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Abstract

In this article, we construct countably many mutually non-isotopic

diffeomorphisms of some closed non simply-connected 4-manifolds that

are homotopic to but not isotopic to the identity, by surgery along Θ-

graphs. As corollaries of this, we obtain some new results on codimension

1 embeddings and pseudo-isotopies of 4-manifolds. In the proof of the

non-triviality of the diffeomorphisms, we utilize a twisted analogue of

Kontsevich’s characteristic class for smooth bundles, which is obtained by

extending a higher dimensional analogue of Marché–Lescop’s “equivariant

triple intersection” in configuration spaces of 3-manifolds to allow Lie

algebraic local coefficient system.

Contents

1 Introduction 2
1.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Plan of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Notations and conventions . . . . . . . . . . . . . . . . . . . . . . 6

2 Spaces of (anti-)symmetric tensors 7
2.1 Anti-symmetric tensors for even dimensional manifolds . . . . . . 7

3 Manifolds and configuration spaces with local coefficient sys-
tem 10
3.1 Acyclic complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Propagator in a fiber for n odd . . . . . . . . . . . . . . . . . . . 13

4 Framed fiber bundles and their fiberwise configuration spaces 18
4.1 Moduli spaces of manifolds with some structures . . . . . . . . . 18
4.2 Local coefficient system on E . . . . . . . . . . . . . . . . . . . . 20
4.3 Chains of E with local coefficients . . . . . . . . . . . . . . . . . 22

*Department of Mathematics, Kyoto University.

1



4.4 Chains of family of configuration spaces with local coefficients . . 23
4.5 Propagator in a family for n odd . . . . . . . . . . . . . . . . . . 25
4.6 Invariant intersections of chains with local coefficients . . . . . . 27
4.7 Cross product of cycles with local coefficients . . . . . . . . . . . 31
4.8 Linking number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Perturbative invariant 36
5.1 Definition of the invariant when Oτ0(X,A) = 0, n odd . . . . . . 37

6 Evaluation of the invariant 40
6.1 R-decorated Θ-graphs . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Θ-graph surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Proof of Theorem 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4 Proof of Proposition 6.6 . . . . . . . . . . . . . . . . . . . . . . . 47

7 Σ3 × S1-bundles supported on Σ3 × I 49

8 More properties of Θ-graph surgery 53

A Local models of products of singular chains 56
A.1 Intersection of two simplices . . . . . . . . . . . . . . . . . . . . . 56
A.2 Cross product of simplices with local coefficients . . . . . . . . . 57

B Invariants in the π′-module V4 57

1 Introduction

In [Ga], David Gabai proposed a remarkable viewpoint that several important

problems in 4-dimensional topology can be interpreted by 4-dimensional light

bulb problem. There is a version of 4-dimensional light bulb problem, which

asks whether spanning k-disk of the unknotted Sk−1 in S4 is unique up to

isotopy fixing the boundary. Gabai gave a positive resolution of this problem

for k = 2 (“the 4-dimensional light bulb theorem”) in [Ga], and pointed out that

a positive resolution for k = 3 implies the smooth Schoenflies conjecture and

that the converse is true up to taking a lift in some finite branched covering of S4

over the unknotted S2. In [BG], Ryan Budney and Gabai constructed infinitely

many counterexamples to the 4-dimensional light bulb problem for k = 3 by

studying the group π0Diff(D3×S1, ∂) in detail, utilizing an embedding calculus

method by Gregory Arone and Markus Szymik in [ArSz], and gave a framework

for approaching the smooth Schoenflies conjecture.

In this paper, we attempt to extend some of the results of [BG] to 4-manifolds

that may not be diffeomorphic to D3×S1. More precisely, we use the technique

of graph surgery given in [Wa1, Wa2] to construct 4-manifold bundles over S1,

and show their nontriviality by using invariants. Here, the invariant we use is a
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twisted analogue of Kontsevich’s characteristic class of smooth bundles ([Kon]),

and is defined in a quite different way from that of [BG]. The invariant in this

paper is defined by extending the 3-manifold invariants of Julien Marché and

Christine Lescop that count “equivariant triple intersection” in configuration

space ([Mar, Les1, Les2]) to 4-manifolds with more general local coefficient sys-

tem including those of Lie algebra. Main ideas in the definition and computation

of the invariant of this paper are included in [Les1, Les2], which is analogous to

those by Greg Kuperberg and Dylan Thurston [KT] for Z homology 3-spheres.

Similar invariants of 3-manifolds with Lie algebra local coefficient system were

given in [AxSi, Kon, Fuk, BC, CS].

Our approach can be considered different from that of [BG] in the sense that

ours can give nontrivial elements that cannot be detected by a direct application

of their method. It should be mentioned that our construction is obtained by

the “barbell implantation” given in [BG, §6], as written there, which looks quite

simpler than our construction.

1.1 Main results

For a parallelizable closed manifold X with a basepoint x0, let X
• be the com-

plement of a small open ball around x0. For a compact manifold Z and its

submanifold Y , let Diff(Z, Y ) denote the group of self-diffeomorphisms of Z

which fix a neighborhood of Y pointwise, equipped with the C∞-topology, let

Diff(Z, ∂) = Diff(Z, ∂Z) and Diff(Z) = Diff(Z, ∅). Let Diff0(Z, Y ) denote the

subgroup of Diff(Z, Y ) consisting of diffeomorphisms homotopic to the identity

fixing the boundary. Let F∗(X) denote the space of all framings on X that

are standard near x0. Let Mapdeg∗ (X,X) denote the space of all degree 1 maps

(X, x0) → (X, x0) that maps a neighborhood of x0 onto x0 and that are homo-

topic to the identity. The groups Diff(X•, ∂), Diff0(X
•, ∂) act on these spaces

respectively. Let

B̃Diff(X•, ∂) = EDiff(X•, ∂)×Diff(X•,∂) F∗(X),

B̃Diffdeg(X
•, ∂) = EDiff0(X

•, ∂)×Diff0(X•,∂)

(
F∗(X)×Mapdeg∗ (X,X)

)
.

The space B̃Diff(X•, ∂) is the classifying space for framed X-bundles π : E → B

that are standard near x0, and B̃Diffdeg(X
•, ∂) is the classifying space for such

X-bundles equipped with a map E → X whose restriction to each fiber is a

pointed homotopy equivalence. For p ≥ 1, we will see that the groups πpF∗(X)

and πpMapdeg∗ (X,X) are both abelian groups of finite ranks (Proposition 4.1).

Theorem 1.1 (Theorems 5.3, 6.2, Corollary 6.3). Let Σ3 be the Poincaré ho-

mology 3-sphere Σ(2, 3, 5) and X = Σ3 × S1. Suppose that the local coefficient

system of the adjoint action of a representation ρ : π′ = π1(Σ
3) → SU(2) on

g = sl2 is acyclic, that is, H∗(X ; g) = 0. Then a homomorphism

Zeven
Θ : π1B̃Diffdeg(X

•, ∂) → A
even
Θ (g⊗2[t±1]; ρ(π′)× Z)
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to some space of anti-symmetric tensors is defined, and the image of Zeven
Θ has

countable infinite rank.

The nontrivial elements detected in Theorem 1.1 are constructed by surgery

along Θ-graphs as in [Wa1, Wa2], which are analogous to Goussarov and Habiro’s

graph surgery in 3-manifolds ([Gu, Hab]).

Corollary 1.2 (Theorem 7.5). Let Σ3 = Σ(2, 3, 5). Let Emb0(Σ
3,Σ3 ×S1) de-

note the space of embeddings Σ3 → Σ3×S1 homotopic to the standard inclusion

Σ3 = Σ3 × {1} ⊂ Σ3 × S1.

1. The abelianization of the group π0Diff0(Σ
3 × S1) has countable infinite

rank.

2. The set π0Emb0(Σ
3,Σ3 × S1) is infinite.

An explicit subgroup of infinite rank detected in both Theorem 1.1 and

Corollary 1.2-1 is given in Proposition 3.5.

Peter Teichner pointed out the following ([Tei]). See also [BW] for a detail.

Theorem 1.3 (Teichner). Let C(Y ) = Diff(Y × I, Y × {0}). The nontrivial

elements of the group π0Diff0(Σ
3 × S1) found in Corollary 1.2 are included in

the image of the natural map

π0C(Σ
3 × S1) → π0Diff0(Σ

3 × S1).

Corollary 1.4. If Σ3 = Σ(2, 3, 5), we have π0C(Σ
3 × S1) 6= 0.

The nontrivial elements of π0C(Σ
3 × S1) found here give examples of dif-

feomorphisms of Σ3 × S1 that are pseudo-isotopic to but not isotopic to the

identity. Nontriviality results for π0C(X) for other 4-manifolds X are obtained

more recently in [Igu, Sin, Igu2].

Our Θ-graph surgery construction gives diffeomorphisms of Σ3×S1 that are

homotopic to the identity but smoothly nontrivial (Proposition 8.4). We do not

know whether these elements are also topologically nontrivial, though it seems

likely to be so, considering the state in higher even dimensions ([BRW, §7.7]).

It would be worth mentioning that there are several works (e.g., [Ru, AKMR,

BK, KM]) giving diffeomorphisms of many 4-manifolds X whose isotopy classes

are in the kernel of π0Diff(X) → π0Top(X).

One can consider similar problems for X = D3 ×S1. The following result of

[BG] can be obtained as a corollary of Corollary 1.2.

Corollary 1.5 (Budney–Gabai). The abelian group π0Diff(D3 × S1, ∂) has a

direct summand of countable infinite rank, which is included in the image of the

natural map π0C∂(D
3 × S1) → π0Diff(D3 × S1, ∂), where C∂(Z) = Diff(Z ×

I, Z × {0} ∪ ∂Z × I).
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Proof. In Corollary 1.2, we still have a subgroup of countable infinite rank, if

we replace π0Diff0(Σ
3 × S1) with the image of a map

π0Diff∂(D
3 × S1) → π0Diff0(Σ

3 × S1)

induced by the inclusion D3 × S1 → Σ3 × S1 to a small tubular neighborhood

of {∗} × S1.

What is proved in this paper is the infiniteness of the group π0Diff(D3×S1, ∂)

and it is not proved in this paper that our group of infinite rank agrees with

that of [BG]. According to [BG], it follows from Corollary 1.5 that the group

π0Emb0(D
3, D3 × S1), which they proved to be abelian, has countable infinite

rank. Hence there are many distinct spanning 3-disks of the unknot in S4 that

are not relatively isotopic to the standard one. A statement analogous to The-

orem 1.3 holds in this case as well, as also shown in [BG] for their construction.

We mention that the results for Σ3 × S1 as above in Corollary 1.2 cannot be

obtained by applying the method of [BG], at least in a direct way. It should

be mentioned that there is also a remarkable result in [BG] which says that the

nontrivial subgroup found in [BG] survives in π0Diff0(S
3 × S1).

For higher dimensions, it is known that π1Σ(2, 3, 5) ∼= SL2(F5) acts freely

on S4k−1 ([LM]).

Corollary 1.6 (Corollary 6.5). Let n ≥ 7 be an integer of the form 4k−1 and let

Σn = Sn/π′, where π′ = π1Σ(2, 3, 5). Then the abelian group πn−2BDiff0(Σ
n ×

S1) has countable infinite rank.

1.2 Plan of the paper

In §2, we describe the spaces of (anti-)symmetric tensors, which are the target

spaces of the invariants considered in this paper.

In §3, we make assumptions on manifolds with local coefficient systems and

define their configuration spaces, and propagator.

In §4, we make assumptions on manifold bundles with local coefficient sys-

tems and define their fiberwise configuration spaces, and propagator for fam-

ilies. Also, we consider an intersection form between chains of configuration

space with local coefficients.

In §5, we define the invariant and prove its bordism invariance.

In §6, we construct fiber bundles by Θ-graph surgery, following [Wa1, Wa2],

and give a formula of the invariant for the bundles obtained by Θ-graph surgery.

The proof of the surgery formula boils down to Proposition 6.6. The outline of

its proof is almost the same as given in [Les1].

In §7, we describe a restriction on the value of the invariant for Σn × S1-

bundles that has support in Σn × I. Then we prove Corollary 1.2.

In §8, We show that the X-bundle obtained by Θ-graph surgery extends to

a bundle of pseudo-isotopy.
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1.3 Notations and conventions

For a sequence of submanifolds A1, A2, . . . , Ar ⊂ W of a smooth Riemannian

manifold W , we say that the intersection A1 ∩A2 ∩ · · · ∩Ar is transversal if for

each point x in the intersection, the subspace NxA1+NxA2+· · ·+NxAr ⊂ TxW

is the direct sum NxA1 ⊕ NxA2 ⊕ · · · ⊕ NxAr, where NxAi is the orthogonal

complement of TxAi in TxW with respect to the Riemannian metric.

For manifolds with corners and their (strata) transversality, we follow [BT,

Appendix].

For orientation convention for (sub)manifolds, we follow [Wa2, §1.5 and Ap-

pendix D]. As in [Wa2], we represent an orientation of a manifold M by a

nowhere-zero section of
∧dimM

TM and use the symbol o(M) for orientation

of M . When dimM = 0, we give an orientation of M by a choice of sign ±1

at each point, as usual. We orient the boundary of a manifold by the outward-

normal-first convention.

As chains in a manifold X , we consider C-linear combinations of finitely

many smooth maps from compact oriented manifolds with corners to X . We

say that two chains
∑
niσi and

∑
mjτj (ni,mj ∈ C, σi, τj : smooth maps from

compact manifolds with corners) are strata transversal if for every pair i, j,

the terms σi and τj are strata transversal. Strata transversality among two or

more chains can be defined similarly. The intersection number 〈σ, τ〉X of strata

transversal two chains σ =
∑
niσi and τ =

∑
mjτj with dim σi + dim τj =

dimX is defined by
∑

i,j nimj(σi · τj), where we impose the orientation on the

intersection by the wedge product of coorientations of the two pieces. We also

consider intersection 〈σ1, . . . , σn〉X of strata transversal chains σ1, . . . , σn for

n ≥ 2, which is defined similarly.

The diagonal {(x, x) ∈ X ×X | x ∈ X} is denoted by ∆X .

For a fiber bundle π : E → B, we denote by T vE the (vertical) tangent

bundle along the fiber Ker dπ ⊂ TE. Let ST vE denote the subbundle of T vE

of unit spheres. Let ∂fibE denote the fiberwise boundaries:
⋃

b∈B ∂(π
−1{b}).
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H. Konno, D. Kosanović, A. Kupers, F. Laudenbach, C. Lescop, A. Lobb,

M. Powell, O. Randal-Williams, K. Sakai, T. Sakasai, M. Sato, T. Satoh,

T. Shimizu, M. Taniguchi, P. Teichner, Y. Yamaguchi, D. Yuasa for helpful

comments.

Part of this work was done through my stay at OIST, Laboratory of Mathe-

matics Jean Leray, Institut Fourier, Max Planck Institute for Mathematics, Uni-

versity of Oregon, Stanford University in 2019. I thank the institutes for their

generous support. Also, I thank the organizers of the workshops “Four Mani-

folds: Confluence of High and Low Dimensions (Fields Institute, 2019)”, “HCM

Workshop: Automorphisms of Manifolds (Hausdorff Center, 2019)”, “Workshop

6



on 4-manifolds (MPIM, 2019)”, which enabled me to communicate with many

people about this work. This work was partially supported by JSPS Grant-in-

Aid for Scientific Research 17K05252, 15K04880 and 26400089, and by RIMS,

Kyoto University.

2 Spaces of (anti-)symmetric tensors

In this section, we define the target spaces of the invariants and give some ways

to extract information from these spaces.

2.1 Anti-symmetric tensors for even dimensional mani-
folds

Let G = SU(m), g = Lie(G) ⊗ C = slm. Generally, a complex semisimple

Lie algebra g has an Ad(G)-invariant symmetric nondegenerate bilinear form

B : g⊗2 → C. If g = slm, then B can be given by B(X,Y ) = Tr(XY ). This is

Ad(G)-invariant in the sense that B(Ad(g)X,Ad(g)Y ) = Tr(gXg−1gY g−1) =

Tr(XY ) = B(X,Y ). We equip g⊗2 with an algebra structure over C by the

following product.

(X1 ⊗ Y1) · (X2 ⊗ Y2) = B(Y1, X2)X1 ⊗ Y2

The multiplicative unit for this product is the Casimir element cg =
∑

i ei⊗ e∗i ,
where e = {ei} a basis of g, e∗ = {e∗i } is the dual basis for e with respect

to B(·, ·): B(ei, e
∗
j ) = δij . The two algebras g⊗2 and End(g) are identified

by u ⊗ v∗ 7→ (x 7→ B(x, v∗)u). Then the product in g⊗2 corresponds to the

composition of endomorphisms, and B corresponds to the trace. The element

Ad(g) ∈ End(g) corresponds to (1⊗Ad(g∗))(cg) = (Ad(g)⊗1)(cg) ∈ g⊗2, which

we denote by the same symbol Ad(g). An Ad(G)-invariant skew-symmetric 3-

form Tr: g⊗3 → C is defined by the following formula.

Tr(X ⊗ Y ⊗ Z) = B([X,Y ], Z)

We refer the reader to [Kas, Ch.XVII.1] for the details. The external tensor

product g⊠2 = g⊠ g is the left G×G-module g⊗2 defined by the action

(g, h)(X ⊗ Y ) = Ad(g)X ⊗Ad(h)Y = gXg−1 ⊗ hY h−1.

Definition 2.1. 1. Let A even
Θ (C[t±1];Z) =

∧3 C[t±1]/Z, where the alter-

nating tensor product is over C, and the quotient by Z is given by the

relation:

a ∧ b ∧ c = tna ∧ tnb ∧ tnc (a, b, c ∈ C[t±1], n ∈ Z).
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2. Let H be a subgroup of G and let

A
even
Θ (g⊗2[t±1];H × Z) =

∧3
(g⊗2[t±1])/(H×2 × Z),

where the alternating tensor product is over C, and the quotient by H×2×
Z is given by the relations:

a ∧ b ∧ c = tna ∧ tnb ∧ tnc,
a ∧ b ∧ c = (g, g′) a ∧ (g, g′) b ∧ (g, g′) c (a, b, c ∈ g⊗2[t±1], g, g′ ∈ H).

3. Let S even
Θ =

∧3 C[t±1]/∼, tp ∧ tq ∧ tr ∼ t−p ∧ t−q ∧ t−r. This space is

embedded into a C subspace of C[t±1
1 , t±1

2 , t±1
3 ] by the map

[tp ∧ tq ∧ tr] 7→
∑

σ∈S3

sgn(σ)
(
tpσ(1)t

q
σ(2)t

r
σ(3) + t−p

σ(1)t
−q
σ(2)t

−r
σ(3)

)
.

The spaces A even
Θ can be considered as the spaces of decorated Θ-graphs

considered modulo the invariance relation at trivalent vertices. We will denote

the element α ∧ β ∧ γ of the space
∧3 C[t±1] or

∧3
g⊗2[t±1] by Θ(α, β, γ) to

distinguish from elements of S even
Θ . Let W even

C[t±1](Θ(ta, tb, tc)) ∈ S even
Θ be the

element defined by the following formula.

