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SOME EXOTIC NONTRIVIAL ELEMENTS OF THE RATIONAL

HOMOTOPY GROUPS OF Diff(S4)

TADAYUKI WATANABE

Abstract. This paper studies the rational homotopy groups of the group
Diff(S4) of self-diffeomorphisms of S4 with the C∞-topology. We present a
method to prove that there are many ‘exotic’ non-trivial elements in π∗Diff(S4)⊗
Q parametrized by trivalent graphs. As a corollary of the main result, the 4-
dimensional Smale conjecture is disproved. The proof utilizes Kontsevich’s
characteristic classes for smooth disk bundles and a version of clasper surgery
for families. In fact, these are analogues of Chern–Simons perturbation theory
in 3-dimension and clasper theory due to Goussarov and Habiro.

1. Introduction

The homotopy type of Diff(S4) is an important object in topology, whereas al-

most nothing was known about its homotopy groups except that they include those

coming from the orthogonal group O5 (e.g., recent surveys in [Hat2, Kup]). Let

Diff(Dd, ∂) denote the group of self-diffeomorphisms of Dd which fix a neighbor-

hood of ∂Dd pointwise. This is the ‘non-linear’ part of Diff(Sd) in the sense of the

well-known splitting Diff(Sd) ≃ Od+1×Diff(Dd, ∂) (e.g., [ABK]). For d = 1, 2, 3, it

is known that Diff(Dd, ∂) is contractible. Proof for d = 1 is easy. The case d = 2 is

due to Smale ([Sm]), and a proof for the case d = 3 (the Smale conjecture) has been

given by Hatcher ([Hat]). On the other hand, for d ≥ 5, it is known that Diff(Dd, ∂)

is not contractible (e.g., [Hat2]). For d = 4, there is a conjecture which claims that

Diff(D4, ∂) is contractible, or equivalently, Diff(S4) ≃ O5 (the 4-dimensional Smale

conjecture [Kir, Problem 4.34, 4.126], [RS]). The following theorem, which is the

main result of this paper, gives a negative answer to this conjecture.

Theorem 1.1 (Theorem 2.8). For each k ≥ 1, evaluation of Kontsevich’s charac-

teristic classes on D4-bundles over Sk gives an epimorphism from πkBDiff(D4, ∂)⊗
Q to the space Ak of trivalent diagrams (definition in §2.1).

Remark 1.2. Theorem 1.1 gives no information about π1BDiff(D4, ∂) ∼= π0Diff(D4, ∂)

because A1 = 0. The first nontrivial element is detected in A2
∼= Q (Proposi-

tion 2.1). The topological version of the 4-dimensional Smale conjecture: TOP(S4) ≃
O5 has been disproved by Randall and Schweitzer in [RS].

Kontsevich’s characteristic classes, defined in [Kon], are invariants for fiber bun-

dles with fiber a punctured homology sphere. They were defined, as an analogy
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to Chern–Simons perturbation theory in 3-dimension, by utilizing a graph complex

and configuration space integrals, both developed by Kontsevich in [Kon]. The

method of this paper is essentially the same as [Wa2], where we studied the ratio-

nal homotopy groups of Diff(D4k−1, ∂). Namely, we construct some explicit fiber

bundles from trivalent graphs, by using a higher-dimensional analogue of graph-

clasper surgery, developed by Goussarov and Habiro for knots and 3-manifolds

([Gou, Hab]). Then we compute the values of the characteristic numbers for the

bundles.

In fact, the restriction to 4-dimensional fiber in this paper would not be essential

and the results could be given for arbitrary fiber dimensions ≥ 4. This is similar to

the fact that the cocycles of Emb(S1,Rd) given by configuration space integrals are

nontrivial and d = 4 is not exceptional there ([Kon, CCL]). This paper has some

ad hoc arguments that are special in 4-dimension, in Lemmas 4.6, 5.5, and 5.13.

1.1. Some consequences of Theorem 1.1. Theorem 1.1 answers to some prob-

lems in Kirby’s problem list [Kir].

(1) Diff(S4) 6≃ O5. (cf. [Kir, Problem 4.34, 4.126 (D. Randall)])

(2) There is a bundle over S2, with a 4-manifold as fiber, which is topologically

trivial but not smoothly trivial. (cf. [Kir, Problem 4.122 (K. Fukaya)])

(3) The space Sympl of all standard-at-infinity symplectic structures on R4 is

not contractible. (cf. [Kir, Problem 4.141 (Eliashberg)], [El, 7.3])

Here, (2) follows from the contractibility of TOP(D4, ∂), which can be shown by

the Alexander trick, and (3) follows from Theorem 1.1 and the remark given in

[Kir, Problem 4.141], which says that the evaluation map Diff(D4, ∂)→ Sympl is a

fibration whose fiber is the group of self-symplectomorphisms of (D4, ω0) fixed at

the boundary, where ω0 is the standard symplectic form. This group is contractible

by a deep result of Gromov based on his theory of pseudo-holomorphic curves.

As well as [Hat, Appendix], the 4-dimensional Smale conjecture has several equiv-

alent statements. By Morlet’s equivalence Diff(Dd, ∂) ≃ Ωd+1PLd/Od ([BL]), we

have the following.

(4) PL4 6≃ O4.

Let Emb(S3,R4)0 denote the component of Emb(S3,R4) of the standard inclu-

sion. By the fibration sequence Diff(D4, ∂) → Emb(D4,R4) → Emb(S3,R4), a

generalized version of the 4-dimensional Schoenflies conjecture fails:

(5) Emb(S3,R4)0 6≃ Emb(D4,R4) (≃ O4)
∗.

An element of the group C (M) = Diff(M×I, ∂M×I∪M×{0}) of relative diffeo-
morphisms is called a pseudo-isotopy. By the fibration sequence Diff(Dd+1, ∂) →
C (Dd) → Diff(Dd, ∂), Hatcher’s theorem Diff(D3, ∂) ≃ ∗, and Theorem 1.1, we

have the following.

(6) C (D3) 6≃ ∗.

This implies that pseudo-isotopy and isotopy of D3 are essentially different.

By π0Diff(D5, ∂) ≈ Θ6 = 0 ([Ce], [KM]), π1Diff(D4, ∂)⊗Q 6= 0, and the homo-

topy sequence for the fibration C (D4)→ Diff(D4, ∂), we have the following.

∗The 4-dimensional Schoenflies conjecture claims that π0Emb(S3,R4) ∼= π0Emb(D4,R4) (=

π0O4).
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(7) π1C (D4)⊗Q 6= 0.

By considering the fibrations Diff(S3×D1, ∂)→ Diff(D4, ∂)→ Emb(D4, IntD4),

Diff(S3 ×D1, ∂) × Diff(S3 ×D1, ∂) → Diff(S3 ×D1, ∂) → Emb(S3, S3 ×D1), we

obtain the following.

(8) Diff(S3 ×D1, ∂) 6≃ ΩO(4).

(9) Emb(S3, S3 ×D1)0 6≃ SO(4), where Emb(S3, S3 ×D1)0 is the component

of the standard inclusion S3 → S3 × {0} ⊂ S3 ×D1.

In (1), (3), (4), (5), (6), (8), (9), the deficiency of being a homotopy equivalence

can be measured by Diff(D4, ∂). Other interesting statements that are equivalent

to the 4-dimensional Smale conjecture are described in [RS].

1.2. Content of the paper. The rest of this paper consists of four parts.

§2. Kontsevich’s characteristic classes p.4

We review the definition of the invariant Ẑadm
k given by Kontsevich’s char-

acteristic classes for D4-bundles. The main result is restated in terms of

Ẑadm
k .

§3. Graph counting formula p.16

We give a formula for Ẑadm
k counting flow-graphs of gradients of Morse

functions. This is an analogue of the relation between Kontsevich’s config-

uration space integral invariant of rational homology 3-spheres in [Kon] and

Fukaya’s Morse homotopy invariant in [Fu, Wa3], proved by Shimizu in [Sh]

using Lescop’s description [Les1] of configuration space integral invariant.

The formula allows us to compute the invariant by geometric arguments

and hopefully makes the problem simple.

§4. Cycles in BDiff(D4, ∂) associated to graphs p.39

We shall construct a D4-bundle πΓ : EΓ → BΓ concretely from a trivalent

graph Γ. This is a higher-dimensional analogue of graph-clasper surgery

of [Gou, Hab, GGP] and is similar to what we have given for (4k − 1)-

dimensional disk bundles in [Wa2].

§5. Computation of the invariant p.52

We shall compute the value of the invariant Ẑadm
k for the D4-bundles con-

structed in §4. This part is the core of the proof and is philosophically

based on the computation of Kuperberg and D. Thurston [KT]. Thanks

to the graph counting formula, it is enough to count only the flow-graphs

that are caught in some restricted places where the gradient on fibers varies

drastically in a parameter, which are highly restricted.

Most of §2–§4 consists of formal arguments such as definitions and confirmations

associated with them, and there aren’t major differences from known results there,

though there are some new techniques to simplify arguments. In §5, we choose

Morse functions that is adapted to the surgery and consider “coherent v-gradients”,

and see that they make the computation into a homological one.

The reasons that the proof is mainly given by parametrized Morse theory, unlike

that of [Wa2] of differential forms, are as follows.
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(1) We consider that the proof of the present paper is geometric and concrete,

although the proof is a bit lengthy mainly due to some arguments of gen-

eral position, compactness and orientation in finite dimensional manifolds,

which are routine.

(2) We consider that giving different proofs would make the nontriviality result

of Kontsevich’s characteristic classes more solid.

(3) It would be interesting to compare the results of this paper with known

results about stable pseudo-isotopy, some of which utilize Cerf theory (e.g.,

[Ce, HW, Ig]).

(4) Our Z-paths, Z-graphs and geometric iterated integrals in §3 may be of

independent interest.

1.3. Notations and conventions. For a sequence of submanifoldsA1, A2, . . . , Ar ⊂
W of a smooth Riemannian manifold W , we say that the intersection A1 ∩ A2 ∩
· · · ∩ Ar is transversal if for each point x in the intersection, the subspace NxA1 +

NxA2 + · · · + NxAr ⊂ TxW spans the direct sum NxA1 ⊕ NxA2 ⊕ · · · ⊕ NxAr,

where NxAi is the orthogonal complement of TxAi in TxW with respect to the

Riemannian metric.

For manifolds with corners and their (strata) transversality, we follow [BT, Ap-

pendix] (see also [Wa3, Appendix A]).

As chains in a manifold X , we consider Q-linear combinations of finitely many

smooth maps from compact oriented manifolds with corners to X . We say that

two chains
∑
niσi and

∑
mjτj (ni,mj ∈ Q, σi, τj : smooth maps from compact

manifolds with corners) are strata transversal if for every pair i, j, the terms σi
and τj are strata transversal. Strata transversality among two or more chains can

be defined similarly. The intersection number 〈σ, τ〉X of strata transversal two

chains σ =
∑
niσi and τ =

∑
mjτj with dimσi + dim τj = dimX is defined by∑

i,j nimj(σi · τj). We also consider intersection 〈σ1, . . . , σn〉X of strata transversal

chains σ1, . . . , σn for n ≥ 2, which is defined similarly.

We denote by |x| the degree of an element x of a graded module.

The diagonal {(x, x) ∈ X ×X | x ∈ X} is denoted by ∆X .

For a fiber bundle π : E → B, we denote by T vE the (vertical) tangent bundle

along the fiber Ker dπ ⊂ TE. Let ST vE denote the subbundle of T vE of unit

spheres. Let ∂fibE denote the fiberwise boundaries:
⋃
b∈B ∂(π

−1{b}). We denote

by π∗ the pushforward or integral along the fiber for π. We will use the well-known

identity: π∗(π
∗α ∧ β) = α ∧ π∗β.

In Appendix, we describe convention for orientation (§A).

2. Kontsevich’s characteristic class

Kontsevich’s characteristic classes are invariants for fiber bundles with fiber a

punctured framed homology d-sphere. Here, we shall see that an invariant for

unframed (Dd, ∂)-bundles can be obtained by adding to Kontsevich’s characteristic

class a correction term, in a similar way as [KT, Les1].

2.1. Graphs. In this paper, we consider connected trivalent graphs. In general,

trivalent graph has even number of vertices, and if it is 2k, then the number of
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Figure 1. IHX relation

edges is 3k. Let V (Γ) and E(Γ) denote the sets of vertices and edges of a trivalent

graph Γ, respectively. Labellings of a trivalent graph Γ are given by bijections

V (Γ) → {1, 2, . . . , 2k}, E(Γ) → {1, 2, . . . , 3k}. Let Gk be the vector space over Q

spanned by the set G 0
k of all labelled connected trivalent graphs with 2k vertices.

We define

Ak = Gk/IHX relation, label change relation,

where the IHX relation is given in Figure 1 and the label change relation is generated

by the following relations:

Γ′ ∼ −Γ, Γ′′ ∼ Γ.

Here, Γ′ is the graph obtained from Γ by exchanging labels of two edges, Γ′′ is

the graph obtained from Γ by exchanging labels of two vertices. This is the triva-

lent part of the cohomology of Kontsevich’s graph complex which works for even

dimensional manifolds [Kon].

Proposition 2.1. A1 = 0, and A2 is 1-dimensional and generated by the class of

the complete graph K4 on four vertices with some labels.

