the zig-zag

(0.1) Embf∂((D
k)⊔3, Q2k+1)i

≃
←− Emb∂((NDk)⊔3, Q2k+1)̃i

c
−→ BDiff(V, ∂).

Here,

• Emb∂((NDk)⊔3, Q2k+1)̃i ⊂ Emb∂((NDk)⊔3, Q2k+1) denotes the path-component of ĩ, where

we impose a restriction on embeddings in Emb∂((NDk)⊔3, Q2k+1) that each embedding f has a

smooth extension to an embedding f̄ : (Dk×U
k+1

h )⊔3 → Q2k+1 that agrees with the canonical

We thank Boris Botvinnik, Syunji Moriya and Keiichi Sakai for helpful comments. We deeply thank the referees for
their careful reading and for suggesting beautiful interpretations of the proofs which clarified this paper.

†We use the notation Embf
∂
here instead of Embf to indicate the embeddings have fixed behaviour near the boundary.
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extension of ĩ near ∂Dk × U
k+1

h . In particular, f̄−1(∂Q2k+1) = ∂Dk × U
k+1

h . We impose this
condition so that the complement of the embedding (NDk)⊔3 →֒ Q2k+1 is a smooth manifold
with corners.
• Embf∂((D

k)⊔3, Q2k+1)i is the path-component of the point in

hofib∗
(
Emb∂((D

k)⊔3, Q2k+1)i → Ωk(BSOk+1)
3
)

given by i with the constant path at the base point ∗ ∈ Ωk(BSOk+1)
3, where the map

Emb∂((D
k)⊔3, Q2k+1)i → Ωk(BSOk+1)

3 is induced by taking normal bundles. The space

Embf∂((D
k)⊔3, Q2k+1)i can be considered as a component of the space of normally framed

embeddings that agree with i and the standard normal framing in a neighborhood of the
boundary.
• The left equivalence in the zig-zag is induced by restriction (using the standard framing of
R2k+1). The right arrow c takes complements. Extension of a (framed) (V, ∂)-bundle to a
(framed) (V[ℓ], ∂)-bundle by filling a trivialized (framed) NDk -bundle into one of the three
complementary handles gives maps

(0.2) eℓ : BDiff(V, ∂)→ BDiff(V[ℓ], ∂), and ẽℓ : B̃Diff(V, ∂; st)→ B̃Diff(V[ℓ], ∂; st).

Lemma A. The element δ(α′) ∈ πk−1(BDiff(V, ∂)) admits a lift β ∈ πk−1(B̃Diff(V, ∂; st)), which

becomes trivial under the map πk−1(B̃Diff(V, ∂; st))→ πk−1(B̃Diff(V[ℓ], ∂; st)) for all ℓ ∈ {1, 2, 3}.

Remark 4. Lemma A also follows from [4, Proposition 6.4] by Krannich and Randal-Williams, proved

by different method. Their class α ∈ πk−1(B̃Diff(V, ∂)) ⊗ Q is symmetric in the three handles by
definition, whereas it is not obvious for our β.

Proof of Lemma A. To give a framed analogue of the zig-zag (0.1) for B̃Diff(V, ∂; st), we consider the
spaces

Emb∂((D
k)⊔3, Q2k+1)i = hofib∗

(
Emb∂((D

k)⊔3, Q2k+1)i → Bun∂(T (D
k)⊔3, TQ2k+1)

)
(i,const)

,

Emb∂((NDk)⊔3, Q2k+1 )̃i = hofib∗
(
Emb∂((NDk)⊔3, Q2k+1 )̃i → Bun∂(T (NDk)⊔3, TQ2k+1)

)
(̃i,const)

,

where Bun∂(T (D
k)⊔3, TQ2k+1) ≃ Ωk(SO2k+1/SOk+1)