W even
C[t±1](Θ(ta, tb, tc)) = [tb−a ∧ ta−c ∧ tc−b]

For Pta, Qtb, Rtc (P,Q,R ∈ g⊗2), let Θ(Pta, Qtb, Rtc) denote the element Pta∧
Qtb ∧Rtc in A even

Θ (g⊗2[t±1];G×Z), and let W even
g[t±1](Θ(Pta, Qtb, Rtc)) ∈ S even

Θ

be defined by the following formula:

W even
g[t±1](Θ(Pta, Qtb, Rtc))

= (Tr⊗ Tr)σΘ (P ⊗Q⊗R)[tb−a ∧ ta−c ∧ tc−b],

where σΘ : (g⊗2)⊗3 → (g⊗3)⊗2 is the permutation of factors that is determined

by the combinatorial structure of the Θ-graph:

(xP ⊗ yP )⊗ (xQ ⊗ yQ)⊗ (xR ⊗ yR)
σΘ7→ (xP ⊗ xQ ⊗ xR)⊗ (yR ⊗ yQ ⊗ yP ).

The coefficient (Tr⊗Tr)σΘ (P ⊗Q⊗R) is precisely the slm-weight system of the

Θ-graph with decorations P,Q,R on edges ([BN, §2.4], see also [CDM, §6.2]).

Proposition 2.2. TheW even
C[t±1] andW

even
g[t±1] for Θ(ta, tb, tc) and Θ(Pta, Qtb, Rtc)

as above induce well-defined C-linear maps

W even
C[t±1] : A

even
Θ (C[t±1];Z) → S

even
Θ , and

W even
g[t±1] : A

even
Θ (g⊗2[t±1];H × Z) → S

even
Θ , respectively.
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Proof. First, we see that W even
C[t±1] is well-defined. The part [tb−a ∧ ta−c ∧ tc−b]

is invariant under the action of Z on
∧3 C[t±1], and the transpositions a ↔ b,

b↔ c, c↔ a turn this into

[ta−b ∧ tb−c ∧ tc−a] = [tb−a ∧ tc−b ∧ ta−c] = −[tb−a ∧ ta−c ∧ tc−b],

[tc−a ∧ ta−b ∧ tb−c] = [ta−c ∧ tb−a ∧ tc−b] = −[tb−a ∧ ta−c ∧ tc−b],

[tb−c ∧ tc−a ∧ ta−b] = [tc−b ∧ ta−c ∧ tb−a] = −[tb−a ∧ ta−c ∧ tc−b]

in S even
Θ . Hence W even

C[t±1] is well-defined on A even
Θ (C[t±1];Z).

Also, it follows from the S3-antisymmetry and the Ad(G)-invariance of Tr

that the coefficient part (Tr⊗Tr)σΘ (P⊗Q⊗R) is S3-symmetric and Ad(G)×2-

invariant. This together with the Z-invariance and S3-antisymmetry of the part

[tb−a ∧ ta−c ∧ tc−b] proves that W even
g[t±1] is well-defined.

Example 2.3. We have W even
C[t±1]

(
Θ(1, t, tp)

)
= [t ∧ t−p ∧ tp−1]. This element

corresponds to the following element in C[t±1
1 , t±1

2 , t±1
3 ].

t1t
−p
2 tp−1

3 − t1t
−p
3 tp−1

2 − t2t
−p
1 tp−1

3 + t2t
−p
3 tp−1

1 + t3t
−p
1 tp−1

2 − t3t
−p
2 tp−1

1

+t−1
1 tp2t

−p+1
3 − t−1

1 tp3t
−p+1
2 − t−1

2 tp1t
−p+1
3 + t−1

2 tp3t
−p+1
1 + t−1

3 tp1t
−p+1
2 − t−1

3 tp2t
−p+1
1

We denote this polynomial by fp(t1, t2, t3).

Proposition 2.4. [Θ(1, t, tp)] (p ≥ 3) spans a countable infinite dimensional

C-subspace of A even
Θ (C[t±1];Z).

Proof. We have fp(1, x, x
3) = x3p−1 − x3p−2 − x2p+1 + x2p−3 + xp+2 − xp−3 −

x−p+3 + x−p−2 + x−2p+3 − x−2p−1 + x−3p+1, and for p ≥ 3, its maximal degree

term is x3p−1, minimal degree term is x−3p+1. Thus {fp(1, x, x3) | p ≥ 3} is

linearly independent over C in C[x±1].

Proposition 2.5. For x, y ∈ SU(2), a, b ∈ Z, we have

W even
g[t±1]

(
Θ(1,Ad(x)ta,Ad(y)tb)

)

= 2
(
Tr(Ad(x))Tr(Ad(y))− Tr(Ad(xy))

)
[ta ∧ t−b ∧ tb−a]

Proof. For g = su(2) ⊗ C = sl2, the following identity holds in EndC(g
⊗2)

([CVa]).

(2.1)

Here, the left hand side is the composition of the Lie bracket b : g⊗2 → g and its

dual b∗ : g → g⊗2. The two terms in the right hand side represent the identity

morphism and the transposition x⊗ y 7→ y ⊗ x, respectively. Then, we have

σΘ(1⊗Ad(x)⊗Ad(y)) = Tr(ϕ ◦ (Ad(x∗)⊗Ad(y∗))),
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where ϕ ∈ EndC(g
⊗2) is the map on the left hand side of (2.1).

If we apply the relation (2.1) to the Θ-graph with edges decorated by 1,

Ad(x), Ad(y), then we obtain a disjoint union of circles with decorations. The

first term in the right hand side of (2.1) gives disjoint union of two circles

decorated by Ad(x) and Ad(y), respectively. The second term in the right hand

side of (2.1) gives one circle decorated by Ad(x)Ad(y) = Ad(xy).

3 Manifolds and configuration spaces with local

coefficient system

We make an assumption on the manifold X with a local coefficient system A,

and we compute the homology of the configuration space Conf2(X) of two points

with the local coefficient system induced from A⊠A. Based on the computation

of the homology, we define propagator, which is an analogue of “equivariant

propagator” in [Les1]. We will define in the next section propagator in families

of configuration spaces, which plays an important role in the definition of the

main perturbative invariant.

3.1 Acyclic complex

Let X be a manifold with a basepoint x0 and a universal cover X̃. The space

X̃ can be considered as the set of pairs (x, [γ]), where x is a point of X and

[γ] is the homotopy class relative to the endpoints of a path γ : [0, 1] → X

from x to the basepoint x0 ∈ X . We take a cellular chain complex C∗(X) for

a CW decomposition of X and take C∗(X̃) for the CW decomposition of X̃

compatible with that of X . Let S∗(X), S∗(X̃) be the complexes of piecewise

smooth singular chains in X and X̃ , respectively. The complexes C∗(X̃) and

S∗(X̃) are naturally C[π]-modules through the covering transformations. We

assume that the coefficients are in C, unless otherwise noted.

Let π denote π1(X), A be a left C[π]-module, and let ρA : π → EndC(A) be

the corresponding C-linear representation. Let R be C or C[t±1]. We assume

that A has finite rank over a ring R and has a nondegenerate C[π]-invariant
symmetric R-bilinear form B(·, ·) : A ⊗R A → R. Let cA ∈ A ⊗R A be the

C[π]-invariant 2-tensor defined by the following formula.

cA =
∑

i

ei ⊗ e∗i

Here, {ei} is an R-basis of A, {e∗i } is the dual basis for {ei} with respect to B.

Let C∗(X ;A) = C∗(X̃) ⊗C[π] A, S∗(X ;A) = S∗(X̃) ⊗C[π] A. The boundary

operators of these complexes are given by ∂A = ∂ ⊗ 1 (see e.g., [Wh, Ch.VI],

[Hatt, II-Ch.6] etc. for homology of local coefficients). Especially, when X =
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Σn × S1, C∗(X ;A) = C∗(X̃)⊗C[π′×Z] A has a structure of free (C[t±1],C[t±1])-

bimodule if we let π′ = π1(Σ
n) and take A = A1⊗CC[t±1] for some C[π′]-module

A1. In this case, we have a symmetric C[t±1]-bilinear form B(·, ·) : A⊗RA→ R,

where R = C[t±1], and the invariant 2-tensor cA1 ∈ A⊗2
1 [t±1] = A⊗R A, where

we identify R⊗RR with R by ta⊗tb = ta−b. We make the following assumption.

Assumption 3.1. C∗(X ;A) (and S∗(X ;A)) is acyclic, i.e., H∗(X ;A) = 0.

Lemma 3.2. Let Λ = C[t±1]. Under Assumption 3.1, the following hold.

1. C∗(X ×X ;A⊠C A) = C∗(X ;A)⊗C C∗(X ;A) is acyclic.

2. If moreover X = Σn × S1 and A = A1 ⊗C Λ, then C∗(X ×X ;A⊠Λ A) =

C∗(X ;A)⊗Λ C∗(X ;A) is acyclic.

Proof. The assertion 1 follows from the Künneth formula for C-modules. For

2, since Λ is a PID, the exact sequence for Λ-modules (Künneth formula (e.g.,

[CE, Theorem VI.3.2]))

0 →
⊕

p+q=n

Hp(C)⊗ΛHq(C) → Hn(C⊗ΛC) →
⊕

p+q=n−1

TorΛ1 (Hp(C), Hq(C)) → 0

(C = C∗(X ;A)) holds. Then 2 is an immediate corollary of this.

Remark 3.3. 1. To apply the Künneth formula, certain restriction on the

coefficient ring or on the chain complex C is necessary, and it is not always

possible to replace the tensor product in Lemma 3.2 (2) with that of C[π]-
modules, instead of Λ-modules. For example, for π = Z×Z, the Künneth

formula for C[π]-modules fails.

2. When X is a closed manifold, χ(X) = 0 is necessary for the complex

C∗(X ; g) of the adjoint representation of a flat G-connection to be acyclic.

Indeed, the Euler characteristic of this complex depends only on the di-

mensions of the modules Ci(X ; g), and not on the twisted differential.

Thus the identity

∑

i

(−1)i dimC∗(X ; g) = χ(X) dim g

holds. If C∗(X ; g) is acyclic, χ(X) must be 0. For dimX = 4, χ(X) = 0

is satisfied if X is a homology S3 × S1, but not if X is a homology S4.

3. Although we identify EndR(A) with A ⊗R A through B(·, ·) to simplify

notation, it would be more natural to think of this as A⊗RA
∗. For exam-

ple, the diagonal action of Z on R⊗R R is converted into the conjugation

x⊗ y 7→ tx⊗ yt−1 on R⊗R R
∗ = EndR(R), which is trivial.
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Example 3.4. Let Σ3 = Σ(2, 3, 5) and g = su(2)⊗C. The fundamental group

π′ of Σ3 has the following presentation.

π′ = 〈x1, x2, x3, h | h central, x21 = h, x32 = h−1, x53 = h−1, x1x2x3 = 1〉

There are exactly two conjugacy classes of irreducible representations ρ : π′ →
SU(2). One is such that

ρ(h) = −I, ρ(x1) = diag(i,−i),

ρ(x2) =

(
1
2 − αi β

−β 1
2 + αi

)
∼ diag(eπi/3, e−πi/3),

ρ(x3) =

(
α− 1

2 i −βi
−βi α+ 1

2 i

)
∼ diag(eπi/5, e−πi/5),

(3.1)

where α = cos π
5 = 1+

√
5

4 , β = −1+
√
5

4 , and ∼ is the conjugacy relation ([Sa1,

Bod] etc.). For the local coefficient system gρ = g on Σ3 for the adjoint action of

ρ, we have H0(Σ3; gρ) = 0 by the irreducibility of the representation. Moreover,

it is known that H1(Σ3; gρ) = 0 holds for any irreducible SU(2)-representation

of Σ3 = Σ(p, q, r) ([FS, Bod] etc.). This together with Poincaré duality implies

the acyclicity.

H∗(Σ
3; gρ) = 0 (3.2)

By taking the tensor product over C with the homology of the universal cover

of S1 with twisted coefficients*

H∗(S
1;C[t±1]) = H∗(R

1;Z)⊗Z[t±1] C[t
±1] ∼= C,

we have

H∗(Σ
3 × S1; gρ[t

±1]) = 0. (3.3)

Also, by mapping the generator of π1(S
1) = Z into the center Z2 = {±1} of

SU(2), an irreducible extension ρ1 : π1(Σ
3×S1) → SU(2) is obtained. Since the

adjoint action of the center {±1} of SU(2) on gρ1 is trivial, gρ1 is isomorphic

as a π′ × Z-module to gρ ⊠C C, and we have

H∗(Σ
3 × S1; gρ1) = H∗(Σ

3; gρ)⊗C H∗(S
1;C) = 0. (3.4)

The same results hold for another irreducible representation ρ : π′ → SU(2)

defined by the same formula as (3.1) with α = cos 3π
5 = 1−

√
5

4 , β = 1+
√
5

4 .

In relation to the local coefficient system gρ[t
±1] above, let us compute the

value of

W even
g[t±1]

(
Θ(1,Ad(α3) t,Ad(α

2
3) t

p)
)

(α3 = ρ(x3))

*The acyclicity (3.3) would also be obtained even when we took untwisted coefficients here.

However, in that case, the values of the invariant for our construction would be all trivial.
Also, it is possible to obtain the vanishing (3.3) by replacing C[t±1] with C(t) (the field of

rational functions) here, instead of requiring the acyclicity (3.2). In that case, the invariant
Zeven

Θ
would become surprisingly weak.
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for example. The mapW even
g[t±1] was defined in Proposition 2.2, Ad(·) was defined

before Definition 2.1. By applying Proposition 2.5, the value of this weight is

2
(
w(α3)w(α

2
3)− w(α3

3)
)
[t ∧ t−p ∧ tp−1], (3.5)

where w(x) is the weightW even
g[t±1] of the oriented circle decorated by Ad(x), or the

trace of Ad(α). If V is the standard representation of SU(2), the adjoint SU(2)-

representation g can be considered as the codimension 1 subrepresentation of

V ⊗V ∗ = gl2, where the SU(2)-action is given by v⊗w∗ 7→ gv⊗ gw∗, gw∗(·) =
w∗(g−1(·)) (g ∈ SU(2)). This shows that

w(x) = Tr(x)Tr(x∗)− 1 = |Tr(x)|2 − 1.

By w(α3) =
1+

√
5

2 , w(α2
3) = w(α3

3) =
1−

√
5

2 , the value of the weight (3.5) is

(−3 +
√
5) [t ∧ t−p ∧ tp−1].

Here, by Proposition 2.4, we know that [t ∧ t−p ∧ tp−1] 6= 0 for p ≥ 3. Also,

replacing α3 with I in the above formula gives the weight of Θ(1, t, tp), and its

value is

12 [t ∧ t−p ∧ tp−1].

Hence [Θ(1, t, tp)] and [Θ(1,Ad(α3) t,Ad(α
2
3) t

p)] are linearly independent over

Q.

Proposition 3.5. Let A even
Θ (g⊗2; ρ(π′)) =

∧3
(g⊗2)/ρ(π′)×2. Then the set

{Θ(1, t, tp) | p ≥ 3} is linearly independent in the cokernel of the natural embed-

ding

ig : A
even
Θ (g⊗2; ρ(π′)) → A

even
Θ (g⊗2[t±1]; ρ(π′)× Z).

Proof. The result follows immediately from Proposition 2.4 and Example 3.4.

Namely, we consider the following commutative diagram:

A even
Θ (C[t±1];Z)

��

W even

C[t±1]

))❘❘
❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

A even
Θ (g⊗2; ρ(π′))

ig
// A even

Θ (g⊗2[t±1]; ρ(π′)× Z)
W even

g[t±1]

//t=1oo
S even

Θ

where W even
g[t±1] ◦ ig = 0 since [1 ∧ 1 ∧ 1] = 0. Since W even

C[t±1] embeds {Θ(1, t, tp) |
p ≥ 3}) to a linearly independent set by Proposition 2.4, the result follows.

3.2 Propagator in a fiber for n odd

Let X be a closed parallelizable (n+1)-manifold with a local coefficient system

A satisfying the acyclicity Assumption 3.1. Let ∆X be the diagonal of X ×X .

The configuration space of two points of X is

Conf2(X) = X ×X −∆X .
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The Fulton–MacPherson compactification of Conf2(X) is

Conf2(X) = Bℓ(X ×X,∆X).

The right hand side is the analogue of the blow-up for real smooth manifolds,

which roughly replaces ∆X with its normal sphere bundle in X × X . The

boundary ∂Conf2(X) is identified with the normal sphere bundle of ∆X , which

is canonically identified with the unit tangent bundle ST (X). Since X is paral-

lelizable, there is a diffeomorphism ∂Conf2(X) ∼= Sn ×X .

We also denote by A⊠2 the pullback of the local coefficient system A⊠2 =

A ⊠R A, R = C or C[t±1], on X ×X to Conf2(X), and by A⊗2 its restriction

to ∂Conf2(X), on which π acts diagonally. Also, we write ∂A for ∂A⊠2 for

simplicity. There is an R-submodule of A⊗2 spanned by cA, and the diagonal

action of the holonomy on ∆X is trivial on it. Since the natural mapH∗(X ;R) =

H∗(X ;C)⊗R→ H∗(∆X ;A⊗2) given by σ 7→ σ⊗cA is a section of the projection,

the R-module H∗(∆X ;A⊗2) has a direct summand isomorphic to H∗(X ;R),

where R is the untwisted coefficient. We make the following assumption.

Assumption 3.6. H∗(∆X ;A⊗2) ∼= H∗(X ;R) and this is generated over R by

σ ⊗ cA for C-cycles σ of X .

We will see later in Proposition 3.14 that Assumption 3.6 is satisfied by the

local coefficient system A = gρ[t
±] on X = Σ(2, 3, 5)× S1 of Example 3.4. The

following is an analogue of [Les1, Proposition 2.12].

Lemma 3.7. For an odd integer n ≥ 3, let X be a parallelizable Z homology

Sn×S1. Let K be an oriented knot in X that generates H1(X ;Z), and Σ be an

oriented n-submanifold of X that generates Hn(X ;Z) and such that 〈Σ,K〉 = 1.

Under Assumptions 3.1 and 3.6, we have

Hi(Conf2(X);A⊠2) =





R[ST (∗)⊗ cA] (i = n)

R[ST (K)⊗ cA] (i = n+ 1)

R[ST (Σ)⊗ cA] (i = 2n)

R[ST (X)⊗ cA] (i = 2n+ 1)

0 (otherwise)

where for an oriented submanifold σ of X, we denote by ST (σ) the restriction

of the unit sphere bundle ST (X) to σ, for which ST (σ)⊗ cA is an A⊠2-cycle by

Assumption 3.6.

Proof. We consider the exact sequence

Hi+1(X
×2;A⊠2) → Hi+1(X

×2,Conf2(X);A⊠2) → Hi(Conf2(X);A⊠2)

→Hi(X
×2;A⊠2),

where we have H∗(X×2;A⊠2) = 0 by (3.2) and Lemma 3.2. Letting N(∆X) be

a closed tubular neighborhood of ∆X , we have

Hi+1(X
×2,Conf2(X);A⊠2) ∼= Hi+1(N(∆X), ∂N(∆X);A⊗2)
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by excision. Since X is parallelizable and the normal bundle of ∆X can be

canonically identified with TX , the normal bundle of ∆X is trivial. By As-

sumption 3.6, we have

Hi+1(N(∆X), ∂N(∆X);A⊗2) = Hn+1(D
n+1, ∂Dn+1;R)⊗R Hi−n(∆X ;A⊗2)

∼= Hn+1(D
n+1, ∂Dn+1;R)⊗R Hi−n(X ;R) ∼= Hi−n(X ;R).

Here, Hi−n(X ;R) is rank 1 for i − n = 0, 1, n, n + 1, and its generator is

∗,K,Σ, X , respectively.

Lemma 3.8. Let n,X,K,A be as in Lemma 3.7. Let sτ0 : X → ST (X) be the

section given by the normalization of the first vector of a framing τ0 of X. Then

we have

Hn+1(∂Conf2(X);A⊗2) = R[ST (K)⊗ cA]⊕R[sτ0(X)⊗ cA].

