Preprint (2023)

UNSTABLE PSEUDO-ISOTOPIES OF SPHERICAL 3-MANIFOLDS

YUJI OHTA AND TADAYUKI WATANABE

ABSTRACT. In our previous works, we constructed diffeomorphisms of compact 4-manifolds X by surgeries on theta-graphs embedded in X. In this paper, we consider the case $X = M \times I$, where M is a spherical 3-manifold. For some of such X, we compute lower bounds of the ranks of the abelian groups $\pi_0 \text{Diff}(X, \partial)$. We study the behavior of the elements constructed by thetagraph surgery under the suspension functor in stable pseudo-isotopy theory, and their triviality in the space of block diffeomorphisms.

1. Introduction

For a finite group π , let $(\pi \times \pi) \rtimes \mathbb{Z}_2$ be the semidirect product of $\pi \times \pi$ and \mathbb{Z}_2 with respect to the homomorphism $\psi \colon \mathbb{Z}_2 = \{1, \tau\} \to \operatorname{Aut}(\pi \times \pi); \tau \mapsto ((x, y) \mapsto (y, x))$. For a left $(\pi \times \pi) \rtimes \mathbb{Z}_2$ -module W, let

$$\mathscr{A}_{\Theta}^{\text{even}}(W) := H^0((\pi \times \pi) \rtimes \mathbb{Z}_2; \bigwedge^3 W) = \left(\bigwedge^3 W\right)^{(\pi \times \pi) \rtimes \mathbb{Z}_2},$$
$$\mathscr{A}_{\Theta}^{\text{odd}}(W) := H^0((\pi \times \pi) \rtimes \mathbb{Z}_2; \text{Sym}^3 W) = \left(\text{Sym}^3 W\right)^{(\pi \times \pi) \rtimes \mathbb{Z}_2}$$

where we take the invariant parts. One can take $W = \mathbb{C}[\pi]$, which is both a left $\pi \times \pi$ -module by $(g, h) \cdot x \mapsto gxh^{-1}$, and a \mathbb{Z}_2 -module by the involution $x \otimes y \otimes z \mapsto x^{-1} \otimes y^{-1} \otimes z^{-1}$ $(x, y, z \in \pi)$. Also, one can take $W = \operatorname{Ker} \varepsilon$ for the augmentation map $\varepsilon : \mathbb{C}[\pi] \to \mathbb{C}$, which is a $(\pi \times \pi) \rtimes \mathbb{Z}_2$ -submodule of $\mathbb{C}[\pi]$. The definitions of the \mathscr{A}_{Θ} -spaces are motivated by the space of π -decorated 2-loop graphs in [GL]. Let $\operatorname{Diff}_0(X, \partial)$ denote the subgroup of $\operatorname{Diff}(X, \partial)$ of diffeomorphisms homotopic to the identity. In this paper, we consider the 4-manifold $X = M \times I$, where M is a spherical (or elliptic) 3-manifold, i.e. $M = S^3/\Gamma$ for a finite subgroup $\Gamma \subset SO(4)$ acting freely on S^3 (e.g., [Sa, §1.2.1]). The following theorem is essentially given in [Wa1, Proposition 7.1 and Remark 7.2].

Theorem 1.1. Let M be a spherical 3-manifold, $\pi = \pi_1 M$, and let $X = M \times I$. Let W be a $\mathbb{C}[(\pi \times \pi) \rtimes \mathbb{Z}_2]$ -module satisfying Assumption 2.2. Then a homomorphism

$$Z_{\Theta}^{\operatorname{even}} \colon \Gamma_0(X) \otimes \mathbb{C} \to \mathscr{A}_{\Theta}^{\operatorname{even}}(W)$$

from a certain subgroup $\Gamma_0(X)$ of $\pi_1 BDiff_0(X, \partial)$ is defined, and if $W = \text{Ker }\varepsilon$, it is surjective. Hence we have

$$\dim \pi_0 \mathrm{Diff}_0(X, \partial) \otimes \mathbb{Q} \geq \dim \mathscr{A}_{\Theta}^{\mathrm{even}}(\mathrm{Ker}\,\varepsilon).$$

Date: October 18, 2023.

Note that for $X = M \times I$, the group $\text{Diff}(X, \partial)$ is homotopy commutative ([ABK, 2.6.1 Lemma]) and hence $\pi_0 \text{Diff}_0(X, \partial)$ is abelian. Theorem 1.1 can be obtained by modifying a few points (§2 and §3 below) in [Wa1, Proposition 7.1 and Remark 7.2], where we defined an invariant of diffeomorphisms of X with certain structures by a method similar to [Mar, Les1, Les2] ("equivariant triple intersection" in a configuration space). The aim of this paper is to give some examples of computations of the lower bound in Theorem 1.1.

The lower bound dim $\mathscr{A}_{\Theta}^{\text{even}}(\text{Ker}\,\varepsilon)$ of Theorem 1.1 can be computed by simple calculations. We give a few examples: the Poincaré homology sphere $\Sigma(2,3,5)$ and the lens spaces L(n,q). It is known that $\pi_1 \Sigma(2,3,5)$ is isomorphic to $SL_2(\mathbb{F}_5)$, which is also known as the binary icosahedral group, and $\pi_1 L(n,q) \cong \mathbb{Z}_n$ (e.g., [Sa, $\{1.1.2, \{1.2.1\}\}$

Proposition 1.2 (Poincaré homology sphere, Proposition 4.4). When $\pi = SL_2(\mathbb{F}_5)$, we have the following.

- (1) dim $\mathscr{A}_{\Theta}^{\operatorname{even}}(\operatorname{Ker} \varepsilon) = \dim \mathscr{A}_{\Theta}^{\operatorname{even}}(\mathbb{C}[\pi]) = 27.$ (2) dim $\mathscr{A}_{\Theta}^{\operatorname{odd}}(\operatorname{Ker} \varepsilon) = 56, \dim \mathscr{A}_{\Theta}^{\operatorname{odd}}(\mathbb{C}[\pi]) = 65.$

The case of lens spaces can be computed by a more elementary method.

Proposition 1.3 (Lens spaces, Proposition 5.2). Let $\pi = \mathbb{Z}_n$ $(n \ge 1)$, and for an integer $m \ge 0$, let $p_3(m)$ be the number of partitions of m into at most three parts, namely, the number of integer solutions of the equation x + y + z = m $(0 \le x \le y \le z)$. We set $p_3(m) = 0$ for m < 0. Then we have the following.

- (1) dim $\mathscr{A}_{\Theta}^{\mathrm{odd}}(\mathbb{C}[\pi]) = p_3(n).$

- (1) $\dim \mathscr{A}_{\Theta}^{\operatorname{even}}(\mathbb{C}[\pi]) = p_3(n-6).$ (2) $\dim \mathscr{A}_{\Theta}^{\operatorname{odd}}(\operatorname{Ker} \varepsilon) = p_3(n-6).$ (3) $\dim \mathscr{A}_{\Theta}^{\operatorname{odd}}(\operatorname{Ker} \varepsilon) = dim \mathscr{A}_{\Theta}^{\operatorname{even}}(\mathbb{C}[\pi]) = p_3(n-6).$

The following is a table of the values of the dimensions of $\mathscr{A}_{\Theta}^{\text{even/odd}}(\mathbb{C}[\pi])$ and $\mathscr{A}_{\Theta}^{\text{even/odd}}(\text{Ker }\varepsilon)$ for $n \leq 15$. It is known that $p_3(m)$ $(m \geq 0)$ is the nearest integer to $\frac{(m+3)^2}{12}$ (e.g. [AK, Ch. 6]).

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\dim \mathscr{A}_{\Theta}^{\mathrm{odd}}(\mathbb{C}[\pi])$	1	2	3	4	5	7	8	10	12	14	16	19	21	24	27
$\dim \mathscr{A}_{\Theta}^{\operatorname{even}}(\mathbb{C}[\pi])$	0	0	0	0	0	1	1	2	3	4	5	$\overline{7}$	8	10	12
$\dim \mathscr{A}_{\Theta}^{\mathrm{odd}}(\operatorname{Ker} \varepsilon)$	0	0	1	1	2	3	4	5	7	8	10	12	14	16	19
$\dim \mathscr{A}_{\Theta}^{\operatorname{even}}(\operatorname{Ker} \varepsilon)$	0	0	0	0	0	1	1	2	3	4	5	7	8	10	12

Although the results for $\mathscr{A}_\Theta^{\mathrm{odd}}$ are not used in this paper, we think these would be useful to study finite type invariants of 3-manifolds in [GL].

Let $C(M) = \text{Diff}(M \times I, M \times \{0\} \cup \partial M \times I)$, the group of diffeomorphisms of $M \times I$ pointwise fixing $M \times \{0\} \cup \partial M \times I$, equiped with the C^{∞} -topology. An element of C(M) is called a *pseudo-isotopy* or a *concordance* of M. Pseudo-isotopy theory (e.g., [Ce, HW, Ig1]) studies the topology of C(M), which is related to the diffeomorphism groups via the following fiber sequence

(1.1)
$$\operatorname{Diff}(M \times I, \partial) \to C(M) \xrightarrow{r} \operatorname{Diff}(M),$$

where r is the restriction to $M \times \{1\}$. For most 3-manifolds M, the left map in this sequence induces a map between π_0 which is close to an isomorphism, in the sense that $\pi_i \text{Diff}(M)$ is small in many cases (generalized Smale conjecture, e.g., [Hat, Ga, HKMR, BK]).

Corollary 1.4. We have the following inequalities.

- (1) dim $\pi_0 C(\Sigma(2,3,5)) \otimes \mathbb{Q} \geq 27$.
- (2) dim $\pi_0 C(\Sigma(2,3,5) \times I) \otimes \mathbb{Q} \ge 27.$
- (3) dim $\pi_0 C(L(n,q) \times I) \otimes \mathbb{Q} \ge p_3(n-6).$

Proof. For (1), since $\text{Diff}(\Sigma(2,3,5)) \simeq \text{Isom}(\Sigma(2,3,5)) = SO(3)$ by [BK], and $\pi_0 SO(3) = 0$, the natural map $\pi_0 \text{Diff}(\Sigma(2,3,5) \times I, \partial) \to \pi_0 C(\Sigma(2,3,5))$ from (1.1) is surjective, and the image is abelian, too. Moreover, its kernel is the image from $\pi_1 SO(3) = \mathbb{Z}_2$. Hence we have an isomorphism $\pi_0 \text{Diff}(\Sigma(2,3,5) \times I, \partial) \otimes \mathbb{Q} \cong \pi_0 C(\Sigma(2,3,5)) \otimes \mathbb{Q}$. Then the result follows by Theorem 1.1 and Proposition 4.4.