Proof. By the label change relation and the IHX relation, one may see that a graph

with a self-loop or multiple edges vanishes in Ak. It follows that A1 = 0 and A2 is

spanned by the class of K4. Since the IHX relation for A2 imposes no restriction

other than the vanishings of the graphs with a self-loop or multiple edges, we

need only to check that the label change relation does not make A2 trivial. The

automorphism group of K4 is isomorphic to the symmetric group S4 and each

automorphism changes the labels of edges by an even permutation, namely, an

automorphism of K4 never produces −K4, which implies that K4 6= 0 in A2. �

Remark 2.2. That K4 represents a nontrivial class in A2 is a special case of [CGP,

Example 2.5]. One may easily check that A3 = 0. The dimensions of Ak for

4 ≤ k ≤ 9 are computed in [BNM] as in the following table.

k 1 2 3 4 5 6 7 8 9

dim Ak 0 1 0 0 1 0 0 0 1

2.2. (Dd, ∂)-bundles and associated Cn(S
d,∞)-bundles. A (Dd, ∂)-bundle is

a smooth Dd-bundle π : E → B equipped with a trivialization on a neighborhood

of ∂fibE. We say that a (Dd, ∂)-bundle is pointed if it is given a diffeomorphism

between the fiber F0 over the base point b0 ∈ B and the standard unit disk Dd,

which is compatible with the trivialization on a neighborhood of ∂fibE. A pointed

(Dd, ∂)-bundle corresponds to a classifying map (B, b0) → (BDiff(Dd, ∂), ∗). We

take a Riemannian metric on the total space E of a (Dd, ∂)-bundle that agrees with

the standard one on Dd near ∂fibE under the trivialization.
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Put ∞ = (0, . . . , 0, 1) ∈ Sd and let U∞ ⊂ Sd denote the hemisphere Sd+ =

{(x1, . . . , xd+1) ∈ S
d | xd+1 ≥ 0}, and put U ′

∞ = U∞−{∞}. The group Diff(Dd, ∂)

acts on Sd through the action on Sd− = {(x1, . . . , xd+1) ∈ Sd | xd+1 ≤ 0}.
Let Cn(S

d,∞) denote the configuration space of ordered points in Sd − {∞}:

Cn(S
d,∞) = {(x1, . . . , xn) ∈ (Sd − {∞})n | xi 6= xj for i 6= j}

and let Cn(S
d,∞) denote its Fulton–MacPherson compactification ([AS, Kon], see

also [Wa2, 2.3]). Roughly, Cn(S
d,∞) is a compact manifold with corners, which

is obtained from Cn(S
d,∞) by attaching boundary strata so that Cn(S

d,∞) ≃
Cn(S

d,∞). The codimension 1 (boundary) stratum of Cn(S
d,∞) consists of faces

obtained by blowing-up the diagonal in (Sd−{∞})n that corresponds to coincidence

of points with labels in a subset A ⊂ {1, . . . , n,∞}.
These spaces admit natural diagonal Diff(Dd, ∂)-actions g · (x1, . . . , xn) = (g ·

x1, . . . , g · xn). We call the Sd-bundle associated to a (Dd, ∂)-bundle π : E → B an

(Sd, U∞)-bundle and call its associated Rd = Sd−{∞}-bundle an (Rd, U ′
∞)-bundle.

Also, we consider the Cn(S
d,∞)-bundle

Cn(π) : ECn(π)→ B

associated to π.

We equip Sd with the orientation induced from the unit disk in Rd+1 with the

standard orientation dx1∧· · ·∧dxd+1. We orientCn(S
d,∞) by o(Cn(S

d,∞))(x1,...,xn) =

o(Sd)x1 ∧· · ·∧o(S
d)xn

, where o(X) denotes the orientation of an oriented manifold

X , and the orientation of Cn(S
d,∞) is defined similarly. We orient ECn(π) =⋃

t Cn(S
d,∞)t at (t, y) by o(B)t ∧ o(Cn(S

d,∞)t)y .

2.3. Admissible propagator. The invariant will be defined via the intersection

among some fundamental chains in ECn(π) called admissible propagators. Admis-

sible propagator was first considered in [Les1, Les2] for rational homology 3-sphere.

Let us review the definition of the Fulton–MacPherson compactification C2(S
d,∞)

for two points. Let the subspaces Σ0 ⊂ Σ1 of Sd × Sd be given as follows.

Σ0 = {(∞,∞)}, Σ1 = ∆Sd ∪ (Sd × {∞}) ∪ ({∞} × Sd).

We consider the real blow-up Bℓ(Sd×Sd,Σ0) of S
d×Sd along Σ0, which is defined

by replacing Σ0 with its normal sphere S2d−1. Then ∂Bℓ(Sd×Sd,Σ0) = S2d−1 and

IntBℓ(Sd×Sd,Σ0) is naturally identified with Sd ×Sd−Σ0. The closure Σ1 − Σ0

of Σ1 − Σ0 in Bℓ(Sd × Sd,Σ0) is a disjoint union of three d-submanifolds, whose

boundaries are transversal to ∂Bℓ(Sd×Sd,Σ0). Now C2(S
d,∞) is obtained by the

real blowing-up along Σ1 − Σ0:

C2(S
d,∞) = Bℓ(Bℓ(Sd × Sd,Σ0),Σ1 − Σ0)

Roughly, the real blow-up along Σ1 − Σ0 is obtained by replacing the d-submanifolds

with their normal Sd−1-bundles. A piecewise smooth map (Gauss map)

φ0 : ∂C2(S
d,∞)→ Sd−1

is defined as follows.
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(1) The face obtained by blowing-up along Σ0 is canonically identified with

S2d−1 = {(y1, y2) ∈ (Rd)2 | ‖y1‖2 + ‖y2‖2 = 1}, which is viewed as the

‘limit’ of {(y1, y2) ∈ (Rd)2 | ‖y1‖
2 + ‖y2‖

2 = R2} for R → ∞. A map

S2d−1 −∆Sd → Sd−1 is defined by φ0(y1, y2) =
y2−y1

‖y2−y1‖
.

(2) The face obtained by blowing-up along Sd×{∞} is identified with Bℓ(Sd,∞)×
∂Bℓ(Sd,∞) ∼= Bℓ(Sd,∞) × Sd−1. So the projection on the second factor

gives a map to Sd−1, where we consider Sd−1 = {y2 ∈ Rd | ‖y2‖2 = 1}.
The face obtained by blowing-up along {∞} × Sd is similar.

(3) The face obtained by blowing-up ∆Sd is identified with {(−y2, y2) ∈ (Rd)2 |
2‖y2‖2 = 1} × Bℓ(∆Sd , (∞,∞)) ∼= Sd−1 × Bℓ(∆Sd , (∞,∞)). So the pro-

jection on the first factor gives a map to Sd−1.

These maps are glued together along the boundaries and define a piecewise smooth

map φ0, which may be smoothly extended to a neighborhood of the boundary.

Let B be a compact oriented manifold. For an (Sd, U∞)-bundle π : E → B,

we consider the associated Sd × Sd-bundle E ×B E → B. By fiberwise blowing-

up E ×B E as in (3) above, we obtain EC2(π). Namely, if E =
⋃
t∈B(S

d), then

EC2(π) is
⋃
t∈B C2((S

d)t,∞). We denote by S∆E
the unit Sd−1-bundle ST v∆E of

T v∆E , where ∆E → B is the subbundle of the associated Bℓ(Sd × Sd,Σ0)-bundle

corresponding to ∆Sd − Σ0. Then S∆E
can be identified with the face of EC2(π)

obtained by fiberwise blowing-up ∆E . The map φ0 : ∂C2(S
d,∞) → Sd−1 extends

naturally to ∂fibEC2(π)− IntS∆E
.

Definition 2.3 (Admissible propagator). We say that a piecewise smooth singular

chain θ of EC2(π) over Q of codimension d − 1 is an admissible propagator if it

satisfies the following.

(1) ∂θ is a chain of ∂EC2(π) and θ is strata transversal to C2(π)
−1(∂B).

(2) θ is standard on ∂fibEC2(π) − IntS∆E
, namely, ∂θ is the sum of three

chains: a chain φ−1
0 ({a,−a}) (for some a ∈ Sd−1) of ∂fibEC2(π)− IntS∆E

,

a Z2-invariant chain of S∆E
, and a chain of C2(π)

−1(∂B). We call each

term in the sum a restriction of θ on the corresponding part. Let θ∂B
denote the chain of C2(π)

−1(∂B) given by the restriction of ∂θ.

(3) The chain ∂θ−θ∂B of ∂fibEC2(π) is invariant under the Z2-action given by

swapping of two points. We call such a chain of ∂EC
fib

2 (π) an admissible

section.

When a chain of ST vE or of a general Sd−1-bundle is invariant under the Z2-action

of the involution of the fiber Sd−1, we also call such a chain an admissible section.

(Note that an admissible section is not a genuine section of Sd−1-bundle.)

There exists an admissible propagator. Indeed, we will give later an explicit

admissible propagator by using Morse theory.

Lemma 2.4. (1) There exists an admissible propagator. When B is a closed

manifold, the relative homology class of admissible propagator in

HdimB+d+1(EC2(π), ∂EC2(π)) is unique.

(2) When B is a closed manifold, the homology class of admissible section of

∂EC2(π) in HdimB+d(∂EC2(π)) is unique.

Proof. The lemma follows immediately from the proof of [Wa1, Lemma 3]. �
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2.4. Homotopy invariant Ẑadm
k via admissible propagator. In the following,

we assume d = 4, k ≥ 1. Let B be a k-dimensional compact oriented manifold

possibly with corners and let π : E → B be a (D4, ∂)-bundle. Let θ(1), θ(2), . . . , θ(3k)

be admissible propagators of EC2(π). For Γ ∈ G 0
k , we define Iadm(Γ) ∈ Q by the

following.

Iadm(Γ) = 〈φ−1
1 θ(1), φ−1

2 θ(2), · · · , φ−1
3k θ

(3k)〉EC2k(π)
(2.1)

Here φj : EC2k(π)→ EC2(π) is the projection which gives the endpoints of the j-

th edge and φ−1
j θ(j) denotes the chain obtained by pulling back simplices in EC2(π)

by φj . We choose the order of the two points arbitrarily. If ~θ = (θ(1), θ(2), . . . , θ(3k))

is generic, the intersection of (2.1) is strata transversal. Choosing such ~θ, we define

Zadm
k (~θ) =

1

23k(2k)!(3k)!

∑

Γ∈G 0
k

Iadm(Γ)[Γ] ∈ Ak.

Now we let B = Ik, I = [0, 1], and suppose that π is standard on ∂Ik, namely,

it corresponds to a relative classifying map ψπ : (Ik, ∂Ik)→ (BDiff(D4, ∂), ∗). For
this, we shall define a correction term which turns Zadm

k into an invariant under

relative homotopy of the classifying map. We consider the iteration of ψπ:

ψNk
= ψπ♮ · · · ♮ψπ︸ ︷︷ ︸

Nk

: (Ik, ∂Ik)→ (BDiff(D4, ∂), ∗),

where Nk = m(Θk+4)m(πk+4SO4)m(πk+3SO4), Θ
n is the group of h-cobordism

classes of homotopy n-spheres (or diffeomorphism classes for n ≥ 5 by Smale’s h-

cobordism theorem [Sm2]), m(G) := min{d ∈ Z>0 | dx = 0 for all x ∈ G} for a

finite abelian group G. Since πjSO4 is finite for j ≥ 4 and so is Θn for n ≥ 5, Nk
is finite for k ≥ 1. Let Nkπ : NkE → Ik be the (D4, ∂)-bundle corresponding to

ψNk
obtained by iteration. Since Nkπ is standard on ∂Ik, ∂NkE is identified with

∂(D4 × Ik) in a strata preserving way.

Lemma 2.5. (1) NkE is relatively diffeomorphic to D4×Ik as manifolds with

corners, in the sense of [BT, Appendix].

(2) The tangent bundle T v(NkE)→ NkE along the fiber is trivial and there is

a canonical trivialization of T v(NkE) up to homotopy.

Proof. (1) holds by the multiplication by m(Θk+4). For (2), the obstruction to

extending the trivialization of T vE|∂E to T vE of the original bundle π : E → Ik

belongs to Hk+4(E, ∂E;πk+3SO4) ∼= πk+3SO4, and if there is an extension, then

the possibility for different choices is given by Hk+4(E, ∂E;πk+4SO4) ∼= πk+4SO4.

By multiplying m(πk+4SO4)m(πk+3SO4), the obstructions vanish. �

Now we shall define a correction term which turns Zadm
k (~θ) into an invariant

of (D4, ∂)-bundles, in a similar manner as [Wa3, Sh]. For this we shall take a

cobordism W between an iteration of E and the trivial D4-bundle over Ik with a

trivial rank 4 vector bundle T vW on it. Moreover, we shall take a sequence ~η of

admissible sections of ST vW with a prescribed behavior near the ends.

Put N ′
k = m(Θk+5)Nk. Let N ′

kπ : N ′
kE → Ik be the iteration defined similarly

to Nkπ. We denote byW the cobordism between N ′
kE and D4×Ik that is obtained

by identifying D4× Ik×{1} in D4× Ik× I with N ′
kE by the iteration m(Θk+5)ι of
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the diffeomorphism ι : D4 × Ik × {1} → NkE of Lemma 2.5 (1) formed along the

Ik direction. Since π0Diff(Dn, ∂) ∼= Θn+1 for n ≥ 5 ([Ce]) and N ′
k has the factor

m(Θk+5), the diffeomorphism m(Θk+5)ι is unique up to isotopy. Moreover, by

identifying TD4× Ik×{1} in the trivial R4-bundle TD4× Ik× I with T v(N ′
kE) by

using m(Θk+5)ι and the m(Θk+5) times iteration of the trivialization of Lemma 2.5

(2), we obtain a trivial R4-bundle T vW →W that extends T v(N ′
kE) and TD4×Ik

on the endpoints. We take a metric on T vW extending the given ones on the

boundary.