Proof. This follows from the trivialization ∂Conf2(X) ∼= Sn×X induced by τ0,

the Künneth formula for R-modules, and Assumption 3.6.

Since Hn+2(Conf2(X);A⊠2) = 0 by Lemma 3.7, we have the following exact

sequence of R-modules.

0 → Hn+2(Conf2(X), ∂Conf2(X);A⊠2)

r→ Hn+1(∂Conf2(X);A⊗2)
i→ Hn+1(Conf2(X);A⊠2)

Corollary 3.9. Let n,X,K,A be as in Lemma 3.7. There exists an element

Oτ0(X,A) ∈ R such that

i([sτ0(X)⊗ cA]) = Oτ0(X,A)[ST (K)⊗ cA].

Hence we have

[sτ0(X)⊗ cA]− Oτ0(X,A)[ST (K)⊗ cA] ∈ Ker i = Im r.

Proof. This follows fromHn+1(Conf2(X);A⊠2) = R[ST (K)⊗cA] of Lemma 3.7.

Definition 3.10 (Propagator). Let X,K,A be as in Lemma 3.7. A propagator

is an (n+2)-chain ω of Conf2(X) with coefficients in A⊠2 that is transversal to

the boundary and that satisfies

∂A ω = sτ0(X)⊗ cA − Oτ0(X,A)ST (K)⊗ cA.

Remark 3.11. For 3-manifolds with b1 = 1, Lescop described Oτ0(X,C(t)) in

terms of the logarithmic derivative of the Alexander polynomial ([Les1]).
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Example 3.12. Let X = Σn × S1 (Σn: parallelizable homology Sn) and π′ =
π1(Σ

n). We consider A = A1 ⊗C Λ of §3.1 as a C[π]-module by the π = π′ × Z-
action

(g × n)(v ⊗ f(t)) = ρA1(g)(v) ⊗ tnf(t).

If C∗(Σn;A1) is acyclic, so is C∗(X ;A) = C∗(Σn;A1) ⊗C C∗(S1; Λ). Let τ0 be

a framing of X such that the first vector is tangent to S1 and the remaining n

vectors are tangent to Σn.

Proposition 3.13. Under the above assumption, we have Oτ0(X,A) = 0.

Proof. For each point (x, y) of Conf2(Σ
n), the chain (x, y)×S1 = {(x, θ)×(y, θ) |

θ ∈ S1} of Conf2(X) is defined. Similarly, for each k-chain σ of Conf2(Σ
n), the

(k + 1)-chain σ × S1 of Conf2(X) is defined. It follows from the invariance of

the coefficient A ⊠Λ A = A⊠2
1 [t±1] under the diagonal action of Λ that σ × S1

is a cycle over A⊠2
1 [t±1] if σ is a cycle and that the correspondence σ 7→ σ × S1

induces a well-defined map

· × S1 : Hi(Conf2(Σ
n);A⊠2

1 ) → Hi+1(Conf2(X);A⊠2
1 [t±1]).

Similarly, we have the following commutative diagram.

Hn+2(Conf2(X), ∂Conf2(X);A⊠2
1 [t±1])

r // Hn+1(∂Conf2(X);A⊗2
1 [t±1])

Hn+1(Conf2(Σ
n), ∂Conf2(Σ

n);A⊠2
1 )

r′ //

·×S1

OO

Hn(∂Conf2(Σ
n);A⊗2

1 )

·×S1

OO

One may see by an argument similar to Lemma 3.7 that

Hi(Conf2(Σ
n);A⊠2

1 ) =





R[ST ′(∗)⊗ cA1 ] (i = n− 1)

R[ST ′(Σn)⊗ cA1 ] (i = 2n− 1)

0 (otherwise)

where ST ′(σ) is the restriction of the unit tangent bundle of Σn to σ, and that

Hn(∂Conf2(Σ
n);A⊗2

1 ) is spanned overR by [s′τ0(Σ
n)⊗cA1 ]. The following holds.

[(s′τ0(Σ
n)× S1)⊗ cA1 ] = [sτ0(X)⊗ cA1 ] ∈ Hn+1(∂Conf2(X);A⊗2

1 [t±1])

Moreover, by an argument similar to Corollary 3.9, it follows that there exists

an (n+ 1)-chain ωΣn of Conf2(Σ
n) with coefficients in A⊠2

1 that satisfies

r′([ωΣn ]) = [s′τ0(Σ
n)⊗ cA1 ].

Then by the commutativity of the above diagram, we have

r([ωΣn × S1]) = [sτ0(X)⊗ cA1 ].

Since this belongs to the kernel of the map i : Hn+1(∂Conf2(X);A⊗2
1 [t±1]) →

Hn+1(Conf2(X);A⊠2
1 [t±1]), it follows that Oτ0(X,A) = 0.
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Proposition 3.14. The local coefficient system A = gρ[t
±] on X = Σ(2, 3, 5)×

S1 of Example 3.4 satisfies Assumption 3.6. Namely, we have H∗(∆X ; g⊗2
ρ [t±]) ∼=

H∗(X ;C[t±1]) and it is generated by σ ⊗ cA for cycles σ of X.

Proof. It is well-known that the adjoint representation of SU(2) on g = sl2 is

irreducible and g⊗2 equipped with the diagonal adjoint SU(2)-action Ad ⊗ Ad

has the following decomposition into irreducible SU(2)-modules:

g⊗ g ∼= V0 ⊕ V2 ⊕ V4,

where Vm is the irreducible representation of sl2 of highest weight m and hence

of dimension m + 1 (Clebsch-Gordan formula, e.g., [Kas, Propotision V.5.1]).

More explicitly, V0 ∼= C is the trivial representation spanned by cg, and V2 ∼= g

as SU(2)-modules. This together with (3.2) in Example 3.4 shows that

H∗(∆X ; g⊗2
ρ [t±1]) ∼= H∗(∆X ;C[t±1])⊕H∗(∆X ; gρ[t

±1])⊕H∗(∆X ;V4[t
±1]ρ)

∼= H∗(∆X ;C[t±1])⊕H∗(∆X ;V4[t
±1]ρ),

where π1(∆X) acts trivially on C[t±1]. Hence it suffices to prove the vanishing

of H∗(Σ(2, 3, 5); (V4)ρ). Here, we put the subscript ρ to emphasize that the

representation is given through ρ.

The module Vm = SymmV , V = C2, can be considered as the space of

homogeneous (commutative) polynomials of degreem in two variables, on which

g ∈ SU(2) acts by

(g · f)
(
x

y

)
= f(g−1

(
x

y

)
).

(e.g., [Kna, IV.1].) One can see that H0(Σ(2, 3, 5); (V4)ρ) ∼= V π′

4 = {v ∈ V4 |
g · v = v (∀g ∈ π′)} is zero (Proposition B.1).

Since π′ = π1Σ(2, 3, 5) is finite, C[π′] is semisimple in the sense of [CE, §I.4]

by Maschke’s theorem and we have H1(π′; (V4)ρ) = 0 (Theorem VI.16.6 and

Lemma VI.16.7 of [HS]). By the universal coefficient theorem, which is valid if

the ring is hereditary, the sequence

0 → Ext1C[π′](Hi−1(C),W ) → Hi(HomC[π′](C,W )) → HomC[π′](Hi(C),W ) → 0

is exact for C = S∗(S3;C) (as a C[π′]-module) and any C[π′]-module W (e.g.,

[CE, Theorem VI.3.3]). Hence we have

H3(Σ(2, 3, 5);W ) ∼= HomC[π′](C,W ) ∼= H0(π′;W ) =Wπ′

,

H2(Σ(2, 3, 5);W ) = 0,

H1(Σ(2, 3, 5);W ) ∼= Ext1C[π′](C,W ) = H1(π′;W ),

H0(Σ(2, 3, 5);W ) ∼= HomC[π′](C,W ) ∼= H0(π′;W ) =Wπ′

.

Namely, we have H∗(Σ(2, 3, 5); (V4)ρ) = 0. Then by Poincaré duality (e.g.,

[Hat2, §3.H], [Hatt, Theorem 7.17] etc.), we also have H∗(Σ(2, 3, 5); (V4)ρ) =

0.
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Remark 3.15. A result similar to Proposition 3.14 holds also for X = S4k−1/π′

(k ≥ 2), in which case H∗(C) = H∗(S4k−1;C) and

Hi(X ;W ) ∼=





Wπ′

(i = 0, 4k − 1),

H1(π′;W ) (i = 1),

0 (otherwise),

which vanishes for all i when W = V4.

4 Framed fiber bundles and their fiberwise con-

figuration spaces

We make an assumption on X-bundles π : E → B with local coefficient sys-

tem, and we compute the homology of the Conf2(X)-bundle EConf2(π) over

B associated to π with fiber the configuration space of two points. We also re-

call a geometric interpretation of chains with local coefficients and intersections

among them.

4.1 Moduli spaces of manifolds with some structures

Let Σn be a stably parallelizable n-manifold and let X = Σn × S1. We fix a

basepoint x0 ∈ X . Let

K = {∗} × S1 ⊂ X,

and we assume that K is disjoint from x0. Let τ0 : TX → Rn+1 × X be the

standard framing, i.e., the one obtained from a stable framing on Σn × {∗} by

S1-symmetry. In the following, we assume that π : E → B is an X-bundle with

structure group Diff0(X
•, ∂), equipped with the following data.

1. A trivialization of the restriction of π on a tubular neighborhood of the

basepoint section x̃0.

2. A smooth trivialization of the vertical tangent bundle T vE = Ker dπ over

E

τ : T vE → Rn+1 × E

that agrees with τ0 on the base fiber, and that agrees with the trivialization

of the normal bundle of x̃0 induced from the item 1.

3. A fiberwise pointed homotopy equivalence f : E → X .

The classifying space forX-bundles π with such structures is given by B̃Diffdeg(X
•, ∂),

defined in §1.1. We have the following fibration sequences.

F∗(X) →B̃Diff(X•, ∂) → BDiff(X•, ∂)

F∗(X)×Mapdeg∗ (X,X) →B̃Diffdeg(X
•, ∂) → BDiff0(X

•, ∂)
(4.1)
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Proposition 4.1. Suppose that Σn is a homology n-sphere and X = Σn × S1.

Then for p ≥ 1, πpF∗(X) and πpMapdeg∗ (X,X) are finitely generated groups.

Proof. This follows immediately from the following two Lemmas 4.2 and 4.3.

Lemma 4.2. Let p ≥ 1. If Σn is a homology n-sphere and X = Σn × S1,

πpF∗(X) ∼= πp+1SOn+1 ⊕ πp+nSOn+1 ⊕ πp+n+1SOn+1.

Proof. Fixing the standard framing τ0 gives a homotopy equivalence

F∗(X) = Map∗(X,GL
+
n+1(R)) ≃ Map∗(X,SOn+1),

where GL+
n+1(R) is the space of orientation preserving linear isomorphisms of

Rn+1. When X = Σn × S1, where Σn is a homology n-sphere, we take a

pointed degree 1 map c : X → Sn×S1. One can see that ΩpMap∗(X,SOn+1) ∼=
Map∗(S

p ∧X,SOn+1), and the iterated suspension Spc : Sp ∧X → Sp ∧ (Sn ×
S1) is a homology equivalence between 1-connected spaces. By Whitehead’s

theorem, Spc is a homotopy equivalence. Hence Spc induces an isomorphism

π0Map∗(S
p ∧X,SOn+1)

∼=→ π0Map∗(S
p ∧ (Sn × S1), SOn+1).

The result follows by Sp ∧ (Sn × S1) ≃ Sp(Sn) ∨ Sp(S1) ∨ Sp(Sn ∧ S1) ≃
Sp+n ∨ Sp+1 ∨ Sp+n+1 (e.g., [Hat2, Proposition 4I.1]).

Proof of the next lemma is the same as that of Lemma 4.2. Note that

Mapdeg∗ (X,X) is homotopy equivalent to the identity component of Map∗(X,X).

Lemma 4.3. Let p ≥ 1. If Σn = Sn/π1Σ(2, 3, 5) and X = Σn × S1, then

πpMapdeg∗ (X,X) is finitely generated.

Proof. We observe that X is virtually nilpotent, i.e. X is connected, π1X is

virtually nilpotent (i.e. has a nilpotent subgroup of finite index), and π1X has

a subgroup of finite index which acts nilpotently on πnX for n > 1 ([DDK]).

Then according to [DDK, Theorem 1.1], the space Map(X,X)id is of finite type,

and hence has finitely generated homotopy groups.

For example, when n = 3, p = 1, and Σ3 = Σ(2, 3, 5), we have

π1F∗(X) ∼= π2SO4 ⊕ π4SO4 ⊕ π5SO4
∼= Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2. (4.2)

More generally, when n = 4k − 1, p = n − 2 = 4k − 3 (k ≥ 2), and Σn =

Sn/π1Σ(2, 3, 5), we have

π4k−3F∗(X) ∼= π4k−2SO4k ⊕ π8k−4SO4k ⊕ π8k−3SO4k. (4.3)

It is known that πiS
4k−1 is finite if i 6= 4k− 1 (e.g. [Hat3, 5.1 (Serre Classes)]),

and πiSO4k is finite if i > 4k − 5 (e.g. [Hat2, 3.D]).
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Corollary 4.4. 1. If the abelianization of the group π1B̃Diffdeg(X
•, ∂) has

countable infinite rank, then so is the abelianization of π1BDiff0(X
•, ∂).

2. For p ≥ 2, if the abelian group πpB̃Diffdeg(X
•, ∂) has countable infinite

rank, then so is the abelian group πpBDiff0(X
•, ∂).

Proof. For 1, we consider the exact sequence

π1(F∗(X)×Mapdeg∗ (X,X)) → π1B̃Diffdeg(X
•, ∂) → π1BDiff0(X

•, ∂) → 0

for the fibration (4.1). If we put G = π1B̃Diffdeg(X
•, ∂), and let H ⊂ G be the

image from π1(F∗(X)×Mapdeg∗ (X,X)), then by exactness, H is a normal sub-

group of G, G/H is isomorphic to π1BDiff0(X
•, ∂), and we have the homology

exact sequence

H1(H ;Z)G → H1(G;Z) → H1(G/H ;Z) → 0,

which is a part of the five term exact sequence for group homology (e.g., [HS,

Corollary VI.8.2]). Since H is the image from a finitely generated group by

Proposition 4.1, and H1(G;Z) has countable infinite rank by assumption, the

result follows.

The assertion 2 follows immediately from the long exact sequence for homo-

topy groups of fibration, and that the homotopy groups of the fiber is finitely

generated abelian groups by Proposition 4.1.

Proposition 4.5. 1. If the abelianization of the group π1BDiff0(X
•, ∂) has

countable infinite rank, then so is the abelianization of π1BDiff0(X).

2. For p ≥ 2, if the abelian group πpBDiff0(X
•, ∂) has countable infinite

rank, then so is the abelian group πpBDiff0(X).

Proof. In the fibration sequence,

Diff0(X
•, ∂) → Diff0(X) → Embfr({x0}, X),

we have Embfr({x0}, X) ≃ SOn+1 × X . Hence for p ≥ 2, the cokernel of the

homomorphism πp(SOn+1×X) → πpBDiff0(X
•, ∂) has countable infinite rank.

For p = 1, the result follows from the exact sequence for group homology as in

the proof of Corollary 4.4.

4.2 Local coefficient system on E

We shall recall a geometric interpretation of singular chains of the total space E

with local coefficients. Recall that a local coefficient system (with a fixed module

A) on a space Z is given by a groupoid homomorphism Π(Z) → Aut(A), where

Π(Z) is the fundamental groupoid of Z (e.g., [Wh, Ch.VI], [Hatt, II-Ch.6]). We
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consider concrete local coefficient systems onX and E induced by a stratification

of X from a Morse function to make some genericity assumption (“general

position with respect to holonomy”, §5) to simplify the main computation of

the intersection invariant (Proof of Theorem 6.2).

Namely, let f : X → R be a Morse function whose number of critical points

of index 0 is one, and let ξ be its gradient-like vector field that is Morse–Smale,

i.e., the descending and ascending manifolds of ξ intersect transversally (e.g.,

[AD, §2.2]). In the handle decomposition of X with respect to ξ, the 2-skeleton

gives a presentation of π1(X). If we let p denote the critical point of f of

index 0, the compactification A p(ξ) of its ascending manifold has a structure

of manifold with corners, and its codimension 1 strata consists of the ascending

manifolds of critical points of index 1 (e.g., [AD, §4.9], [BH, Theorem 1]). This

is not a submanifold of X , but there is a canonical smooth map A p(ξ) → X

whose restriction to the interior is an embedding to an open dense subset of X .

We fix an orientation of A r(ξ) for each critical point r of f .

The stratification on A p(ξ) allows to define a holonomy on a path in X .

A generic smooth path in X may intersect the codimension 1 strata of A p(ξ)

transversally finitely many times. The sequence of intersections with codimen-

sion 1 strata aligned on the path gives a word in the generator of the presentation

of π1(X). Namely, if the descending manifold of each critical point q of index

1 represents a generator xq of π1(X) and if a path intersects the ascending

manifolds of critical points q1, q2, . . . , qr of index 1 in this order, then the word

x±1
qr · · ·x±1

q2 x
±1
q1 (the signs are determined by the orientations of the intersection)

gives an element of π1(X). When an endpoint of a path is on a codimension 1

stratum, we push the endpoint slightly in the positive direction of the coorien-

tation of the stratum to determine a word. Here, we fix the coorientations of

the ascending manifolds of codimension 1 in a way that the intersection with

the corresponding generator of π1(X) is counted positively. When an endpoint

of a path is on a stratum of codimension ≥ 2, we consider similarly, namely, we

slightly push it into a positive direction against all the adjacent codimension 1

strata. Then a homomorphism

HolX : Π(X) → π1(X)

is obtained. Furthermore, by postcomposing with the representation ρA : π1(X) →
EndC(A), we obtain a local coefficient system overX , in the sense of [Wh, VI.1].

We say that this local coefficient system is trivial if ρA is the map to the identity.

We assume that the X-bundle π : E → B is equipped with a fiberwise

pointed degree 1 map q : E → X . In this case, by pulling back the local co-

efficient system over X by q, we obtain a local coefficient system on E. More

precisely, taking the holonomy of a smooth path γ in E by that of a path q ◦ γ
in X gives a homomorphism

HolE : Π(E) → π1(X),
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and by postcomposing with the representation ρA : π1(X) → EndC(A), we ob-

tain a local coefficient system over E.

4.3 Chains of E with local coefficients

Let Ẽ be the π-covering overE defined by pullback of the universal cover X̃ → X

by the pointed degree 1 map q : E → X . We have a non-canonical identification

Sp(Ẽ)⊗Cπ A = Sp(E)⊗C A

given as follows.

We take a basepoint δ0 at the barycenter of the standard p-simplex ∆p. A

smooth simplex σ̃ : ∆p → Ẽ corresponds bijectively to the pair of a smooth

simplex σ : ∆p → E and the equivalence class of a path of E from σ(δ0) to the

basepoint x0 in a fixed fiber X , where we consider two such paths are equivalent

if the endpoints agree and if their image under the homomorphism q : Π(E) →
Π(X) agree. Moreover, through the holonomy homomorphism HolX : Π(E) →
π1(X), the equivalence class of a base path in E with fixed endpoints corresponds

bijectively to an element of π.

Claim 4.6. This gives a bijective correspondence between σ̃ : ∆p → Ẽ and a

pair (σ, g) of a smooth simplex σ : ∆p → X and an element g of π1(X).

