/* Maxima source code for the computations of the dimensions of */ /* the (G x G) x Z_2 - invariants in the alternating/symmetric triple products. */ /* By Yuji Ohta (2022) */ /* constants */ alpha:(1+sqrt(5))/2; beta:(1-sqrt(5))/2; /* size of the conjugacy classes */ n:matrix([1,1,30,20,20,12,12,12,12]); c:transpose(n); N:c.transpose(c); /* character table (of \chi_V(g)) */ X:matrix( [1,1,1,1,1,1,1,1,1], [2,-2,0,-1,1,-beta,-alpha,beta,alpha], [2,-2,0,-1,1,-alpha,-beta,alpha,beta], [3,3,-1,0,0,alpha,beta,alpha,beta], [3,3,-1,0,0,beta,alpha,beta,alpha], [4,4,0,1,1,-1,-1,-1,-1], [4,-4,0,1,-1,-1,-1,1,1], [5,5,1,-1,-1,0,0,0,0], [6,-6,0,0,0,1,1,-1,-1]); /* XX: matrix whose (i,j)-entry = \sum_p \chi_{A_p x A_p}(c_i,c_j) = \sum_p \chi_{A_p}(c_i)*\chi_{A_p}(c_j) */ tX:transpose(X); XX:tX.X; /* table of \chi_V(g^2) */ Y:matrix( [1,1,1,1,1,1,1,1,1], [2,2,-2,-1,-1,-alpha,-beta,-alpha,-beta], [2,2,-2,-1,-1,-beta,-alpha,-beta,-alpha], [3,3,3,0,0,beta,alpha,beta,alpha], [3,3,3,0,0,alpha,beta,alpha,beta], [4,4,4,1,1,-1,-1,-1,-1], [4,4,-4,1,1,-1,-1,-1,-1], [5,5,5,-1,-1,0,0,0,0], [6,6,-6,0,0,1,1,1,1]); /* YY: matrix whose (i,j)-entry = \sum_p \chi_{A_p x A_p}(c_i^2,c_j^2) = \sum_p \chi_{A_p}(c_i^2)*\chi_{A_p}(c_j^2) */ tY:transpose(Y); YY:tY.Y; /* table of \chi_V(g^3) */ Z:matrix( [1,1,1,1,1,1,1,1,1], [2,-2,0,2,-2,-alpha,-beta,alpha,beta], [2,-2,0,2,-2,-beta,-alpha,beta,alpha], [3,3,-1,3,3,beta,alpha,beta,alpha], [3,3,-1,3,3,alpha,beta,alpha,beta], [4,4,0,4,4,-1,-1,-1,-1], [4,-4,0,4,-4,-1,-1,1,1], [5,5,1,5,5,0,0,0,0], [6,-6,0,6,-6,1,1,-1,-1]); /* ZZ: matrix whose (i,j)-entry = \sum_p \chi_{A_p x A_p}(c_i^3,c_j^3) = \sum_p \chi_{A_p}(c_i^3)*\chi_{A_p}(c_j^3) */ tZ:transpose(Z); ZZ:tZ.Z; /* (matrix).j: take sum in each row, i.(matrix): take sum in each column */ i:matrix([1,1,1,1,1,1,1,1,1]); j:transpose(i); order:i.c; /* characters of triple products and G x G invariants */ T1:(i.(N*XX*XX*XX)).j; /* \sum_{g,h} \chi_W(g,h)^3 */ T2:(i.(N*YY*XX)).j; /* \sum_{g,h} \chi_W(g^2,h^2)\chi_W(g,h) */ T3:(i.(N*ZZ)).j; /* \sum_{g,h} \chi_W(g^3,h^3) */ Total1:expand((1/6)*(T1-3*T2+2*T3)/(order^2)); TotalS1:expand((1/6)*(T1+3*T2+2*T3)/(order^2)); xx:i.X; /* \sum_i \chi_{A_i}(g) */ xx2:i.(X*X); /* \sum_i \chi_{A_i}(g)^2 */ yy:i.Y; /* \sum_i \chi_{A_i}(g^2) */ zz:i.Z; /* \sum_i \chi_{A_i}(g^3) */ tt1:(n*xx*xx*xx).j; /* \sum_g (\sum_i \chi_{A_i}(g))^3 */ tt2:(n*xx2*xx).j; /* \sum_g (\sum_i \chi_{A_i}(g)^2)(\sum_i \chi_{A_i}(g)) */ tt3:(n*zz).j; /* \sum_g (\sum_i \chi_{A_i}(g^3)) */ Total2:expand((1/6)*order*(tt1-3*tt2+2*tt3)/(order^2)); TotalS2:expand((1/6)*order*(tt1+3*tt2+2*tt3)/(order^2)); /* dimensions of the (G x G) x Z_2 invariant part */ Alt_inv:(Total1+Total2)/2; /* alternating product */ Sym_inv:(TotalS1+TotalS2)/2; /* symmetric product */