An iteration of ~θ restricts to a tuple of admissible sections on a subset of ST vW

and we consider its extension on ST vW , as follows. The face of ∂fibEC2(N
′
kπ) ob-

tained by blowing-up along ∆N ′
k
E is identified with ST v(N ′

kE). Also, the restriction

of the unit sphere bundle ST vW on D4 × Ik × {1} is ST v(N ′
kE):

∂fibEC2(N
′
kE) ⊃ ST v(N ′

kE) ⊂ ST vW

The tuple N ′
k
~θ = (N ′

kθ
(1), . . . , N ′

kθ
(3k)) of iterations of admissible propagators of

EC2(π) restricts to a tuple of admissible sections of ST v(N ′
kE). The restriction

of ST vW on D4 × Ik × {0} is a trivial S3-bundle and it admits a tuple ~v =

(v(1), . . . , v(3k)) of admissible sections that are given by opposite pairs of constant

sections. By Lemma 2.4 (2), there exists an admissible section η(i) on ST vW that

extends both N ′
kθ

(i)|STv(N ′
k
E) and v(i) on the endpoints, where the Z2-symmetry

may be assumed by taking c 7→ c+τ ·c
2 for nontrivial τ ∈ Z2, for each i. We obtain

~η = (η(1), . . . , η(3k)).

Definition 2.6. We call the pair (~θ, ~η) that can be obtained from a tuple ~θ of

admissible propagators and fixed ~v as above an adapted pair. In that case, we also

say that ~η is adapted to ~θ.

We consider the normalized configuration space

Sn(R
4) = {(y1, . . . , yn) ∈ (R4)n | y1 = 0,

n∑

ℓ=2

‖yℓ‖
2 = 1, yi 6= yj if i 6= j}. (2.2)

Intuitively, this can be seen as the configuration space in the “microscopic world”

at the limit of collapsing of n points into one point. Let Sn(R
4) be the closure

of Sn(R
4) in Cn(S

4,∞). In ∂Cn(S
4,∞), the face obtained by blowing up along

the diagonal {(y1, . . . , yn) ∈ (S4 − {∞})n | y1 = · · · = yn} (anomalous face),

where all the n points collapse into a point of S4−{∞}, is naturally diffeomorphic

to Sn(R
4) × Bℓ(S4,∞). There is an action of SO4 on Sn(R

4) by extending the

diagonal action g · (y1, . . . , yn) = (g · y1, . . . , g · yn) on Sn(R
4). Let Sn(T

vW )

denote the Sn(R
4)-bundle associated to the rank 4 vector bundle T vW . The face

of ECn(π) obtained by blowing up along {∞}j × (S4)n−j in fiber (infinite face) is

naturally diffeomorphic to Sj+1(R
4)× ECn−j(π).

Note that η(i) is an admissible section of S2(T
vW ) = ST vW . By replacing

θ(i) with η(i) and ECn(π) with Sn(T
vW ) in the definition of Iadm(Γ) in (2.1),

we define an analogue of Iadm(Γ) in the microscopic configuration space. Namely,

given a trivalent graph Γ ∈ G 0
k , let ϕi : S2k(T

vW ) → S2(T
vW ) = ST vW be the

map which gives the endpoints of the j-th edge. Then ϕ−1
i η(i) gives a codimension
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3 chain of S2k(T
vW ). Put

Jadm(Γ) = 〈ϕ−1
1 η(1), ϕ−1

2 η(2), · · · , ϕ−1
3k η

(3k)〉S2k(TvW ). (2.3)

The intersection of the right hand side is generically of codimension 9k, which

agrees with the dimension of S2k(T
vW ). If the extension ~η = (η(1), η(2), . . . , η(3k))

is chosen generically, the intersection in (2.3) is strata transversal. Choosing such

an ~η, we define

Ẑadm
k (~θ, ~η) = Zadm

k (~θ)− αadm
k (~η) ∈ Ak,

αadm
k (~η) =

1

N ′
k2

3k(2k)!(3k)!

∑

Γ∈G 0
k

Jadm(Γ)[Γ].

The following theorem is a modification of the fact that Kontsevich’s characteristic

classes are invariants for framed bundles ([Kon]), and the proof is essentially the

same.

Theorem 2.7. Ẑadm
k is independent of the choice of the adapted pair (~θ, ~η) and

defines a homomorphism Ẑadm
k : πkBDiff(D4, ∂)→ Ak.

We shall prove Theorem 2.7 just below. The main Theorem 1.1 can be restated

in terms of Ẑadm
k as follows.

Theorem 2.8. Let G ′
k be the subspace of Gk spanned by graphs without self-loops

or multiple edges. There exists a linear map Ψk : G ′
k → πkBDiff(D4, ∂) ⊗ Q such

that the composition Ẑadm
k ◦Ψk : G ′

k → Ak agrees with the projection.

Note that the projection G ′
k → Ak is surjective. Theorem 2.8 will be proved in

§4 and §5. More precise statement is given in Theorem 4.2.

Corollary 2.9. dimπkBDiff(D4, ∂)⊗Q ≥ dimAk.

2.5. Proof of Theorem 2.7. We take two adapted pairs (~θ0, ~η0), (~θ1, ~η1). Since

θ
(i)
0 and θ

(i)
1 are relatively homologous by Lemma 2.4 (1), one can find a tuple

~ω = (ω(1), . . . , ω(3k)) of admissible propagators of the C2(S
4,∞)-bundle EC2(π)×I

over B × I such that ω(i) extends given ones θ
(i)
0 , θ

(i)
1 on EC2(π)× {0}, EC2(π)×

{1} respectively. If we let ~η
Ẽ

be the tuple of restriction of the iteration N ′
k~ω on

ST v(N ′
kE × I) ⊂ ∂fibEC2(N

′
kπ) × I, then this is a symmetric chain that extends

N ′
k
~θ0|STv(N ′

k
E)×{0} and N ′

k
~θ1|STv(N ′

k
E)×{1}, and agrees with the restrictions of ~η0

and ~η1 on the endpoints. Then the following identities hold.

Zadm
k (~θ0)− Z

adm
k (~θ1) = αadm

k (~η
Ẽ
) (2.4)

αadm
k (~η0)− αadm

k (~η1) = αadm
k (~η

Ẽ
) (2.5)

The invariance of Ẑadm
k follows immediately from these identities.

Proof of (2.4): Similarly to the definition of (2.1), let φi : EC2k(π)×I → EC2(π)×I
be the map which gives the endpoints of the j-th edge. Choose ~ω so that the piece-

wise intersection Iadm(Γ; ~ω) = 〈φ−1
1 ω(1), . . . , φ−1

3k ω
(3k)〉EC2k(π)×I

is strata transver-

sal, and put

Zadm
k (~ω) =

1

23k(2k)!(3k)!

∑

Γ∈G 0
k

Iadm(Γ; ~ω)[Γ].
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Since ∂Iadm(Γ; ~ω) is a 0-boundary, we have #∂Iadm(Γ; ~ω) = 0 and hence #∂Zadm
k (~ω) =

0. The boundary of Iadm(Γ; ~ω) comes from the strata obtained by replacing at least

one ω(i) with ∂ω(i). The boundary of ω(i) can be described as follows.

∂ω(i) = θ
(i)
1 − θ

(i)
0 + ∂fibω(i)

Here, we consider θ
(i)
0 as a chain of EC2(π)×{0}, θ

(i)
1 as a chain of EC2(π)×{1},

and ∂fibω(i) is a chain of ∂fibEC2(π) × I.

We shall prove #∂Zadm
k (~ω) = Zadm

k (~θ1)−Zadm
k (~θ0)+αadm

k (~η
Ẽ
). In #∂Zadm

k (~ω),

the sum of terms of boundary points of ∂Iadm(Γ; ~ω) from θ
(i)
1 − θ

(i)
0 is Zadm

k (~θ1)−

Zadm
k (~θ0). The boundary points of ∂Iadm(Γ; ~ω) from ∂fibω(i) is on a stratum SA

of ∂fibEC2k(π) × I that corresponds to the collapse of a full subgraph ΓA of Γ

on a vertex set A ⊂ {1, 2, . . . , 2k}, |A| ≥ 2, into a point on a fiber. The sum

of terms of boundary points on SA with |A| = 2 is proved to be cancelled each

other by the IHX relation, as in [KT, Les1]. The sum of terms of boundary points

on SA with 3 ≤ |A| < 2k is proved to vanish: When ΓA has a univalent vertex,

the intersection must be empty by a dimensional reason ([CCL, Lemma A.8]).

When ΓA has a bivalent vertex, the sum of the terms of the boundary points

vanishes by a symmetry of SA ([Kon, Lemma 2.1], [CCL, Lemma A.9]), which is

allowed by the symmetry condition for an admissible section. The sum of terms

of boundary points on SA with |A| = 2k (anomalous face) is αadm
k (~η

Ẽ
). Further,

we need to check that the boundary points on an infinite face SA for |A| = j,

where ∞ ∈ A ⊂ {1, 2, . . . , 2k,∞}, does not contribute to #∂Zadm
k (~ω). By the

direct product structure Sj+1(R
4) × EC2k−j(π) of SA, it follows that the graphs

for SA can be counted as the product of the numbers of graphs in the two factors.

However, the count of graphs in Sj+1(R
4) is zero since dimSj+1(R

4) = 4j−1 is less

than the codimension of the space of graphs in Sj+1(R
4) that is 3 · 3j+m2 = 9j+3m

2 ,

where m is the number of edges in Γ that connect vertices in A and those outside

A.

From #∂Zadm
k (~ω) = 0, the identity (2.4) follows.

Proof of (2.5): Choose a tuple ~ηW×I = (η
(1)
W×I , . . . , η

(3k)
W×I) of admissible sections

of ST v(W × I) which extends ~η0, ~η1, ~ηẼ and the tuple ~v of constant sections on

(D4 × Ik × {0}) × I ⊂ W × I. We choose ~ηW×I generically so that the intersec-

tion Jadm(Γ; ~ηW×I) = 〈ϕ
−1
1 η

(1)
W×I , . . . , ϕ

−1
3k η

(3k)
W×I〉 in the associated S2k(R

4)-bundle

S2k(W × I) to ST v(W × I) is strata transversal. Then Jadm(Γ; ~ηW×I) is a 1-chain

and we put

αadm
k (~ηW×I) =

1

N ′
k2

3k(2k)!(3k)!

∑

Γ∈G 0
k

Jadm(Γ; ~ηW×I)[Γ].

We have #∂αadm
k (~ηW×I) = 0.

In #∂αadm
k (~ηW×I), the sum of terms of boundary points from the configuration

space S2k(R
4) is proved to vanish by the IHX relation, a dimensional reason, and

symmetry, as above. Note that there is no face in S2k(R
4) corresponding to the

bifurcation of collapse of all the 2k points into a point, by the norm square sum

condition (2.2). What remains is the contribution of boundary points on ∂(W × I),
which gives αadm

k (~η1) − αadm
k (~η0) on W × {0, 1} and αadm

k (~η
Ẽ
) on N ′

kE × I. On
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(D4× Ik×{0})× I, the restriction of ~ηW×I is a pair of constant sections, the value

of αadm
k is zero by a dimensional reason. Thus we have

#∂αadm
k (~ηW×I) = αadm

k (~η1)− α
adm
k (~η0) + αadm

k (~η
Ẽ
).

This together with #∂αadm
k (~ηW×I) = 0 implies (2.5).

Proof of the homotopy invariance is the same as above. �

2.6. Bundle bordism invariance of Ẑadm
k on the image from πk. We consider

a bordism invariant defined on the image ImH of the natural homomorphism H :

πkBDiff(D4, ∂)→ Ωk(BDiff(D4, ∂)). There is a natural isomorphism

Ωk(BDiff(D4, ∂))⊗Q ∼=
⊕

p+q=k

Hp(BDiff(D4, ∂);Q)⊗ Ωq

(see [CF]). By the Milnor–Moore theorem ([MM, Appendix]) on path-connected

homotopy associative H-spaces, H∗(BDiff(D4, ∂);Q) is the commutative polyno-

mial algebra with primitive part π∗BDiff(D4, ∂)⊗ Q. Thus H is injective over Q,

and the homomorphism

Ẑadm
k ◦H−1 : ImH ⊗ Q→ Ak

is defined. We shall give below a direct definition of this homomorphism from a

(D4, ∂)-bundle whose base is not necessarily a sphere. Such a definition will be

needed because the (D4, ∂)-bundles constructed later by surgery are not over Sk

(Proposition 4.11).

Let π : E → B be a (D4, ∂)-bundle over a closed oriented k-manifold B that is

bundle bordant to a pointed (D4, ∂)-bundle π0 : E0 → Sk.

2.6.1. Invariant for π0 : E0 → Sk: By closing Ik suitably, we may take the N ′
k-

fold disjoint iteration N ′
kπ0 : N ′

kE0 → Sk and an adapted pair (~θ0, ~η0). Then

Ẑadm
k (~θ0, ~η0) is defined as follows. By Lemma 2.5, N ′

kE0 is relatively diffeomorphic

to D4 × Sk, and one can find a compact manifold W0 with corners having N ′
kE0 ∪

(S3 × Sk × I) ∪ (−D4 × Sk) as the boundary, which satisfies the following.

• W0 is relatively diffeomorphic to D4 × Sk × I.
• There is a trivial rank 4 vector bundle T vW0 →W0 that extends the trivial

rank 4 vector bundles T v(N ′
kE0) and TD

4 × Sk on the endpoints of I.

Choosing an adapted pair (~θ0, ~η0) for W0, which is defined similarly as Defini-

tion 2.6, Ẑadm
k (~θ0, ~η0) is defined.

2.6.2. Invariant for π : E → B: We consider the N ′
k-fold iteration of π:

N ′
kπ : N ′

kE → N ′
kB = B

∐
· · ·

∐
B (N ′

k times).

Let π̃ : Ẽ → B̃ be a (D4, ∂)-bundle bordism between N ′
kπ and N ′

kπ0, which exists

by the choice of π.