If we denote this pair by σ · g, a C-chain of Ẽ is formally written as a finite

sum ∑

g∈π

σg · g,

where σg is a C-chain of E. We obtain an identification Sp(Ẽ)⊗CπA = Sp(E)⊗C

A by the transformation

∑

g

σg · g ⊗ ag =
∑

g

σg ⊗ g · ag,

where we identify smooth simplices in Sp(E) with that whose basepoints are

mapped to the fundamental domain of X . Note that this correspondence de-

pends on the stratification of X and may not be canonical.

The boundary operator ∂A = ∂⊗1 of Sp(Ẽ)⊗CπA induces a twisted bound-

ary operator on Sp(E) ⊗C A, which can be described as follows. For a smooth

simplex of E with a base path (σ, γ), an induced base path for a face σj of σ

can be defined by connecting γ and the segment ηj between the barycenters

of σ and σj (see Figure 1). The boundary of (σ, γ) is the sum of such faces

(σj , γ ◦ ηj):
∂(σ, γ) =

∑

j

(σj , γ ◦ ηj).
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Figure 1: A singular simplex σ with a path γ to x0.

If a segment ηj between the barycenters meets a codimension 1 stratum of

A p(ξ), the coefficient of σj in ∂(σ, γ) differs from that of σ by the action of ηj .

Thus the twisted boundary of Sp(E)⊗C A is given by the formula

∂A(σ ⊗ a) =
∑

j

σj ⊗HolE(ηj) · a.

Remark 4.7. Note that the basepoint need not be taken at the barycenter, as

long as it is fixed on the simplex. Usually, the basepoint is taken at the 0-th

vertex of a simplex ([Wh, Ch.VI]). We choose the barycenter since it makes the

incidence coefficients symmetric.

4.4 Chains of family of configuration spaces with local co-
efficients

We shall explain a geometric interpretation of singular chains of the family

EConf2(π) of configuration spaces (Definition 4.8 below) with local coefficients.

The direct product of projections β : X̃ × X̃ → X × X is a π × π-covering of

X × X . The space X̃ × X̃ is the set of pairs ([γ1], [γ2]) of equivalence classes

of paths γ1, γ2 in X to the basepoint x0 ∈ X , where we say that two such

paths are equivalent if they are relatively homotopic in X fixing the endpoints.

The subspace β−1∆X ⊂ X̃ × X̃ is a disjoint union of copies of lifts of ∆X and

the set of components in β−1∆X corresponds bijectively to π1(X). The group

Diff(X•, ∂) acts diagonally on X̃ × X̃ by ([g ◦ γ1], [g ◦ γ2]), and on

Conf∨(X) = Bℓ(X̃ × X̃, β−1∆X).

Definition 4.8. We denote by

Conf2(π) : EConf2(π) → B and Conf∨(π) : EConf∨(π) → B

the associated Conf2(X)-bundle with structure group Diff(X•, ∂) and Conf∨(X)-

bundle to the X-bundle π : E → B.
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Figure 2: A path η between configurations in fibers

As before, a chain of Sp(EConf∨(π))⊗C[π2]A
⊠2 can be considered as that of

Sp(EConf2(π))⊗C A
⊠2 as follows. The local coefficient system A on E induces

that on

E ×B E = {(x, y) ∈ E × E | π(x) = π(y)}
with coefficients in A⊠2. Its structure can be interpreted as follows. A point

of E ×B E can be given by data (x1, x2, s) (s ∈ B, x1, x2 ∈ π−1(s)). The

fiberwise universal cover Ẽ ×B Ẽ of E ×B E is given by the set of all data

(x1, x2, s, [γ1], [γ2]), where γi : [0, 1] → E is a path in a fiber π−1(s) from xi to

the basepoint π−1(s) ∩ x̃0, and [γi] is the equivalence class of q ◦ γi : [0, 1] → X

under homotopy fixing endpoints, where q : E → X is the pointed degree 1 map

fixed in §4.2.

A path η in E ×B E is projected to a pair of two paths (η1, η2) in E by the

fiberwise projections pri : E ×B E → E, (i = 1, 2). By taking the holonomy

of each path, we obtain an element of π × π (see Figure 2). This gives a

homomorphism

HolE×BE : Π(E ×B E) → EndC(A
⊗2)

and gives a local coefficient system on E ×B E with coefficients in the π × π-

module A⊠2.

The local coefficient system onE×BE given here induces that onEConf2(π).

A chain of the π × π-covering EConf∨(π) of EConf2(π) has the following ex-

pression ∑

(g,h)∈π2

σg,h · (g, h),

where σg,h is a C-chain of EConf2(π). By forwarding the action of (g, h) to that

on A⊠2, a chain of Sp(EConf2(π)) ⊗C A
⊠2 is obtained.

The twisted boundary operator on Sp(EConf2(π)) ⊗C A
⊠2 can be defined

by considering the π× π-holonomy of the path η between barycenters as in the

case of E.

24



Figure 3: E2
p,q for H∗(EConf2(π);A

⊠2) and H∗(EConf2(π), ∂EConf2(π);A
⊠2).

Nonzero terms are aligned on the thick lines.

4.5 Propagator in a family for n odd

Lemma 4.9. We assume that n is odd, n ≥ 3. Let X be a parallelizable Z
homology Sn × S1 equipped with a local coefficient system A, let π : E → B

be an X-bundle as in §4.1, and we assume that the base of B is an (n − 2)-

dimensional closed oriented manifold. Under Assumptions 3.1 and 3.6, we have

H2n(EConf2(π);A
⊠2) ∼= H0(B)⊗C H2n(Conf2(X);A⊠2)

H2n(EConf2(π), ∂EConf2(π);A
⊠2)

∼= Hn−2(B)⊗C Hn+2(Conf2(X), ∂Conf2(X);A⊠2)

and the natural map

H2n(EConf2(π);A
⊠2) → H2n(EConf2(π), ∂EConf2(π);A

⊠2) (4.4)

is zero.

Proof. By Lemma 3.7 and Poincaré–Lefschetz duality, the E2-terms of the

Leray–Serre spectral sequences for the Conf2(X)-bundle and the (Conf2(X), ∂Conf2(X))-

bundle over B that converge to H2n are isomorphic to E2
0,2n and E2

n−2,n+2,

respectively, which agree with H2n (Figure 3). Note that the action of π1B on

the twisted homology of the fiber of EConf2(π) is trivial since the action of

π1B factors through π0Diff0(X) and it is trivial on the generators obtained in

Lemma 3.7. Also, the maps induced from (4.4) on the terms E2
0,2n and E2

n−2,n+2

are obviously 0, by the naturality of the Leray–Serre spectral sequence (e.g.,

[Hat3, Section 1.1]).

Definition 4.10 (Propagator in family). Let n,X,A, π be as in Lemma 4.9. Let

K be an oriented knot in X that generates H1(X ;Z). Let sτ : E → ST v(E) be

the section that is given by the first vector of the framing τ and let f : E → X

be a fiberwise pointed degree 1 map which is transversal to K. We identify
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ST v(E) with the unit normal Sn-bundle of the diagonal ∆E ⊂ E ×B E along

the fiber. Let K̃ = f−1(K), which is a framed codimension n submanifold of E.

A propagator in family is a 2n-chain ω of EConf2(π) with coefficients in A⊠2

that is transversal to the boundary and that satisfies

∂A ω = sτ (E)⊗ cA − Oτ0(X,A)ST
v(K̃)⊗ cA, (4.5)

where for an oriented submanifold σ of E, we denote by ST v(σ) the restriction

of ST v(E) to σ. (For the reason of this definition, see Lemma 4.12).

Lemma 4.11. Let n,X,A, π be as in Lemma 4.9. Then there exists a propaga-

tor in family. Moreover, two propagators ω, ω′ in family with ∂A ω = ∂A ω
′ (as

chains) are related by

ω′ − ω = λST (Σn)⊗ cA + ∂A η

for some λ ∈ R and a (2n+ 1)-chain η of EConf2(π) with coefficients in A⊠2.

Proof. By the homology exact sequence for pair and by Lemma 4.9, we have

the following exact sequence.

0 → H2n(EConf2(π), ∂EConf2(π);A
⊠2)

r̃→ H2n−1(∂EConf2(π);A
⊗2)

ĩ→ H2n−1(EConf2(π);A
⊠2)

Here, it follows from Lemma 3.7 and dimB = n− 2 that both

H2n−1(∂EConf2(π);A
⊗2) and H2n−1(EConf2(π);A

⊠2) (4.6)

are E∞
n−2,n+1 = E2

n−2,n+1 in the Leray–Serre spectral sequence of bundles over

B. The map induced between the E2-terms is induced by the natural map

i : Hn+1(∂Conf2(X);A⊗2) → Hn+1(Conf2(X);A⊠2),

by the naturality of the Leray–Serre spectral sequence (e.g., [Hat3, Section 1.1]).

Hence ĩ can be described explicitly by using the result for a single fiber (Corol-

lary 3.9). Lemma 4.12 below gives an explicit basis of H2n−1(∂EConf2(π);A
⊗2)

and the existence of a chain ω with the boundary (4.5) follows.

For two propagators ω, ω′ in family with common boundary ∂A ω = ∂A ω
′,

the chain ω′ − ω is a 2n-cycle of EConf2(π). By Lemmas 4.9 and 3.7, ω′ − ω is

homologous to λST (Σn)⊗ cA for some λ ∈ R. This completes the proof.

Lemma 4.12. Let n,X,A, π be as in Lemma 4.9. Then the E∞
n−2,n+1 in the

Leray–Serre spectral sequences for

H∗(∂EConf2(π);A
⊗2) and H∗(EConf2(π);A

⊠2)

for the bundle structures over B associated to π are spanned over R by the cycles

sτ (E)⊗ cA, ST
v(K̃)⊗ cA, and by ST v(K̃)⊗ cA, respectively.
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Figure 4: E2
p,q for H∗(E;R)

Proof. Since ∂EConf2(π) ∼= Sn×E and EConf2(π) is homologically equivalent

to (Dn+1, ∂Dn+1)[−1] × E (proof is the same as Lemma 3.7) with untwisted

coefficients in R, it suffices to check that [E] and [K̃] span H2n−1(E;R) and

Hn−1(E;R), respectively. The former is obvious since dimE = 2n − 1. For

the latter, we consider the Leray–Serre spectral sequence for π with untwisted

coefficient R. The E2 page is as in Figure 4. From this we have

E2
n−2,2 = E∞

n−2,2 = Hn−1(E;R),

E2
0,n = E∞

0,n = Hn(E;R),

and both modules are of rank 1. Since [Σn] ∈ Hn(E;R), [K̃] ∈ Hn−1(E;R),

and 〈Σn, K̃〉 = ±1, it follows that [K̃] generates Hn−1(E;R).

4.6 Invariant intersections of chains with local coefficients

In [Les1], equivariant intersection form was used for intersections of chains. On

the other hand, on the twisted de Rham complex of a compact manifold, the

pairing

(α, β) =

∫

M

Tr(α ∧ β)

is often used and it gives Poincaré duality for the twisted de Rham cohomology

(e.g., [Sa2, §5.1] for flat SU(2)-bundles). In the following, we use an analogue

of these pairings on singular chains of Conf2(X) with coefficients in A⊠2, which

utilizes smoothness of X .

As before, let n,X,A, π be as in Lemma 4.9. Let ρA : π → EndC(A) be the

representation for A as in §3.1. We assume that the local coefficient system A⊠2

on Conf2(X) is defined as in §4.4 using the intersections of paths with ∂A p(ξ)

in X .

Assumption 4.13. Suppose that two chains C1, C2 of S∗(Conf∨(X)) ⊗C[π2]

A⊠2 = S∗(Conf2(X)) ⊗C A
⊠2 are piecewise strata transversal and satisfy the

condition dim C1 + dim C2 = dim Conf2(X) = 2n+ 2. When Ci =
∑

ki
σki

i ⊗
xki

⊗ yki
, where σki

i : ∆pi → Conf2(X) is a small simplex and xki
, yki

∈ A, we

assume that whenever Imσk1

1 ∩Im σk2

2 6= ∅, the following conditions are satisfied:
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� The intersection is transversal and at a single point z.

� Let δk1
0 , δk2

0 be the barycenters of ∆p1 ,∆p2 , respectively. Then there are

paths ηki

i in ∆pi from δki

0 to (σki

i )−1(z) such that

HolConf2(X)(σ
k1
1 ◦ ηk1

1 ) = HolConf2(X)(σ
k2
2 ◦ ηk2

2 ) = 1. (4.7)

We say that a such pair C1, C2 is in piecewise general position with respect to

holonomy.

As the image of ∂A p(ξ) in X is closed, we may assume by taking the sim-

plices sufficiently small and by perturbing the intersections slightly that C1, C2

are piecewise general position with respect to holonomy. For such a pair C1, C2,

we define 〈C1, C2〉 ∈ (A⊗2)⊗2 by the formula

〈C1, C2〉 =
∑

k1,k2

〈σk1
1 , σk2

2 〉Conf2(X)(xk1 ⊗ yk1)⊗ (xk2 ⊗ yk2),

where 〈σk1
1 , σk2

2 〉Conf2(X) is defined by the sign of the intersection point σk1
1 ∩σk1

1 .

Recall that the sign of the intersection is determined by comparing the wedge

product of the coorientations of σk1
1 and σk2

2 and the orientation of Conf2(X)�.

This can be generalized to more general pairs C1, C2 without the condition (4.7)

by defining 〈C1, C2〉 by
∑

k1,k2

〈σk1
1 , σk2

2 〉Conf2(X)Hol(η
k1
1 )(xk1 ⊗ yk1)⊗Hol(ηk2

2 )(xk2 ⊗ yk2), (4.8)

where Hol = HolConf2(X), which looks slightly complicated.

1. When A is finite dimensional over C, we define Tr: (A⊗2)⊗2 → C by

Tr((x1 ⊗ y1)⊗ (x2 ⊗ y2)) = B(x1, x
∗
2)B(y1, y

∗
2),

where x∗ is the dual of x with respect to B, namely, x =
∑

i aiei cor-

responds to x∗ =
∑

i aie
∗
i . This is ρA(π)-invariant in the sense of the

following identities.

Tr((x1 ⊗ ρA(g)y1)⊗ (x2 ⊗ ρA(g)y2)) = Tr((x1 ⊗ y1)⊗ (x2 ⊗ y2))

Tr((ρA(g)x1 ⊗ y1)⊗ (ρA(g)x2 ⊗ y2)) = Tr((x1 ⊗ y1)⊗ (x2 ⊗ y2))

Namely, invariant under the π × π-action on (A⊠2)⊗2. Also, Tr is C-
sesquilinear, i.e., for α, β ∈ C,

Tr(α(x1 ⊗ y1)⊗ β(x2 ⊗ y2)) = αβ Tr((x1 ⊗ y1)⊗ (x2 ⊗ y2)).

�This convention might not be usual but this will lead to a convention consistent with [Wa2]

given by integrals of forms along cycles ([Wa2, §D.2]) by the correspondence 〈M,N〉R ↔∫
R
ηM ∧ ηN =

∫
N

ηM (ηM etc. is a form representative of the Poincaré dual of M). In

particular, we do not need to change or check the sign in the formula of Proposition 6.6 (and
also other signs in its proof) then.
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This definition of Tr corresponds to the map EndC(A)
⊗2 → C given by

f ⊗ h 7→ Tr(f ◦ h∗).

2. When A = Λ = C[t±1], we define Tr: Λ⊗2 → Λ by

Tr(ta ⊗ tb) = ta−b.

This is Z-invariant, i.e., Tr(ta+k ⊗ tb+k) = Tr(ta ⊗ tb).

3. When A = g ⊗C Λ = g[t±1], Λ = C[t±1], we define Tr: (g⊗2[t±1])⊗2 → Λ

by

Tr((x1 ⊗ y1)t
a ⊗ (x2 ⊗ y2)t

b) = B(x1, x
∗
2)B(y1, y

∗
2) t

a−b.

This is Ad(G) × Z-invariant and can be considered as obtained from a

sesquilinear form on g⊗2 by C[t±1]-sesquilinear extension.

In each case, Tr is a Hermitian form, i.e., Tr(h⊗ f) = Tr(f ⊗ h) (f, h ∈ A⊗2),

where αβ = αβ and tn = t−n.

Lemma 4.14. Tr〈·, ·〉 is a coboundary. Namely, when dim C1 + dim C2 =

dimConf2(X) + 1 = 2n+ 3, we have�

Tr〈∂AC1, C2〉+ (−1)2n+2−dimC2Tr〈C1, ∂AC2〉 = 0. (4.9)

Hence Tr〈·, ·〉 induces well-defined sesquilinear pairings (corresponding to the

above three cases)

Hp(Conf2(X), ∂Conf2(X);A⊠2)⊗C Hq(Conf2(X);A⊠2) → C,

Hp(Conf2(X), ∂Conf2(X); Λ)⊗Λ Hq(Conf2(X); Λ) → Λ,

Hp(Conf2(X), ∂Conf2(X); g⊠2[t±1])⊗Λ Hq(Conf2(X); g⊠2[t±1]) → Λ,

where Λ = C[t±1], p+ q = 2n+ 2. We call Tr〈·, ·〉 an invariant intersection.

Proof. If we extend the above definition of 〈·, ·〉 to the case dim C1 +dim C2 =

2n + 3 similarly, then 〈C1, C2〉 for piecewise strata transversal chains Ci =∑
ki
σki

i ⊗xki
⊗ yki

(i = 1, 2) gives a chain of S1(Conf2(X))⊗C (A
⊠2)⊗2. In this

case, we assume that the simplices of C1, C2 of dimensions dim C1, dim C2, re-

spectively, intersect transversally in 1-simplices. When the simplices σk1

1 : ∆p1 →
Conf2(X), σk2

2 : ∆p2 → Conf2(X) intersect transversally in an embedded 1-

simplex ζ, let z be the barycenter of ζ, and we choose paths ηk1
1 in ∆p1 from

the barycenter δk1
0 of ∆p1 to (σk1

1 )−1(z) and ηk2
2 in ∆p2 from the barycenter δk2

0

of ∆p2 to (σk2
2 )−1(z). Then 〈C1, C2〉 is defined by

∑

k1,k2

(σk1
1 ∩σk2

2 )⊗HolConf2(X)(σ
k1
1 ◦ηk1

1 )(xk1⊗yk1)⊗HolConf2(X)(σ
k2
2 ◦ηk2

2 )(xk2⊗yk2).

�Note that we adopt an unusual orientation convention for intersections.
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We first prove the following identity

(−1)2n+2−dimC2〈∂AC1, C2〉+ 〈C1, ∂AC2〉 = ∂A〈C1, C2〉. (4.10)

By the bilinearity of the intersection pairing, it suffices to prove this identity

for C1 = σλ⊗mλ, C2 = σµ⊗mµ, where σλ, σµ are smooth singular simplices in

Conf2(X), mλ,mµ ∈ A⊠2. To prove it, we suppose the following (see Figure 5):

(a) σλ and σµ are embeddings.

(b) σλ and σµ intersect transversally in a 1-simplex ζ with ∂ζ = α− β.

(c) The 0-simplex α is the intersection of σµ and a face τλ of σλ.

(d) The 0-simplex β is the intersection of σλ and a face τµ of σµ.

Note that these conditions can be satisfied for generic pairs of simplices which

are sufficiently small§. For a pair of embedding simplices σ, σ′ such that the

image of σ′ is included in that of σ, we denote by ησ,σ′ a path in Imσ from the

barycenter of σ′ to that of σ. Then we have the following.