3 and Bun∂(T (NDk)⊔3, TQ2k+1) ≃ Ωk(SO2k+1)
3

are the spaces of bundle monomorphisms T (Dk)⊔3 → TQ2k+1 and T (NDk)⊔3 → TQ2k+1, respectively,
with fixed behaviour on the boundary, and the identification in terms of the orthogonal groups are in-
duced by the standard framing of the disk. We denote by ∗ the base points of Bun∂(T (Dk)⊔3, TQ2k+1)

and Bun∂(T (NDk)⊔3, TQ2k+1) given by the map induced by the standard inclusion and ĩ, respectively.
The zig-zag (0.1) extends to a diagram, commutative up to homotopy,

(0.3) Emb∂((D
k)⊔3, Q2k+1)i

��

Emb∂((NDk)⊔3, Q2k+1 )̃i
≃oo c̃ //

��

B̃Diff(V, ∂; st)

��

Embf∂((D
k)⊔3, Q2k+1)i Emb∂((NDk)⊔3, Q2k+1 )̃i

≃oo c // BDiff(V, ∂)

where the leftmost vertical map is induced by the map Bun∂(T (D
k)⊔3, TQ2k+1) → Ωk(BSOk+1)

3

given by taking normal bundles. The left horizontal map on the top row is induced by restriction
along the inclusion (Dk)⊔3 →֒ N⊔3

Dk , which is a homotopy equivalence since its homotopy fiber is given

by hofib∗(Ω
k(SOk+1)

3 =
→ Ωk(SOk+1)

3) ≃ ∗. Here,

(a) The map c̃ : Emb∂((NDk)⊔3, Q2k+1 )̃i → B̃Diff(V, ∂; st) can be defined so that the diagram
(0.3) is commutative up to homotopy.

(b) Then the zig-zag on the top row of (0.3) is compatible up to homotopy with the forgetful maps
of the embedding spaces induced by forgetting components and the extension maps (0.2).

We postpone the proofs of these facts and proceed to prove the lemma using the diagram (0.3). Now

what needs to be shown is that the element α′ ∈ πk−1(Embf∂((D
k)⊔3, Q2k+1)i) constructed by the

long Borromean rings

(1’) admits a lift α̃ ∈ πk−1(Emb∂((D
k)⊔3, Q2k+1)i), which

(2’) becomes trivial when forgetting any of the components.
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To check the condition (1’), we note that each component in the stan-
dard Borromean rings has a preferred isotopy in R2k+1 to a small unknot-
ted sphere about the base point, where the isotopy is induced by a smooth
deformation retract of its spanning disk to a small disk, as in the figure on
the right. This isotopy of a single component gives rise to a desired lift,
as follows. From the explicit Borromean rings embedding b′ ∈ Emb∂(D

2k−1⊔Dk⊔Dk, Q2k+1), we get
an embedding b ∈ Emb∂(D

2k−1, Q2k+1 \ (∅ ⊔Dk ⊔Dk)) as in [5, p.637] (denoted φ�B therein), where
∅⊔Dk⊔Dk denotes Dk×{p2, p3}. This is carried out as follows. The spanning disks of the second and
third component of b′ gives a path in Emb∂(D

k ⊔Dk, Q2k+1) from i|∅⊔Dk⊔Dk to b′|Dk⊔Dk , where the
third component is deformed before the second component so that the two components do not inter-
sect. Then we use the isotopy extension to lift this to a path ψt in Diff(Q2k+1, ∂) from the identity to a
diffeomorphism ψ1. Now the restriction of the embedding ψ−1

1 ◦ b
′ to the second and third component

agrees with those of i, and ψ−1
1 ◦b

′ gives rise to an embedding b ∈ Emb∂(D
2k−1, Q2k+1\(∅⊔Dk⊔Dk)).

Now we consider the following commutative diagram

Emb∂(D
2k−1, Q2k+1 \ (∅ ⊔Dk ⊔Dk)) //

��

Ωk−1Emb∂(D
k ⊔Dk ⊔Dk, Q2k+1)i

��

Bun∂(T (D
2k−1), T (Q2k+1)) // Ωk−1Bun∂(T (D

k ⊔Dk ⊔Dk), T (Q2k+1))di

whose vertical maps are induced by taking the derivative and whose horizontal maps are induced by
the identification D2k−1 = Dk×Dk−1 and the isotopy constructed in [5, Lemma 4.1]. By the definition
of α′ in [5, p.638], the image of b under the top horizontal map represents α′. The derivative of the
embedding b is canonically homotopic in Bun∂(T (D