For (2) and (3), we use the fact that theta-graph surgeries that are detected by Z_{Θ}^{even} lifts to $\pi_1 BC(M \times I)$ ([BW, Theorem 1.3]). Then the results follow by Theorem 1.1 and Propositions 4.4, 5.2.

We compare our nontrivial subgroup in $\pi_0 C(M \times I)$ with Hatcher–Wagoner's stable pseudo-isotopy theory $P(M \times I) = \operatorname{colim} C(M \times I^N)$ ([HW], see also [Ig1]), where the colimit is taken with respect to the "suspension functor" $\sigma \colon C(X) \to C(X \times I)$ ([HW, Ch I-§5]). In [Ig2], the following commutative diagram is considered for dim X = 4:

$$\begin{array}{ccc} \pi_0 \mathscr{D}(X) & \xrightarrow{\widetilde{\theta}} & \pi_0 C(X) \\ & & & & & \\ & & & & & \\ & & & & & \\ Wh_1^+(\pi_1 X; \mathbb{Z}_2 \oplus \pi_2 X) & \longrightarrow & \pi_0 P(X) & \longrightarrow & Wh_2(\pi_1 X) & \longrightarrow & 0 \end{array}$$

where the bottom horizontal line is exact (by [HW]) and $\mathscr{D}(X)$ is the space of "lens-space models" for pseudo-isotopies of X ([Ig2, Definition 1.4]). In recent works of K. Igusa ([Ig1, Ig2]) and O. Singh ([Si]), many nontrivial elements of $\pi_0 C(X)$ for some 4-manifolds X with $\pi_2 X \neq 0$ are found, by realizing elements of $Wh_1^+(\pi_1 X; \mathbb{Z}_2 \oplus \pi_2 X)$ by explicit 1-parameter families in $\mathscr{D}(X)$ of 2,3-handle pairs. Their nontrivial elements are also nontrivial in $\pi_0 P(X)$.

We see that our theta-graph surgery behaves differently.

Theorem 1.5. Let M be a spherical 3-manifold.

- (1) Theta-graph surgery gives elements of $\pi_0 C(M \times I)$ that lift to $\pi_0 \mathscr{D}(M \times I)$.
- (2) $\pi_0 C(M \times I)$ includes a free abelian subgroup of rank dim $\mathscr{A}_{\Theta}^{\text{even}}(\text{Ker }\varepsilon)$ that is included in the kernel of $\pi_0 C(M \times I) \to \pi_0 P(M \times I)$.

Proof. (1) follows from [Wa1, §8], which uses a result of [BW]. Then (2) follows since $\pi_2(M \times I) = \pi_2 M = 0$, $\pi_1(M \times I) = \pi_1 M$, and

$$Wh_1^+(\pi_1 M; \mathbb{Z}_2) = \bigoplus_{c-1} \mathbb{Z}_2$$

where c is the number of conjugacy classes of elements of $\pi_1 M$ ([Ig2, p.3]).

Remark 1.6. The subgroup of Theorem 1.5 (2) is of finite index $(=2^{c-1})$ in the free abelian subgroup of rank dim $\mathscr{A}_{\Theta}^{\text{even}}(\text{Ker }\varepsilon)$ generated by theta-graph surgery. This restriction to the smaller subgroup would be unnecessary since Theorem 1.5 (2) could also be proved by directly evaluating the homomorphism $\overline{\lambda} \colon \pi_0 \mathscr{D}(X) \to Wh_1^+(\pi_1 X; \mathbb{Z}_2)$ for the 1-parameter family of the attaching 2-spheres of the 3-handles in [Wa1, §8] obtained from theta-graph surgery.

There is a similar result for the space $C^{\text{Top}}(M)$ of topological pseudo-isotopies by Kwasik and Schultz [KS, Theorem 1] giving nontrivial unstable elements of $\pi_0 C^{\text{Top}}(M)$ for certain 3-manifolds M.

Let Diff(M) be the space of block diffeomorphisms of M (see e.g., [HLLRW]). In [Hat3, Proposition 2.1], Hatcher constructed a spectral sequence with $E_{pq}^1 = \pi_q C(M \times I^p)$ converging to $\pi_{p+q+1}(\widetilde{\text{Diff}}(M)/\text{Diff}(M))$. In particular,

$$\pi_1(\mathrm{Diff}(M)/\mathrm{Diff}(M)) = E_{00}^2 = E_{00}^1/\delta_*(E_{10}^1) = \pi_0 C(M)/\delta_*(\pi_0 C(M \times I)),$$

where $\delta: C(M \times I) \to C(M)$ is defined by $\delta(f) = f|_{M \times I \times \{1\}}$. Similar identity for the topological case was considered in [KS, p.874]. Since the elements of $\pi_0 C(M)$ constructed by theta-graph surgery are in the image of δ_* ([BW, Theorem 1.3]), we have the following.

Proposition 1.7. Let M be a spherical 3-manifold. The elements of $\pi_0 C(M)$ constructed by theta-graph surgery are trivial in $\pi_1(\widetilde{\text{Diff}}(M)/\text{Diff}(M))$.

This shows that theta-graph surgery is not like the unstable elements of $\pi_0 C^{\text{Top}}(M)$ detected in [KS], where the nontrivial elements are detected in $\pi_1(\widetilde{\text{Top}}(M)/\text{Top}(M))$.

Acknowledgments. TW thanks Y. Nozaki, T. Sakasai for information about software. We thank E. Matsuhashi for his support. This work was partially supported by JSPS Grant-in-Aid for Scientific Research 20K03594 and 21K03225, and by RIMS, Kyoto University.

2. Twisted homology of configuration space

In this and the next section, we check Theorem 1.1. We use a slightly generalized version of the invariant Z_{Θ}^{even} of [Wa1] for more general local coefficient system W (Lemma 2.3). To define Z_{Θ}^{even} , we need "propagators" in a family of configuration spaces of two points on $X = M \times I$. Now we check that a propagator exists for more general coefficients W.

2.1. Acyclic complex. Suppose that M is a spherical 3-manifold. Let $\pi = \pi_1 M$, and let A be a non-trivial irreducible $\mathbb{C}\pi$ -module. The homology of M with twisted coefficient A is defined by

$$H_*(M;A) := H(S_*(M) \otimes_{\mathbb{C}\pi} A),$$

where \widetilde{M} is the universal cover of $M, S_*(\cdot)$ is the \mathbb{C} -complex of singular chains.

Lemma 2.1. $H_*(M; A) = 0.$

Proof. Since π is finite, $\mathbb{C}\pi$ is semisimple in the sense of [CE, §I.4] by Maschke's theorem and we have $H^1(\pi; A) = 0$ (Theorem VI.16.6 and Lemma VI.16.7 of [HS]). By the universal coefficient theorem, which is valid if the ring is hereditary (e.g., $\mathbb{C}\pi$ for π finite), the sequence

$$0 \to \operatorname{Ext}^{1}_{\mathbb{C}\pi}(H_{i-1}(C), A) \to H^{i}(\operatorname{Hom}_{\mathbb{C}\pi}(C, A)) \to \operatorname{Hom}_{\mathbb{C}\pi}(H_{i}(C), A) \to 0$$

is exact for $C = S_*(S^3; \mathbb{C})$ (as a $\mathbb{C}\pi$ -module) and any $\mathbb{C}\pi$ -module A (e.g., [CE, Theorem VI.3.3]). Hence we have

$$H^{3}(M; A) \cong \operatorname{Hom}_{\mathbb{C}\pi}(\mathbb{C}, A) \cong H^{0}(\pi; A) = A^{\pi},$$

$$H^{2}(M; A) = 0,$$

$$H^{1}(M; A) \cong \operatorname{Ext}^{1}_{\mathbb{C}\pi}(\mathbb{C}, A) = H^{1}(\pi; A) = 0,$$

$$H^{0}(M; A) \cong \operatorname{Hom}_{\mathbb{C}\pi}(\mathbb{C}, A) \cong H^{0}(\pi; A) = A^{\pi}.$$

Since A is a non-trivial irreducible $\mathbb{C}\pi$ -module, we have $A^{\pi} = 0$. Then by Poincaré duality (e.g., [Hat2, §3.H], [Hatt, Theorem 7.17] etc.), we also have $H_*(M; A) = 0$.

2.2. Propagator for spherical 3-manifolds M. Let Δ_M be the diagonal of $M \times M$. The configuration space of two points of M is

$$\operatorname{Conf}_2(M) = M \times M - \Delta_M$$

The Fulton–MacPherson compactification of $\operatorname{Conf}_2(M)$ is

$$\overline{\operatorname{Conf}}_2(M) = B\ell_{\Delta_M}(M \times M).$$

We idenfity the boundary $\partial \overline{\text{Conf}}_2(M)$, which is the unit normal sphere bundle of $\Delta_M \subset M \times M$, with ST(M), the unit tangent sphere bundle. We make the following assumption.

Assumption 2.2. A $\pi \times \pi$ -module W satisfies the following conditions:

- (1) $H_*(M \times M; W) = 0.$
- (2) There are elements $e_W^1, \ldots, e_W^r \in W$ on which $\pi \times \pi$ acts trivially such that $H_*(\Delta_M; W) \cong H_*(M; \mathbb{C})^{\oplus r}$, which is generated over \mathbb{C} by $[* \otimes e_W^i]$ and $[M \otimes e_W^i]$ $(i = 1, \ldots, r)$.