∂A〈σλ ⊗mλ, σµ ⊗mµ〉 = ∂A(ζ ⊗Hol(ησλ,ζ)mλ ⊗Hol(ησµ,ζ)mµ)

= α⊗Hol(ησλ,ζ ◦ ηζ,α)mλ ⊗Hol(ησµ,ζ ◦ ηζ,α)mµ

− β ⊗Hol(ησλ,ζ ◦ ηζ,β)mλ ⊗Hol(ησµ,ζ ◦ ηζ,β)mµ,

〈∂A(σλ ⊗mλ), σµ ⊗mµ〉 = 〈τλ ⊗Hol(ησλ,τλ)mλ, σµ ⊗mµ〉
= ±α⊗Hol(ησλ,τλ ◦ ητλ,α)mλ ⊗Hol(ησµ,α)mµ,

〈σλ ⊗mλ, ∂A(σµ ⊗mµ)〉 = 〈σλ ⊗mλ, τµ ⊗Hol(ησµ,τλ)mµ, 〉
= −β ⊗Hol(ησλ,β)mλ ⊗Hol(ησµ,τµ ◦ ητµ,β)mµ,

where ± = −(−1)2n+2−dimC2 . The signs are determined by the identity

α− β = ∂ζ = ∂〈σλ, σµ〉 = (−1)2n+2−dimC2〈∂σλ, σµ〉+ 〈σλ, ∂σµ〉.

(See Lemma A.1.) Then the identity (4.10) follows from the following identities:

Hol(ησλ,ζ ◦ ηζ,α) = Hol(ησλ,τλ ◦ ητλ,α), Hol(ησµ,ζ ◦ ηζ,α) = Hol(ησµ,α),

Hol(ησλ,ζ ◦ ηζ,β) = Hol(ησλ,β), Hol(ησµ,ζ ◦ ηζ,β) = Hol(ησµ,τµ ◦ ητµ,β).

As the trace factors through the projection of the coefficient module (A⊠2)⊗2

over Conf2(X) to the π×π-invariant part, or H0(Conf2(X); (A⊠2)⊗2), we have

Tr ∂A〈C1, C2〉 = ∂Tr〈C1, C2〉,

whose count with orientations (or the homology class) is zero. This completes

the proof.
§More concrete examples are simplicial chains in a c-stratifold ([Kre]) given by a smooth

triangulation of Conf2(X) into small simplices. We take two different such c-stratifold struc-

tures and then require stratifold transversality of a c-stratifold and each simplex in the other
c-stratifold.
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Figure 5: The simplices σλ and σµ, intersecting in a 1-simplex ζ.

Remark 4.15. Tr〈·, ·〉 is not a new object and would also be interpreted by the

evaluation of the trace of the cup product

Hp′

(Conf2(X);A⊠2)⊗R H
q′(Conf2(X), ∂Conf2(X);A⊠2)

→ H2n+2(Conf2(X), ∂Conf2(X);R)

(p′ + q′ = 2n + 2) of the Poincaré–Lefschetz duals at the fundamental class

[Conf2(X), ∂Conf2(X)]. We will not prove the equivalence between the two

interpretations.

4.7 Cross product of cycles with local coefficients

In Section 6, we will need to consider cross products of two C-cycles as A⊠2-

cycles. However, there may not be a canonical way to write a C-chain of X

as an A-chain, unless A is a C-algebra with 1. Namely, there may not be a

canonical C-linear map S∗(X ;C) → S∗(X ;A). Instead, we will use the following

interpretation later (in Section 6) to construct a possibly twisted dual basis to

a basis consisting of cross products of C-cycles. The precise statement we need

is Lemma 4.18 below. For our purpose, it is enough to restrict to A = g[t±1]

and R = C[t±1].

Lemma 4.16. Suppose that A is a free module over R = C or C[t±1] equipped

with a finite R-basis {ei} and a nondegenerate symmetric R-bilinear form B(·, ·).
For a subspace V of X, we define C-linear maps

η : S∗(V ;C) → HomR(A,S∗(V ;A)),

ηA : S∗(V ;A) → HomR(A,S∗(V ;A)),

ηA : S∗(V ;A) → HomR(A,S∗(V ;A))
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by η(σ) = (a 7→ σ ⊗ a), ηA(γ) = (ei 7→ (1 ⊗ B(·, e∗i ) ei)(γ)), and ηA(γ) =

(e∗i 7→ (1 ⊗ B(ei, ·) e∗i )(γ)). Then ηA and ηA are chain maps. Also, if the

restriction of the local coefficient system A on V is trivial, then η is a chain map,

too. In that case, by the Künneth formula ([CE, Theorem VI.3.1a]), the maps

between homologies η∗ : H∗(V ;C) → HomR(A,H∗(V ;A)), ηA∗ : H∗(V ;A) →
HomR(A,H∗(V ;A)), ηA∗ : H∗(V ;A) → HomR(A,H∗(V ;A)) are induced.

Proof. For γ =
∑

µ γµ ⊗ eµ ∈ S∗(X̃)⊗C[π] A, where X̃ is the universal cover of

X , we have

ηA(∂Aγ) =
(
ei 7→

∑

µ

(∂γµ)⊗B(eµ, e
∗
i ) ei

)

=
(
ei 7→ (∂ ⊗ 1)

∑

µ

γµ ⊗B(eµ, e
∗
i ) ei

)
= ∂A(ηAγ).

This completes the proof that ηA is a chain map. The proof for ηA is the same.

When γ is a chain of S∗(V ;C) and A is trivial as a local coefficient system on

V , that η is a chain map is proved as follows.

∂A(η(γ)) = ∂A(a 7→ γ ⊗ a) = (a 7→ ∂A(γ ⊗ a) = ∂γ ⊗ a) = η(∂γ).

Remark 4.17. Note that the map η may depend on the choice of the identifica-

tion S∗(X ;A) = S∗(X) ⊗C A. Also, the map ηA depends on the choice of the

R-basis {ei} of A. The definition of ηA generalizes that of η in the sense that

for a C-cycle σ,

ηA

(
σ ⊗

∑

i

ei

)
= (ej 7→ σ ⊗ ej) = η(σ).

There is no reason that the definition of ηA above is the canonical choice. Under

the duality, η can also be considered as the map S∗(V ;C) → S∗(V ;A⊗2) induced

by the map C → A⊗2; 1 7→ cA =
∑

i ei ⊗ e∗i , and ηA can be considered as the

map S∗(V ;A) → S∗(V ;A⊗2) induced by the map A→ A⊗2; ei 7→ ei ⊗ e∗i .

When the restrictions of A on V,W ⊂ X are both trivial, η induces a homo-

morphism

η⊗2
∗ : H∗(V ;C)⊗C H∗(W ;C) → HomR(A

⊗2, H∗(V ×W ;A⊠2)).

Here, the following identity holds in S∗(V ×W ;A⊠2):

η⊗2(α× β)(cA) = (a⊗ b 7→ (α × β)⊗ (a⊗ b))(cA) = (α× β)⊗ cA.

We denote this element by α×cA β. Then η
⊗2(α× β) can be considered as the

mapping a 7→ a(α×cA β). Note that the map η⊗2
∗ has indeterminacy by multi-

plication by an invertible element if A⊗2 due to the choice of the stratification
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of X . If V =W , there is no indeterminacy. When only the restriction of W on

A is trivial, we still have

ηA∗ ⊗ η∗ : H∗(V ;A)⊗C H∗(W ;C) → HomR(A
⊗2, H∗(V ×W ;A⊠2)),

η∗ ⊗ ηA∗ : H∗(W ;C)⊗C H∗(V ;A) → HomR(A
⊗2, H∗(W × V ;A⊠2)).

We denote (ηA ⊗ η)(α × β)(cA) or (η ⊗ ηA)(α × β)(cA) simply by α ×cA β for

α ∈ S∗(V ;A), β ∈ S∗(W ;C) etc. More generally,

ηA∗ ⊗ ηA∗ : H∗(V ;A)⊗C H∗(W ;A) → HomR(A
⊗2, H∗(V ×W ;A⊠2))

is defined. Again, we denote (ηA ⊗ ηA)(α × β)(cA) simply by α ×cA β for

α ∈ S∗(V ;A), β ∈ S∗(W ;A) etc. (See (A.1) for the cross product of A-chains.)

Explicitly, if α =
∑

λ αλ ⊗ eλ and β =
∑

µ βµ ⊗ e∗µ, then

α×cA β =
∑

i

(αi × βi)⊗ ei ⊗ e∗i .

With this definition of α×cA β, we have the following property, which is desired.

Lemma 4.18. Let A be as in Lemma 4.16.

1. When the restrictions of A on V,W ⊂ X are both trivial, let α, β be C-
chains of V,W , respectively. Let γ, δ be A-chains of X. Then the following

identity holds.

Tr〈α ×cA β, γ × δ〉 = Tr〈α ×cA β, γ ×cA δ〉,
where γ × δ is the cross product of γ and δ.

2. Suppose that a submanifold U of X×2 is such that H∗(U ;A⊠2) is freely

spanned over the algebra A⊗2 by cycles of the forms αi×cAβi (i = 1, . . . , r,

αi, βi are C-cycles of X). Suppose moreover that Tr〈·, ·〉 gives a duality

between H∗(U ;A⊠2) and H∗(U, ∂U ;A⊠2), and that the dual A⊗2-basis of

H∗(U, ∂U ;A⊠2) to {αi ×cA βi} is γi × δi (i = 1, . . . , r, γi, δi are A-cycles

of X). Then the dual A⊗2-basis can be represented by the cycles γi ×cA δi
(i = 1, . . . , r). In other words, γi × δi is homologous to γi ×cA δi.

3. Let α, β be A-chains of X. The following identity for A⊗2-chains holds.

∂A(α×cA β) = (∂Aα)×cA β ± α×cA (∂Aβ),

where the sign depends on the dimension of α.

Proof. Let γ =
∑

λ γλ ⊗ eλ, δ =
∑

µ δµ ⊗ e∗µ, where γλ, δµ are R-chains. Then

by the sesquilinearity of Tr we have

Tr〈α ×cA β, γ × δ〉 =
∑

λ,µ

〈α× β, γλ × δµ〉Tr(cA ⊗ (eλ ⊗ e∗µ))

=
∑

λ

〈α× β, γλ × δλ〉Tr(cA ⊗ (eλ ⊗ e∗λ))

= Tr〈α ×cA β, γ ×cA δ〉,
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where γλ etc. are the conjugates of γλ etc. on R. The assertion 2 follows

immediately from 1. The assertion 3 holds since α×cA β = (ηA⊗ηA)(α×β)(cA)
and ηA ⊗ ηA is a chain map.

The relation Lemma 4.18-3 can be used to find a chain whose boundary is

the right hand side, when ∂Aα and ∂Aβ are given by C-cycles, for example.

Example 4.19. We shall consider the case R = A = C[t±1]. When the re-

striction of A on V,W ⊂ X are both trivial, let α, β be C-chains of V,W ,

respectively, and let F be a chain of X×2 with coefficients in A⊗R A = C[t±1].

In this case, the product α× β can be considered as the mapping 1 7→ α×cA β

in

HomR

(
R,S∗(V ×W ;R)

)
.

Then the intersection Tr〈F, α × β〉 as an element of HomR(R,R) = R is

Tr〈F, α ×cA β〉.

If F =
∑

m Fmt
m, where Fm is a C-chain of X , we have

Tr〈F, α×cA β〉 =
∑

m

〈Fm, α× β〉X×X tm

=
∑

m

〈F, tm(α× β)〉X̃×ZX̃
tm,

(4.11)

where X̃×ZX̃ is the quotient of X̃×X̃ by the diagonal action of Z : ([γ1], [γ2]) 7→
(t±1[γ1], t

±1[γ2]) and the Z-action on X̃ is that of the restriction of the covering

transformation to the subgroup {1} × Z ⊂ π = π′ × Z. The right hand side of

(4.11) agrees with the definition of the equivariant intersection in [Les1].

Both sides of (4.11) are determined only up to multiplication by invertible

elements of A⊗2 = R, and the indeterminacy of the left hand side is due to the

choice of the stratification of X . The indeterminacy of the right hand side is

due to the choice of a lift of each given α× β in the covering X̃ ×Z X̃.

4.8 Linking number

Let α, β be two disjoint null-homotopic embedded spheres ofX such that dimα+

dimβ = n. We assume that α and β are disjoint from the image of the boundary

of A p(ξ) to define the local coefficient system on X . We define the linking

number of α and β by

LkA(α, β) = Tr〈ω, α×cA β〉 ∈ A⊗2,

where ω is a propagator.

Lemma 4.20. LkA(α, β) = (−1)(dim α+1)(dim β+1) LkA(β, α)
∗.
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Proof. The cycle α ×cA β is homologous to an A⊗2-linear combination of the

cycles αi×cAβi for finitely many small Hopf links αi∪βi inX . This can be shown

as follows. The inclusions of α and β extends to smooth maps Dα : D
a → X ,

Dβ : D
b → X of disks of dimensions a = dimα+ 1, b = dimβ + 1, respectively.

We take basepoints u ∈ α, v ∈ β and paths γα, γβ : [0, 1] → X with γα(0) = u,

γα(1) = x0, γβ(0) = v, γβ(1) = x0 that are disjoint from the image of the

boundary of A p(ξ). We assume that the intersections Dα ∩ β and α ∩Dβ are

both transversal.

Now we deform Dα by precomposing a smooth contraction of the disk radi-

ally onto the basepoint u as tight as possible, avoiding the transversal crossing

points in Dα ∩ β. Then we also deform Dβ similarly. The resulting disks con-

sist of finitely many small disks at the crossing points, which are connected to

the basepoints u, v of the original disks by thin bands (Figure 6). The result

depends on which of Dα and Dβ is deformed first. By bordisms, the thin bands

can be supressed and the result is a disjoint union of small Hopf links αi ∪ βi
at the transversal crossing points. The removed thin bands together with the

paths γα, γβ give paths γαi
, γβi

to x0 from basepoints on the components of

each small Hopf link. The cycle α×cA β is homologous to

∑

i

(ρAHolX(γαi
)⊗ ρAHolX(γβi

))(αi ×cA βi).

Hence it suffices to prove the lemma for each term in this sum.
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Figure 6: Deforming Dα and Dβ into small Hopf links with bands.

We may also assume that each small Hopf link αi ∪ βi is included in an

(n+1)-ball that is disjoint from the boundary of the image of A p(ξ). Then we

have

Tr〈ω, (ρAHolX(γαi
)⊗ ρAHolX(γβi

))(αi ×cA βi)〉
=Tr(ρAHolX(γ−1

βi
γαi

)) Lk(αi, βi),
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where Lk(αi, βi) is the linking number defined in a small ball including αi and

βi. Now the result follows by the idenitities:

Tr(ρAHolX(γ−1
αi
γβi

)) = Tr(ρAHolX(γ−1
βi
γαi

))∗,

Lk(βi, αi) = (−1)(dim α+1)(dim β+1) Lk(αi, βi).

5 Perturbative invariant

For compact oriented codimension n submanifolds F1, F2, F3 of EConf2(π) with

corners that intersect strata transversally, we define their oriented intersection

by

〈F1, F2, F3〉Θ = F1 ∩ F2 ∩ F3, (5.1)

which is an oriented codimension 3n submanifold with corners ([BT, Appendix]).

This is defined only when F1, F2, F3 are in a general position. This can be

extended to generic C-chains of EConf2(π) by C-linearity.
When dimB = n−2, EConf2(π) is 3n-dimensional and the intersection (5.1)

is 0-dimensional. We say that compact oriented codimension n submanifolds

F1, F2, F3 of EConf2(π) with corners are in general position with respect to

holonomy if the following conditions are satisfied:

� The intersection is transversal.

� Let δ10 , δ
2
0 , δ

3
0 be the basepoints of F1, F2, F3, respectively. Then for each

triple intersection point z, there are paths ηi in Fi from δi0 to z such that

HolEConf2(π)
(η1) = HolEConf2(π)

(η2) = HolEConf2(π)
(η3) = 1. (5.2)

For embedding simplices σi : ∆
2n → EConf2(π) (i = 1, 2, 3) that are in general

position with respect to holonomy and for mi ∈ A⊠2, we define the oriented

intersection 〈σ1 ⊗m1, σ2 ⊗m2, σ3 ⊗m3〉Θ ∈ (A⊠2)⊗3 by

〈σ1, σ2, σ3〉Θm1 ⊗m2 ⊗m3. (5.3)

This can be extended by A⊠2-linearity to codimension n chains Fi (i = 1, 2, 3)

from

S2n(EConf∨(π))⊗C[π2] A
⊠2 = S2n(EConf2(π))⊗C A

⊠2 (5.4)

that are in piecewise general position with respect to holonomy. The condition

(4.7) for the genericity can be removed by replacing (5.3) with an analogue

of (4.8) for the triple intersection. Note that 〈F1, F2, F3〉Θ thus defined may

depend on the identification (5.4).
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Figure 7: ω̃i are parallel near the boundary.

5.1 Definition of the invariant when Oτ0(X,A) = 0, n odd

Let n,X = Σn × S1, A, π be as in Lemma 4.9. We take propagators ω1, ω2, ω3

in family EConf2(π) with coefficients in A⊠2 so that they are parallel on the

boundary (Figure 7). Namely, let s
(i)
τ : E → ST v(E) ∼= E × Sn (i = 1, 2, 3) be

the sections that are obtained from sτ (Definition 4.10) by the actions on Sn by

three distinct elements g(i) ∈ SOn+1 (i = 1, 2, 3) close to the identity, so that

the images are disjoint. Then we assume that

∂A ωi = s(i)τ (E) ⊗ cA, (5.5)

which is possible by Example 3.12. Moreover, we assume that the three propa-

gators are piecewise strata transversal. Each ωi can be considered as an element

of S2n(EConf2(π);C) ⊗C A
⊠2 by the identification (5.4).

Definition 5.1. When n is odd, we define the invariant Zeven
Θ by

Zeven
Θ (ω1, ω2, ω3) =

1

6
TrΘ〈ω1, ω2, ω3〉Θ ∈ A

even
Θ (A⊠2; ρA(π)× Z),

where TrΘ : (A⊠2)⊗3 → A even
Θ (A⊠2; ρA(π

′) × Z) is the projection (see Defini-

tion 2.1 for the definition of A even
Θ ).

Lemma 5.2. The class Zeven
Θ (ω1, ω2, ω3) does not depend on the choice of the

identification (5.4).

Thanks to the operator TrΘ, this follows for a similar reason as in Lemma 4.14.

Since we fixed canonical lifts of the propagators by the boundary condition (5.5),

there is no indeterminacy due to the choice of the stratification of X .

Theorem 5.3. Let n,X = Σn × S1, A, π = π′ × Z be as in Lemma 4.9. Then

Zeven
Θ (ω1, ω2, ω3) does not depend on the choice of ωi, and gives a homomorphism

Zeven
Θ : ΩSO

n−2(B̃Diffdeg(X
•, ∂)) → A

even
Θ (A⊗2; ρA(π

′)× Z).
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Proof. Let (π+ : E+ → B+, τ+), (π− : E− → B−, τ−) be framed (X,Ux0)-

bundles over closed oriented manifolds B+, B− of dimension n−2 with fiberwise

pointed homotopy equivalences f± : E± → X that are bundle bordant as framed

(X,Ux0)-bundles with fiberwise pointed homotopy equivalences. Namely, there

is a triple (π̃, τ̃ , f̃) consisting of the following:

� A framed (X,Ux0)-bundle π̃ : Ẽ → B̃ over a connected compact oriented

cobordism B̃ with ∂B̃ = B+
∐
(−B−) that restricts to π+, π− on the ends

∂B̃.

� A vertical framing τ̃ of Ẽ extending τ± on the ends ∂B̃.