We take a tuple ~θ = (θ(1), θ(2), . . . , θ(3k)) of admissible propagators of EC2(π)

and a tuple ~η
Ẽ

of generic admissible sections of T vẼ that agrees with ~η0 on

ST v(N ′
kE0) and with the restriction of N ′

k
~θ on ST v(N ′

kE). By using this, we

define

Ẑadm
k (~θ, ~η

Ẽ
∪ ~η0) = Zadm

k (~θ)− αadm
k (~η

Ẽ
)− αadm

k (~η0).
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Proposition 2.10. For generic ~θ, ~η
Ẽ
, the identity

Ẑadm
k (~θ, ~η

Ẽ
∪ ~η0) = Ẑadm

k (~θ0, ~η0) (2.6)

holds. Hence the left hand side does not depend on the choices of π̃, ~θ, ~η
Ẽ
and defines

a homomorphism ImH → Ak.

Proof. Similarly to (2.4) in the proof of Theorem 2.7, the identity Zadm
k (~θ) −

Zadm
k (~θ0)−α

adm
k (~η

Ẽ
) = 0 holds. This together with the two definitions of Ẑadm

k on

both sides proves the identity (2.6). �

2.7. Change of cobordism. In the definition of the homomorphism Ẑadm
k : ImH →

Ak, we took a (k+5)-cobordismW with corners of special type. Here, we shall see

that the same homomorphism can be defined by replacing the cobordism with more

general one. This fact will be used later in computing the value of the invariant

where we change W into one that is adapted to surgery (Lemma 5.6).

Assumption 2.11. We assume that a (D4, ∂)-bundle π : E → B over a closed

oriented k-manifold B satisfies the following.

(1) The isomorphism class of π corresponds to an element of ImH . In par-

ticular, B is oriented cobordant to Sk. Let B̃ be an oriented cobordism

between them.

(2) There is a compact oriented manifold W with corners bounded by OE =

E ∪ (∂D4 × B̃) ∪ −(D4 × Sk). Here, W need not be the total space of a

D4-bundle over B̃. Let π̃ : OE → B̃ be the projection that is the gluing of

the natural ones ∂D4 × B̃ → B̃, π : E → B, and D4 × Sk → Sk.

(3) T vE has a vertical framing (trivialization) τE : T vE → R4 × E, that is

standard near ∂fibE.

Under this assumption, we may construct a trivial bundle ε4(W ) → W , by

identifying the sides (over ∂B̃ = B
∐
(−Sk)) of the trivial bundle R4 ×W → W

with T vE and T v(D4 × Sk) = TD4 × Sk by using τE and the standard framing

respectively. Let ~θ be a tuple of admissible propagators of EC2(π) and we take

a tuple ~ηW of generic admissible sections of ε4(W ) that is adapted to ~θ without

iteration with respect to ~v fixed above. With this data, Zadm
k (~θ) and αadm

k (~ηW ) are

defined. Here, ~ηW depends on the choice of ε4(W ), which depends on the choice of

τE .

Lemma 2.12. For fixed W, τE , the value of αadm
k (~ηW ) does not depend on the

choice of ~ηW that is adapted to ~θ.

Proof of Lemma 2.12 is the same as the proof of Theorem 2.7.

Lemma 2.13. For a fixed τE, the value of αadm
k (~ηW ) is invariant under a relative

cobordism of W . Namely, if we replace W with another compact oriented manifold

W ′ that is related to W by a (k + 6)-cobordism V with corners such that ∂V =

W ∪ (∂W × I) ∪ (−W ′), then we have αadm
k (~ηW ′) = αadm

k (~ηW ) for any choice of

~ηW ′ .

Proof. By gluing R4 × V to T v(E × I) = T v(∂W × I) by using the trivialization

τE × idI , we obtain a trivial R4-bundle ε4(V )→ V . The trivial 1-parameter family
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of the restriction of ~θ on ST vE gives a tuple of admissible sections of the unit

S3-bundle ST v(E × I). By extending this and ~ηW , we take a tuple ~ηV of generic

admissible sections of the unit sphere bundle Sε4(V ). Let ~ηW ′ be the restriction

of ~ηV on W ′. As in the proof of Theorem 2.7, the 1-chain αadm
k (~ηV ) is defined

and it follows from the identity #∂αadm
k (~ηV ) = 0 that αadm

k (~ηW )−αadm
k (~ηW ′) = 0.

This proves that αadm
k is invariant under a relative cobordism of W . Moreover, by

Lemma 2.12, ~ηW ′ can be altered without changing the value of αadm
k . �

In order to make αadm
k invariant under changes of τE and W (to one not neces-

sarily relative cobordant), we add more terms. αadm
k can be defined for a general

oriented closed (k+5)-manifoldX and a trivial rank 4 vector bundle ε4(X) over it by

using admissible sections. By the same argument as the proof of Lemma 2.13, it in-

duces a homomorphism αadm
k : Ωk+5 → Ak. If k+5 6≡ 0 (mod 4), then Ωk+5⊗Q = 0

by Thom’s results on the cobordism groups ([T]) and hence αadm
k = 0 on Ωk+5.

From now on, we assume k + 5 ≡ 0 (mod 4)†. In this case, the rational cobor-

dism invariants are given by homogeneous polynomials of degree k + 5 in the Pon-

trjagin classes, by Thom’s result again. Namely, there exists a universal homo-

geneous polynomial Pk(p1, . . . , p k+5
4
) of degree k + 5 in H∗(BSOk+5;Q) ⊗ Ak =

Q[p1, . . . , p k+3
2
, e]⊗Ak, |pj | = 4j, |e| = k+5

2 , such that

αadm
k (X) = 〈Pk(p1(TX), . . . , p k+5

4
(TX)), [X ]〉. (2.7)

We shall extend the definition of the right hand side of (2.7) for the manifold with

corners W by an integral of a pullback of a characteristic form on the classifying

space. Since TW |∂W = T vOE is the Whitney sum of vertical and horizontal sub-

bundles, we may assume that the classifying map for TW |∂W factors through the

classifying space BSO4×BSOk+1 for Whitney sums. We shall deform the charac-

teristic form on W according to this boundary condition. We consider the natural

map σ : BSO4 × BSOk+1 → BSOk+5. The cohomology ring of BSO4 × BSOk+1

is H∗(BSO4×BSOk+1;Q) = Q[p′1, e
′]⊗Q[p′′1 , . . . , p

′′
k−1
2

, e′′], with |p′1| = 4, |e′| = 4,

|p′′j | = 4j, |e′′| = k+1
2 . Then by the Whitney sum formula for the Pontrjagin class,

we have σ∗pn =
∑

i+j=n p
′
ip

′′
j = p′′n + p′1p

′′
n−1. Let P

′
k(p

′
1, p

′′
1 , p

′′
2 , . . . , p

′′
m), m = k+5

4 ,

be the polynomial in H∗(BSO4 ×BSOk+1;Q)⊗Ak given by

P ′
k(p

′
1, p

′′
1 , p

′′
2 , . . . , p

′′
m) = Pk(σ

∗p1, σ
∗p2, . . . , σ

∗pm)

= Pk(p
′′
1 + p′1, p

′′
2 + p′1p

′′
1 , . . . , p

′′
m + p′1p

′′
m−1),

(2.8)

where Pk is the polynomial defined in (2.7).

In the following we regard BSOn as the oriented Grassmannian G̃n(R
∞). Let

x1, x2, . . . ∈ Ω∗(BSOk+5) be closed forms on BSOk+5 such that [xj ] = pj for each j.

Let u1 ∈ Ω4(BSO4), v1, v2, . . . ∈ Ω∗(BSOk+1) be closed forms such that [u1] = p′1,

[vj ] = p′′j for each j. By (2.8), there is a form η ∈ Ω∗(BSO4 ×BSOk+1)⊗Ak such

that the form level identity P ′
k(u1, v1, v2, . . . , vm) = σ∗Pk(x1, x2, . . . , xm)+dη holds.

Thus P ′
k(u1, v1, v2, . . . , vm) and σ∗Pk(x1, x2, . . . , xm) can be smoothly connected by

an exact form. Namely, let ρ : BSO4 × BSOk+1 × [0, ε) → BSO4 × BSOk+1 be

†For only a disproof of the 4-dimensional Smale conjecture, this case is not necessary.
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the projection. Let ψ : [0, ε)→ [0, 1] be a smooth function that is 0 near 0 ∈ [0, ε)

and 1 near ε. Then the form

P ′′
k = ρ∗σ∗Pk(x1, . . . , xm) + d(ψρ∗η)

on BSO4 × BSOk+1 × [0, ε) agrees with ρ∗P ′
k(u1, v1, . . . , vm) near 0 and with

ρ∗σ∗Pk(x1, . . . , xm) near ε.

In order to get a characteristic form on W , we shall take a classifying map

W → BSOk+5 for TW that factors through BSO4 × BSOk+1 on ∂W = OE . By

the decomposition TW |E = TE⊕γ1 = T vE⊕π∗TB⊕γ1, where γ1 denotes a rank

1 trivial real line bundle, and TW |
∂D4×B̃ = TD4|∂D4 ⊕ π̃∗B̃, there are classifying

maps ϕ∂ : ∂W → BSO4 × BSOk+1 and ϕ : W → BSOk+5 for TW |∂ and TW

respectively such that ϕ|∂W = σ ◦ ϕ∂ . Further, we assume that the restriction of

ϕ on a collar neighborhood ∂W × [0, ε) factors through BSO4 × BSOk+1. More

explicitly, let ϕ̃∂ : ∂W × [0, ε) → BSO4 × BSOk+1 × [0, ε) be the map defined by

ϕ̃∂(x, t) = (ϕ(x, t), t) and we assume ϕ = σ ◦ ρ ◦ ϕ̃∂ on ∂W × [0, ε). Since T v∂W

has a trivialization that extends to that of T v∂W × [0, ε), we assume further that

ϕ̃∂ is a map to {∗} × BSOk+1 × [0, ε), ϕ∂ is a map to {∗} × BSOk+1, and that

ϕ|−(D4×Sk) is a map to {∗} ⊂ BSOk+5.

We consider the form

ϕ̃∗
∂P

′′
k = ϕ∗Pk(x1, . . . , xm) + d(ϕ̃∗

∂ψρ
∗η)

on E × [0, ε). Since this agrees with ϕ̃∗
∂ρ

∗P ′
k(u1, v1, . . . , vm) near 0 and with

ϕ∗Pk(x1, . . . , xm) near ε, ϕ̃∗
∂P

′′
k can be extended by ϕ∗Pk(x1, . . . , xm) to the whole

of W . We denote the resulting closed form on W by Pk(TW ) and define

Pk(TW ; τE) =

∫

W

Pk(TW ).

Lemma 2.14. Suppose k + 5 ≡ 0 (mod 4).

(1) Pk(W ; τE) does not depend on the choices of ϕ, ϕ∂ , x1, . . . , xm, u1, v1, . . . , vm.

(2) Pk(W ; τE) does not depend on τE. Namely, if τ ′E is another choice, then

Pk(W ; τE) = Pk(W ; τ ′E).

(3) αadm
k (~ηW ) − Pk(W ; τE) does not depend on W (and on τE and ~ηW that is

adapted to ~θ).

Proof. (1) A change of ϕ by a relative homotopy that fixes a collar neighborhood

∂W × [0, ε) does not affect the integral Pk(W ; τE) since the difference is given by

an integral of a compact support exact form, which vanishes. By the definition

of Pk(TW ), a change of x1, . . . , xm may change Pk(TW ) by a compact support

exact form and does not affect the result, either. Next, we consider a change of

ϕ∂ (and thus of its extension ϕ) by a homotopy in BSO4 × BSOk+1, which may

change Pk(W ; τE) by an integral over ∂W × I. The homotopy gives a classifying

map ∂W × I → BSO4 × BSOk+1 which can be factored as ∂W × I → B × I →
{∗} × BSOk+1 thanks to the presence of the framing. Hence the integral can be

written as that of a (k+5)-form over the (k+1)-manifold B×I, which vanishes. The

effect of changing u1, v1, . . . , vm is similar to this, where the homotopy is replaced

by an exact form on B × I.
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(2) A change of τE corresponds to gluing a map E×I → BSO4×{∗} → BSOk+5

which maps E × {0, 1} to the base point, to ϕ : W → BSOk+5 along the face

E = E × {0}. Hence Pk(W ; τ ′E) − Pk(W ; τE) can be written as an integral over

E × I. Namely, a change of framing corresponds to a classifying map ϕE : E ×
I → BSO4 × BSOk+1 given by ϕE = (ϕ1, ϕ2πr), where r : E × I → E is the

projection, ϕ1 : (E × I, E × {0, 1}) → (BSO4, ∗), and ϕ2 : B → BSOk+1. Hence

Pk(W ; τ ′E)− Pk(W ; τE) is a linear combination of integrals of the following form:
∫

E×I

ϕ∗
1α ∧ r

∗π∗ϕ∗
2β =

∫

E

r∗ϕ
∗
1α ∧ π

∗ϕ∗
2β,

where α ∈ Q[u1] ⊂ H∗(BSO4;Q) and β ∈ Q[v1, . . . , vm] ⊂ H∗(BSOk+1;Q) are

monomials. The form r∗ϕ
∗
1α is closed since by the Stokes formula for pushforward

(e.g., [GHV, VII. Problem 4]), one has dr∗ϕ
∗
1α = r∗dϕ

∗
1α ± r∂∗ϕ

∗
1α = 0, and it

has compact support along the fiber. Let T [α] ∈ H∗(SO4;Q) ⊗ Ak be the im-

age of the Chern–Simons transgression H∗(BSO4, ∗;Q) → H∗(ESO4, SO4;Q) ←
H∗−1(SO4;Q) for the Pontrjagin class [α]. Then there exists a continuous map

g : (E, ∂E) → (SO4,1) such that [r∗ϕ
∗
1α] = g∗T [α] in H∗

c (E;Q). Since T an-

nihilates decomposable monomials ([Sw, Proposition 16.19]), the integral above

vanishes unless T [α] is a multiple of Tp′1 = T [u1] and thus is of degree 3. We

consider the integral along the fiber of π first and we have
∫

E

r∗ϕ
∗
1α ∧ π

∗ϕ∗
2β =

∫

B

π∗r∗ϕ
∗
1α ∧ ϕ

∗
2β = 0

by a dimensional reason.