For a non-trivial irreducible π -module A, let $A \boxtimes A^*$ denote the pullback of the local coefficient system $A \boxtimes_{\mathbb{C}} A^*$ on $M \times M$ to $\overline{\operatorname{Conf}}_2(M)$. We denote by $A \otimes A^*$ the restriction of $A \boxtimes A^*$ to $\partial \overline{\operatorname{Conf}}_2(M)$, on which π acts diagonally.

Lemma 2.3. The following $\pi \times \pi$ -modules W satisfy Assumption 2.2.

- (1) $W = A \boxtimes A^*$.
- (2) $W = \bigoplus_i (A_i \boxtimes A_i^*)$, where A_i is a non-trivial irreducible π -module.
- (3) $W = \operatorname{Ker} \varepsilon$, where $\varepsilon \colon \mathbb{C}\pi \to \mathbb{C}$ is the augmentation map.

Proof. That (1) satisfies Assumption 2.2 follows from Lemma 2.1 and the Künneth formula for $\mathbb{C}\pi$ -modules. The case (2) follows from (1) and

$$H_*(M \times M; \bigoplus_i (A_i \boxtimes A_i^*)) = \bigoplus_i H_*(M \times M; A_i \boxtimes A_i^*),$$

$$H_*(\Delta_M; \bigoplus_i (A_i \otimes A_i^*)) = \bigoplus_i H_*(\Delta_M; A_i \otimes A_i^*).$$

The case (3) follows from the $\pi \times \pi$ -module decomposition

(2.1)
$$\mathbb{C}\pi \cong \bigoplus_{i} \operatorname{End}(A_{i}), \quad \operatorname{Ker}\varepsilon \cong \bigoplus_{i\neq [1]} \operatorname{End}(A_{i}) \cong \bigoplus_{i\neq [1]} (A_{i} \boxtimes A_{i}^{*}),$$

(e.g., [FH, Proposition 3.29]) where *i* is taken over the conjugacy classes in π , and from (2).

Lemma 2.4. Let W be a $\pi \times \pi$ -module satisfying Assumption 2.2. Then we have

$$H_k(\overline{\operatorname{Conf}}_2(M); W) \cong \begin{cases} \mathbb{C}\{[ST(*) \otimes e_W^i] \mid i = 1, \dots, r\} & (k = 2), \\ \mathbb{C}\{[ST(M) \otimes e_W^i] \mid i = 1, \dots, r\} & (k = 5), \\ 0 & (otherwise) \end{cases}$$

where for an oriented submanifold σ of M, we denote by $ST(\sigma)$ the restriction of the unit tangent 2-sphere bundle ST(M) to σ .

Proof. We consider the exact sequence

$$H_{i+1}(M^{\times 2}; W) \to H_{i+1}(M^{\times 2}, \operatorname{Conf}_2(M); W) \to H_i(\operatorname{Conf}_2(M); W) \to H_i(M^{\times 2}; W),$$

where $H_*(M^{\times 2}; W) = 0$ by Assumption 2.2 (1). Letting $N(\Delta_M)$ be a closed tubular
neighborhood of Δ_M , we have

$$H_{i+1}(M^{\times 2}, \operatorname{Conf}_2(M); W) \cong H_{i+1}(N(\Delta_M), \partial N(\Delta_M); W)$$

by excision. Since M is parallelizable and the normal bundle of Δ_M can be canonically identified with TM, the normal bundle of Δ_M is trivial. By Assumption 2.2 (2), we have

$$H_{i+1}(N(\Delta_M), \partial N(\Delta_M); W) = H_3(D^3, \partial D^3; \mathbb{C}) \otimes_{\mathbb{C}} H_{i-2}(\Delta_M; W)$$

$$\cong H_3(D^3, \partial D^3; \mathbb{C}) \otimes_{\mathbb{C}} H_{i-2}(M; \mathbb{C})^{\oplus r} \cong H_{i-2}(M; \mathbb{C})^{\oplus r}.$$

Here, $H_{i-2}(M; \mathbb{C})$ is rank 1 for i-2=0,3, and its generator is *, M, respectively.

Lemma 2.5. Let W be a $\pi \times \pi$ -module satisfying Assumption 2.2. Let $s_{\tau_0} \colon M \to ST(M)$ be the section given by the normalization of the first vector of a framing τ_0 of M. Then we have

$$H_3(\partial \overline{\operatorname{Conf}}_2(M); W) = \mathbb{C}\{[s_{\tau_0}(M) \otimes e_W^i] \mid i = 1, \dots, r\}.$$

Proof. This follows from the trivialization $\partial \overline{\text{Conf}}_2(M) \cong S^2 \times M$ induced by τ_0 , Assumption 2.2 (2), and the Künneth formula for \mathbb{C} -modules.

Lemma 2.6 (Propagator). Let W be a $\pi \times \pi$ -module satisfying Assumption 2.2.

(1) There exists a 4-chain ω^i of $\overline{\operatorname{Conf}}_2(M)$ with coefficients in W that is transversal to the boundary and that satisfies

$$\partial_W \omega^i = s_{\tau_0}(M) \otimes e^i_W.$$

(2) For a fixed framing τ₀ and i, the extension ωⁱ is unique in the sense that for two such extensions ωⁱ and ωⁱ that agree near the boundary, there is a 5-chain η of Int Conf₂(M) with coefficients in W such that

$$\omega'^i - \omega^i = \partial_W \eta$$

We call the direct sum of such extensions $\omega = \sum_i \omega^i$ a propagator for τ_0 .

Proof. The assertion (1) follows immediately from the long exact sequence

$$H_4(\overline{C};W) \to H_4(\overline{C},\partial\overline{C};W) \to H_3(\partial\overline{C};W) \to H_3(\overline{C};W),$$

where we abbreviate as $\overline{C} = \overline{\operatorname{Conf}}_2(M)$, and $H_4(\overline{C};W) = H_3(\overline{C};W) = 0$ by Lemma 2.4. Here, both $[\omega^i]$ and $[s_{\tau_0}(M) \otimes e_W^i]$ restrict to the same generator of the homology of $* \times S^2 \subset SN\Delta_M$, their homology classes agree. The assertion (2) follows since the difference $\omega'^i - \omega^i$ vanishes near $\partial \overline{C}$ and represents 0 of the twisted homology $H_4(\overline{C};W)$.

2.3. Twisted homologies of the configuration space of $M \times I$ and its family. Let $\overline{\text{Conf}_2(M \times I)} = B\ell_{\Delta_{M \times I}}((M \times I) \times (M \times I))$, which is not a smooth manifold with corners, but satisfies the Poincaré–Lefschetz duality ([Wa2, C.3]). For an $(M \times I)$ -bundle $p: E \to S^1$ over S^1 with structure group $\text{Diff}(M \times I, \partial)$, we denote by

$$\overline{\operatorname{Conf}}_2(p) \colon E\overline{\operatorname{Conf}}_2(p) \to S^1$$

the associated $\overline{\operatorname{Conf}}_2(M \times I)$ -bundle with structure group $\operatorname{Diff}(M \times I, \partial)$.

To define the invariant Z_{Θ}^{even} as in [Wa1, Proposition 7.1 and Remark 7.2], we need a propagator in family, which is a 6-chain of $E\overline{\text{Conf}_2}(p)$ with coefficients in Wsatisfying some boundary condition similar to Lemma 2.6, and is implicitly defined in the proof of [Wa1, Proposition 7.1]. In [Wa1], the existence of such a 6-chain was guaranteed by the lemmas [Wa1, Lemmas 7.3 and 7.4]. The analogues of the lemmas for the W in this paper are the following, whose proofs are the same except that the invariant element c_A ([Wa1, Assumption 3.6]) is replaced with $\sum_i e_W^i$.

Lemma 2.7 ([Wa1, Lemma 7.3]). Let W be a $\pi \times \pi$ -module satisfying Assumption 2.2. Then we have

$$H_k(\overline{\operatorname{Conf}}_2(M \times I); W) \cong \begin{cases} \mathbb{C}\{[ST(*) \otimes e_W^i] \mid i = 1, \dots, r\} & (k = 3), \\ \mathbb{C}\{[ST(M) \otimes e_W^i] \mid i = 1, \dots, r\} & (k = 6), \\ 0 & (otherwise), \end{cases}$$

where we identify M with $M \times \{\frac{1}{2}\}$ in $M \times I$, and for an oriented submanifold σ of $M \times I$, we denote by $ST(\sigma)$ the restriction of the unit tangent 3-sphere bundle $ST(M \times I)$ to σ .

Lemma 2.8 ([Wa1, Lemma 7.4]). Let W be a $\pi \times \pi$ -module satisfying Assumption 2.2. Then we have $H_5(E\overline{\text{Conf}}_2(p);W) = 0$ and the natural map

$$H_6(E\overline{\operatorname{Conf}}_2(p);W) \to H_6(E\overline{\operatorname{Conf}}_2(p),\partial E\overline{\operatorname{Conf}}_2(p);W)$$

is zero. Thus the connecting homomorphism

$$H_6(E\overline{\operatorname{Conf}}_2(p), \partial E\overline{\operatorname{Conf}}_2(p); W) \to H_5(\partial E\overline{\operatorname{Conf}}_2(p); W)$$

is an isomorphism.

Roughly, a propagator in family $E\overline{\operatorname{Conf}}_2(p)$ is constructed as follows. The boundary of $\overline{\operatorname{Conf}}_2(X)$ is $p_{B\ell}^{-1}(\Delta_X \cup (\partial X \times X) \cup (X \times \partial X))$, where $p_{B\ell} \colon \overline{\operatorname{Conf}}_2(X) \to X \times X$ is the canonical blow-down projection.

YUJI OHTA AND TADAYUKI WATANABE

- On the stratum of $\partial E \overline{\operatorname{Conf}}_2(p)$ corresponding to the part $p_{B\ell}^{-1}(\Delta_X)$, we take the 5-chain $s_{\tau}(E) \otimes e_W^i$, where $s_{\tau} \colon E \to ST^v E$ is the section given by the normalization of the first vector of a vertical framing $\tau \colon T^v E = \operatorname{Ker} dp \xrightarrow{\cong} \mathbb{R}^4 \times E$.
- On the stratum of $\partial E\overline{\operatorname{Conf}}_2(p)$ corresponding to the part $p_{B\ell}^{-1}((\partial X \times X) \cup (X \times \partial X))$, we take the pullbacks of the copies of ω^i of Lemma 2.6 in the subspace $p_{B\ell}^{-1}((M \times \{0\}) \times (M \times \{0\})) \cup p_{B\ell}^{-1}((M \times \{1\}) \times (M \times \{1\})) \cong \overline{\operatorname{Conf}}_2(M) \coprod \overline{\operatorname{Conf}}_2(M)$. This makes sense since the bundle p is trivialized over ∂X .