� A smooth map f̃ : Ẽ → X that restricts to f+, f− on the ends ∂B̃.

We assume that f̃ and τ̃ satisfy the standardness condition near the basepoint

x0 as in Section 4.1. The local coefficient systems A on E± extends over Ẽ by

the pullback by f̃ .

We take triples of propagators (ω+
1 , ω

+
2 , ω

+
3 ) and (ω−

1 , ω
−
2 , ω

−
3 ) that define

Zeven
Θ on the ends B+ and B−, respectively. We first assume that there is a triple

of propagators (ω̃1, ω̃2, ω̃3) in family EConf2(π̃) that extends those on ∂B̃, ex-

tended to the case when the base is not closed (cf. Lemma 4.9 and Definition 4.10

for the closed case). Namely, ω̃i is a twisted chain of S∗(EConf2(π̃);C)⊗CA
⊗2,

satisfying the following identity:

∂A ω̃i = ω+
i − ω−

i + s
(i)
τ̃ (Ẽ)⊗ cA, (5.6)

where s
(i)
τ̃ is a small perturbation of sτ̃ : Ẽ → ST v(Ẽ) obtained by applying

SOn+1-rotations g
(i) as before in (5.5) so that the images are disjoint.

The intersection 〈ω̃1, ω̃2, ω̃3〉Θ gives a chain of S1(EConf2(π̃))⊗C (A⊠2)⊗3 if

ω̃i are chosen to be piecewise general position. Then the boundary of TrΘ〈ω̃1, ω̃2, ω̃3〉Θ
corresponds to the triple intersection of the chains in

∂EConf2(π̃) = EConf2(π
+)− EConf2(π

−) + ∂fibEConf2(π̃). (5.7)

Indeed, as in the proof of Lemma 4.14, we have

∂ TrΘ〈ω̃1, ω̃2, ω̃3〉Θ = TrΘ ∂A〈ω̃1, ω̃2, ω̃3〉Θ

and by (5.6) all the intersections that survive are in the right hand side of (5.7).

Since Ẽ has a vertical framing and the propagators ω̃1, ω̃2, ω̃3 are parallel on

∂fibEConf2(π̃), they do not have intersection there. Hence the boundary only

survives in EConf2(π
+)− EConf2(π

−) and we have

TrΘ〈ω+
1 , ω

+
2 , ω

+
3 〉Θ − TrΘ〈ω−

1 , ω
−
2 , ω

−
3 〉Θ = 0.

This completes the proof under the assumption of the existence of the triple

(P̃1, P̃2, P̃3).
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In Lemma 5.4 below, we shall see that a propagator ω̃i as assumed above

exists if we replace ω−
i with ω−

i +λST (Σn)′⊗cA for some λ ∈ R, where ST (Σn)′

is a parallel copy of ST (Σn) (see Lemma 3.7 for the definition of ST (·)) obtained
by pushing slightly toward the inward normal vector field on the boundary of

the base fiber Conf2(X). Assuming this, it remains to show that the value of

TrΘ〈ω−
1 , ω

−
2 , ω

−
3 〉Θ does not change by additions of λST (Σn)′⊗ cA. Namely, we

prove the identity

TrΘ〈ω−
1 + λST (Σn)′ ⊗ cA, ω

−
2 + λST (Σn)′′ ⊗ cA, ω

−
3 + λST (Σn)′′′ ⊗ cA〉Θ

= TrΘ〈ω−
1 , ω

−
2 , ω

−
3 〉Θ,

where ST (Σn)′′ and ST (Σn)′′′ are parallel copies of ST (Σn)′ in the interior

of Conf2(X). Since ST (Σn)′, ST (Σn)′′, ST (Σn)′′′ are mutually disjoint, we

need only to check that the terms of triple intersections among two propaga-

tors ω−
i , ω

−
j and one copy of ST (Σn) vanish. By the boundary transversality

assumption for the propagators, the values of these are the same as the intersec-

tions with ST (Σn) on the boundary. By the explicit form (5.5) of the boundary

of ω−
i , we see that the intersection among ω−

i , ω
−
j and ST (Σn) is empty. This

completes the proof that we may change ω−
i as above without changing the value

of TrΘ〈ω−
1 , ω

−
2 , ω

−
3 〉Θ. Note that the replacement of ω−

i does not affect the ar-

gument in the previous paragraph since the boundary of ω−
i is not changed, and

there is no change in the triple near the boundary of EConf2(π
−).

Now that Zeven
Θ is a homomorphism follows by considering the disjoint union

of two bundles for two elements of ΩSO
n−2(B̃Diffdeg(X

•, ∂)). The additivity of

the intersection for the disjoint union is obvious.

Lemma 5.4 (A bordism analogue of Lemma 4.11). Let ω±
i , s

(i)
τ̃ (Ẽ) be as in

the proof of Theorem 5.3. Then for some λ ∈ R, there exists a (2n + 1)-chain

P̃i of EConf2(π̃) such that

∂AP̃i = ω+
i − (ω−

i + λST (Σn)′ ⊗ cA) + s
(i)
τ̃ (Ẽ)⊗ cA.

Proof. Since B̃ is connected and does not have a closed component, its Z ho-

mology is isomorphic to that of an (n − 2)-dimensional subcomplex and the

computation of H∗(EConf2(π̃);A
⊠2) is similar to that of Lemma 4.9 and is

isomorphic to E2
n−1,n+2. The 2n-cycle ω+

i − ω−
i + s

(i)
τ̃ (Ẽ) ⊗ cA of EConf2(π̃)

represents a class in

H2n(EConf2(π̃);A
⊠2) = R[ST (Σn)⊗ cA],

where the identification is due to Lemmas 4.9 and 3.7, and we consider Σn is in

the base fiber of E−. Thus for some λ ∈ R, the 2n-cycle ω+
i −ω−

i + sτ̃ (Ẽ)⊗ cA
is homologous to −λST (Σn)⊗ cA. This completes the proof.
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6 Evaluation of the invariant

6.1 R-decorated Θ-graphs

Let R be an algebra over C having 1, and let H be a subset of the set of units

of R. We assume that R has a C-linear involution R → R, which maps p to

its “adjoint” p∗, such that p∗ = p−1 for p ∈ H . We call a pair (Θ, φ) of the

following objects an R-decorated Θ-graph.

1. Θ: abstract, labeled, edge-oriented graph with two vertices connected by

three edges, where a label is the pair of bijections α : {1, 2, 3} → Edges(Θ)

and β : {1, 2} → Vertices(Θ), where Edges(Θ) and Vertices(Θ) are the sets

of edges and vertices of Θ, respectively.

2. φ : Edges(Θ) → R: a map.

We also write an R-decorated graph (Θ, φ) as Θ(x1, x2, x3) (xi = φ(α(i))).

6.2 Θ-graph surgery

We take an embedding Θ → X of a labeled, edge-oriented trivalent graph Θ.

The homotopy class of this embedding can be represented as Θ(g1, g2, g3) (gi ∈
π) for the C[π]-decoration given by the π-valued holonomy for each edge. We

consider that this expression also represents an embedded graph.

We put an (n + 1)-dimensional Hopf link of oriented spheres Sn−1 and S1

at the middle of each edge, as in Figure 8. Here the spheres are oriented so

that their linking number is +1. Then the two vertices of Θ give two disjoint

Y-shaped components Y-graphs of Type I and II.
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We take small closed tubular neighborhoods of these objects and denote them

by V1 and V2. They form a disjoint union of handlebodies embedded in X . A

Type I Y-graph gives a handlebody (of Type I) which is diffeomorphic to the

handlebody obtained from an (n+ 1)-ball by attaching two 1-handles and one

(n − 1)-handle in a standard way, namely, along unknotted unlinked standard

attaching spheres in the boundary of the disk. A Type II Y-graph gives a

handlebody (of Type II) which is diffeomorphic to the handlebody obtained

from an (n + 1)-ball by attaching one 1-handle and two (n − 1)-handles in a

standard way.
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Figure 8: Decomposition of embedded Θ-graph into Y-shaped pieces.

Let V = V1 be the Type I handlebody and let αI : S
0 → Diff(∂V ), S0 =

{−1, 1}, be the map defined by αI(−1) = 1, and by setting αI(1) as the “Bor-

romean twist” corresponding to the Borromean string link Dn−1∪Dn−1∪D1 →
Dn+1. The detailed definition of αI can be found in [Wa2, §3.7].

Let V = V2 be the Type II handlebody and let αII : S
n−2 → Diff(∂V ) be

the map defined by comparing the relative isomorphism class of the family of

complements of an Sn−2-family of embeddingsDn−1∪D1∪D1 → Dn+1 obtained

by parametrizing the second component in the Borromean string link Dn−1 ∪
Dn−1 ∪ D1 → Dn+1 with the trivial family of the first and third components.

The detailed definition of αII can be found in [Wa2, §3.8].

Let BΘ = K1 × K2 (K1 = S0, K2 = Sn−2). Accordingly, let αi : Ki →
Diff(∂Vi) be αI or αII. By using the families of twists above, we define

EΘ = (BΘ × (X − Int (V1 ∪ V2))) ∪∂ (BΘ × (V1 ∪ V2)),

where the gluing map is given by

ψ : BΘ × (∂V1 ∪ ∂V2) → BΘ × (∂V1 ∪ ∂V2)
ψ(t1, t2, x) = (t1, t2, αi(ti)(x)) (for x ∈ ∂Vi).

Let πVi
: Ṽi → Ki be the Vi-bundle with the structure group Diff(Vi, ∂), which

is obtained from Ki × Vi by identifying its boundary with Ki × ∂Vi by the

Ki-family of diffeomorphisms αi:

(Ṽi, ∂Ṽi) = ((Ki × Vi) ∪αi
(Ki × ∂Vi),Ki × ∂Vi).

Proposition 6.1 (Proposition 8.5). The natural projection πΘ : EΘ → BΘ is an

X-bundle, and it admits a vertical framing that is compatible with the surgery,

and it gives an element of

ΩSO
n−2(B̃Diffdeg(X

•, ∂)).

We denote this element by Ψ1(Θ(g1, g2, g3)).
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Theorem 6.2. Let n+1 ≥ 4 be an even integer and let X,A be as in Lemma 3.7.

Let Θ(g1, g2, g3) be a C[π]-decorated Θ-graph. Then the element [Ψ1(Θ(g1, g2, g3))] ∈
ΩSO

n−2(B̃Diffdeg(X
•, ∂)) belongs to the image from πn−2B̃Diffdeg(X

•, ∂), and the

following identity holds when n is odd.

Zeven
Θ (Ψ1(Θ(g1, g2, g3))) = 2 [Θ(ρA(g1), ρA(g2), ρA(g3)]

We will explain in §6.3 how Theorem 6.2 can be proved using the method of

[Les1] and [Wa2]. Combining Theorem 6.2 with Proposition 3.5, we obtain the

following.

Corollary 6.3. Let n + 1 ≥ 4 be an even integer and let X,A be as in

Lemma 3.7. Then the image of Zeven
Θ in A even

Θ (g⊗2; ρ(π′) × Z) includes the

abelian subgroup freely generated by the infinite set {Θ(1, t, tp) | p ≥ 3}.

Lemma 6.4. Let n = 3 or n ≥ 7 be an integer of the form 4k − 1, let X =

Σn × S1, where Σn = Sn/π′, π′ = π1Σ(2, 3, 5). Let Γ0(X
•) denote the image

of the natural map πn−2B̃Diffdeg(X
•, ∂) → πn−2BDiff0(X

•, ∂). Then Zeven
Θ

descends to a map

Γ0(X
•) → A

even
Θ (g⊗2; ρ(π′)× Z).

Proof. By (4.2) and (4.3), we have that πn−2Mapdeg∗ (X,X) is a finite abelian

group. Moreover, a change of the choice of the lift of an element of Γ0(X
•)

to πn−2B̃Diffdeg(X
•, ∂) within the factor Mapdeg∗ (X,X) in the homotopy fiber

of (4.1) does not affect the value of Zeven
Θ since the local coefficient system

on the total space of the corresponding (X•, ∂)-bundle p : E → Sn−2, which is

needed to define Zeven
Θ , is determined by the homotopy class of the induced map

π1E → π1X , which is canonically fixed since we have the canonical decomposi-

tion π1E = π1S
n−2 × π1X by the van Kampen theorem and the homotopical

triviality of elements of Diff0(X
•, ∂), and the map π1E → π1X is just the

projection to the second factor. This completes the proof.

Corollary 6.5. Let n ≥ 7 be an integer of the form 4k − 1 and let Σn =

Sn/π′, where π′ = π1Σ(2, 3, 5). Then πn−2BDiff0(Σ
n×S1) includes the abelian

subgroup freely generated by the infinite set {Θ(1, t, tp) | p ≥ 3}.

Proof. By Remark 3.15, we can apply Theorem 6.2 to X = Σn×S1. According

to Corollary 4.4-2 and Proposition 4.5-2, we know by Theorem 6.2 and Corol-

lary 6.3 that πn−2BDiff0(Σ
n × S1) is of countable infinite rank. We can say

more about the nontrivial subgroup. Namely, we know by Lemma 4.3, (4.3),

π4k−3Ω(SO4k × S1) = π4k−2SO4k, and from the proofs of Corollary 4.4-2 and

Proposition 4.5-2 that the composition

πn−2B̃Diffdeg(X
•, ∂) → πn−2BDiff0(X

•, ∂) → πn−2BDiff0(X)

42



of the natural maps is injective up to finitely generated abelian groups. By

Lemma 6.4, the abelian subgroup of πn−2BDiff0(X
•, ∂) freely generated by the

infinite set {Θ(1, t, tp) | p ≥ 3} is detected by Zeven
Θ , which is injectively mapped

to πn−2BDiff0(X).

6.3 Proof of Theorem 6.2

The outline of the proof is similar to [KT]. Namely, proof of Theorem 6.2

boils down to one lemma (Proposition 6.6), which guarantees the existence of

conveniently normalized propagator. Proof of Proposition 6.6 is almost the same

as that of [Les1, Proposition 11.1] and mostly done in [Wa2, §6–7].

6.3.1 A decomposition of EΘ

Let Θ be the Θ-graph. Let V∞ = X − Int(V1 ∪ V2), BΘ = K1 ×K2, and

Ṽ ′
λ =






Ṽ1 ×K2 (λ = 1),

K1 × Ṽ2 (λ = 2),

BΘ × V∞ (λ = ∞).

This is a bundle over BΘ, which is canonically isomorphic to the pullback of

the bundle π(αλ) : Ṽλ → Kλ (for λ = 1, 2) or V∞ → {t0} by the projection

BΘ → Kλ or BΘ → {t0}. Then we have

EΘ = Ṽ ′
1 ∪ Ṽ ′

2 ∪ Ṽ ′
∞,

where the boundaries are glued by the natural trivializations ∂Ṽ ′
λ = BΘ × ∂Vλ

(λ = 1, 2) and ∂Ṽ ′
∞ = BΘ × (∂V1 ∪ ∂V2).

6.3.2 A decomposition of EConf2(π
Θ)

For i, j ∈ {1, 2} such that i 6= j, let

Ωij = Ṽ ′
i ×BΘ Ṽ

′
j ,

which is canonically diffeomorphic to Ṽi × Ṽj . For i ∈ {1, 2,∞}, let

Ωii = p−1
Bℓ(Ṽ

′
i ×BΘ Ṽ

′
i ), Ωi∞ = p−1

Bℓ(Ṽ
′
i ×BΘ Ṽ

′
∞), Ω∞i = p−1

Bℓ(Ṽ
′
∞ ×BΘ Ṽ

′
i ),

where pBℓ : EConf2(π
Θ) → EΘ ×BΘ E

Θ is the fiberwise blow-down map. We

have

EConf2(π
Θ) =

⋃

i,j

Ωij .
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6.3.3 Some cycles of Vi and Ṽi

1. Let bi1, b
i
2, b

i
3 be the cycles in ∂Vi that are parallel to the cores of the three

handles of positive indices with the orientations determined by those of

the Hopf links in the Y-graph decomposition of embedded Θ-graph. If

Vi is of Type I, two of the cycles bij are circles and one of the cycles bij
is a (n − 1)-dimensional sphere. If Vi is of Type II, one of the cycles bij
is a circle and two of the cycles bij are (n − 1)-dimensional spheres. Let

ai1, a
i
2, a

i
3 be dual spheres of ∂Vi to b

i
1, b

i
2, b

i
3 with respect to the intersection

in ∂Vi. They are the boundaries of the cocores of the three handles in Vi
of positive indices. We take a basepoint pi of ∂Vi that is disjoint from the

cycles bij , a
i
j . We orient aij by the condition

Lk(bi−j , aij) = +1,

where bi−j is a parallel copy of bij ⊂ ∂Vi in IntVi obtained by shifting

slightly.

2. Let S(aiℓ) be a disk in Vi that is bounded by aiℓ. Let S(biℓ) be a disk in

X − IntVi that is bounded by biℓ. Let γ
i be a 1-chain of V∞ with twisted

coefficients in A that is bounded by pi, which exists by H0(V∞;A) =

H0(X ;A) = 0. We orient S(aiℓ) and S(biℓ) by the outward-normal-first

convention from the orientations of the boundaries aiℓ and b
i
ℓ, respectively.

3. S(biℓ) may intersect a handle of Vj (j 6= i) transversally. We assume that

the intersection agrees with S(ajm) for some unique (m, j) up to orien-

tation. This is possible according to the special linking property of the

handlebodies V1, V2.

For i 6= ∞, we identify a small tubular neighborhood of ∂Vi in X with

[−4, 4]×∂Vi so that {0}×∂Vi = ∂Vi and {−4}×∂Vi ⊂ IntVi. For a cycle

x of ∂Vi represented by a manifold, let

x[h] = {h} × x ⊂ [−4, 4]× ∂Vi

and let x+ denote a parallel copy of x obtained by slightly shifting x along

positive direction in the coordinate [−4, 4]. Here, [−4, 4]× ∂Vi is a subset

of a single fiber X . Also, let

Vi[h] =

{
Vi ∪ ([0, h]× ∂Vi) (h ≥ 0),

Vi − ((h, 0]× ∂Vi) (h < 0),

Sh(b
i
ℓ) =

{
S(biℓ) ∩ (X − Int(Vi[h])) (h ≥ 0),

S(biℓ) ∪ ([h, 0]× biℓ) (h < 0),

Sh(a
i
ℓ) =

{
S(aiℓ) ∪ ([0, h]× aiℓ) (h > 0),

S(aiℓ) ∩ Vi[h] (h ≤ 0),

V∞[h] = X − Int (V1[−h] ∪ · · · ∪ V2k[−h]).
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4. The boundary of Ṽi (i 6= ∞) is Ki × ∂Vi. The factor Ki has nothing to

do with the [−4, 4] in the previous item. Let

b̃iℓ = Ki × biℓ and ãiℓ = Ki × aiℓ,

and orient them by¶

o(̃biℓ) = (−1)n−2o(Sn−2) ∧ o(biℓ), o(ãiℓ) = (−1)n−2o(Sn−2) ∧ o(aiℓ).

The cycle ãiℓ bounds a submanifold S(ãiℓ) of Ṽi, which corresponds to a

Seifert surface of one component in the Borromean link, and can be chosen

so that its normal bundle is trivial ([Wa2, Lemma 4.2]). We orient S(ãiℓ)

by the outward-normal-first convention from o(ãiℓ). We assume without

loss of generality that the intersection of S(ãiℓ) with [−4, 4]× ∂Ṽi = Ki ×
([−4, 4]× ∂Vi) (in Ṽi) agrees with [−4, 4]× ãiℓ.