2k−1), T (Q2k+1)) to a constant bundle map, hence

b gives an element b̃ in the homotopy fiber Emb′∂(D
2k−1, Q2k+1 \ (∅ ⊔ Dk ⊔ Dk)) of the left vertical

map over the derivative of the standard inclusion. Here, we can choose the lift b̃ so that its class in π0
is canonically determined by choosing the spanning disk of the first component obtained by applying

ψ−1
1 to the standard one for b′. The image of b̃ in the homotopy fiber of the right vertical map is a

class in π0(Ω
k−1Emb∂((D

k)⊔3, Q2k+1)i) ∼= πk−1(Emb∂((D
k)⊔3, Q2k+1)i), which gives the required lift

α̃ by the commutativity of the diagram above.
To check the condition (2’), we consider the element of πk−1(Emb∂((D

k)⊔2, Q2k+1)i) obtained from
α̃ by forgetting the ℓ-th component. We prove the triviality of this in terms of the Borromean rings

b ∈ Emb∂(D
2k−1, Q2k+1\(∅⊔Dk⊔Dk)) and its lift b̃. If the ℓ-th component removed is the one coming

from the component of D2k−1, the condition (2’) is obvious. Now suppose that the ℓ-th component
removed is the one coming from the two fixed Dk components. We consider the following diagram
commutative up to homotopy:

Emb′∂(D
2k−1, Q2k+1 \ (∅ ⊔Dk ⊔Dk))

��

s′ℓ // Emb′∂(D
2k−1, Q2k+1 \Dk)

��

Emb∂(D
2k−1, Q2k+1 \ (∅ ⊔Dk ⊔Dk))

s′ℓ // Emb∂(D
2k−1, Q2k+1 \Dk)

where the Dk in the right column is Dk×{p2} or Dk×{p3} depending on ℓ, Emb′∂(D
2k−1, Q2k+1\Dk)

is the homotopy fiber of the derivative map Emb∂(D
2k−1, Q2k+1 \Dk)→ Bun∂(T (D

2k−1), T (Q2k+1))
over the derivative of the standard inclusion, and the maps s′ℓ, s

′
ℓ are those obtained by filling the ℓ-th

Dk-component.
With the help of the explicit coordinate description of the spanning

disks of the Borromean rings in ([5, p.636]), it can be seen that one of
the spanning disks of the remaining two components can be deformed
by isotopy relative to the boundary to one which is disjoint from the
spanning disk of the first component (figure on the right). This implies
that there is a smooth mapD2k−1×[0, 1]→ Q2k+1\Dk that restricts to an
embedding isotopic to s′ℓ(b) and the standard inclusion at D2k−1×{0, 1},
and induces a path in Emb∂(D

2k−1, Q2k+1 \ Dk), considered as a subspace of the immersion space
Imm∂(D

2k−1, Q2k+1) ≃ Bun∂(TD
2k−1, TQ2k+1) (the last equivalence by Smale–Hirsch). This path

gives a lift b̃ℓ of s′ℓ(b) in Emb′∂(D
2k−1, Q2k+1 \Dk). More precisely, by an isotopy extension for the
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deformation through the spanning disk of the remaining Dk-component analogous to the path ψt, we
get a path ψ′

t in Diff(Q2k+1, ∂). Then by applying ψ′−1
1 to the (possibly deformed for the disjunction)

spanning disk of the D2k−1-component, we obtain an embedded spanning disk in Q2k+1\Dk. Since the

space of paths in Emb∂(D
2k−1, Q2k+1 \Dk) to the standard inclusion is contractible, b̃ℓ is equivalent

to the base point in π0(Emb′∂(D
2k−1, Q2k+1 \Dk)). Note that the disjunction isotopy of the spanning

disk does not change the class of b̃ℓ in π0(Emb′∂(D
2k−1, Q2k+1 \Dk)).