The sum of these 5-chains of $\partial E \overline{\text{Conf}}_2(p)$ is a cycle. Then by Lemma 2.8, it has an extension to a 6-chain $\tilde{\omega}^i$ of $E \overline{\text{Conf}}_2(p)$. We call $\tilde{\omega} = \sum_i \tilde{\omega}^i$ a propagator in family.

3. Properties of the invariant Z_{Θ}^{even}

Roughly, the invariant Z_{Θ}^{even} is defined by choosing three propagators $\widetilde{\omega}_1, \widetilde{\omega}_2, \widetilde{\omega}_3$ in family $E\overline{\text{Conf}}_2(p)$ with some boundary conditions and then by

$$Z_{\Theta}^{\text{even}}(\widetilde{\omega}_1, \widetilde{\omega}_2, \widetilde{\omega}_3) = \frac{1}{6} \text{Tr}_{\Theta} \langle \widetilde{\omega}_1, \widetilde{\omega}_2, \widetilde{\omega}_3 \rangle_{\Theta} \in \mathscr{A}_{\Theta}^{\text{even}}(W),$$

where $\operatorname{Tr}_{\Theta} : W^{\otimes 3} \to \mathscr{A}_{\Theta}^{\operatorname{even}}(W)$ is the projection, $\langle -, -, -\rangle_{\Theta}$ is the triple intersection among chains with twisted coefficients ([Wa1, §5]). We will not repeat the detailed definition here. The only difference in the proof of the well-definedness of $Z_{\Theta}^{\operatorname{even}}$ is to replace the invariant element c_A in [Wa1, Proofs of Theorem 5.3 and Propositon 7.1] with $\sum_i e_W^i$. The property we need is the following.

Proposition 3.1 ([Wa1, Theorem 6.2]). Let X, M, π, W be as in Lemma 2.3. Then for any $g_1, g_2, g_3 \in \pi$, an element $\Psi_1(\Theta(g_1, g_2, g_3))$ of $\Omega_1^{SO}(BDiff_0(X, \partial))$ is defined by surgery on an embedded theta-graph associated to (g_1, g_2, g_3) , which belongs to the image from $\pi_1 BDiff_0(X, \partial)$, and the following identity holds.

$$Z_{\Theta}^{\text{even}}(\Psi_1(\Theta(g_1, g_2, g_3))) = 2 \left[\rho_W(g_1) \land \rho_W(g_2) \land \rho_W(g_3) \right],$$

where $\rho_W \colon \mathbb{C}[\pi] \to W = \bigoplus_i \operatorname{End}(A_i)$ is the representation of π .

Note that the invariant Z_{Θ}^{even} in [Wa1] was defined on a slightly different group^{*} $\pi_1 \widetilde{B\text{Diff}}_{\text{deg}}(M \times I, \partial)$ than $\pi_1 B \operatorname{Diff}_0(X, \partial)$, however, it can be shown that Z_{Θ}^{even} descends to a map from the image of $\pi_1 \widetilde{B\text{Diff}}_{\text{deg}}(M \times I, \partial) \to \pi_1 B \operatorname{Diff}_0(M \times I, \partial)$ (Lemma 3.3 below). Namely, the homotopy fiber of the natural map $\widetilde{B\text{Diff}}_{\text{deg}}(M \times I, \partial) \to B \operatorname{Diff}_0(M \times I, \partial)$ is given by

$$\operatorname{Map}((M \times I, \partial), (SO_4, 1)) \times \operatorname{Map}((M \times I, \partial), (M \times I, \partial))_{\mathrm{id}},$$

where $\partial = \partial(M \times I)$, Map $((A, \partial A), (C, D))$ denotes the space of continuous maps $(A, \partial A) \to (C, D)$ with the C^0 -topology that agree with the base map on ∂A , $(-)_{id}$ denotes the component of the identity. The first factor Map $((M \times I, \partial), (SO_4, 1))$ is identified with the space of framings on $M \times I$, the second factor Map $((M \times I, \partial), (M \times I, \partial))_{id}$ is used to give a fiberwise (relative) degree one map $(E, \partial E) \to (M \times I, \partial)$ to pullback a local coefficient system on M.

8

^{*}This should not be confused with the classifying space of $\widetilde{\text{Diff}}(M \times I, \partial)$.

Lemma 3.2. For a spherical 3-manifold M,

$$\begin{split} \operatorname{Map}((M \times I, \partial), (SO_4, 1)) &\times \operatorname{Map}((M \times I, \partial), (M \times I, \partial))_{\mathrm{id}} \\ &\simeq \Omega \operatorname{Map}(M, SO_4) \times \Omega \operatorname{Map}(M, M)_{\mathrm{id}}. \end{split}$$

Furthermore, there is a fibration sequence:

$$\Omega^4 SO_4 \longrightarrow \Omega \operatorname{Map}(M, SO_4) \longrightarrow \Omega SO_4.$$

Proof. We have the following homotopy equivalences:

$$Map((M \times I, \partial), (SO_4, 1)) \simeq \Omega Map(M, SO_4),$$
$$Map(M \times I, \partial), (M \times I, \partial))_{id} \simeq \Omega Map(M, M)_{id},$$

where the basepoints of $Map(M, SO_4)$ and $Map(M, M)_{id}$ are the constant map to 1 and id, respectively. Furthermore, we have the following fibration sequence:

$$\operatorname{Map}_*(M, SO_4) \to \operatorname{Map}(M, SO_4) \xrightarrow{\operatorname{ev}} SO_4,$$

where ev is the evaluation at a fixed basepoint of M, and $\operatorname{Map}_*(-,-)$ is the subspace of $\operatorname{Map}(-,-)$ of pointed maps. Then the result follows by the homotopy equivalence: $\Omega\operatorname{Map}_*(M, SO_4) \simeq \operatorname{Map}_*(S^1 \wedge M, SO_4) \simeq \operatorname{Map}_*(S^4, SO_4)$. \Box

Lemma 3.3. Let $\Gamma_0(M \times I)$ denote the image of the natural map $\pi_1 BDiff_{deg}(M \times I, \partial) \rightarrow \pi_1 BDiff_0(M \times I)$. The homomorphism $Z_{\Theta}^{even} \colon \pi_1 \widetilde{BDiff}_{deg}(M \times I, \partial) \rightarrow \mathscr{A}_{\Theta}^{even}(W)$ descends to a map $\Gamma_0(M \times I) \rightarrow \mathscr{A}_{\Theta}^{even}(W)$.

Proof. Since $\pi_1\Omega SO_4 = 0$ and $\pi_1\Omega^4 SO_4 = \pi_5 SO_4 = \mathbb{Z}_2 \oplus \mathbb{Z}_2$, $\pi_1\Omega \operatorname{Map}(M, SO_4) = \pi_2\operatorname{Map}(M, SO_4)$ is a quotient of $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. Moreover, a change of the choice of the lift of an element of $\Gamma_0(M \times I)$ to $\pi_1 \widetilde{BDiff}_{\operatorname{deg}}(M \times I, \partial)$ within the factor $\operatorname{Map}((M \times I, \partial), (M \times I, \partial))_{\operatorname{id}}$ in the homotopy fiber does not affect the value of $Z_{\Theta}^{\operatorname{even}}$ since the local coefficient system on the total space of the corresponding $(M \times I)$ -bundle $p: E \to S^1$, which is needed to define $Z_{\Theta}^{\operatorname{even}}$, is determined by the homotopy class of the induced map $\pi_1 E \to \pi_1 M$, which is canonically fixed since we have the canonical decomposition $\pi_1 E = \pi_1 S^1 \times \pi_1 M$ by the van Kampen theorem and the homotopical triviality of elements of $\operatorname{Diff}_0(M \times I, \partial)$, and the map $\pi_1 E \to \pi_1 M$ is just the projection to the second factor. This completes the proof. \Box

Since $\rho_W \colon \mathbb{C}[\pi] \to W = \bigoplus_i \operatorname{End}(A_i)$ in Proposition 3.1 is surjective for $W = \operatorname{Ker} \varepsilon$ (see (2.1)), we have the following.

Corollary 3.4. The homomorphism $Z_{\Theta}^{\text{even}} \colon \Gamma_0(M \times I) \otimes \mathbb{C} \to \mathscr{A}_{\Theta}^{\text{even}}(\text{Ker } \varepsilon)$ is surjective.

4. Example 1: Poincaré homology sphere

4.1. The group $SL_2(\mathbb{F}_5)$. Let $\hat{\pi}$ denote the set of conjugacy classes of $\pi = SL_2(\mathbb{F}_5)$. It is known that $\hat{\pi}$ has 9 elements, represented respectively by the following elements:

$$\pm I = \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}, \quad \alpha = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, \quad \beta = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}, \quad \beta' = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix},$$
$$\gamma = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \gamma' = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \quad -\gamma = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}, \quad -\gamma' = \begin{pmatrix} -1 & -2 \\ 0 & -1 \end{pmatrix}.$$

We give a list of all elements of $SL_2(\mathbb{F}_5)$ in Appendix A.

Lemma 4.1. For $\pi = SL_2(\mathbb{F}_5)$, $\hat{\pi}$ is invariant under taking the inverse. Namely, for each class $[x] \in \hat{\pi}$, we have $[x^{-1}] = [x]$.