6.3.4 A normalization of propagator

Let Ω be a subset of EConf2(π
Θ). We say that a singular p-chain C′ of Ω is the

restriction of a singular p-chain C of EConf2(π
Θ) if

1. C does not have a term of a p-simplex whose interior intersects Ω and at

the same time whose image is not included in Ω,

2. the set ΛC′ of p-simplices of the terms of C′ agrees with the set ΛC of the

p-simplices of the terms of C whose interiors intersect Ω, and

3. C′ is obtained from C by ignoring the terms of p-simplices that are not in

ΛC .

In this case, we denote C′ by C|Ω. We also say so if C and C′ will satisfy

the above condition after some subdivisions. Let Ωij({ℓ}) be the restriction of

the bundle Ωij → BΘ on Kℓ ⊂ BΘ, where we identify K1 × {t02} with K1 and

{t01} × K2 with K2. Let Ωij(∅) be the restriction of the bundle Ωij → BΘ on

the basepoint (t01, t
0
2).

Proposition 6.6 (Normalization of propagator). There exists a propagator ω

in family EConf2(π
Θ) with coefficients in A⊠2 that satisfies the following con-

ditions.

1. ω|Ω∞∞
= BΘ × ω|Ω∞∞(∅).

2. ω|Ω1∞ = ω|Ω1∞({1}) ×K2, ω|Ω2∞ = K1 × ω|Ω2∞({2}).

3. ω|Ω∞1 = ω|Ω∞1({1}) ×K2, ω|Ω∞2 = K1 × ω|Ω∞2({2}).

4. ω|Ω11 = ω|Ω11({1}) ×K2, ω|Ω22 = K1 × ω|Ω22({2}).

¶Please see [Wa2, §4.2] for the motivation of this convention.
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5. For {i, j} = {1, 2},

ω|Ωij
=

∑

ℓ,m

Lij
ℓmS(ã

i
ℓ)×cA S(ã

j
m),

where Lij
ℓm = (−1)nLkA(b

i
ℓ, b

j
m)∗ and the sum is over ℓ,m such that dim aiℓ+

dim ajm = n.

Here, the direct products × in 1–4 are the cross products S∗(K;C)⊗CS∗(Ωij(J);A
⊠2) →

S∗(Ωij ;A
⊠2) or S∗(Ωij(J);A

⊠2) ⊗C S∗(K;C) → S∗(Ωij ;A
⊠2) for some J ⊂

{1, 2,∞} and K ⊂ BΘ such that K × Ωij(J) ⊂ Ωij or Ωij(J)×K ⊂ Ωij . Fur-

thermore, we assume that BΘ × ω|Ω∞∞(∅) etc. is cooriented by the pullback of

the coorientation of ω|Ω∞∞(∅) in Ω∞∞(∅) etc. S(ãiℓ)×cA S(ã
j
m) is cooriented by

the wedge product of coorientations of S(ãiℓ) ⊂ Ṽi, S(ã
j
m) ⊂ Ṽj.

Proof of Proposition 6.6 is postponed to §6.4.

Proof of Theorem 6.2. We choose propagators ω1, ω2, ω3 as in Proposition 6.6.

On the parts 1–4 in Proposition 6.6, the triple intersection does not contribute to

TrΘ〈ω1, ω2, ω3〉Θ since the triple intersection on each part is the direct product

of that in strictly lower dimensional subspace and positive dimensional space,

or the same value is counted on each point of S0 with opposite orientation

and is cancelled. Thus it follows that TrΘ〈ω1, ω2, ω3〉Θ agrees with that on the

following subspace of EConf2(π
Θ).

Ω12

∐
Ω21 = (Ṽ1 × Ṽ2)

∐
(Ṽ2 × Ṽ1)

The restriction to one component Ṽi× Ṽj corresponds to counting configurations

such that the boundary vertices v1, v2 of each oriented edge e = (v1, v2) of Θ is

mapped to Ṽi and Ṽj , respectively.

Let us compute the value of TrΘ〈ω1, ω2, ω3〉Θ on the component Ṽ1 × Ṽ2.

According to Proposition 6.6, the restriction of the propagator for the edge e to

Ṽ1 × Ṽ2 is of the form

L∗
1 S(ã

1
1)×cA S(ã

2
1) + L∗

2 S(ã
1
2)×cA S(ã

2
2) + L∗

3 S(ã
1
3)×cA S(ã

2
3).

(Li ∈ A⊗2) We abbreviate this as L∗
1S1+L

∗
2S2+L

∗
3S3. Since the normal bundle

of S(ãiℓ) is trivial, it has no self-intersection. Moreover, we may assume that

S1, S2, S3 are in general position with respect to holonomy (§5). Hence the value

of the intersection TrΘ〈ω1, ω2, ω3〉Θ on Ṽ1 × Ṽ2 is
∑

σ∈S3

〈Sσ(1), Sσ(2), Sσ(3)〉Ṽ1×Ṽ2
TrΘ(L

∗
σ(1) ⊗ L∗

σ(2) ⊗ L∗
σ(3)).

When n is odd, the terms of the sum are all equal due to the S3-antisymmetry

of the triple intersection form and the S3-antisymmetry of TrΘ. Then the sum

is

6 〈S1, S2, S3〉Ṽ1×Ṽ2
TrΘ(L

∗
1 ⊗ L∗

2 ⊗ L∗
3) = 6[Θ(ρA(g1), ρA(g2), ρA(g3)].
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We may consider similarly for the value of TrΘ〈ω1, ω2, ω3〉Θ on the compo-

nent Ṽ2 × Ṽ1. By Lemma 4.20, it can be written for some sign ε = ±1 as

6 〈S∗
1 , S

∗
2 , S

∗
3〉Ṽ2×Ṽ1

TrΘ(L1 ⊗ L2 ⊗ L3)

= 6ε 〈S1, S2, S3〉Ṽ1×Ṽ2
TrΘ(L1 ⊗ L2 ⊗ L3) = 6ε[Θ(ρA(g1), ρA(g2), ρA(g3)],

where ((σ×τ)⊗ei⊗e∗j)∗ = (τ×σ)⊗ej⊗e∗i . Here, under the canonical identifica-
tion Ṽ1× Ṽ2 ∼= Ṽ2× Ṽ1, the coorientation of S(ã2i )×S(ã1i ) ⊂ Ṽ2× Ṽ1 differs from

that of S(ã1i )×S(ã2i ) ⊂ Ṽ1× Ṽ2 by (−1)n−1. Also, the orientation of Ṽ2× Ṽ1 and

of Ṽ1 × Ṽ2 induced from that of EConf2(π) differs by (−1)(n+1){(n+1)+(n−2)}.
Hence we have

ε = {(−1)n−1}3 × (−1)(n+1){(n+1)+(n−2)} = 1.

(Similar computations of the effects of the signs of the intersections under the

graph automorphisms are done in [Wa2] for general trivalent graphs.)

Now we obtain the following.

Zeven
Θ (Ψ1(Γ(g1, g2, g3))) =

1

6
· 12 [Θ(ρA(g1), ρA(g2), ρA(g3)]

= 2 [Θ(ρA(g1), ρA(g2), ρA(g3)].

This completes the proof.

6.4 Proof of Proposition 6.6

Proposition 6.6 can be proved in exactly the same way as [Wa2, Proposition 4.5],

except the following points, for V = Vj :

1. The integral
∫
C
ω is replaced by the invariant intersection Tr〈ω,C〉.

2. The computations of H∗(X−V ) and H∗(V × (X− IntV [3])) etc. in [Wa2,

Lemma 6.2] are replaced by Lemmas 6.7, 6.8, and 6.9 below.

3. In [Wa2, §6], a propagator ω0 on Conf2(X) is modified as

ω1 = ω0 + d(χµ)

for a form µ defined on a codimension 0 compact submanifold U of Conf2(X)

with a collar neighborhood ∂U×[0, 1), and a smooth function χ : U → [0, 1]

such that χ = 0 near ∂U × {0} = ∂U and χ = 1 on a neighborhood of

U1 := U − (∂U × [0, 1)), so that ω1|U1 = ω0 + dη is a certain explicit

form on U1. For a chain propagator ω0 on Conf2(X) (of codimension n)

in this paper, we take a codimension n − 1 chain η supported on a small

closed ε-neighborhood N of U1 in U and the restriction ω0[ε] of ω0 to

(Conf2(X) − U) ∪ (∂U × [0, ε)) for a small ε > 0, which is disjoint from

N . Then we take an extension ω1 of ω0[ε] + ∂Aη over Conf2(X), which

agrees with ω0 on a neighborhood of Conf2(X)−U and with ω0+ ∂Aη on

a neighborhood of U1.
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4. The pullback of a form ω on {ti0}×W to Ki×W as in [Wa2, §6.4], where

ti0 ∈ Ki is the basepoint and W is a subset of Conf2(X), is replaced by

the cross product Ki × ω.

5. The restriction of the partially normalized propagator ω′
4,i to ∂EConf2(Ṽ ),

analogous to that of [Wa2, §7], is of the form ω′′⊗cA for some C-chain ω′′,
since the local coefficient system A is trivial on Ṽ by construction of V

from a trivalent graph (a Y-graph is included in a ball), and its evaluation

over a small Hopf link gives the value 1.

For other parts, the proof of Proposition 6.6 is exactly the same as [Wa2, Propo-

sition 4.5] and we do not repeat the same argument. To state the lemmas an-

nounced in the item 2, we put V = Vj and abbreviate aji , b
j
ℓ , γ

j etc. as ai, bℓ, γ

etc. for simplicity.

Lemma 6.7. Hi(X − V ;A) = Hi+1(V, ∂V ;C) ⊗C A for i > 0. Namely, for

i > 0,

Hi(X − V ;A) =
[
C[a1]⊕ C[a2]⊕ C[a3]⊕ C[∂V ]

]

i
⊗C A.

Proof. In the homology long exact sequence for the pair (X,X − V ), we have

H∗(X ;A) = 0. Also, by excision, we haveHi+1(X,X−V ;A) = Hi+1(V, ∂V ;A) =

Hi+1(V, ∂V ;C)⊗C A. The result follows.

The following is obtained by the Künneth formula.

Lemma 6.8. Let W = V × (V − V̊ [3]), where V̊ = IntV . Then we have the

following for i > 0, as π × π-modules:

Hi(W ;A⊠2) =
[
H∗(V )⊗C (C[a1]⊕ C[a2]⊕ C[a3]⊕ C[∂V ])

]

i
⊗C A

⊠2,

Hi(∂V × (X − V̊ [3]);A⊠2)

=
[
H∗(∂V )⊗C (C[a1]⊕ C[a2]⊕ C[a3]⊕ C[∂V ])

]

i
⊗C A

⊠2.

Lemma 6.9. The π×π-module Hn+2(W,∂W ;A⊠2) is generated by the following

elements over the algebra A⊠2.

[S(ai)×cA S3(bℓ)] (dim ai + dim bℓ = n), [V ×cA γ[3]].

Hence Tr〈·, ·〉 gives a nondegenerate pairing

Hn(W ;A⊠2)⊗R Hn+2(W,∂W ;A⊠2) → R.

Proof. The proof of this lemma is parallel to that of [Les2, Lemma 11.5]. We

only prove the lemma for Type I since the proof for the case of Type II is similar.

We use the homology long exact sequence for the pair (W,∂W ). We know that

Hn+2(W ;A⊠2) =

{
C[b3 × ∂V [3]]⊗C A

⊠2 (n+ 1 = 4),

0 (n+ 1 ≥ 5),
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whose image in Hn+2(W,∂W ;A⊠2) is 0. Hence we have

Hn+2(W,∂W ;A⊠2) ∼= Ker
[
Hn+1(∂W ;A⊠2) → Hn+1(W ;A⊠2)

]
.

To determine Hn+1(∂W ;A⊠2), we apply the Mayer–Vietoris exact sequence

for ∂W = (V × ∂V [3]) ∪
∂V×∂V [3]

(∂V × (X − V̊ [3])):

→ Hn+1(∂V × ∂V [3])
in+1→ Hn+1(V × ∂V [3])⊕Hn+1(∂V × (X − V̊ [3])) → Hn+1(∂W )

∂MV→ Hn(∂V × ∂V [3])
in→ Hn(V × ∂V [3])⊕Hn(∂V × (X − V̊ [3]))

(coefficients are in A⊠2). Coker in+1 is isomorphic to

Hn+1(W ;A⊠2) =
[
C{[∗], [b1], [b2], [b3]} ⊗ C{[a1], [a2], [a3], [∂V ]}[3]

]

n+1
⊗C A

⊠2.

Ker in is isomorphic to

[
C{[a1], [a2], [a3], [∂V ]} ⊗ C{[∗], [b1], [b2], [b3]}

]

n
⊗C A

⊠2,

which is generated over A⊠2 by the images of Aiℓ = ∂A(S(ai) ×cA S3(bℓ))

(dim ai + dim bℓ = n) and A00 = ∂A(V ×cA γ[3]) under the Mayer–Vietoris

boundary map ∂MV. Thus we have

Hn+1(∂W ;A⊠2) = Hn+1(W ;A⊠2)⊕ (C[A00]⊕
⊕

i,ℓ

C[Aiℓ])⊗C A
⊠2.

Then the result follows.

7 Σ3 × S1-bundles supported on Σ3 × I

Proposition 7.1. Let Σ3 = Σ(2, 3, 5). The image of the composition of the

natural map

ĩ∗ : H1(B̃Diffdeg(Σ
3 × I, ∂)) → H1(B̃Diffdeg((Σ

3 × S1)•, ∂))

and Zeven
Θ : H1(B̃Diffdeg((Σ

3×S1)•, ∂)) → A even
Θ (g⊗2[t±1]; ρ(π′)×Z) is included

in the (injective) image from A even
Θ (g⊗2; ρ(π′)).

Proof. Let J = S1 − Int I and B = S1. Let π : E → B be a framed Σ3 × S1-

bundle that has support in Σ3×I. Namely, we assume that E can be obtained by

gluing the trivial framed (Σ3×J, ∂)-bundle B× (Σ3×J) → B and some framed

(Σ3 × I, ∂)-bundle πI : EI → B together along the boundaries. Moreover, we

assume that a fiberwise degree 1 map E → Σ3×S1 is given so that its restriction
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to B × (Σ3 × J) agrees with the projection B × (Σ3 × J) → Σ3 × J . The class

of such a framed bundle generates the image of ĩ∗.
The product ωΣ3×J is a propagator in Conf2(Σ

3×J) = Bℓ((Σ3×J)×2,∆Σ3×J),

where ωΣ3 is the (n+1)-chain of Conf2(Σ
3) considered in the proof of Proposi-

tion 3.13. By extending B × (ωΣ3 × ∂J) by sτ (E) for the vertical framing τ on

E, we obtain a cycle in ∂EConf2(πI) = B × ∂Conf2(Σ
3 × I). By Lemmas 7.3

and 7.4 below, there is no homological obstruction to extending this cycle to a

propagator in family EConf2(πI). The sum of this extension and B× (ωΣ3 ×J)
gives a propagator ω̃I in family EConf2(π).

We take ω̃I as above and its perturbed copies ω̃′
I and ω̃′′

I which are parallel

near the boundary and each of which has similar product structure as ω̃I on

Σ3 × J . We consider well-definedness of the triple intersection 〈ω̃I , ω̃
′
I , ω̃

′′
I 〉Θ in

EConf2(π), which is expected to give 6Zeven
Θ for π. Here, the chains ω̃I , ω̃

′
I , ω̃

′′
I

are not piecewise strata transversal unless they are perturbed slightly further on

Σ3 × J . Namely, if we merely took fiberwise copies of ω̃I from perturbed copies

ω′
Σ3 , ω′′

Σ3 of ωΣ3 in Conf2(Σ
3) by the same product structure on Σ3 × J , then

they would have finitely many triple intersection points in each level Σ3 × {z},
which results in a 1-dimensional locus of triple points.

We perturb the product structure of Σ3 × J to define ω̃′
I , as follows. First,

we take the triple intersection of the three propagators defined as above by

the same product structure of Σ3 × J . Then in each level Σ3 × {z}, z ∈ J ,

there may be finitely many configurations of two points corresponding to the

triple intersection of the propagators in Conf2(Σ
3), and the triple intersection

in Conf2(Σ
3 × J) is a product of a finite set S ⊂ Conf2(Σ

3) and J . We now see

that we may assume after small perturbations that such configurations in S are

mutually disjoint in each level Σ3 × {z}. Let U+
δ be the union of the (disjoint)

balls of small radius δ around the points in the image of the first projection of

S in Σ3, and let U−
δ be defined similarly for the second projection of S in Σ3.

By assumption, we have U+
δ ∩U−

δ = ∅. Then we perturb the level set Σ3 × {z}
in Σ3 × S1 into the following embedding Σ3 × {z} → Σ3 × S1:

(x, z) 7→





(x, z) (x /∈ U+
δ ∪ U−

δ )

(x, z + λ(x)) (x ∈ U+
δ )

(x, z − λ(x)) (x ∈ U−
δ )

where λ : Σ3 → [0, ε] (for ε > 0 small) is a bump function supported on U+
δ ∪U−

δ

that takes the value ε at the center of each ball. Let Σ3
λ be the image of the

perturbed embedding Σ3 × {z0} → Σ3 × S1 for a fixed z0 ∈ J (see Figure 9).

After doing the same perturbation of Σ3×{z} for all z ∈ J , we obtain a slightly

perturbed cylinder Σ3
λ × J in Σ3 × S1. We define ω̃′

I by the product of ω′
Σ3

in Conf2(Σ
3
λ) with J by using the product structure of this perturbed cylinder

Σ3
λ × J .

We claim that there is no triple intersection in Conf2(Σ
3 × J) among the

propagators thus obtained. Indeed, since the perturbation in the previous para-

50



������

������

������

�������

�������

�������

����

������

������

�������

�������

�������

Figure 9: A perturbation of Σ3 × J to define ω̃′
I .

graph does not change the projection Σ3 × J → Σ3, the triple intersection in

Conf2(Σ
3 × J) of the perturbed propagators must be in the preimage of the

triple intersection in Conf2(Σ
3) again, since the locus of the triple intersection

is projected to that in Conf2(Σ
3). By the choices of ω̃I and ω̃

′
I on Conf2(Σ

3×J),
we see that the triple intersection in Conf2(Σ

3 × J) is empty. Namely, a two-

point configuration (x1, x2) in the triple intersection in Conf2(Σ
3 × J) have to

satisfy the following conditions:

� (x1, x2) lies in the preimage of U+
δ × U−

δ by the projection.

� Both x1 and x2 lie in the same level set Σ3 × {z} for some z ∈ J .

� Both x1 and x2 lie in the same level set Σ3
λ × {z′} for some z′ ∈ J .

However, these conditions cannot be satisfied simultanously.

Since each configuration in the image of ω̃I is such that two points are both

in Σ3 × I or both in Σ3 × J , the triple intersection in question is the sum of

those on Σ3 × I and Σ3 × J . Namely, we do not need to consider configurations

of two points such that one point is on Σ3 × I and the other point is on Σ3 × J .

On Σ3×J , namely, on B×Conf2(Σ
3×J), we have seen above that the triple

intersection is empty. On Σ3 × I, namely, on EConf2(πI), we may assume that

the Z-component of the holonomies in π′ × Z is trivial, we may take the triple

intersection so that no term has power of t in the coefficient. Hence its class in

A even
Θ (g⊗2[t±1]; ρ(π′)×Z) is included in A even

Θ (g⊗2; ρ(π′)). This completes the

proof.