Moreover, we see that the class of b̃ℓ agrees with that of s′ℓ(̃b). Namely, there is a path in

Emb′∂(D
2k−1, Q2k+1 \ Dk) between s′ℓ(̃b) and b̃ℓ constructed as follows. Note that the spanning

disks of the D2k−1-components used to define s′ℓ(̃b) and b̃ℓ are obtained from the standard one by
different paths ψt and ψ′

t in Diff(Q2k+1, ∂), respectively. Thus it suffices to show that the path ψ′
t

can be deformed into the path ψt. Let ρ2,t and ρ3,t be paths in Diff(Q2k+1, ∂) from the identity that
are obtained from the standard spanning disks of the second and third components, respectively, by
isotopy extension. Then the path ψt can be given by

ψt =

{
ρ3,2t (0 ≤ t ≤ 1/2)
ρ2,2t−1 ◦ ρ3,1 (1/2 ≤ t ≤ 1)

If ℓ = 2, we have ψ′
t = ρ3,t, and we define a homotopy Ψs,t ∈ Diff(Q2k+1, ∂) (s ∈ [0, 1]) by

Ψs,t =





ρ3,2t (0 ≤ t ≤ 1/2)
ρ2,2t−1 ◦ ρ3,1 (1/2 ≤ t ≤ 1− s/2)
ρ2,1−s ◦ ρ3,1 (1− s/2 ≤ t ≤ 1)

Then Ψ0,t = ψt and Ψ1,t ≃ ψ′
t relative to id by a parameter change. If ℓ = 3, we have ψ′

t = ρ2,t, and
we define a homotopy Ψs,t ∈ Diff(Q2k+1, ∂) (s ∈ [0, 1]) by

Ψs,t =





ρ3,2t (0 ≤ t ≤ 1/2− s/2)
ρ3,1−s (1/2− s/2 ≤ t ≤ 1/2)
ρ2,2t−1 ◦ ρ3,1−s (1/2 ≤ t ≤ 1)

Then Ψ0,t = ψt and Ψ1,t ≃ ψ′
t relative to id by a parameter change. The homotopy between ψt and

ψ′
t induces a path between s′ℓ(̃b) and b̃ℓ. Now the (trivial) class of the image of b̃ℓ under the map

Emb′∂(D
2k−1, Q2k+1 \Dk)→ Ωk−1Emb∂(D

k ⊔Dk, Q2k+1)

agrees with the one obtained from α̃ by forgetting the ℓ-th component, which is thus trivial.

Proof of (a): The map c̃ : Emb∂((NDk)⊔3, Q2k+1)̃i → B̃Diff(V, ∂; st) is defined as follows. A point

of the space Emb∂((NDk)⊔3, Q2k+1)̃i is given by an embedding f ∈ Emb∂((NDk)⊔3, Q2k+1 )̃i with a

path γ in Bun∂(T (NDk)⊔3, TQ2k+1) from df to the standard inclusion. This path can be used to
connect the framing induced from the standard one of (NDk)⊔3 with the framing on its complement
induced by the canonical framing of Q2k+1. Namely, let Fℓ be the ℓ-th component of the faces

Im ĩ\ Im ĩ, where · denotes the closure in Q2k+1. We fix a real number ε such that 0 < ε < h/100 and

let [0, ε] × Fℓ ⊂ Im ĩ be a collar neighborhood of Fℓ in Im ĩ such that Fℓ = {0} × Fℓ, whose product

structure is induced by f from the product structure of Dk × U
k+1

h . The image of the standard
framing of (NDk)⊔3 under df restricts to a framing over f({ε} × Fℓ) for each ℓ, and the canonical
framing of Q2k+1 gives a framing over Q2k+1 \ Im f . Now we would like to extend the framing given
on (Q2k+1 \ Im f)

∐⋃
ℓ f({ε} × Fℓ) over

⋃
ℓ f([0, ε]× Fℓ).
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Such an extension is possible by using the path γ, that is, at
each x ∈ {ε}×Fℓ, we define a framing over the arc f([0, ε]×{x})
by restricting γ to a path in the space of linear isomorphisms
Iso(Tx(NDk), Tf(x)Q

2k+1) = Iso(Tx(NDk),R2k+1) so that f((1 −
s)ε, x) is framed by γ(s). The extension obtained is continuous
and gives a framing on the complement of a slightly smaller em-
bedding f ′ : (N ′

Dk)
⊔3 → Q2k+1, where N ′

Dk = NDk \
⋃

ℓ(0, ε]×Fℓ,

such that its restriction to the boundary ∂N ′
Dk agrees with the

framing induced from the standard one of NDk by df . That is,
the complement of the image of f ′ is equipped with a framing that is standard near the boundary.