(3) That αadm
k (~ηW )− Pk(W ; τE) does not depend on W follows from (2.7). �

Proposition 2.15. Let (~θ0, ~η0) be the adapted pair for N ′
kπ0 : N ′

kE0 → Sk and W0,

that was taken in §2.6. For a (D4, ∂)-bundle π : E → B satisfying Assumption 2.11,

we define

Ẑadm
k (~θ, ~ηW ) =

{
Zadm
k (~θ)− αadm

k (~ηW ) + Pk(W ; τE) if k + 5 ≡ 0 (mod 4)

Zadm
k (~θ)− αadm

k (~ηW ) otherwise

Then the following hold.

(1) Ẑadm
k (~θ, ~ηW ) does not depend on the choices of τE ,W, ~ηW .

(2) The identity Ẑadm
k (~θ, ~ηW ) = Ẑadm

k (~θ0, ~η0) holds.

Proof. (1) follows from Lemmas 2.12, 2.13, 2.14. (2) holds since W may be the

total space of a bundle bordism as in §2.6. If k + 5 ≡ 0 (mod 4), then we need to

check that Pk(W ; τE) = 0 for the bundle bordism W . This can be proved by the

same manner as Lemma 2.14 (2). �

3. Graph counting formula

We shall see that under some assumptions Ẑadm
k can be obtained by counting

some graphs in a bundle whose edges are trajectories of Morse gradients. This

makes it possible to compute the exact value of Ẑadm
k in some cases directly and

geometrically by counting graphs. The main idea of the proof of the counting
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formula is to construct an explicit admissible propagator by using Morse trajectory

spaces, as in [Sh].

3.1. Fiberwise Morse functions. Let π : E → B be a (R4, U ′
∞)-bundle over an

oriented closed Riemannian k-manifold B, and write Fb = π−1({b}). We also equip

E with a Riemannian metric. A C∞ map f : E → R is said to be a fiberwise Morse

function if its restriction fb = f |Fb
: Fb → R (b ∈ B) to each fiber is Morse. The

union of critical points of fb over b ∈ B forms a k-submanifold of E. We call its

connected component a critical locus.

Let ξ be a fiberwise gradient-like vector field for f along the fiber, namely, the

vector field on E whose restriction ξb = ξ|Fb
is gradient-like for fb. We call such

a vector field a v-gradient. For a critical locus p of a fiberwise Morse function

f : E → R, its descending manifold and ascending manifold are defined by

Dp(ξ) = {x ∈ E | lim
t→−∞

Φt−ξ(x) ∈ p}, Ap(ξ) = {x ∈ E | lim
t→∞

Φt−ξ(x) ∈ p},

where Φt−ξ : E → E, t ∈ R, is the flow of −ξ. For a pair p, q of critical loci with

|p| = i, |q| = i+ ℓ, we may assume that Dp(ξ) and Aq(ξ) intersect transversally in

E by choosing the v-gradient ξ generically within the space of v-gradients. In such

a case, the intersection consists of integral curves of ξ between p and q. There is a

free R-action on Dp(ξ) ∩Aq(ξ) defined by x 7→ ΦT−ξ(x) (T ∈ R). We put

M
′
pq = M

′
pq(ξ) = (Dp(ξ) ∩Aq(ξ))/R.

This space is locally parametrized as the intersection of Dp(ξ) ∩Aq(ξ) with a level

surface of f , as in §3.2. The dimension of the manifold M ′
pq is |p|− |q|− 1+dimB.

We call the intersection Dp(ξ) ∩Aq(ξ) an i/i+ ℓ-intersection ([HW])‡.

We take a Morse function h : B → R on the base space B such that the numbers

of critical points of index k and 0 are both one on each path-component of B. Let

η be its gradient-like vector field. We call such an η a h-gradient. We take a base

point b0 ∈ B of a path-component of B to be the maximal point of h and put

F0 = Fb0 , f0 = fb0 . In the following, we assume the following for f, ξ.

Assumption 3.1. (1) The v-gradient ξ satisfies the parametrizedMorse–Smale

condition. Namely, all the descending and ascending manifolds are mutu-

ally transversal in E.

(2) The descending manifolds Dp(ξ) for every critical loci p of f are fiberwise

orientable, i.e., the vertical vector bundle T vDp(ξ) restricted on the locus

p is orientable.

(3) For ℓ ≥ 1, there are no i/i+ ℓ-intersections.

(4) f is standard outside the unit disk D4, namely, it agrees with a fixed linear

function outside D4 in each fiber, and ξ is constant there.

Lemma 3.2. Let ξ be a generic v-gradient satisfying Assumption 3.1. The param-

eters in B of i/i-intersections equip B with a conic stratification (in the sense of

[Ce, I.1.3]). Let B(ℓ) (ℓ = 0, 1, 2, . . .) denote the codimension ℓ stratum in the conic

stratification of B.

‡In [HW], an i/j-intersection was considered modulo change of vertical parameter on a

trajectory.
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Figure 2. Describing handle-slides by intersections in a level surface.

Proof (sketch). An i/i-intersection can be locally described as the transversal in-

tersection between families of submanifolds and it turns out that a single i/i-

intersection is a codimension 1 bifurcation. Below we shall describe a concrete

shape of the stratification near a codimension r stratum through a basic example.

Let fb : Fb → R (b ∈ Rr) be a family of Morse functions and let p, q0, q1, . . . , qr−1

be critical points of f0 : F0 → R of index i such that f0(p) > f0(q0) > f0(q1) > · · · >
f0(qr−1). We also denote by p, q0, q1, . . . , qr−1 their loci for the family fb. Now we

assume that i/i-intersections between p and q0, q0 and q1, q1 and q2, . . ., qr−2 and

qr−1 occur simultaneously at 0 ∈ Rr. A standard model for this bifurcation can be

described as follows. Take ε > 0 and a neighborhood U of 0 ∈ Rr both small and

put L =
⋃
b∈U f

−1
b (f(p)−ε). L is locally a R3-bundle L′ → U . Dp(ξ) intersects each

fiber L′
b of L

′ in a (i−1)-disk, and Aqj (ξ) intersects each fiber L′
b in a (3−i)-disk. In

the case i = 2, we describe the modelKp(s),Mq0(0),Mq1(t1), . . . ,Mqr−1(tr−1) ⊂ R3

(s ∈ R, 0 ≤ t1 ≤ · · · ≤ tr−1) for the disks in L
′
b by a local coordinate (Figure 2 (1)).

Kp(s) = {(s, x2, 0) | x2 ∈ R}, Mq0(0) = {(0, 0, x3) | x3 ∈ R}

Mqj (tj) = {(tj, 0, x3) | x3 ∈ R} (1 ≤ j ≤ r − 1).

For simplicity, we assume the following (Figure 2 (2)).

• Let t0 = 0. Suppose that at tj = tj+1, the disks Mqj (tj) and Mqj+1(tj+1)

coincide, and at the same time the i/i-intersection between qj and qj+1

occurs. On tj+1 < tj , Aqj+1(ξ) slides under Aqj (ξ), and Mqj+1(tj+1) disap-

pears from L′.

• At the moment the family of Kp(s) intersects Mqj (tj), the i/i-intersection

between p and qj occurs, and Dp(ξ) slides over Dqj (ξ).

We shall prove that the i/i-intersections in the standard model give a conic strat-

ification of Rr by induction. Suppose that the i/i-intersections among q0, . . . , qr−1

gives a conic stratification A(ℓ) (ℓ = 0, 1, 2, . . . , r − 1) of the parameter space

{(t1, . . . , tr−1) | t1, . . . , tr−1 ∈ R} = Rr−1 centered at the origin. We consider the

product stratification Â(ℓ) = A(ℓ)×R and add to this the strata of i/i-intersections

including p. We see that the result is again a conic stratification of Rr.

Let Spqj denote the set of parameters of i/i-intersections between p and qj . Then

Spq0 = {(s, t1, . . . , tr−1) | s = 0}, Spqj = {(s, t1, . . . , tr−1) | s = tj , 0 ≤ t1 ≤ · · · ≤
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tj} (1 ≤ j ≤ r − 1). It is easy to see that these sets form conic strata whose

boundaries are on the strata of Â(ℓ) of codimension ≥ 1. Thus the addition of

these sets gives another conic stratification. For example, when r = 2, the sets

Sq0q1 = {(s, t1) | t1 = 0}, Spq0 = {(s, t1) | s = 0}, Spq1 = {(s, t1) | s = t1, t1 ≥ 0}
are shown in Figure 2 (3). The cases where Aq0(ξ), . . . ,Aqr−1(ξ) are located in a

different way is essentially the same as the example given here.

Finally, we remark that the bundle projection π induces immersion of M ′
pq(ξ)

into B since Ker dπ∩T (Dp(ξ)∩Aq(ξ)) agrees with the line subbundle of T (Dp(ξ)∩
Aq(ξ)) generated by the differential of the free R-action, which is mapped to zero

in TM ′
pq(ξ). �

3.2. Morse complex. Let ξ0 be a gradient-like vector field for a Morse function

µ : R4 → R that is standard outside D4. Suppose that ξ0 is Morse–Smale, namely,

all the intersections between the descending manifolds and the ascending manifolds

of critical points of ξ0 are transversal. Let Ck = Ck(ξ0) be the free Z-module

generated by the set Pk of critical points of µ of index k and ∂ : Ck+1 → Ck is

defined for p ∈ Pk+1 by

∂p =
∑

q∈Pk

#M
′
pq(ξ0) · q, M

′
pq(ξ0) = (Dp(ξ0) ∩Aq(ξ0)) ∩Qp,

where Qp is a level surface of µ that lies just below p and M ′
pq(ξ0) is an oriented

0-manifold whose orientation is derived from those of Dp(ξ0) and Aq(ξ0). More

precisely, Dp(ξ0) ∩ Aq(ξ0) is a union of finitely many integral curves of −ξ0. We

orient Dp(ξ0) and Ap(ξ0) so that o(Dp(ξ0))p ∧ o(Ap(ξ0))p ∼ o(R4)p. Especially, if

|p| = 4, we set o(Dp(ξ0)) = o(R4), o(Ap(ξ0)) = 1, and if |p| = 0, we set o(Ap(ξ0)) =

o(R4), o(Dp(ξ0)) = 1. Let o∗
R4(Dp(ξ0)) and o∗

R4(Ap(ξ0)) be the coorientations of

Dp(ξ0) and Ap(ξ0) in R4 respectively, as in §A. At each point b ∈ M ′
pq(ξ0), the

wedge o∗
R4(Dp(ξ0))b∧o∗R4(Aq(ξ0))b ∈

∧d−1
T ∗
b R

4 defines a coorientation of Dp(ξ0)∩
Aq(ξ0) passing through b. Hence there exists a sign ε(p, q)b = ±1 such that

o∗
R4(Dp(ξ0))b ∧ o

∗
R4(Aq(ξ0))b ∼ ε(p, q)b ι(−ξ0)o(R

4)b.

The sign ε(p, q)b does not depend on the choice of Qp. Then

#M
′
pq(ξ0) =

∑

b∈M ′
pq(ξ0)

ε(p, q)b.

It is known that (C∗, ∂) above is a chain complex (e.g., [Bo, AD]) called the Morse

complex§. For a Morse function µ : R4 → R as above, the complex (C∗, ∂) is acyclic.

So there exists a Z-linear map g : C∗(ξ0)→ C∗+1(ξ0) such that ∂g+ g∂ = id. Such

a g is called a chain contraction or a combinatorial propagator.

3.3. Z-paths. A family version of the Morse complex is obtained by counting “Z-

paths” defined below ([Wa4], see also [Hu]). Take f, ξ, η as in §3.1. We say that a

piecewise smooth embedding σ : [µ, ν]→ E is vertical if Imσ is included in a single

fiber of π, and say that σ is horizontal if Imσ is included in a critical locus of f .

We say that a vertical embedding (resp. horizontal embedding) σ : [µ, ν] → E is

descending if f(σ(µ)) ≥ f(σ(ν)) (resp. h ◦ π(σ(µ)) ≤ h ◦ π(σ(ν))).

§It should probably be called the “Morse–Thom–Smale–Witten complex”.
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Figure 3. A Z-path from x to y passing through three critical

loci p, q, r. Each vertical segment between critical loci is in i/i+ ℓ-

intersection for some ℓ. This is a point of
∫
B
X ΩΩY T (§3.10).

A flow-line of −ξ is a vertical smooth embedding σ : [µ, ν] → E such that for

each T ∈ (µ, ν), there exists a positive real number CT such that

dσT

( ∂

∂T

)
= −CT ξσ(T ).

Definition 3.3. Let x, y be two points of E such that h◦π(x) ≥ h◦π(y). A Z-path

for (ξ, η) from x to y is a sequence γ = (σ1, σ2, . . . , σn), n ≥ 1, where

(1) For each i, σi is either a vertical or horizontal embedding [µi, νi] → E for

some real numbers µi, νi. For each i, σi is descending.

(2) σi(νi) = σi+1(µi+1) for 1 ≤ i < n. σ1(µ1) = x, σn(νn) = y.

(3) If σi is vertical (resp. horizontal) and if i < n, then σi+1 is horizontal (resp.

vertical).

(4) If σi is vertical, then σi is a flow-line of −ξ. If moreover i 6= 1, n, then

µi < νi. If σi is horizontal, then µi < νi and π ◦ σi : [µi, νi] → B is a

flow-line of −η in B.

(5) If n = 1, then µ1 < ν1.

(See Figure 3 for an example of a Z-path.) We say that two Z-paths are equivalent

if they differ only by orientation-preserving reparametrizations on segments. For

a Z-path γ = (σ1, . . . , σn) for (−ξ, η), the inverse Z-path is the sequence γ′ =

(σ′
n, . . . , σ

′
1), where σ

′
i is the inverse path of σi: σ

′
i(T ) = σi(µi + νi − T ).