Proof. It suffices to see that the inverse of each element x in the above list of 9 elements is conjugate to x, which can be checked by comparing the Jordan canonical forms, or from the list in Appendix A (obtained by using the Jordan canonical forms). Note that we only allow the conjugation gxg^{-1} by $g \in SL_2(\mathbb{F}_5)$. \square

4.2. Representation of $SL_2(\mathbb{F}_5)$. There are 9 distinct irreducible representations A_i $(i = 1, 2, \dots, 9)$ of the group π whose character is given as in Table 1, and any irreducible representation of π over $\mathbb C$ is isomorphic to one of them. Irreducible representations of $\pi \times \pi$ are given by the external tensor product $A_i \boxtimes A_i$ (e.g., [FH, Exercise 2.36]). Since the values of the characters are real for $\pi = SL_2(\mathbb{F}_5)$, we have

(4.1)
$$\mathbb{C}[\pi] \cong \bigoplus_{i=1}^{9} \operatorname{End}(A_i) \cong \bigoplus_{i=1}^{9} (A_i \boxtimes A_i), \quad \operatorname{Ker} \varepsilon \cong \bigoplus_{i=2}^{9} (A_i \boxtimes A_i)$$

as $\pi \times \pi$ -modules[†], where the $\pi \times \pi$ -invariant $A_1 \boxtimes A_1$ in $\mathbb{C}[\pi]$ corresponds to the subspace spanned by the element $\sum_{g \in \pi} g \in \mathbb{C}[\pi]$, and $\operatorname{Ker} \varepsilon$ is a $\pi \times \pi$ -submodule of $\mathbb{C}[\pi]$.

4.3. Computation of the character. To get the dimension of $\mathscr{A}_{\Theta}^{\text{odd/even}}(\mathbb{C}[\pi])$, we compute the dimensions of the invariants $(\bigwedge^{3} W)^{(\pi \times \pi) \rtimes \mathbb{Z}_{2}}$ and $(\operatorname{Sym}^{3} W)^{(\pi \times \pi) \rtimes \mathbb{Z}_{2}}$ for $W = \bigoplus_{i=1}^{9} (A_i \boxtimes A_i)$. Here, recall that the semidirect product structure on $(\pi \times \pi) \rtimes \mathbb{Z}_2$ is given by the homomorphism $\psi \colon \mathbb{Z}_2 = \{1, \tau\} \to \operatorname{Aut}(\pi \times \pi);$ $\tau \mapsto ((x,y) \mapsto (y,x))$. This is suitable since we have

$$\begin{split} \tau \cdot (x,y) \cdot \tau^{-1}(g \wedge h \wedge k) &= \tau \cdot (xg^{-1}y^{-1} \wedge xh^{-1}y^{-1} \wedge xk^{-1}y^{-1}) \\ &= ygx^{-1} \wedge yhx^{-1} \wedge ykx^{-1} = (y,x)(g \wedge h \wedge k), \end{split}$$

which shows that the given actions of $\pi \times \pi$ and \mathbb{Z}_2 on $\bigwedge^3 \mathbb{C}[\pi]$ agrees with that of the semidirect product, and similarly for $\operatorname{Sym}^3 \mathbb{C}[\pi]$.

Lemma 4.2. For $\pi = SL_2(\mathbb{F}_5)$, we have the following.

- (1) dim $(\bigwedge^{3} \mathbb{C}[\pi])^{(\pi \times \pi) \rtimes \mathbb{Z}_{2}} = 27.$ (2) dim $(\operatorname{Sym}^{3} \mathbb{C}[\pi])^{(\pi \times \pi) \rtimes \mathbb{Z}_{2}} = 65.$

[†]If the characters are not real, we have $\operatorname{End}(A_i) \cong A_i \boxtimes A_i^*$.

$\hat{\pi}$	Ι	-I	α	β	β'	γ	γ'	$-\gamma$	$-\gamma'$
size	1	1	30	20	20	12	12	12	12
A_1	1	1	1	1	1	1	1	1	1
A_2	2	-2	0	-1	1	$-\phi^*$	$-\phi$	ϕ^*	ϕ
A_3	2	-2	0	-1	1	$-\phi$	$-\phi^*$	ϕ	ϕ^*
A_4	3	3	-1	0	0	ϕ	ϕ^*	ϕ	ϕ^*
A_5	3	3	-1	0	0	ϕ^*	ϕ	ϕ^*	ϕ
A_6	4	4	0	1	1	-1	-1	-1	-1
A_7	4	-4	0	1	-1	-1	-1	1	1
A_8	5	5	1	-1	-1	0	0	0	0
A_9	6	-6	0	0	0	1	1	-1	-1

TABLE 1. The characters $\rho_{A_i}(g)$ for $\mathrm{SL}_2(\mathbb{F}_5)$. $\phi = \frac{1+\sqrt{5}}{2}$, $\phi^* = \frac{1-\sqrt{5}}{2}$. The values of the characters are taken from [FH, CP]. The order of the rows and columns followed the one in [Bo], although the original table in [Bo] includes few typos in the row of A_7 (signs of the last four entries).

Proof. Recall that the dimension m of the invariant part in a representation V of a finite group G can be given by the following formula ([FH, (2.9)]):

$$m = \frac{1}{|G|} \sum_{g \in G} \operatorname{Trace}(g|_V) = \frac{1}{|G|} \sum_{g \in G} \chi_V(g).$$

We apply this formula for $G = (\pi \times \pi) \rtimes \mathbb{Z}_2$ with the formulas: $\chi_{V \oplus V'}(g) = \chi_V(g) + \chi_{V'}(g), \ \chi_{V \boxtimes V'}(g,h) = \chi_V(g)\chi_{V'}(h)$, and

$$\chi_{\Lambda^{3}(V)}(g) = \frac{1}{6} (\chi_{V}(g)^{3} - 3\chi_{V}(g^{2})\chi_{V}(g) + 2\chi_{V}(g^{3})),$$

$$\chi_{\text{Sym}^{3}(V)}(g) = \frac{1}{6} (\chi_{V}(g)^{3} + 3\chi_{V}(g^{2})\chi_{V}(g) + 2\chi_{V}(g^{3})),$$

with the character table (Table 1). First, for $W = \mathbb{C}[\pi]$ we compute

$$\dim (\bigwedge^{3} W)^{\pi \times \pi} = \frac{1}{6|\pi|^{2}} \sum_{g,h \in \pi} (\chi_{W}(g,h)^{3} - 3\chi_{W}(g^{2},h^{2})\chi_{W}(g,h) + 2\chi_{W}(g^{3},h^{3})),$$

$$\dim (\operatorname{Sym}^{3} W)^{\pi \times \pi} = \frac{1}{6|\pi|^{2}} \sum_{g,h \in \pi} (\chi_{W}(g,h)^{3} + 3\chi_{W}(g^{2},h^{2})\chi_{W}(g,h) + 2\chi_{W}(g^{3},h^{3})),$$

where $\chi_W(g,h) = \sum_{i=1}^9 \chi_{A_i}(g)\chi_{A_i}(h), \ \chi_W(g^2,h^2) = \sum_{i=1}^9 \chi_{A_i}(g^2)\chi_{A_i}(h^2)$, and so on. Substituting the values of the characters of Table 1 into these formulas, we get

$$\dim (\bigwedge^{3} \mathbb{C}[\pi])^{\pi \times \pi} = 33, \quad \dim (\operatorname{Sym}^{3} \mathbb{C}[\pi])^{\pi \times \pi} = 71.$$

The detail of these computations by Maxima can be found in [Oh], in which Table 2 is used to compute the characters of g^2 and g^3 .

g	Ι	-I	α	β	β'	γ	γ'	$-\gamma$	$-\gamma'$
g^2	Ι	Ι	-I	β	β	γ'	γ	γ'	γ
g^3	Ι	-I	α	Ι	-I	γ'	γ	$-\gamma'$	$-\gamma$

TABLE 2. The conjugacy classes of g^2 and g^3 in $SL_2(\mathbb{F}_5)$. See also Appendix A.

We need also to consider terms for the elements $\tau \cdot (g,h)$ given by the following formulas.

$$(4.2) \frac{1}{6|\pi|^2} \sum_{g,h\in\pi} (\chi_W(\tau \cdot (g,h))^3 - 3\chi_W((\tau \cdot (g,h))^2)\chi_W(\tau \cdot (g,h)) + 2\chi_W((\tau \cdot (g,h))^3), \frac{1}{6|\pi|^2} \sum_{g,h\in\pi} (\chi_W(\tau \cdot (g,h))^3 + 3\chi_W((\tau \cdot (g,h))^2)\chi_W(\tau \cdot (g,h)) + 2\chi_W((\tau \cdot (g,h))^3).$$

We simplify the computation as follows.

$$\begin{split} &\sum_{g,h} \chi_W(\tau \cdot (g,h))^3 = \sum_{g,h} \left(\sum_i \chi_{A_i \boxtimes A_i} (\tau \cdot (g,h)) \right)^3 = \sum_{g,h} \left(\sum_i \chi_{A_i} (hg) \right)^3 \\ &= \sum_h \sum_g \left(\sum_i \chi_{A_i} (hg) \right)^3 = \sum_h \sum_g \left(\sum_i \chi_{A_i} (g) \right)^3 = |\pi| \sum_g \left(\sum_i \chi_{A_i} (g) \right)^3, \\ &\sum_{g,h} \chi_W((\tau \cdot (g,h))^2) \chi_W(\tau \cdot (g,h)) = \sum_{g,h} \left(\sum_i \chi_{A_i \boxtimes A_i} (hg,gh) \right) \left(\sum_j \chi_{A_j} (hg) \right) \\ &= \sum_{g,h} \left(\sum_i \chi_{A_i} (hg) \chi_{A_i} (gh) \right) \left(\sum_j \chi_{A_j} (hg) \right) \\ &= \sum_{g,h} \left(\sum_i \chi_{A_i} (hg)^2 \right) \left(\sum_j \chi_{A_j} (hg) \right) = \sum_h \sum_g \left(\sum_i \chi_{A_i} (g)^2 \right) \left(\sum_j \chi_{A_j} (g) \right) \\ &= |\pi| \sum_g \left(\sum_i \chi_{A_i} (g)^2 \right) \left(\sum_j \chi_{A_j} (g) \right), \\ &\sum_{g,h} \chi_W((\tau \cdot (g,h))^3) = \sum_{g,h} \sum_i \chi_{A_i \boxtimes A_i} ((\tau \cdot (g,h))^3) = \sum_{g,h} \sum_i \chi_{A_i} (hghghg) \\ &= |\pi| \sum_g \sum_i \chi_{A_i} (g^3). \end{split}$$

Here, we have the identity $\chi_{A_i \boxtimes A_i}(\tau \cdot (g, h)) = \chi_{A_i}(hg)$ since τ acts on $A_i \boxtimes A_i$ by the flip $x \boxtimes y \mapsto y \boxtimes x$. Hence (4.2) can be computed respectively by the following formulas.

$$\frac{1}{6|\pi|} \sum_{g} \left\{ \left(\sum_{i} \chi_{A_{i}}(g)\right)^{3} - 3\left(\sum_{i} \chi_{A_{i}}(g)^{2}\right) \left(\sum_{j} \chi_{A_{j}}(g)\right) + 2\sum_{i} \chi_{A_{i}}(g^{3}) \right\},\$$

$$\frac{1}{6|\pi|} \sum_{g} \left\{ \left(\sum_{i} \chi_{A_{i}}(g)\right)^{3} + 3\left(\sum_{i} \chi_{A_{i}}(g)^{2}\right) \left(\sum_{j} \chi_{A_{j}}(g)\right) + 2\sum_{i} \chi_{A_{i}}(g^{3}) \right\}.$$

Substituting the values of the characters in Table 1 into these formulas, we get the values 21 and 59, respectively. By taking the averages (33 + 21)/2 = 27, (71 + 59)/2 = 65, we get the result.