We obtain a map c̃ : Emb∂((NDk)⊔3, Q2k+1 )̃i −→ B̃Diff(V, ∂; st), by restriction to (N ′
Dk)

⊔3 and by
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taking the framed complement as above. The homotopy commutativity of (0.3) is obvious from the
construction.

Proof of (b): To check that there is a canonical homotopy from ẽℓ ◦ c̃ to c̃ℓ ◦ sℓ, where ẽℓ is the

extension map in (0.2) and sℓ : Emb∂((NDk)⊔3, Q2k+1)̃i → Emb∂((NDk)⊔2, Q2k+1 )̃i is the forgetful
map of the ℓ-th component, we need to show that the framing on V[ℓ] obtained by ẽℓ ◦ c̃ can be
homotoped in a canonical way to the one such that the part where the ℓ-th thickened component is
filled into is entirely framed by the canonical framing of Q2k+1. This homotopy can be constructed
by giving a homotopy of framing in the ℓ-th thickened component, as follows. Let (f, γ) be the pair
that represents an element of Emb∂((NDk)⊔3, Q2k+1 )̃i as in the previous paragraph. The framing

provided on the ℓ-th component of Im f after filling into that component corresponds to a map

(Dk × U
k+1

h , ∂(Dk × U
k+1

h )) → (GL2k+1(R), id), which measures the difference from the canonical
framing of Q2k+1. By construction of the framing in the definition of c̃, this map can be relatively
homotoped into the identity. Namely, for the given pair (f, γ), we may consider similar construction
of framed filling at Im f by using shortened path γλ:

γλ(t) =

{
γ(t) t ∈ [0, 1− λ]
γ(1− λ) t ∈ [1− λ, 1]

instead of γ. By considering this simultaneously for 0 ≤ λ ≤ 1, we obtain a 1-parameter family of

framings on Im f for the given f , and the corresponding family of maps (Dk×U
k+1

h , ∂(Dk×U
k+1

h ))→
(GL2k+1(R), id) at the ℓ-th component gives a relative null-homotopy. This relative null-homotopy
can be taken as a parameterized family of null-homotopies over all (f, γ). After the homotopy, the

framing on the ℓ-th component of Im f agrees with the canonical one of Q2k+1. This shows that
ẽℓ ◦ c̃ ≃ c̃ℓ ◦ sℓ. �

Corollary 5. The (DM , ∂)-bundle π
Γ : EΓ → (Sk−1)2k ([5, Definition 1]) admits a vertical framing

that is standard near the boundary.

The second lemma is an extension of Claim 3 to connected uni-trivalent trees in the sense that
surgery on a connected trivalent graph Γ can be considered as that of a uni-trivalent tree that is a
spanning tree of Γ with some hairs (or half-edges) attached to 1- and 2-valent vertices. Surgery on
a uni-trivalent graph is explained in [5, §4.5]. Let R = {i1, i2, . . . , ir} be a subset of {1, 2, . . . , 2n}
which is the set of vertices of some connected subtree L of Γ. Let B{R} = S1 × S2× · · · × S2n, where
Sj = Sk−1 (if j ∈ R) or Sj = {∗} (if j /∈ R). Let πΓ{R} : (πΓ)−1B{R} → B{R} be the restriction of
πΓ to the subset B{R} of B = (Sk−1)×2n. Since by construction of πΓ the restriction of the fiber in
the (D2k+1, ∂)-bundle πΓ{R} to the complement of a subset VR ⊂ IntD2k+1 which includes

⋃
j∈R Vj

(Vj is defined in [5, §4.4(Step 3)]) gives a trivial bundle, which is also trivial as a framed bundle by
the framing induced by the framing on EΓ, the framed sub (VR, ∂)-bundle of πΓ{R} is naturally and
uniquely determined. Claim 3 follows immediately from the special case R = {1, 2, . . . , 2n} of the
following lemma.