3.4. Counting Z-paths over a path in B. We assume Assumption 3.1 and that

η is Morse–Smale. Let α : I → B be a flow-line of −η between two points a, b ∈ B.

Let x ∈ Fa, y ∈ Fb be critical points of fa, fb respectively with |x| = |y| = i.

By choosing ξ generically, we may assume that α intersects B(1) (Lemma 3.2)

transversally at finitely many points and does not intersect B(k), k ≥ 2.

Under the assumptions above, i/i-intersections may occur finitely many times

in the bundle α∗π : α∗E → I restricted over α, and hence there may be only

finitely many Z-paths from x to y. We count these Z-paths with signs that are

determined as follows. For an i/i-intersection σ between critical loci p, q of f ,

its sign ε(σ) is determined by the orientations of the ascending and descending

manifolds. Namely, we choose coorientations o∗E(Dp(ξ)), o
∗
E(Aq(ξ)) of Dp(ξ), Aq(ξ)

in E, respectively. Let o∗E(L̃z) be the coorientation of the level surface locus L̃z of

f that passes through z ∈ σ, which restricts to ι(−ξz) o(Fπ(z))z on a fiber. Then

o∗E(Dp(ξ))z∧o∗E(Aq(ξ))z∧o∗E(L̃z)z is a 5-form in
∧∗

TzE. We consider the pullback

of this 5-form to α∗E by the natural bundle map α̂ : α∗E → E. If this is equivalent
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to the original orientation of α∗E given by the rule (A.4), then set ε(γ) = 1 and

otherwise set ε(γ) = −1. Let σ1, σ2, . . . , σr be all the i/i-intersections included in

a Z-path γ from x to y in the (R4, U ′
∞)-bundle α∗π : α∗E → I. Then we define the

sign of γ by

ε(γ) = ε(σ1)ε(σ2) · · · ε(σr). (3.1)

We define a Z-linear map Φα : C∗(ξa)→ C∗(ξb) by letting

Φα(x) =
∑

y∈P∗(ξb)

nα(x, y)y, nα(x, y) =
∑

γ

ε(γ) (3.2)

for each x ∈ P∗(ξa), where the sum for nα(x, y) is taken for all Z-paths in α∗E that

goes from x to y.

Lemma 3.4. Φα is a chain map, namely, Φα ◦ ∂a = ∂b ◦ Φα for the boundary

operators ∂a, ∂b of C∗(ξa), C∗(ξb) respectively.

Lemma 3.4 will be proved later in §3.9. Under the identification C∗(ξa) =

C∗(ξb) = C∗(ξ0) as Z-modules induced by critical loci, where ξ0 = ξb0 is a gradient-

like vector field for the Morse function f0 : F0 = Fb0 → R on the base fiber, we

may consider Φα as a Z-linear endomorphism C∗(ξ0)→ C∗(ξ0).

Here, we make the following additional assumption on f, ξ, η, for simplicity,

which is enough for our purpose.

Assumption 3.5. (1) The critical values of fb are constants over B.

(2) For any pair a, b ∈ P∗(η) with |a| = |b|+ 1 and for a flow-line α : I → B of

−η between a and b, the path α intersects B(1) transversally and does not

intersect B(k) for k ≥ 2. Under the identification C∗(ξa) = C∗(ξb) = C∗(ξ0)

by critical loci, Φα = 1 : C∗(ξ0)→ C∗(ξ0).

3.5. Graph counting formula. Let f (1), f (2), . . . , f (3k) : E → R be a sequence

of fiberwise Morse functions and let ξ(i) be a v-gradient for f (i). We assume that

(f (i), ξ(i)) satisfies Assumption 3.1 for each i. Let f
(i)
0 : F0 → R be the restriction

of f (i) on the base fiber F0 = Fb0 and let ξ
(i)
0 = ξ

(i)
b0

. We consider a connected

edge-oriented trivalent graph with its sets of vertices and edges labelled and with

2k vertices and 3k edges. Choose some of the edges and split each chosen edge

into two arcs. We attach elements of P∗(ξ
(i)
0 ) on the two univalent vertices (white

vertices) that appear after the splitting of the i-th edge. We call such obtained

graph a ~C-graph (~C = (C∗(ξ
(1)
0 ), . . . , C∗(ξ

(3k)
0 )), see Figure 4). A ~C-graph has

two kinds of (possibly split) “edges”: a compact edge, which is connected, and a

separated edge, which consists of two arcs. We call vertices that are not white

vertices black vertices. If pi (resp. qi) is the critical point of f
(i)
0 attached on the

input (resp. output) white vertex of a separated edge i, we define the degree of i

by deg(i) = |pi| − |qi|. We define the degree of a compact edge i by deg(i) = 1. We

define the degree of a ~C-graph by deg(Γ) = (deg(1), deg(2), . . . , deg(3k)).

We say that a continuous map I from a ~C-graph Γ to E is a Z-graph for the

sequence ~ξ = (ξ(1), ξ(2), . . . , ξ(3k)) of v-gradients and the h-gradient η if it satisfies

the following conditions (see Figure 5).

(1) Every white vertex equipped with pi is mapped by I to the corresponding

critical point pi in F0.
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Figure 4. A trivalent graph (left) and a ~C-graph (right)

Figure 5. Z-graph for ~ξ = (ξ(1), ξ(2), ξ(3))

(2) The restriction of I to the i-th edge of Γ is either a vertical flow-line of −ξ(i)

or a pair (γ, δ) consisting of a Z-path γ from a critical point of f
(i)
0 and an

inverse Z-path δ to a critical point of f
(i)
0 both for (ξ(i), η) such that the

terminal endpoint of γ and the initial endpoint of δ lie in the same fiber of

π and the projections of γ and δ on B give equivalent (piecewise smooth)

flow-lines of −η.

For a ~C-graph Γ, let M Z
Γ (
~ξ, η) be the set of equivalence classes of all Z-graphs for

(~ξ, η) from Γ to E, where we say that two Z-graphs are equivalent if they differ

only by orientation-preserving reparametrizations on segments. By definition, all

the black vertices (or trivalent vertices) of a Z-graph must be contained in a single

fiber of π. Hence a Z-graph consists of a uni-trivalent graph V in a single fiber with

some Z-paths or inverse Z-paths from/to the base fiber F0 attached to the univalent

vertices of V . The following lemma is a straightforward analogue of [Fu, Wa3].

Lemma 3.6. Suppose that (f, ~ξ, η) satisfies Assumptions 3.1 and 3.5. If dimB = k

and if ~f = (f (1), f (2), . . . , f (3k)) and ~ξ are generic, then for every ~C-graph Γ with

2k black vertices and deg(Γ) = (1, 1, . . . , 1), the space M Z
Γ (
~ξ, η) is a compact 0-

dimensional manifold.

We give a proof of Lemma 3.6 in §B. From Lemma 3.6, it follows that there

are only finitely many points in B on which uni-trivalent graphs of Z-graphs are

included.

When the assumption of Lemma 3.6 is satisfied, we may define an orientation of

M Z
Γ (
~ξ, η) in a similar way as [Wa3]. Roughly, an orientation of M Z

Γ (
~ξ, η) is defined

as follows. The space M Z
Γ (
~ξ, η) can be considered as the intersection of several

smooth manifold strata in EC2k(π) each corresponds to the space of an edge of Γ.

We orient M Z
Γ (
~ξ, η) by the coorientation

∧
e ve of M Z

Γ (
~ξ, η) in EC2k(π) for some

coorientations ve of the strata for each compact or separated edge e. Each compact

or separated edge e has two black vertices and ve is a vector in
∧3

T(x,y)EC2(π),
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where x, y are the images from the black vertices of e. Then #M Z
Γ (
~ξ, η) ∈ Z is

defined as the count of the Z-graphs with orientations.

Let ~g = (g(1), g(2), . . . , g(3k)) be a sequence of combinatorial propagators for
~C = (C∗(ξ

(1)
0 ), . . . , C∗(ξ

(3k)
0 )). Then we define

ZMorse
k (~ξ, η) =

1

23k(2k)!(3k)!
Tr~g

(∑

Γ

#M
Z
Γ (
~ξ, η) Γ

)
∈ Ak. (3.3)

Here, the sum is taken over all possible ~C-graphs Γ with 2k black vertices and

deg(Γ) = (1, 1, . . . , 1), and Tr~g is defined as follows. For simplicity, we assume that

the labels for the separated edges in a ~C-graph Γ is 1, 2, . . . , a. Let pi, qi be the

critical points of f
(i)
0 on the input and output of the i-th edge of Γ, respectively

and let g
(i)
qipi ∈ Q be the coefficient of pi in the expansion of g(i)(qi). Then Tr~g(Γ)

is defined by the following formula.

Tr~g =
a∏

i=1

(−g(i)qipi)×

The definition of Tr can be generalized to graphs with other degrees in the same

manner. The following theorem, which gives an analogue of Shimizu’s identity in

[Sh], is the main result of this section.

Theorem 3.7. For (f, ~ξ, η) satisfying Assumptions 3.1 and 3.5, there exists a tuple

of admissible propagators ~θ = (θ(1), . . . , θ(3k)) such that the following identity holds.

Zadm
k (~θ) =

(−1)3k

23k

∑

εi=±1

ZMorse
k ((ε1ξ

(1), . . . , ε3kξ
(3k)), η)

In such a case, we will denote Ẑadm
k (~θ) by ẐMorse

k (~ξ, η).

3.6. Moduli space of vertical flow-lines. Here we give a preliminary for an

iterated integral description of spaces of Z-paths, which is used to describe their

boundaries. Let π : E → B be an (R4, U ′
∞)-bundle over a closed oriented manifold

B and ξ be a v-gradient for a fiberwise Morse function f : E → R, as above. For

simplicity, we assume that B is path connected. We define

M2(ξ) = {(x, y) ∈ E × E | π(x) = π(y), y = ΦT−ξ(x) for some T > 0}.

Let Σ(ξ) denote the union of all the critical loci of ξ. For a pair (x, y) of distinct

points of E −Σ(ξ) such that π(x) = π(y) = s, a (r times) broken flow-line between

x and y is a sequence γ0, γ1, . . . , γr (r ≥ 1) of integral curves of −ξ in the fiber

π−1(s) satisfying the following conditions:

(1) The domain of γ0 is [0,∞), the domain of γr is (−∞, 0] and the domain of

γi, 1 ≤ i ≤ r − 1, is R.

(2) γ0(0) = x, γr(0) = y.

(3) There is a sequence q1, q2, . . . , qr of distinct critical loci of ξ such that

limT→∞ γi−1(T ) = limT→−∞ γi(T ) ∈ qi (1 ≤ i ≤ r).
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A fiberwise space over a space X is a pair of a space Y and a continuous map

φ : Y → X . A fiber over a point s ∈ X is Y (s) = φ−1(s) ([CJ]). For two fiberwise

spaces Y1 = (Y1, φ1) and Y2 = (Y2, φ2) over X , a fiberwise product Y1 ×X Y2 is

defined as the following subspace of Y1 × Y2:

Y1 ×X Y2 =

∫

s∈X

Y1(s)× Y2(s),

where
∫
s∈X means

⋃
s∈X . Namely, Y1 ×X Y2 is the pullback of Y1

φ1
→ X

φ2
← Y2.

Let ℓ∞ denote the image of the ∞-section of the associated (S4, U∞)-bundle

π∞ : E∞ → B to π : E → B and let ∆̂E = ∆E ∪ (E∞ ×B ℓ∞) ∪ (ℓ∞ ×B E∞).

Let C(ξ) be the set of path-components in Σ(ξ). The following proposition is a

straightforward analogue of [Wa3, Proposition 3.4, 8.4].

Proposition 3.8. If ξ is generic, then there is a natural compactification M 2(ξ)

of M2(ξ) into a stratified space satisfying the following conditions.

(1) Let ev : M 2(ξ) → E∞ × E∞ be the natural map, which assigns the end-

points. Then M 2(ξ)− ev−1(∆̂E) is a manifold with corners.

(2) ev induces a diffeomorphism IntM 2(ξ) → M2(ξ), where Int denotes the

codimension 0 stratum.

(3) The codimension r stratum of M 2(ξ)−ev−1(∆̂E) consists of r times broken

flow-lines. The codimension r stratum of M 2(ξ) − ev−1(∆̂E) for r ≥ 1 is

canonically diffeomorphic to




∫

s∈B

∑

q1∈C(ξ)

Aq1(ξs)×Dq1(ξs)−
∑

q1∈C(ξ)

∆q1 (if r = 1)

∫

s∈B

∑

q1,...,qr∈C(ξ)
q1,...,qr distinct

Aq1(ξs)×M
′
q1q2

(ξs)× · · · ×M
′
qr−1qr

(ξs)×Dqr (ξs) (if r ≥ 2)

Let {p1, . . . , pN} be the set of all critical loci of f numbered so that f(p1(b0)) >

f(p2(b0)) > · · · > f(pN(b0)). The formula of the codimension r stratum of M 2(ξ)−

ev−1(∆̂E) for r ≥ 2 in Proposition 3.8 can be abbreviated as
∫

s∈B

X◦
0 (s)× Ω◦

0(s)× · · · × Ω◦
0(s)︸ ︷︷ ︸

r−1

×Y ◦T
0 (s), where

X◦
0 (s) = (Ap1(ξs) Ap2(ξs) · · · ApN (ξs)), Y

◦
0 (s) = (Dp1(ξs) Dp2(ξs) · · · DpN (ξs)),

Ω◦
0(s) = ((1 − δij)M

′
pipj

(ξs)) =




∅ M ′
p1p2

(ξs) · · · M ′
p1pN

(ξs)

M ′
p2p1

(ξs) ∅ · · · M ′
p2pN

(ξs)
...

...
. . .

...