For $W = \operatorname{Ker} \varepsilon$, the following proposition holds.

Proposition 4.3. For any finite group G, we have the following.

- (1) $\mathscr{A}_{\Theta}^{\operatorname{even}}(\mathbb{C}[G]) = \mathscr{A}_{\Theta}^{\operatorname{even}}(\operatorname{Ker} \varepsilon).$
- (2) $\mathscr{A}_{\Theta}^{\mathrm{odd}}(\mathbb{C}[G]) \cong \mathscr{A}_{\Theta}^{\mathrm{odd}}(\operatorname{Ker} \varepsilon) \oplus (\mathbb{C}\hat{G})_{\mathbb{Z}_2}$ as vector spaces over \mathbb{C} , where \hat{G} is the set of conjugacy classes in G, and the \mathbb{Z}_2 -action on it is the one induced by the inversion.

Proof. Instead of the $(G \times G) \rtimes \mathbb{Z}_2$ -invariant part, we consider the submodule of coinvariants, and apply the formula $V_H \cong (V_K)_{H/K}$ (e.g., [Br, Ch.II-2 (Exercises 3)]) for a subgroup K of H and an H-module V to $K = G \times G$, $H = (G \times G) \rtimes \mathbb{Z}_2$.

For (1), let U be a trivial 1-dimensional $G \times G$ -module and let W be a $G \times G$ -module. The formula $\bigwedge^n (U \oplus W) = \bigoplus_{p+q=n} \bigwedge^p U \otimes \bigwedge^q W$ and $\bigwedge^2 U = 0$ gives

$$\bigwedge^{3} (U \oplus W) = \bigwedge^{3} U \oplus \bigwedge^{3} W \oplus ((\bigwedge^{2} U) \otimes W) \oplus (U \otimes \bigwedge^{2} W)$$
$$\cong \bigwedge^{3} W \oplus \bigwedge^{2} W.$$

If $W = \operatorname{Ker} \varepsilon$ and if \mathbb{Z}_2 acts trivially on U, then we have $U \oplus W \cong \mathbb{C}[G]$ as both $G \times G$ -modules and \mathbb{Z}_2 -modules, and $((\bigwedge^2 W)_{G \times G})^{\mathbb{Z}_2} = 0$. Indeed, we have $((\bigwedge^2 \mathbb{C}[G])_{G \times G})^{\mathbb{Z}_2} = 0$, since in $(\bigwedge^2 \mathbb{C}[G])_{G \times G}$, we have $[g \wedge h] = [gh^{-1} \wedge 1] =$ $-[1 \wedge gh^{-1}] = -[g^{-1} \wedge h^{-1}]$ $(g, h \in G)$ and the \mathbb{Z}_2 -invariant is generated by $[g \wedge h] + [g^{-1} \wedge h^{-1}] = 0$. Hence we have

$$((\bigwedge^3 (U \oplus \operatorname{Ker} \varepsilon))_{G \times G})^{\mathbb{Z}_2} \cong ((\bigwedge^3 \operatorname{Ker} \varepsilon)_{G \times G})^{\mathbb{Z}_2}.$$

For (2), we use the formula $\operatorname{Sym}^{n}(U \oplus W) = \bigoplus_{p+q=n} \operatorname{Sym}^{p}U \otimes \operatorname{Sym}^{q}W$ to obtain $\operatorname{Sym}^{3}(U \oplus W) = \operatorname{Sym}^{3}U \oplus \operatorname{Sym}^{3}W \oplus ((\operatorname{Sym}^{2}U) \otimes W) \oplus (U \otimes \operatorname{Sym}^{2}W)$

$$\operatorname{Sym}^{3}(U \oplus W) = \operatorname{Sym}^{3}U \oplus \operatorname{Sym}^{3}W \oplus ((\operatorname{Sym}^{2}U) \otimes W) \oplus (U \otimes \operatorname{Sym}^{2}W)$$
$$\cong U \oplus \operatorname{Sym}^{3}W \oplus W \oplus \operatorname{Sym}^{2}W \cong \operatorname{Sym}^{3}W \oplus \operatorname{Sym}^{2}(U \oplus W).$$

Considering the case when $W = \operatorname{Ker} \varepsilon$, it suffices to prove $((\operatorname{Sym}^2 \mathbb{C}[G])_{G \times G})^{\mathbb{Z}_2} \cong (\mathbb{C}\hat{G})_{\mathbb{Z}_2}$. Let $\rho \colon \operatorname{Sym}^2 \mathbb{C}[G] \to (\mathbb{C}\hat{G})_{\mathbb{Z}_2}$ be the \mathbb{C} -linear map defined by $\rho(g \cdot h) = [gh^{-1}]$ $(g, h \in G)$, which is well-defined since $\rho(h \cdot g) = [hg^{-1}] = [gh^{-1}] = \rho(g \cdot h)$. One can check that this map induces a well-defined \mathbb{C} -linear isomorphism

$$\bar{\rho} \colon ((\operatorname{Sym}^2 \mathbb{C}[G])_{G \times G})^{\mathbb{Z}_2} \to (\mathbb{C}\hat{G})_{\mathbb{Z}_2}$$

with the inverse given by $\bar{\rho}^{-1}([x]) = \frac{1}{2}([1 \cdot x^{-1}] + [1 \cdot x])$, which is well-defined. Indeed, $\bar{\rho}(gx \cdot hx) = [gxx^{-1}h^{-1}] = \bar{\rho}(g \cdot h), \ \bar{\rho}(xg \cdot xh) = [xgh^{-1}x^{-1}] = [gh^{-1}] = \bar{\rho}(g \cdot h),$ $\bar{\rho}(g \cdot h) = \bar{\rho}(gh^{-1} \cdot 1) = \bar{\rho}(1 \cdot gh^{-1}) = \bar{\rho}(g^{-1} \cdot h^{-1})$ etc.

Proposition 4.4. When $\pi = SL_2(\mathbb{F}_5)$, we have the following.

- (1) $\dim \mathscr{A}_{\Theta}^{\operatorname{even}}(\operatorname{Ker} \varepsilon) = \dim \mathscr{A}_{\Theta}^{\operatorname{even}}(\mathbb{C}[\pi]) = 27.$
- (2) dim $\mathscr{A}_{\Theta}^{\mathrm{odd}}(\mathrm{Ker}\,\varepsilon) = 56$, dim $\mathscr{A}_{\Theta}^{\mathrm{odd}}(\mathbb{C}[\pi]) = 65$.

Proof. This follows from Lemma 4.2 and Proposition 4.3. Note that by Lemma 4.1 the action of \mathbb{Z}_2 on $\mathbb{C}\hat{\pi}$ is trivial, and hence $\dim(\mathbb{C}\hat{\pi})_{\mathbb{Z}_2} = \dim \mathbb{C}\hat{\pi} = 9$.

5. Example 2: Lens spaces

If π is the cyclic group $\mathbb{Z}_n = \{1, t, t^2, \dots, t^{n-1}\}$, the exact values of the dimensions of the spaces $\mathscr{A}_{\Theta}^{\text{even/odd}}(\mathbb{C}[\pi])$ and $\mathscr{A}_{\Theta}^{\text{even/odd}}(\text{Ker}\,\varepsilon)$ can be determined with the help of the \mathbb{C} -linear maps ("weight system")

$$W^{\operatorname{even}} \colon \mathscr{A}_{\Theta}^{\operatorname{even}}(\mathbb{C}[\pi]) \to \bigwedge^{3} \mathbb{C}[\pi], \qquad W^{\operatorname{odd}} \colon \mathscr{A}_{\Theta}^{\operatorname{odd}}(\mathbb{C}[\pi]) \to \operatorname{Sym}^{3} \mathbb{C}[\pi]$$

defined respectively by

$$W^{\text{even}}(t^a \wedge t^b \wedge t^c) = t^{b-a} \wedge t^{c-b} \wedge t^{a-c} + t^{a-b} \wedge t^{b-c} \wedge t^{c-a},$$
$$W^{\text{odd}}(t^a \cdot t^b \cdot t^c) = t^{b-a} \cdot t^{c-b} \cdot t^{a-c} + t^{a-b} \cdot t^{b-c} \cdot t^{c-a},$$

instead of calculating the characters.

Lemma 5.1. For $\pi = \mathbb{Z}_n$, the maps $W^{\text{even/odd}}$ are well-defined.