Lemma B. There exists a compact connected codimension 0 submanifold VR of IntD2k+1 with bound-
ary that satisfies the following conditions.

(1) VR ⊃ Vj for all j ∈ R, and VR ∩ Vj = ∅ for all j /∈ R.

(2) The classifying map f̃(πΓ{R})VR
: B{R} → B̃Diff(VR, ∂; τR) for the framed sub (VR, ∂)-

bundle of πΓ{R} factors up to homotopy over a map (Sk−1)×r → Sr(k−1) of degree 1, where
τR is the restriction of the standard framing to VR in the fiber over the base point.

The construction of VR is easy: by taking the disjoint union
∐

j∈R Vj and then extending the “Hopf
links” between the handles of Vj for j ∈ R to a ball by filling the complementary handles. Thus the
rather nontrivial part of Lemma B is the condition (2).

Proof of Lemma B. We prove this by induction on r = |R|. The case r = 1 is obvious from the
definition of surgery. Suppose that the lemma holds true for some r = |R| ≥ 1 such that r < 2n. We
shall check that the lemma holds true for any subset R′ of {1, 2, . . . , 2n} with r+1 elements which is
the set of vertices of a subtree L′ of Γ. Removing ir+1 from L′ gives a connected subtree L of L′ with
the vertex set R = R′ \ {ir+1}. The proof of the lemma for this induction step is essentially the same
as for Claim 1 when 2n = 2, B = Sk−1 × Sk−1, which has already been treated in [5]. We assume
that the ℓ-th k-handle of Vim for some im ∈ R and the ℓ′-th k-handle of Vir+1

are linked together by
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a Hopf link in the sense of [5, §4.4 (Step 2)]. We set VR′ to be a submanifold of IntD2k+1 obtained
from VR ∪ Vim[ℓ] ∪ Vir+1[ℓ′] by smoothing the corners, where Vim[ℓ] is the submanifold of IntD2k+1

obtained from Vim by adding a small tubular neighborhood of the standard (linear) spanning disk of
the component of the Hopf link at the ℓ-th k-handle of Vim , and Vir+1[ℓ′] is a similar one for the ℓ′-th k-

handle of Vir+1
. Then VR′ satisfies the condition (1) for R′. A factorisation of f̃(πΓ{R})VR

: B{R} →

B̃Diff(VR, ∂; τR) up to homotopy over a degree 1 map B{R} → Sr(k−1) obtained by the induction

hypothesis induces a factorisation of f̃(πΓ{R′})VR′
: B{R′} → B̃Diff(VR′ , ∂; τR′) up to homotopy over

a map B{R′} → Sr(k−1)×Sk−1 of degree 1, since VR∩Vir+1
= ∅, the bundle restricted to Vir+1

(resp.

to VR) is independent of the first (r − 1) Sk−1-factors (resp. the last Sk−1-factor) in B{R′}, and the

homotopy for f̃(πΓ{R})VR
can be done independently of Vir+1

.

By Lemma A, the restriction of f̃(πΓ{R′})VR′
to {∗} × Sk−1 is null-homotopic as a pointed map,

since the restriction to {∗}×Sk−1 corresponds to trivializing on VR, and the ℓ′-th k-handle of Vir+1
is

free in VR′ , that is, there is a framed k-sphere in ∂Vir+1
which intersects the belt sphere of the ℓ′-th k-

handle transversally by one point and which spans a compatibly framed (k+1)-disk in IntVR′\IntVir+1
.

Since the ℓ′-th k-handle of Vir+1
is free, the base diffeomorphism V → Vir+1

in [5, p.641 (Step 4)] can be
taken so that it extends to a diffeomorphism V[ℓ′] → Vir+1[ℓ′], so that Lemma A induces trivialization
on Vir+1[ℓ′].