Remark 7.2. It follows from Proposition 7.1 that the invariant

Zeven
Θ ◦ ĩ∗ : H1(B̃Diffdeg(Σ

3 × I, ∂)) → A
even
Θ (g⊗2; ρ(π′))

is defined. Unfortunately, a simple calculation of the character of the π′ × π′-
module

∧3
(g ⊠ g) shows that the target space A even

Θ (g⊗2; ρ(π′)) is zero. Nev-

ertheless, this can be upgraded by replacing g ⊠ g with
⊕

i(Vi ⊠ Vi) for some

irreducible π′-modules Vi (with H
1(π′;Vi) = 0). Then the A even

Θ -space becomes

a nonzero vector space. We will write about it in a subsequent paper.
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Lemma 7.3. For A = g[t±1] and R = C[t±1], we have

Hi(Conf2(Σ
3 × I);A⊠2) ∼=





R[ST (∗)⊗ cA] (i = 3),

R[ST (Σ3)⊗ cA] (i = 6),

0 (otherwise).

Proof. The proof is parallel to that of Lemma 3.7. LetW = Σ3×I. We consider

the exact sequence

Hi+1(W
×2;A⊠2) → Hi+1(W

×2,Conf2(W );A⊠2) → Hi(Conf2(W );A⊠2)

→Hi(W
×2;A⊠2),

where we have H∗(W×2;A⊠2) = H∗(W ;A)⊗2 = (H∗(Σ3; g) ⊗C C[t±1])⊗2 = 0

by (3.2) and Lemma 3.2. Letting N(∆W ) be a closed tubular neighborhood of

∆W , we have Hi+1(W
×2,Conf2(W );A⊠2) ∼= Hi+1(N(∆W ), ∂N(∆W );A⊗2) by

excision. By Assumption 3.6, we have

Hi+1(N(∆W ), ∂N(∆W );A⊗2) = H4(D
4, ∂D4;R)⊗R Hi−3(∆W ;A⊗2)

∼= H4(D
4, ∂D4;R)⊗R Hi−3(W ;R) ∼= Hi−3(X ;R).

Here, Hi−3(W ;R) ∼= Hi−3(Σ
3;R) is rank 1 for i− 3 = 0, 3, and its generator is

∗,Σ3, respectively.

Lemma 7.4. We have H5(EConf2(πI);A
⊠2) = 0 and the natural map

H6(EConf2(πI);A
⊠2) → H6(EConf2(πI), ∂EConf2(πI);A

⊠2)

is zero.

Proof. The proof is analogous to that of Lemma 4.9. Namely, the lemma follows

from Lemma 7.3 and the Leray–Serre spectral sequence for πI .

There is a fibration sequence ([Ce1, Pa])

Diff0(Σ
3 × I, ∂)

i−→ Diff0(Σ
3 × S1) −→ Emb0(Σ

3,Σ3 × S1),

where the second map is given by the action to the inclusion Σ3 = Σ3 ×{pt} ⊂
Σ3 × S1.

Theorem 7.5. Let Σ3 = Σ(2, 3, 5). The quotient set

π0Diff0(Σ
3 × S1)/i∗π0Diff0(Σ

3 × I, ∂)

is countable infinite. Thus the set π0Emb0(Σ
3,Σ3 × S1) is countable infinite.
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Proof. We have the following commutative diagram.

π1B̃Diffdeg(Σ
3 × I, ∂)

ĩ∗ //

��

j∗

**❯❯❯
❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

π1B̃Diffdeg((Σ
3 × S1)•, ∂)

k∗

��
π1BDiff0(Σ

3 × I, ∂)
i∗ // π1BDiff0(Σ

3 × S1)

The vertical maps are both surjective, since they are the maps induced from pro-

jections of fibrations and the diffeomorphisms in Diff0(Σ
3×I, ∂) and Diff0(Σ

3×
S1) preserves the path-components of the fibers (§4.1): they acts trivially on π0
of the spaces of maps since the diffeomorphisms do not change the homotopy

classes of maps.

It follows from Corollary 4.4 and Proposition 4.5 that the set Φ of the in-

finitely many nontrivial elements of π1B̃Diffdeg((Σ
3 ×S1)•, ∂) detected in The-

orem 6.2, Corollary 6.3 is mapped to a subset of infinitely many nontrivial ele-

ments of π1BDiff0(Σ
3 ×S1). Moreover, it turns out that, in the abelianization,

Φ is independent of the image of ĩ∗ from π1B̃Diffdeg(Σ
3 × I, ∂) by Proposi-

tions 7.1, 3.5. Let k′∗ : π1B̃Diffdeg((Σ
3 × S1)•, ∂)/Im ĩ∗ → π1BDiff0(Σ

3 × S1)

be the homomorphism induced by k∗. By the commutativity of the diagram

above, it follows that

π1BDiff0(Σ
3 × S1)/Im i∗ = π1BDiff0(Σ

3 × S1)/Im j∗

= k′∗
(
π1B̃Diffdeg((Σ

3 × S1)•, ∂)/Im ĩ∗
)
.

Since Ker k∗ is a finitely generated group by the identites below (see also (4.2))

and Lemma 4.3, so is Ker k′∗ = Kerk∗/̃i∗Ker (k∗ ◦ ĩ∗).

π1F∗(X) = (Z2)
⊕4, π1(Ω(SO4 ×X)) = 0

(for X = Σ3 × S1). Hence π1BDiff0(Σ
3 × S1)/Im i∗ is infinite.

8 More properties of Θ-graph surgery

The following propositions hold for any compact parallelizable manifold X .

Proposition 8.1 ([BW, Proposition 4.2]). Let d = dimX ≥ 4. The (X, ∂)-

bundle πΘ : EΘ → BΘ for an embedding φ : Θ → X is obtained from the product

bundle BΘ ×X → BΘ by fiberwise surgeries along a BΘ-family of framed links

hs : S
1 ∪ Sd−2 → X, x ∈ BΘ, which satisfies the following conditions:

(a) hs is isotopic to the Hopf link with standard framing in a small d-ball for

each s.

53



������

������

������

������

������

������

������

������

������

������

������

������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

�������������������

Figure 10: Replacing a Hopf link with a cancelling pair of handles.

(b) The restriction of hs to Sd−2 is a constant BΘ-family.

(c) There is a small neighborhood N of Imφ such that the image of hs is

included in N for all s ∈ BΘ.

Remark 8.2. It is straightforward from the proof of [BW, Proposition 4.2] that

the condition (b) of Proposition 8.1 can be replaced with that for the restriction

of hs to S1.

Remark 8.3. 1. By attaching a BΘ-family of 2-handles and digging a BΘ-

family of (d− 1)-handles along hs of Proposition 8.1 to/from the top face

BΘ × (X × {1}) of BΘ × (X × I), one obtains a fiber bundle ΠΘ : WΘ →
BΘ = S0 × Sd−3 with fiber W = X × I and structure group C(X) (see

Figure 10). This was suggested by Peter Teichner and the detail for general

trivalent graphs and fiber dimensions d ≥ 4 can be found in [BW].

2. Since digging a reversed (d − 2)-handle from X × I gives diffeomorphic

cobordism as attaching a 1-handle, the X × I-bundle ΠΘ of the previous

item admits a Cerf graphic (in the sense of [Ce2]) as in Figure 11 on each

component of BΘ. Also, digging a reversed 1-handle from X × I gives the

same result as attaching a (d− 1)-handle. Thus the corresponding X × I-

bundle Π′Θ over BΘ admits a Cerf graphic with a (d − 2, d − 1)-handle

pair of critical values.

3. When d = 4, the (2, 3)-handle pair giving Π′Θ of the previous item can

be presented by an isotopy Ps (0 ≤ s ≤ 1) of the attaching 2-sphere of

the 3-handle in the middle level surface X#(S2 × S2). This isotopy can

be explicitly described by applying [BW, Lemmas 3.7 and 3.10], which is

roughly as follows. The initial sphere P0 has the geometrically dual sphere

Q = pt × S2 ⊂ X#(S2 × S2), which is the belt-sphere of the 2-handle.

During the isotopy, the intersection Ps∩Q changes as first introducing two

pairs of intersections by two finger moves, and then cancelling the same

pairs by two Whitney moves, reversing the two finger moves ([Tei]).
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Figure 11: The graphics for the (X × I)-bundles with the Morse indices of the

critical loci. Left: ΠΘ. Right: Π′Θ.

Proposition 8.4. Let d = dimX ≥ 4. The element of ΩSO
d−3(BDiff(X)) given

by πΘ : EΘ → BΘ belongs to the image from ΩSO
d−3(BDiff0(X)).

Proof. The element of ΩSO
d−3(BDiff(X)) given by πΘ : EΘ → BΘ is mapped from

ΩSO
d−3(BC(X)) and the result follows since an element of C(X) gives a continuous

homotopy of a diffeomorphism of X to the identity by composing with the

projection X×I → X . Hence the image of the natural map C(X) → Diff(X) is

contained in Diff0(X). Namely, the X×I-bundle over BΘ given by Theorem 1.3

can be constructed inductively by attaching thickened cells (X×I)×(cell ⊂ BΘ)

by families of diffeomorphisms of X × I in C(X). The induced families of

diffeomorphisms of X × {1} are in Diff0(X).

Proposition 8.5. Let d = dimX ≥ 4. Suppose X is closed. Then the element

of ΩSO
d−3(BDiff0(X)) given by Ψ1(Θ(g1, g2, g3)) (g1, g2, g3 ∈ π1(X)) belongs to

the image of the projection induced map

ΩSO
d−3(B̃Diffdeg(X

•, ∂)) → ΩSO
d−3(BDiff0(X

•, ∂)).

Proof. The existence of vertical framing was shown in [Wa2, Corollary 3.22].

Thus we need only to show that a fiberwise homotopy equivalence EΘ → X

exists. The rest is an analogue of [GL, Lemma 2.4]. Namely, each component

of the family of the 2-component framed links of Proposition 8.1 that yields

the Θ-graph surgery (along V1 ∪ V2) is fiberwise null-homotopic in BΘ ×N by

Proposition 8.1 (b) and Remark 8.2. By attaching handles along the family of

2-component framed links in the top face BΘ × (X × {1}) of BΘ × (X × I), we

obtain a fiberwise cobordism Ẽ between EΘ and −(BΘ×X). Since the families

of attaching spheres of handles are fiberwise null-homotopic in BΘ × N , the

projection BΘ× (X × I) → X extends over the families of handles continuously

and we obtain a continuous extension f̃ : Ẽ → X . We may assume moreover that

f̃ is smooth. That its restriction f = f̃ |EΘ is fiberwise homotopy equivalence

follows since its restriction to the fiber over the basepoint of each component of

BΘ is homotopic to a map that collapses the part attached to a Hopf link in a

ball into a point and thus is a homotopy equivalence.
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A Local models of products of singular chains

A.1 Intersection of two simplices

Lemma A.1. Let σλ : ∆
p → R, σµ : ∆

q → R be smooth simplices in a r-

dimensional manifold R such that p+ q = r+1. Suppose that σλ and σµ satisfy

the conditions (a)–(d) in the proof of Lemma 4.14 except that the ambient space

is R. Then we have

∂〈σλ, σµ〉 = (−1)r−q〈∂σλ, σµ〉+ 〈σλ, ∂σµ〉.

Proof. By the transversality of the intersection of the embeddings σλ and σµ,

it suffices to compute the signs of the 0-dimensional intersection points in a

standard local coordinate model. Namely, let

P = {(t, x, 0) ∈ R× Rp−1 × Rq−1 | t ≤ 1},
Q = {(t, 0, y) ∈ R× Rp−1 × Rq−1 | t ≥ 0},

which correspond to σλ and σµ, respectively. The intersection of the half-planes

P,Q is the closed interval [0, 1] in the t-axis. Let o = (0, 0, 0), a = (1, 0, 0) ∈
R× Rp−1 × Rq−1 = Rr. We put

o(P ) = α∂t ∧ ∂x, o(Q) = β ∂t ∧ ∂y, o(R) = ∂t ∧ ∂x ∧ ∂y,

where α, β ∈ {−1, 1}, ∂t = ∂
∂t , ∂x = ∂

∂x1
∧ · · · ∧ ∂

∂xp−1
, ∂y = ∂

∂y1
∧ · · · ∧ ∂

∂yq−1
.

According to the outward-normal-first convention, we have

o(∂P )a = α∂x, o(∂Q)o = −β ∂y.

The coorientations of P and Q in R are as follows:

o∗R(P ) = α∂y, o∗R(Q) = (−1)(p−1)(q−1)β ∂x.

Then we have

o∗R(P ∩Q) = o∗R(P ) ∧ o∗R(Q) = αβ ∂x ∧ ∂y,
o(P ∩Q) = αβ ∂t,

∂〈P,Q〉 = αβ(a − o).

On the other hand, we have

o∗R(∂P )a = (−1)p−1α∂t ∧ ∂y, o∗R(∂Q)o = −(−1)p(q−1)β ∂t ∧ ∂x,
o∗R(∂P ∩Q)a = o∗R(∂P )a ∧ o∗R(Q)a = (−1)p−1αβ ∂t ∧ ∂x ∧ ∂y,
o∗R(P ∩ ∂Q)o = o∗R(P )o ∧ o∗R(∂Q)o = −αβ ∂t ∧ ∂x ∧ ∂y.

Hence

〈∂P,Q〉 = (−1)p−1αβ a, 〈P, ∂Q〉 = −αβ o, and

∂〈P,Q〉 = (−1)p−1〈∂P,Q〉+ 〈P, ∂Q〉.
Since p− 1 = r − q, the result follows.
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A.2 Cross product of simplices with local coefficients

Let C1 = σλ⊗mλ, C2 = σµ⊗mµ be A-chains of X such that σλ, σµ are smooth

singular simplices of dimensions p, q in X , respectively, and mλ,mµ ∈ A. We

now define the cross product (σλ ⊗mλ)× (σµ ⊗mµ).

Let δ0,λ, δ0,µ be the barycenters of ∆p,∆q, respectively. The cross product

σλ×σµ can be subdivided into several (p+q)-simplices according to the simplicial

decomposition:

∆p ×∆q =
∑

ρ

∆p+q
ρ ,

where ρ is an “edgepath” in {(i, j) | 0 ≤ i ≤ p, 0 ≤ j ≤ q} from (0, 0) to (p, q)

([Hat2, 3.B (The Simplicial Cross Product)]). Let δ0,ρ be the barycenter of ∆ρ.

Let ηρ be a path in ∆p ×∆q from δ0,ρ to (δ0,λ, δ0,µ). Then we define

(σλ⊗mλ)×(σµ⊗mµ) =
∑

ρ

(σλ×στ )|∆p+q
ρ

⊗Hol((σλ×σµ)◦ηρ)(mλ⊗mµ). (A.1)

We extend × to A⊠2-chains of X by A⊠2-linearity. The following lemma can

be proved by computing the ∂A-boundary of (A.1) above, which is routine.

Lemma A.2. The cross product defined as above is a ∂A-chain map. Hence

induces

× : Hp(V ;A)⊗R Hq(W ;A) → Hp+q(V ×W ;A⊠2),

where V,W ⊂ X are submanifolds of X.

B Invariants in the π′-module V4

Proposition B.1. The invariant part

H0(π′;V4) ∼= V π′

4 = {v ∈ V4 | g · v = v (∀g ∈ π′)}

is zero.

Proof. Let L1 = {f ∈ V4 | ρ(x1) · f = f}, L2 = {f ∈ V4 | ρ(x2) · f = f}. We

show that L1 ∩ L2 = 0. It is easy to see that L1 consists of polynomials of the

form

f = a0x
4 + a2x

2y2 + a4y
4.

We consider the condition for such a polynomial to belong to L2. For α = 1+
√
5

4 ,
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β = −1+
√
5

4 , we compute

ρ(x2) · (a0x4 + a2x
2y2 + a4y

4)− (a0x
4 + a2x

2y2 + a4y
4)

=
(3
√
5 + 41 + 4i(

√
5 + 3))a0 + (

√
5− 1)(1 − 2i)a2 + (3

√
5− 7)a4

32
x4

+
(−2(

√
5 + 2)− i(

√
5− 3))a0 − (2 + i(

√
5 + 1))a2 − (2(

√
5− 2) + i(

√
5− 3))a4

8
x3y

+
3(
√
5− 1)(1 − 2i)a0 − 3(

√
5− 5)a2 + 3(

√
5− 1)(1 + 2i)a4

16
x2y2

+
(2(

√
5− 2) + i(3−

√
5))a0 + (2 − i(

√
5 + 1))a2 + (2(

√
5 + 2) + i(3−

√
5))a4

8
xy3

+
(3
√
5− 7)a0 + (

√
5− 1)(1 + 2i)a2 + (3

√
5 + 41− 4i(

√
5 + 3))a4

32
y4.

The resulting polynomial is zero if and only if a0 = a2 = a4 = 0, which can be

checked, for example, by

det




3
√
5+41+4i(

√
5+3)

32
(
√
5−1)(1−2i)

32
3
√
5−7
32

−2(
√
5+2)−i(

√
5−3)

8 − 2+i(
√
5+1)

8 − 2(
√
5−2)+i(

√
5−3)

8
3(

√
5−1)(1−2i)

16 − 3(
√
5−5)
16

3(
√
5−1)(1+2i)

16




=
3(
√
5− 1) + 3i(

√
5− 3)

8
6= 0.

For the other case α = 1+
√
5

4 , β = 1−
√
5

4 , we compute

ρ(x2) · (a0x4 + a2x
2y2 + a4y

4)− (a0x
4 + a2x

2y2 + a4y
4)

=
(3
√
5 + 41 + 4i(

√
5 + 3))a0 + (

√
5− 1)(1 − 2i)a2 + (3

√
5− 7)a4

32
x4

+
(2(

√
5 + 2) + i(

√
5− 3))a0 + (2 + i(

√
5 + 1))a2 + (2(

√
5− 2) + i(

√
5− 3))a4

8
x3y

+
3(
√
5− 1)(1 − 2i)a0 − 3(

√
5− 5)a2 + 3(

√
5− 1)(1 + 2i)a4

16
x2y2

+
−(2(

√
5− 2) + i(3−

√
5))a0 − (2− i(

√
5 + 1))a2 − (2(

√
5 + 2) + i(3−

√
5))a4

8
xy3

+
(3
√
5− 7)a0 + (

√
5− 1)(1 + 2i)a2 + (3

√
5 + 41− 4i(

√
5 + 3))a4

32
y4.

The resulting polynomial is zero if and only if a0 = a2 = a4 = 0, which can be

checked, for example, by

det




3
√
5+41+4i(

√
5+3)

32
(
√
5−1)(1−2i)

32
3
√
5−7
32

2(
√
5+2)+i(

√
5−3)

8
2+i(

√
5+1)

8
2(

√
5−2)+i(

√
5−3)

8
3(

√
5−1)(1−2i)

16 − 3(
√
5−5)
16

3(
√
5−1)(1+2i)

16




= −3(
√
5− 1) + 3i(

√
5− 3)

8
6= 0.

This completes the proof.
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Astérisque 6 (1973).

[HS] P.J. Hilton, U. Stammbach, A course in homological algebra. Sec-

ond edition, Graduate Texts in Mathematics, 4, Springer-Verlag, New

York, 1997. xii+364 pp.

[Igu] K. Igusa, Second obstruction to pseudoisotopy I, arXiv:2110.09659.

[Igu2] K. Igusa, Second obstruction to pseudoisotopy in dimension 3,

arXiv:2112.08293.

[Kas] C. Kassel, Quantum groups, Graduate Texts in Mathematics, 155,

Springer-Verlag, New York, 1995. xii+531 pp.

[Kna] A.W. Knapp, Lie groups beyond an introduction. Second edition.

Progress in Mathematics, 140. Birkhäuser Boston, Inc., Boston, MA,
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