Proof. We need only to check that $W^{\text{even/odd}}$ is alternating/symmetric and is invariant under both the actions of $\pi \times \pi$ and the involution $(g, h, k) \mapsto (g^{-1}, h^{-1}, k^{-1})$. For W^{even} , this can be checked as follows $(t^k \in \pi)$:

$$\begin{split} W^{\text{even}}(t^b \wedge t^a \wedge t^c) &= t^{a-b} \wedge t^{c-a} \wedge t^{b-c} + t^{b-a} \wedge t^{a-c} \wedge t^{c-b} \\ &= -t^{a-b} \wedge t^{b-c} \wedge t^{c-a} - t^{b-a} \wedge t^{c-b} \wedge t^{a-c} \\ &= -W^{\text{even}}(t^a \wedge t^b \wedge t^c) \quad \text{etc.} \end{split}$$
$$W^{\text{even}}(t^k t^a \wedge t^k t^b \wedge t^k t^c) &= t^{b-a} \wedge t^{c-b} \wedge t^{a-c} + t^{a-b} \wedge t^{b-c} \wedge t^{c-a} \\ &= W^{\text{even}}(t^a \wedge t^b \wedge t^c), \end{aligned}$$
$$W^{\text{even}}(t^{-a} \wedge t^{-b} \wedge t^{-c}) &= t^{-b+a} \wedge t^{-c+b} \wedge t^{-a+c} + t^{-a+b} \wedge t^{-b+c} \wedge t^{-c+a} \\ &= W^{\text{even}}(t^a \wedge t^b \wedge t^c). \end{split}$$

The proof for W^{odd} is similar.

Then $W^{\text{even/odd}}$ is an embedding into a subspace isomorphic to the space spanned by $t^p \wedge t^q \wedge t^r$ or $t^p \cdot t^q \cdot t^r$ $(0 \le p, q, r < n, p + q + r = 0 \pmod{n})$ quotiented by the relation $t^p \wedge t^q \wedge t^r \sim t^{-p} \wedge t^{-q} \wedge t^{-r}$ or $t^p \cdot t^q \cdot t^r \sim t^{-p} \cdot t^{-q} \cdot t^{-r}$.

Proposition 5.2. Let $\pi = \mathbb{Z}_n$ $(n \ge 1)$, and for an integer $m \ge 0$, let $p_3(m)$ be the number of partitions of m into at most three parts, namely, the number of integer solutions of the equation x + y + z = m ($0 \le x \le y \le z$). We set $p_3(m) = 0$ for m < 0. Then we have the following.

- (1) dim $\mathscr{A}_{\Theta}^{\text{odd}}(\mathbb{C}[\pi]) = p_3(n).$
- (2) dim $\mathscr{A}_{\Theta}^{\text{even}}(\mathbb{C}[\pi]) = p_3(n-6).$ (3) dim $\mathscr{A}_{\Theta}^{\text{odd}}(\text{Ker }\varepsilon) = p_3(n-3).$
- (4) dim $\mathscr{A}_{\Theta}^{\text{even}}(\text{Ker }\varepsilon) = \dim \mathscr{A}_{\Theta}^{\text{even}}(\mathbb{C}[\pi]) = p_3(n-6).$

Proof. For (1), we consider the unit circle $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ and the *n* points $1, \omega, \omega^2, \ldots, \omega^{n-1}$ on it, where $\omega = e^{2\pi\sqrt{-1}/n}$. We represent the element $t^a \cdot t^b \cdot t^c \ (0 \le a \le b \le c \le n-1)$ by the three points $\omega^a, \omega^b, \omega^c$ on S^1 , which splits S^1 into three (possibly degenerate) arcs of lengths $\frac{2\pi}{n}(b-a), \frac{2\pi}{n}(c-b), \frac{2\pi}{n}(a-c)$ (mod 2π), respectively. Similarly, $\omega^{-a}, \omega^{-b}, \omega^{-c}$ splits S^1 into three arcs of lengths $\frac{2\pi}{n}(a-b), \frac{2\pi}{n}(b-c), \frac{2\pi}{n}(c-a) \pmod{2\pi}$, which are reflections of the previous triple

with respect to the real axis. In this way, the subspace spanned by the values of $W^{\text{odd}}(t^a \cdot t^b \cdot t^c)$ bijectively correspond to the space spanned by partitions of S^1 by three roots of 1 up to $\frac{2\pi k}{n}$ -rotation and reflection. The number of such classes of partitions is exactly the number $p_3(n)$.

Proof of (2) is similar. In this case partitions are slightly restricted. First, a partition should not have a zero part since such a partition comes from $t^a \wedge t^b \wedge t^c$ such that at least two of a, b, c agree. Also, a partition should have different sizes since we consider the value of the weight system in the alternating product $\bigwedge^3 \mathbb{C}[\pi]$. It follows that dim Im W^{even} agrees with the number of partitions of n into three nonzero parts with different sizes. Such partitions n = x + y + z (0 < x < y < z) correspond bijectively to the partitions n - (1 + 2 + 3) = (x - 1) + (y - 2) + (z - 3) ($0 \le x - 1 \le y - 2 \le z - 3$). This completes the proof.

For (3), it follows from Proposition 4.3 that $\dim \mathscr{A}_{\Theta}^{\text{odd}}(\text{Ker }\varepsilon) = \dim \mathscr{A}_{\Theta}^{\text{odd}}(\mathbb{C}[\pi]) - \dim(\mathbb{C}\hat{\pi})_{\mathbb{Z}_2}$, where $\dim(\mathbb{C}\hat{\pi})_{\mathbb{Z}_2}$ is the number of partitions of n into at most two parts. Hence $\dim \mathscr{A}_{\Theta}^{\text{odd}}(\text{Ker }\varepsilon)$ is the number of partitions of n into three parts with positive sizes. Such partitions n = x + y + z ($0 < x \le y \le z$) correspond bijectively to partitions n - 3 = (x - 1) + (y - 1) + (z - 1) ($0 \le x - 1 \le y - 1 \le z - 1$).

(4) follows immediately from (2) and Proposition 4.3.

Appendix A. Elements of $SL_2(\mathbb{F}_5)$

The following is a list of all the 120 elements in $SL_2(\mathbb{F}_5)$.

$$\underline{c_1 = [I]}: \ g_{21} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \qquad \underline{c_2 = [-I]}: \ g_{96} = \begin{pmatrix} 4 & 0\\ 0 & 4 \end{pmatrix}$$

$$\begin{array}{l} \underline{c_3 = [\alpha]}:\\ g_1 = \begin{pmatrix} 0 & 1 \\ 4 & 0 \end{pmatrix}, g_6 = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}, g_{11} = \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}, g_{16} = \begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix}, g_{29} = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix},\\ g_{35} = \begin{pmatrix} 1 & 2 \\ 4 & 4 \end{pmatrix}, g_{37} = \begin{pmatrix} 1 & 3 \\ 1 & 4 \end{pmatrix}, g_{43} = \begin{pmatrix} 1 & 4 \\ 2 & 4 \end{pmatrix}, g_{46} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, g_{47} = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix},\\ g_{48} = \begin{pmatrix} 2 & 0 \\ 2 & 3 \end{pmatrix}, g_{49} = \begin{pmatrix} 2 & 0 \\ 3 & 3 \end{pmatrix}, g_{50} = \begin{pmatrix} 2 & 0 \\ 4 & 3 \end{pmatrix}, g_{51} = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}, g_{56} = \begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix},\\ g_{74} = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}, g_{75} = \begin{pmatrix} 3 & 0 \\ 4 & 2 \end{pmatrix}, g_{76} = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}, g_{81} = \begin{pmatrix} 3 & 2 \\ 0 & 2 \end{pmatrix}, g_{86} = \begin{pmatrix} 3 & 3 & 0 \\ 0 & 2 \end{pmatrix},\\ g_{91} = \begin{pmatrix} 3 & 4 \\ 0 & 2 \end{pmatrix}, g_{104} = \begin{pmatrix} 4 & 1 \\ 3 & 1 \end{pmatrix}, g_{110} = \begin{pmatrix} 4 & 2 \\ 4 & 1 \end{pmatrix}, g_{112} = \begin{pmatrix} 4 & 3 \\ 1 & 1 \end{pmatrix}, g_{118} = \begin{pmatrix} 4 & 4 \\ 2 & 1 \end{pmatrix},\\ g_{32} = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}, g_{40} = \begin{pmatrix} 1 & 3 \\ 4 & 3 \end{pmatrix}, g_{44} = \begin{pmatrix} 1 & 4 \\ 3 & 3 \end{pmatrix}, g_{54} = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}, g_{60} = \begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix},\\ g_{92} = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}, g_{105} = \begin{pmatrix} 2 & 4 \\ 2 & 4 \end{pmatrix}, g_{108} = \begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix}, g_{188} = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix}, g_{298} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix},\\ g_{94} = \begin{pmatrix} 3 & 4 \\ 3 & 1 \end{pmatrix}, g_{105} = \begin{pmatrix} 4 & 1 \\ 4 & 0 \end{pmatrix}, g_{108} = \begin{pmatrix} 4 & 2 \\ 2 & 2 \end{pmatrix}, g_{78} = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}, g_{82} = \begin{pmatrix} 3 & 2 \\ 3 & 2 \end{pmatrix}, g_{60} = \begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix},\\ g_{94} = \begin{pmatrix} 3 & 4 \\ 3 & 1 \end{pmatrix}, g_{105} = \begin{pmatrix} 4 & 1 \\ 4 & 0 \end{pmatrix}, g_{108} = \begin{pmatrix} 4 & 2 \\ 2 & 2 \end{pmatrix}, g_{188} = \begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}, g_{117} = \begin{pmatrix} 4 & 3 \\ 4 & 3 \end{pmatrix},\\ g_{117} = \begin{pmatrix} 4 & 3 \\ 4 & 3 \end{pmatrix}, g_{117} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 3 \\ 3 & 0 \end{pmatrix}, g_{117} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 3 \end{pmatrix}, g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 3 & 3 \end{pmatrix}, g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 3 \end{pmatrix}, g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\ g_{118} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},\\$$