Also, by iterated applications of Lemma A for
⋃r

j=1 Vij , we may also see that the restriction of

f̃(πΓ{R′})VR′
to B{R} × {∗} is null-homotopic as a pointed map, since the ℓ-th k-handle of Vim is

free in VR′ . Namely, after trivializing Vim[ℓ] by Lemma A, a k-handle on another handlebody next to
Vim in VR′ will become free in VR′ , and we can apply Lemma A again, and so on.

Now by the induction hypothesis the restricted map on B{R}×{∗} can be factored up to pointed ho-

motopy into a degree 1 map B{R}×{∗} → Sr(k−1)×{∗} and a map Sr(k−1)×{∗} → B̃Diff(VR′ , ∂; τR′),

where the latter is null-homotopic for the following reason. For simplicity, we write Y = B̃Diff(VR′ , ∂; τR′),

X = B{R} × {∗}, g = f̃(πΓ{R′})VR′
|B{R}×{∗}, and let A be the (r − 1)(k − 1)-skeleton of X for the

canonical cell structure for the product of spheres. We have a pointed null-homotopy of the map
g : X → Y and a pointed null-homotopy of the map g|A : A→ Y ‡. In other words, g can be extended
to a map g′ : X ∪A CA→ Y by defining g′ on the reduced cone CA by the null-homotopy of g|A, and
g′ can be further extended to a map g′′ : (X ∪A CA) ∪X CX → Y by defining g′′ on CX by the null-
homotopy of g. Note that X∪ACA ≃ X/A ≈ Sr(k−1) and (X∪ACA)∪X CX ≃ ΣA. Since ΣA→ ΣX
splits with cofiber Σ(X/A) ([1, p.1662]§), the map [ΣA, Y ]→ [X/A, Y ] in the the long exact sequence
of sets of homotopy classes of pointed maps [ΣX,Y ] → [ΣA, Y ] → [X/A, Y ] → [X,Y ] → [A, Y ] is
trivial. This shows that the null-homotopic map g can be extended to a map g′ that is null-homotopic.

Hence f̃(πΓ{R′})VR′
can be factored up to homotopy into a degree 1 map B{R′} → Sr(k−1)×Sk−1

and a map (Sr(k−1) × Sk−1, Sr(k−1) ∨ Sk−1)→ (B̃Diff(VR′ , ∂; τR′), ∗), and the latter one factors over
a map Sr(k−1) × Sk−1 → S(r+1)(k−1) of degree 1. This completes the proof. �

Remark 6. The points in the proof of [5, Theorem 6.1] where the assumption that k is odd was needed
are the following:

(a) [5, Proposition 4.2].
(b) “Since we have assumed that k is odd, a non-vanishing product must be a multiple of the

wedge of all 6n different ηiℓ(ti)s” in the proof of [5, Lemma 6.3].
(c) “because we have fixed cyclic orders of edges around each vertex so that it is compatible with

the graph orientation” in the proof of [5, Lemma 6.3].

Lemma A gives a framing of [5, Proposition 4.2] concretely. Since Lemma A does not assume k is
odd, the point (a) is achieved for all k ≥ 2 by replacing [5, Proposition 4.2] with Lemma A. Moreover,
we may take rk = 1 there.

The point (b) can be achieved for even k as well, by assuming that we take disjoint parallel copies
of S(ãiℓ) to normalize propagators for different edges in [5, Proposition 5.2]. This is possible since the

‡These null-homotopies are chosen independently. The null-homotopy of g|A is induced from that of the map to

YR = B̃Diff(VR, ∂; τR), whereas the null-homotopy of g is not induced from that of a map to YR.
§In the notation of [1], ΣA = Σ(Z(K; (X,A))) for K = ∂∆[m− 1], Xi = Sk−1, Ai = ∗.
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normal bundle of S(ãiℓ) in Ṽi is trivial. Then the square ηiℓ(ti) ∧ η
i
ℓ(ti) in the original product of 6n