M ′
pNp1

(ξs) M ′
pNp2

(ξs) · · · ∅


 ,

and the direct product of matrices is given by matrix multiplication with the mul-

tiplications and the sums given respectively by direct products and disjoint unions

(§3.8). The codimension r stratum of a matrix of stratified spaces will denote

the matrix whose entries are the codimension r strata of the given matrix. The

following two propositions are the restrictions of Proposition 3.8.
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Proposition 3.9. Let p be a critical locus of f and let Dp(ξ) = ev−1(p × E∞),

A p(ξ) = ev−1(E∞ × p). If ξ is generic, then

(1) Dp(ξ) (resp. A p(ξ)) is a compact manifold with corners.

(2) ev induces a diffeomorphism IntDp(ξ)→ Dp(ξ) (resp. IntA p(ξ)→ Ap(ξ)).

(3) The codimension r stratum of Y T0 = (Dp1(ξ) Dp2(ξ) · · · DpN (ξ))T (resp.

X0 = (A p1(ξ) A p2(ξ) · · · A pN (ξ))) for r ≥ 1 is canonically diffeomor-

phic to

∫

s∈B

Ω◦
0(s)× · · · × Ω◦

0(s)︸ ︷︷ ︸
r

×Y ◦T
0 (s) (resp.

∫

s∈B

X◦
0 (s)×Ω

◦
0(s)× · · · × Ω◦

0(s)︸ ︷︷ ︸
r

).

Proposition 3.10. Let p, q be critical loci of f and let M ′
pq(ξ) = ev−1(p × q). If

ξ is generic, then

(1) M ′
pq(ξ) is a compact manifold with corners.

(2) There is a natural diffeomorphism IntM ′
pq(ξ)→M ′

pq(ξ).

(3) The codimension r stratum of Ω0 = ((1− δij)M ′
pipj

(ξ)) for r ≥ 1 is canon-

ically diffeomorphic to

∫

s∈B

Ω◦
0(s)× · · · × Ω◦

0(s)︸ ︷︷ ︸
r+1

.

Remark 3.11. Let

D∞(ξ) = {x ∈ E | lim
t→−∞

Φt−ξ(x) ∈ ℓ∞}, A∞(ξ) = {x ∈ E | lim
t→∞

Φt−ξ(x) ∈ ℓ∞},

M
′
p∞(ξ) = (Dp(ξ) ∩A∞(ξ))/R, M

′
∞q(ξ) = (D∞(ξ) ∩Aq(ξ))/R.

Although D∞(ξ) (resp. A∞(ξ)) is similar to D (resp. A ) of critical locus of index

4 (resp. 0), we define its coorientation by o∗E∞(D∞(ξ)) = −1 (resp. o∗E∞(A∞(ξ)) =

−1), which is opposite to that of usual critical loci given in §3.2. The reason for the

minus sign is the orientation convention for the infinite 3-sphere on the boundary

of C2(S
4,∞).

There are natural compactifications

D∞(ξ) = ev−1(ℓ∞ × E
∞), A ∞(ξ) = ev−1(E∞ × ℓ∞),

M
′
p∞(ξ) = ev−1(p× ℓ∞), M

′
∞q(ξ) = ev−1(ℓ∞ × p)

of D∞(ξ), A∞(ξ), M ′
p∞(ξ) and M ′

∞q(ξ) respectively into smooth compact mani-

folds with corners, as analogues of Propositions 3.9 and 3.10. We consider ℓ∞ ⊂ E∞

as a critical locus of ξ and will allow Z-paths in E∞ to pass through ℓ∞ for the

compactification of the moduli space of Z-paths.

3.7. Admissible propagator from Z-paths. Let M Z
2 (ξ, η) be the set of equiv-

alence classes of all Z-paths in E for (ξ, η). It will turn out that there is a natural

structure of non-compact manifold on M Z
2 (ξ, η). Roughly, since an equivalence

class of γ = (σ1, . . . , σn) in M Z
2 (ξ, η) may be described by a sequence of vertical

flow-lines, it may be locally described as a subset of the direct product of spaces of

(vertical) flow-lines of −ξ.

Proposition 3.12 (Proof in §3.10). Suppose that B is path-connected. There is a

natural path-connected compactification M Z
2 (ξ, η) of M Z

2 (ξ, η) that has the structure

of a sum of finitely many smooth compact manifolds with corners.

Now we shall define a chain s̄β in ∂fibEC2(π) and chainsM(ξ), Hpq(ξ, η), θZ(ξ, η)

and θ∗Z(ξ, η) in EC2(π).
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3.7.1. s̄β. For a Morse v-gradient β of T v(E) that is constant near ℓ∞ with respect

to the partial trivialization of π near ℓ∞, let Σ(β) = {x ∈ E | βx = 0} and let

sβ : E − Σ(β) → ST v(E) be the pointwise normalization βx/‖βx‖ of β. By the

local formula of the v-gradient near critical points, we see that sβ has a natural

smooth extension

sβ : Bℓ fib(E,Σ(β))→ ST v(E),

where Bℓfib(X,Y ) for subbundles X,Y of a fiber bundle is the fiberwise blow-up:⋃
bBℓ(Xb, Xb ∩ Yb). We identify ST v(∆E) with ST

v(E), and we denote by sβ the

chain of ∂fibEC2(π) obtained by extending sβ by φ−1
0 ({a}) for some a ∈ S3 (see

§2.3 for the definition of φ0). We orient sβ by the coorientation that extends φ∗0ωS3

on ∂fibEC2(π)− IntS∆E
, where ωS3 is the SO4-invariant unit volume form on S3.

3.7.2. M(ξ). The natural map i : M 2(ξ) − ev−1(∆̂E) → IntEC2(π) restricts to

an embedding on the preimage of a neighborhood of ∂fibEC2(π) and the closure

of the partial image in EC2(π) is a manifold with corners. By extending M 2(ξ)−

ev−1(∆̂E) by attaching the corners now obtained, a compact manifold with corners

is obtained and we denote it by M ∞
2 (ξ). The map i is extended to a smooth map

M(ξ) : M
∞
2 (ξ)→ EC2(π),

which gives a (k + 5)-chain if an orientation of M ∞
2 (ξ) is given. We orient M2(ξ)

as follows. For a generic parameter t ∈ B such that ξt is Morse–Smale, we give

M2(ξt) a coorientation in Ft×Ft and extend it to that of M2(ξ) in E×B E. More

precisely, since M2(ξt) is the image of the embedding ϕ : Ft × (0,∞) → Ft × Ft,
ϕ(u, T ) = (u,ΦT−ξt(u)), we may define

o(M2(ξt))(u,v) = dϕ∗(o(Ft)u ∧ dT ), o∗Ft×Ft
(M2(ξt))(u,v) = ∗ o(M2(ξt))(u,v),

where dϕ∗ is the map induced by dϕ under the identifications T (Ft × (0,∞)) =

T ∗(Ft × (0,∞)) and T (Ft × Ft) = T ∗(Ft × Ft) by orthonormal bases and ∗ is the
Hodge star operator in Ft × Ft. We choose o∗E×BE

(M2(ξ)) so that its restriction

to Ft × Ft is equivalent to o∗Ft×Ft
(M2(ξt))(u,v). Then we choose the orientation of

M ∞
2 (ξ) that is compatible with o(M2(ξ)).

3.7.3. Hpq(ξ, η). Let M Z
2 (ξ, η)

′ denote the space of equivalence classes of inverse Z-

paths and let M Z
2 (ξ, η)

′ be its compactification defined similarly as M Z
2 (ξ, η). Let

ev1, ev2 : M Z
2 (ξ, η) → E∞ be the maps giving the initial and terminal endpoints,

respectively. Similarly, let ev1, ev2 : M Z
2 (ξ, η)

′ → E∞ be the maps giving the

initial and terminal endpoints, respectively. For critical loci p, q of ξ, we define

Dp(ξ, η),Aq(ξ, η) as

Dp(ξ, η) = ev−1
1 (p ∩ F0), Aq(ξ, η) = ev−1

2 (q ∩ F0).

These are the space of Z-paths from p and that of inverse Z-paths to q, respectively.

We will define the orientations of Dp(ξ, η) and Aq(ξ, η) later in §3.11. We define

the space of separated paths H 0
pq(ξ, η) = Aq(ξ, η) ×B Dp(ξ, η) by the pullback of

π ◦ ev1 : Aq(ξ, η) → B by π ◦ ev2 : Dp(ξ, η) → B (§3.8). The map ev1 × ev2 :

Aq(ξ, η)×Dp(ξ, η)→ E∞×E∞ induces a map ev : H 0
pq(ξ, η)→ E∞×BE

∞, which

lifts to a smooth map

Hpq(ξ, η) : Bℓ
fib(Bℓfib(H 0

pq(ξ, η),Σ0),Σ1 − Σ0)→ EC2(π),
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where Σ0,Σ1 are the subbundles of E∞×B E∞ obtained by restricting the fiber to

Σ0,Σ1 of §2.3, abusing the notation.

3.7.4. θZ(ξ, η) and θ∗Z(ξ, η). Let g : C∗(ξ0) → C∗+1(ξ0) be a combinatorial propa-

gator for C∗(ξ0). Then

θZ(ξ, η) =M(ξ, η)−
∑

p,q∈P∗(ξ0)

gqpHpq(ξ, η)

defines a (k + 5)-chain of EC2(π). Let ∂∗ = −∂T : C∗+1(−ξ0) → C∗(−ξ0), where
∂T is defined by the matrix transpose of ∂. Then ∂∗ is the boundary operator of the

Morse complex for −ξ0, and g∗ = −gT : C∗(−ξ0) → C∗+1(−ξ0) is a combinatorial

propagator for ∂∗. We define

θ∗Z(ξ, η) =M(−ξ, η)−
∑

p,q

g∗qpHpq(−ξ, η).

Theorem 3.13. Suppose (f, ξ, η) satisfies Assumption 3.5. Then

θ̂Z(ξ, η) = θZ(ξ, η) + θ∗Z(ξ, η)

is a relative (k + 5)-cycle of (EC2(π), ∂EC2(π)) such that

∂θ̂Z(ξ, η) = −sξ − s−ξ.

Hence −θ̂Z(ξ, η) is an admissible propagator.

The minus sign in the formula of ∂θ̂Z(ξ, η) is due to the outward-normal-first

convention for the boundary orientation (Appendix A (A.2)). We shall prove The-

orem 3.13 in the rest of this section.

Proof of Theorem 3.7 assuming Theorem 3.13. If we take −θ̂Z(ξ(j), η) as an admis-

sible propagator, the configuration of each intersection point of (2.1) consists of the

vertices in a mapping from a ~C-graph to E such that each edge is either a vertical

flow-line of M(±ξ(j), η) or of a pair of Z-paths in Hpq(±ξ
(j), η) for some p, q. This

is precisely a Z-graph and then the right hand side is obtained immediately. �

3.8. Iterated integrals of fiberwise spaces. The spaces of Z-paths given in the

definition of θZ can be described by a geometric analogue of K. T. Chen’s iterated

integrals ([Ch]). Let b0 be a base point of B. Let PB denote the space of piecewise

smooth paths γ : [0, 1]→ B such that γ(0) = b0. Let σ : C → PB be a chain from

a compact oriented manifold C with corners. Let φi : Ai → B (i = 1, . . . , k) be

fiberwise spaces over B (§3.6). We define the map σ̂ : C ×∆k−1 → Bk by

(γ, s1, . . . , sk−1) 7→ (γ̄(s1), · · · , γ̄(sk−1), γ̄(1)),

where γ̄ = σ(γ), ∆k−1 = {(s1, . . . , sk−1) ∈ Rk−1 | 0 ≤ s1 ≤ · · · ≤ sk−1 ≤ 1}. Then

the iterated integral is defined by

∫

σ

A1 · · ·Ak = σ̂∗(A1 × · · · ×Ak), or

∫

(γ,s1,...,sk−1)∈C×∆k−1

A1(γ̄(s1))× · · · ×Ak−1(γ̄(sk−1))×Ak(γ̄(1)).

Here, σ̂∗(A1 × · · · × Ak) is the pullback of the fiberwise space φ1 × · · · × φk :

A1 × · · · × Ak → Bk by σ̂. Then the iterated integral is a fiberwise space over

C ×∆k−1.
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Iterated integrals can be extended to matrices whose entries are fiberwise spaces

over B. For matrices A1, A2 of fiberwise spaces over B, its direct product A1 ×A2

is defined by the following matrix of fiberwise spaces over B ×B:

A1(b1)×A2(b2) =
(∑

k

(A1(b1))ik × (A2(b2))kj

)
((b1, b2) ∈ B ×B).

A1 × · · · × Ak etc. can be defined similarly. Iterated integrals of matrices can be

defined by the formula above with this convention.

3.9. Parallel transport. As a 0-chain σ of PB, we take a map σ : {∗} → {α} ⊂
PB that assigns to ∗ a flow-line α : I → B of an h-gradient −η such that α(0) = b0.

Let M ′
pipj

(ξ)α denote the pullback of M ′
pipj

(ξ) → B by α. Put Ωα = ((1 −

δij)M
′
pipj

(ξ)α) and epi = (∅ · · · ∅ {pi} ∅ · · · ∅). For critical loci p, q of ξ, the

set of Z-paths from pα(0) = p ∩ π−1(α(0)) to qα(1) = q ∩ π−1(α(1)) can be written

as
∞∑

k=0

∫

σ

epΩα · · ·Ωα︸ ︷︷ ︸
k

e
T
q . (3.4)

If |pα(0)| = |qα(1)| and α, ξ are generic, then as shown in the following lemma, this

is a finite set and can be counted with signs as in (3.1).

Lemma 3.14. If |pα(0)| = |qα(1)| and α, ξ are generic, then the following identity

holds.

nα(pα(0), qα(1)) = #

∞∑

k=0

∫

σ

epΩ
1
α · · ·Ω

1
α︸ ︷︷ ︸

k

e
T
q (3.5)

Here, Ω1
α is the matrix obtained from Ωα by replacing all the (pi, pj)-entries for

|pi| 6= |pj | with ∅. Moreover, Φα : C∗(ξα(0))→ C∗(ξα(1)) is a chain map.