$$\begin{aligned} \frac{c_{5} = [\beta']}{g_{2}} :\\ g_{2} &= \begin{pmatrix} 0 & 1 \\ 4 & 1 \end{pmatrix}, g_{7} = \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix}, g_{12} = \begin{pmatrix} 0 & 3 \\ 3 & 1 \end{pmatrix}, g_{17} = \begin{pmatrix} 0 & 4 \\ 1 & 1 \end{pmatrix}, g_{30} = \begin{pmatrix} 1 & 1 \\ 4 & 0 \end{pmatrix}, \\ g_{33} &= \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}, g_{39} = \begin{pmatrix} 1 & 3 \\ 3 & 0 \end{pmatrix}, g_{42} = \begin{pmatrix} 1 & 4 \\ 1 & 0 \end{pmatrix}, g_{53} = \begin{pmatrix} 2 & 1 \\ 2 & 4 \end{pmatrix}, g_{57} = \begin{pmatrix} 2 & 2 \\ 1 & 4 \end{pmatrix}, \\ g_{65} &= \begin{pmatrix} 2 & 3 \\ 4 & 4 \end{pmatrix}, g_{69} &= \begin{pmatrix} 2 & 4 \\ 3 & 4 \end{pmatrix}, g_{79} = \begin{pmatrix} 3 & 3 \\ 1 & 3 \end{pmatrix}, g_{85} = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}, g_{87} = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}, \\ g_{93} &= \begin{pmatrix} 3 & 4 \\ 4 & 2 \end{pmatrix}, g_{103} = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}, g_{107} = \begin{pmatrix} 4 & 2 \\ 1 & 2 \end{pmatrix}, g_{115} = \begin{pmatrix} 4 & 3 \\ 4 & 2 \end{pmatrix}, g_{119} = \begin{pmatrix} 4 & 4 \\ 3 & 2 \end{pmatrix}, \\ g_{119} &= \begin{pmatrix} 4 & 4 \\ 3 & 2 \end{pmatrix}, \\ g_{119} &= \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, g_{55} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, g_{22} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, g_{25} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, g_{26} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \\ g_{102} &= \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix}, g_{120} = \begin{pmatrix} 4 & 4 \\ 4 & 3 \end{pmatrix}, \\ g_{102} &= \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix}, g_{120} = \begin{pmatrix} 4 & 4 \\ 4 & 3 \end{pmatrix}, \\ g_{102} &= \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, g_{55} &= \begin{pmatrix} 2 & 2 \\ 2 & 0 \end{pmatrix}, g_{67} &= \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}, g_{77} &= \begin{pmatrix} 3 & 1 \\ 1 & 4 \end{pmatrix}, g_{95} &= \begin{pmatrix} 3 & 4 \\ 4 & 4 \end{pmatrix}, \\ g_{102} &= \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix}, g_{120} &= \begin{pmatrix} 4 & 4 \\ 4 & 3 \end{pmatrix}, \\ g_{103} &= \begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}, g_{131} &= \begin{pmatrix} 0 & 3 \\ 2 & 3 \end{pmatrix}, g_{23} &= \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, g_{24} &= \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 \end{pmatrix}, g_{33} &= \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}, \\ g_{109} &= \begin{pmatrix} 4 & 3 \\ 3 & 0 \end{pmatrix}, g_{131} &= \begin{pmatrix} 4 & 3 \\ 2 & 3 \end{pmatrix}, \\ g_{109} &= \begin{pmatrix} 4 & 3 \\ 2 & 3 \end{pmatrix}, g_{113} &= \begin{pmatrix} 4 & 3 \\ 2 & 3 \end{pmatrix}, \\ g_{101} &= \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix}, g_{116} &= \begin{pmatrix} 4 & 4 \\ 0 & 4 \end{pmatrix}, \\ g_{101} &= \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix}, g_{116} &= \begin{pmatrix} 4 & 4 \\ 0 & 4 \end{pmatrix}, \\ g_{101} &= \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix}, g_{116} &= \begin{pmatrix} 4 & 4 \\ 3 & 3 \end{pmatrix}, g_{34} &= \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}, g_{98} &= \begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix}, g_{98} &= \begin{pmatrix} 2 & 2 \\ 3 & 1 \end{pmatrix}, \\ g_{96} &= \begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}, g_{83} &= \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix}, g_{89} &= \begin{pmatrix} 3 & 3 \\ 3 & 0 \end{pmatrix}, g_{98} &= \begin{pmatrix} 4 & 0 \\ 2 & 4 \end{pmatrix}, g_{99} &= \begin{pmatrix} 4 & 0 \\ 3 & 4 \end{pmatrix}, \\ g_{106} &= \begin{pmatrix} 4 & 2 \\ 0 & 4 \end{pmatrix}, g_{111} &= \begin{pmatrix} 4 & 3 \\ 0 & 4 \end{pmatrix} \end{pmatrix}$$

References

- [AK] G.E. Andrews, K. Eriksson, Integer Partitions (2nd ed.), Cambridge University Press, 2004, x+141 pp.
- [ABK] P.L. Antonelli, D. Burghelea, P.J. Kahn, The non-finite homotopy type of some diffeomorphism groups, Topology 11 (1972), 1–49.
- [BK] R.H. Bamler, B. Kleiner, Ricci flow and diffeomorphism groups of 3-manifolds, J. Amer. Math. Soc. 36 (2023), 563–589.
- [Bo] C. Bonnafé, Representations of $SL_2(\mathbb{F}_q)$, Algebra and Applications, **13**. Springer-Verlag London, Ltd., London, 2011. xxii+186 pp.
- [BW] B. Botvinnik, T. Watanabe, Families of diffeomorphisms and concordances detected by trivalent graphs, J. Topol. 16 (2023), 207–233.
- [Br] K.S. Brown, Cohomology of groups. Graduate Texts in Mathematics, 87. Springer-Verlag, New York-Berlin, 1982. x+306 pp.
- [CE] H. Cartan, S. Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. xv+390 pp.

- [Ce] J. Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Publ. Math. I.H.É.S. 39 (1970), 5–173.
- [CP] C.J. Cummins, J. Patera, Polynomial icosahedral invariants, J. Math. Phys. 29 (1988), no. 8, 1736–1745.
- [FH] W. Fulton, J. Harris, Representation theory. A first course, Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer–Verlag, New York, 1991. xvi+551 pp.
- [Ga] D. Gabai, The Smale conjecture for hyperbolic 3-manifolds: $Isom(M^3) \simeq Diff(M^3)$, J. Diff. Geom. **58** no. 1 (2001), 113–149.
- [GL] S. Garoufalidis, J. Levine, Homology surgery and invariants of 3-manifolds, Geom. Topol. 5, no. 2 (2001), 551–578.
- [Hat] A. Hatcher, A proof of the Smale conjecture, $\text{Diff}(S^3) \simeq O(4)$, Ann. of Math. (2) **117** (1983), no. 3, 553–607.
- [Hat2] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002. xii+544 pp.
- [Hat3] A. Hatcher, Concordance spaces, higher simple-homotopy theory, and applications, Proc. Sympos. Pure Math. XXXII, Part 1 (1978), pp. 3–21.
- [HW] A. Hatcher, J. Wagoner, Pseudo-isotopies of compact manifolds. Astérisque, No. 6. Soc. Math. France, Paris, 1973. i+275 pp.
- [Hatt] A. Hattori, Iso kikagaku. I-III. (Japanese) [Topology. I-III] Second edition. Iwanami Shoten Kiso Sūgaku [Iwanami Lectures on Fundamental Mathematics], 19. Daisū [Algebra], ii. Iwanami Shoten, Tokyo, 1982. Vol. I: vi+132 pp.; Vol. II: pp. i–vi and 133–308; Vol. III: pp. i–viii and 309–495.
- [HLLRW] F. Hebestreit, M. Land, W. Lück, O. Randal-Williams, A vanishing theorem for tautological classes of aspherical manifolds, Geom. Topol. 25 (2021), no. 1, 47–110.
- [HS] P.J. Hilton, U. Stammbach, A course in homological algebra. Second edition, Graduate Texts in Mathematics, 4, Springer-Verlag, New York, 1997. xii+364 pp.
- [HKMR] S. Hong, J. Kalliongis, D. McCullough, J.H. Rubinstein, Diffeomorphisms of Elliptic 3-Manifolds, Lecture Notes in Mathematics, 2055 Springer, Heidelberg, 2012. x+155 pp.
- [Ig1] K. Igusa, What happens to Hatcher and Wagoner's formulas for $\pi_0 C(M)$ when the first Postnikov invariant of M is nontrivial?, Algebraic K-theory, number theory, geometry and analysis (Bielefeld, 1982), 104–172, Lecture Notes in Math., **1046**, Springer, Berlin, 1984.
- [Ig2] K. Igusa, Second obstruction to pseudoisotopy I, arXiv:2110.09659.
- [Ig3] K. Igusa, Second obstruction to pseudoisotopy in dimension 3, arXiv:2112.08293.
- [KS] S. Kwasik, R. Schultz, Unitary nilpotent groups and the stability of pseudoisotopies, Duke Math. J. 71 (1993), no. 3, 871–887.
- [Les1] C. Lescop, On the cube of the equivariant linking pairing for knots and 3-manifolds of rank one, arXiv:1008.5026.
- [Les2] C. Lescop, Invariants of knots and 3-manifolds derived from the equivariant linking pairing, Chern–Simons gauge theory: 20 years after, AMS/IP Stud. Adv. Math. 50 (2011), Amer. Math. Soc., Providence, RI, 217–242.
- [Mar] J. Marché, An equivariant Casson invariant of knots in homology spheres, preprint, 2005.
- [Oh] Y. Ohta, Representations of binary icosahedral group and weights of trivalent graphs, Master thesis (2022), Shimane University.
- [Sa] N. Saveliev, Invariants for homology 3-spheres. Encyclopaedia of Mathematical Sciences, 140, Low-Dimensional Topology, I. Springer-Verlag, Berlin, 2002. xii+223 pp.
- [Si] O. Singh, Pseudo-isotopies and diffeomorphisms of 4-manifolds, arXiv:2111.15658.
 [Wa1] T. Watanabe, Theta-graph and diffeomorphisms of some 4-manifolds, arXiv:2005.09545.
- [Wa2] T. Watanabe, Addendum to: Some exotic nontrivial elements of the rational homotopy groups of Diff(S4) (homological interpretation), arXiv:2109.01609.