ηiℓ(ti)s becomes zero.
The point (c) should be investigated separately since if k is even, ηiℓ(ti) is of even degree, and the

correspondence between the sign of the form and the graph orientation is not direct as for k odd, and
the order of the three ηiℓ(ti)s at each vertex does not determine the sign. For even k, the linking num-

bers Lij
ℓm between k-spheres are antisymmetric and thus the form ω(Γ′)(t) on V1×· · ·×V2n depends on

the choice of edge orientations. Moreover, each factor in the base space (Sk−1)×2n is odd dimensional.
Then the sign of the total integral of ω(Γ′) will be determined by the choice of edge orientations and
the correspondence 1 7→ V1, 2 7→ V2, . . . , 2n 7→ V2n between the configuration of 2n points and the set
of handlebodies Vi. This is compatible with the graph orientation in det[R{vertices of Γ}⊕

⊕
e R

H(e)] in
the sense that a change of vertex labelling and edge orientations result in different sign of the total
integral if and only if the change of the data reverses the graph orientation.

Remark 7. More generally, Lemma A is also valid for an element of πiEmbf∂(I
p ∪ Iq ∪ Ir, IN ) corre-

sponding to the Borromean rings, where p, q, r,N are any integers such that (p+i)+q+r = 2N−3, 1 ≤
p, q, r, p+i ≤ N−2, i > 0, N ≥ 3, I = [0, 1], as one can see from the proof. In that case, the correspond-

ing bundle is a bundle over Si with fiber diffeomorphic to (Dp+1 × Sp′

) ♮ (Dq+1 × Sq′) ♮ (Dr+1 × Sr′),
where p′+p = q′+q = r′+r = N−1. Also, one can also get an analogous result for i = 0 by replacing

B̃Diff(V, ∂; st) with the disjoint union of B̃Diff(V, ∂; st) for relative diffeomorphism classes of some
framed manifolds V that have fixed behaviour on the boundary. For i = 0, the analogue of Lemma A is
that δ(α′) is mapped to the component of the standard manifold of the form (Dp+1×Sp′

) ♮ (Dq+1×Sq′)
with the standard framing induced from that of the N -disk.

Remark 8. We would also like to fix some typos in [5] which did not affect the result, and yet might
cause confusion.

• The coefficient
∑

(ℓi,mi)∈Pij
Lij
ℓimj

in the second equation in the proof of [5, Lemma 6.3] should

be |Pij |!
∏

(ℓi,mi)∈Pij
Lij
ℓimj

, where we set |Pij |! = 0 when Pij = ∅ unlike the usual convention.

The two formulas happen to give the same result if Γ′ does not have multiple edges. However,
we haven’t used the wrong formula to get the final formula, which is correct. We thank Peter
Teichner for helping us find this.

• In the first equation of the “Case 2” in the proof of [5, Proposition 7.1], the term (C1(M,∞)\
Vℓ[3])×Vℓ should be replaced by (C1(M,∞) \ (Vℓ[3] ∪ Vi[1]))× Vℓ. Otherwise, the argument
after the equation is useless since the deleted part Vi[1]×Vℓ will be covered by that argument.
Nevertheless, normalization on the part Vi[1]×Vℓ has already been correctly investigated and
there is no problem in the proof in the end.

• In [5, Appendix A.2], the case where∞ ∈ A is not explained, even though we were aware that
such a case needs to be checked. The following sentence should be added in [5, Appendix A.2]:

“When ∞ ∈ A, then we have ESA = C
local

j (Rd) × ECn−j+1(π), and we have ω(Γ)|ESA
=

pr∗1ω(Γ/A
c)∧pr∗2ω(ΓAc).” Also, the following sentence should be added at the beginning of the

proof of [5, Lemma A.1]: “When ∞ /∈ A, let ΓA be the subgraph of Γ obtained by restricting
the vertices to A. When ∞ ∈ A, let ΓA be Γ/Ac, where Ac = {1, . . . , n} − A.” We refer the
reader to [6] for more detail.

• An author (Prof. B. McKay) is missing from the third item in [5, References]. We apologize
for this typo. Also, the link for the third item is no longer available. Currently available link
is [2]. A permanent reference for the computations is Table 2 of [3].
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