Proof. In the case |pα(0)| = |qα(1)|, the vertical segments of a Z-path are only i/i-

intersections. Thus the count of (3.4) is equal to the right hand side of (3.5). Since

there are finitely many parameters at which i/i-intersections occur, each of the

integrals on the right hand side is a finite sum and we have

RHS = ep(α(0)) ×
( ∞∑

k=0

∑

s1<s2<···<sk

Ω1
α(α(s1))× · · · × Ω1

α(α(sk))
)
× eq(α(1))

T

∼= ep(α(0)) × (1+Ω1
α(α(t1)))× · · · × (1+Ω1

α(α(tn)))× eq(α(1))
T .

Here, t1, . . . , tn are the times at which i/i-intersections occur, and 0 < t1 < · · · <
tn < 1. Since the count of each term 1 + Ω1

α(α(tj)) is the elementary matrix

corresponding to a handle-slide, the left hand side of the identity is obtained. That

each term 1+Ω1
α(α(tj)) gives a chain map follows from [Wa2, Lemma 9.3]. �

3.10. Iterated integral expressions for Dp(ξ, η) and Aq(ξ, η). Let {p1, . . . , pN}
be the set of all critical loci of f numbered so that f(p1(b0)) > · · · > f(pN (b0))

and put p0 = pN+1 = ℓ∞. We put X = (−ℓ∞ A p1(ξ) · · · A pN (ξ) A ∞(ξ)),

Y = (D∞(ξ) Dp1(ξ) · · · DpN (ξ) − ℓ∞), Ω = ((1 − δij)M
′
pipj

(ξ)), whose

entries are compact in the sense of Propositions 3.9, 3.10 and Remark 3.11. For

a critical point c of η, let σ : Dc(η) → B be the chain given by the natural map

extending the inclusion Dc(η) → B. Moreover, by parametrizing a flow-line from
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c to a terminal point by a parameter that is proportional to the height of h, we

may consider a point of Dc(η) as a point of PB base pointed at c. Then we may

consider σ : Dc(η)→ B as a chain Dc(η)→ PB.

Let P ′B denote the space of piecewise smooth paths γ : [0, 1] → B such that

γ(1) = c. There is a map ι : PB → P ′B induced by reversing paths. For the chain

σ of PB, we write σ′ = ι ◦ σ. We put

D0
p(ξ, η)σ =

∞∑

k=0

∫

σ

epΩ · · ·Ω︸ ︷︷ ︸
k

Y T , A0
q(ξ, η)σ =

∞∑

k=0

∫

σ′

X Ω · · ·Ω︸ ︷︷ ︸
k

e
T
q .

The sums are disjoint unions and finite. A generic point of D0
p(ξ, η)σ represents

a Z-path from p ∩ Fc over a flow-line of −η from c. A generic point of A0
q(ξ, η)σ

represents a Z-path to q ∩ Fc over a flow-line of η to c.

Lemma–Definition 3.15. Let n ≥ 1. For a generic ξ, the space

∫

σ

X Ω · · ·Ω︸ ︷︷ ︸
n

Y T

is a disjoint union of finitely many manifolds with corners, and the closure of its

codimension 1 stratum is the sum of Sn, Tn, Un, Vn given as follows.

Sn =

∫

σ

(∂X) Ω · · ·Ω
︸ ︷︷ ︸

n

Y
T +

n∑

i=1

∫

σ

X Ω · · ·Ω
︸ ︷︷ ︸

i−1

(∂Ω)Ω · · ·Ω
︸ ︷︷ ︸

n−i

Y
T +

∫

σ

X Ω · · ·Ω
︸ ︷︷ ︸

n

(∂Y T )

Tn =

∫

σ

(X ×B Ω)Ω · · ·Ω
︸ ︷︷ ︸

n−1

Y
T +

n−1∑

i=1

∫

σ

X Ω · · ·Ω
︸ ︷︷ ︸

i−1

(Ω×B Ω)Ω · · ·Ω
︸ ︷︷ ︸

n−i−1

Y
T

+

∫

σ

X Ω · · ·Ω
︸ ︷︷ ︸

n−1

(Ω×B Y
T )

Un =X(c) ×

∫

σ

Ω · · ·Ω
︸ ︷︷ ︸

n

Y
T
, Vn =

∫

∂σ

X Ω · · ·Ω
︸ ︷︷ ︸

n

Y
T

(3.6)

We will prove Lemma 3.15 in §3.14.
Proofs of the following two lemmas are similar to Lemma 3.15.

Lemma–Definition 3.16. Let n ≥ 1. For a generic ξ, the space

∫

σ

ep Ω · · ·Ω︸ ︷︷ ︸
n

Y T

is a disjoint union of finitely many manifolds with corners, and the closure of its

codimension 1 stratum is given by the following formula.
n∑

i=1

∫

σ

ep Ω · · ·Ω
︸ ︷︷ ︸

i−1

(∂Ω)Ω · · ·Ω
︸ ︷︷ ︸

n−i

Y
T +

∫

σ

ep Ω · · ·Ω
︸ ︷︷ ︸

n

(∂Y T ) +

∫

σ

(ep ×c Ω)Ω · · ·Ω
︸ ︷︷ ︸

n−1

Y
T

+

n−1∑

i=1

∫

σ

ep Ω · · ·Ω
︸ ︷︷ ︸

i−1

(Ω×B Ω)Ω · · ·Ω
︸ ︷︷ ︸

n−i−1

Y
T +

∫

σ

ep Ω · · ·Ω
︸ ︷︷ ︸

n−1

(Ω×B Y
T )

+

∫

∂σ

ep Ω · · ·Ω
︸ ︷︷ ︸

n

Y
T
.

Let S′
n be the first row, and let T ′

n be the second row.

Lemma–Definition 3.17. Let n ≥ 1. For a generic ξ, the space

∫

σ′

X Ω · · ·Ω︸ ︷︷ ︸
n

e
T
q

is a disjoint union of finitely many manifolds with corners, and the closure of its
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codimension 1 stratum is given by the following formula.
∫

σ′

(∂X) Ω · · ·Ω
︸ ︷︷ ︸

n

e
T
q +

n∑

i=1

∫

σ′

X Ω · · ·Ω
︸ ︷︷ ︸

i−1

(∂Ω)Ω · · ·Ω
︸ ︷︷ ︸

n−i

e
T
q

+

∫

σ′

(X ×B Ω)Ω · · ·Ω
︸ ︷︷ ︸

n−1

e
T
q +

n−1∑

i=1

∫

σ′

X Ω · · ·Ω
︸ ︷︷ ︸

i−1

(Ω×B Ω)Ω · · ·Ω
︸ ︷︷ ︸

n−i−1

e
T
q

+

∫

σ′

X Ω · · ·Ω
︸ ︷︷ ︸

n−1

(Ω×c e
T
q ) +

∫

∂σ′

X Ω · · ·Ω
︸ ︷︷ ︸

n

e
T
q .

Let S′′
n be the first row, and let T ′′

n be the second row.

Lemma–Definition 3.18. For a generic ξ, the spaces

∫

σ

XY T ,

∫

σ

epY
T ,

∫

σ′

Xe
T
q

are disjoint unions of finitely many manifolds with corners, and the closure of their

codimension 1 strata are given by the following formulas.

∂

∫

σ

XY
T =

∫

σ

((∂X)Y T +X(∂Y T )) +

∫

σ

X ×B Y
T +X(c)×

∫

σ

Y
T +

∫

∂σ

XY
T

∂

∫

σ

epY
T =

∫

σ

ep(∂Y
T ) + ep ×c Y

T +

∫

∂σ

epY
T

∂

∫

σ′

Xe
T
q =

∫

σ′

(∂X)eT
q +X ×c e

T
q +

∫

∂σ′

Xe
T
q

We denote the four terms in the first row by S0, T0, U0, V0, the first two terms in

the second row by S′
0, T

′
0, and the first two terms in the third row by S′′

0 , T
′′
0 .

The following proposition follows from Propositions 3.8, 3.9, 3.10.

Proposition 3.19. There are natural stratification preserving diffeomorphisms

∂X ∼= X ×B Ω, ∂ Y T ∼= Ω×B Y
T ,

∂Ω ∼= Ω×B Ω, ∂M
∞
2 (ξ) ∼= sξ +X0 ×B Y

T
0 .

They induce strata preserving diffeomorphisms Sn ∼= Tn+1, S
′
n
∼= T ′

n+1, S
′′
n
∼= T ′′

n+1

for n ≥ 0.

Proof of Proposition 3.12 assuming Lemmas 3.15–3.18 and Proposition 3.19. When

σ is the fundamental cycle of B, put

M
Z
2 (ξ, η)σ =

{
M

∞
2 (ξ) +

∞∑

n=0

∫

σ

X Ω · · ·Ω︸ ︷︷ ︸
n

Y T
}/
∼ .

Here, we identify the strata by the diffeomorphisms Sn ∼= Tn+1 for n ≥ 0 of Propo-

sition 3.19. Since any Z-path can be shrinked to a point by reducing the num-

ber of vertical segments, this gives a natural path-connected compactification of

M Z
2 (ξ, η). �

Let Dp(ξ, η)σ (resp. Aq(ξ, η)σ) denote the pullback of the fiberwise spaces

Dp(ξ, η) (resp. Aq(ξ, η)) over B by σ. The following proposition can be proved

by an argument similar to the proof of Proposition 3.12.

Proposition 3.20. There are canonical bijections Dp(ξ, η)σ ≈ D0
p(ξ, η)σ/∼ and

Aq(ξ, η)σ ≈ A0
q(ξ, η)σ/∼. Here, we identify the strata by the diffeomorphisms S′

n
∼=

T ′
n+1, S

′′
n
∼= T ′′

n+1 for n ≥ 0 of Proposition 3.19.
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3.11. Orientations of Dp(ξ, η)σ and Aq(ξ, η)σ. We shall give an orientation con-

vention for the spaces Dp(ξ, η)σ , Aq(ξ, η)σ of Z-paths on the chain σ : Dc(η)→ B.

Let γ, γ′ be points of codimension 0 strata of Dp(ξ, η)σ,Aq(ξ, η)σ respectively.

3.11.1. Nondegenerate strata of Dp(ξ, η)σ and Aq(ξ, η)σ. Suppose that the vertical

segments of γ between critical loci are only i/i-intersections. If σ1, . . . , σr are the

i/i-intersections included in γ and if the terminal vertical segment of γ is of Dp′(ξ),

then we define the orientation of Dp(ξ, η)σ at γ as follows.

o(Dp(ξ, η)σ)γ = ε(σ1)ε(σ2) · · · ε(σr) o(Dp′ (ξ))γ̄(1),

where ε(σi) is the same as that given in §3.4. Suppose that the vertical seg-

ments of γ′ between critical loci are only i/i-intersections. If σ1, . . . , σr are the

i/i-intersections in γ′ and the initial vertical segment of γ′ is of Aq′(ξ), then we

define the orientation of Aq(ξ, η)σ at γ′ as follows.

o(Aq(ξ, η)σ)γ′ = ε(σ1)ε(σ2) · · · ε(σr) o(Aq′(ξ))γ̄′(0).

With the conventions given here, one can check that the orientations on S′
n
∼= T ′

n+1

and S′′
n
∼= T ′′

n+1 in the gluings in Proposition 3.20 are consistent.

3.11.2. Degenerate strata of Dp(ξ, η)σ and Aq(ξ, η)σ. Suppose that the vertical

segments of γ between critical loci consist of one i + 1/i-intersection τ and i/i-

intersections σ1, . . . , σr . Suppose that the terminal vertical segment of γ is of

τ ′ = Dp′ (ξ). Then we define the orientation of Dp(ξ, η)σ at γ by

o(Dp(ξ, η)σ)γ = ε(σ1)ε(σ2) · · · ε(σr) o(τ, τ
′) (3.7)

for some orientation o(τ, τ ′) determined by the pair τ , Dp′(ξ). We define o(τ, τ ′) as

follows.

Suppose that γ goes within α∗E for a flow-line α : I → B of −η with α(0) = c,

and that the vertical segments τ, τ ′ are located in the fibers over u0, v0 ∈ Imα.

We consider that τ depends smoothly on a parameter u in a neighborhood U of

u0 ∈ B and write τ = τ(u). Then K =
⋃
u∈U τ(u) is a subbundle of π−1U → U ,

which has a local parametrization (u, z) 7→ K(u, z), (u, z) ∈ U × (−ε, ε). Similarly,

we write τ ′ = τ ′(v) for a parameter v in a neighborhood V of v0 ∈ B, and we

obtain a subbundle L =
⋃
v∈V τ

′(v) ⊂ π−1V , which has a local parametrization

(v, w) 7→ L(v, w), (v, w) ∈ V × (−ε, ε). Since γ is a point of a codimension 0

stratum of Dp(ξ, η)σ, two generic points u, v on Imα are related by v = ΦT−η(u)

for T > 0. We can take, as a neighborhood of γ in Dp(ξ, η)σ , the image of the

embedding µ : U × (−ε, ε)× (T0 − ε, T0 + ε)× (−ε, ε)→ π−1U × π−1V given by

µ(u, z, T, w) = (u,K(u, z))× (ΦT−η(u), L(Φ
T
−η(u), w)),

and the orientation of Imµ gives o(τ, τ ′). The Jacobian matrix Jµ of µ can be

modified by elementary column operations into the following form.



1 0 O O
O 0 ∂

∂z
K(u,z) O

∂
∂u

ΦT
−η(u) −η O O

O 0 O ∂
∂w
L(ΦT

−η(u),w)




where ∂
∂u
K(u, z) etc. denotes the Jacobian matrix of K(u, z) etc. with respect to

u. The column vectors of the matrix correspond to tangent vectors of Imµ. The
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left half of the matrix corresponds to a basis of a tangent space of M2(η), and the

right half corresponds to bases of tangent spaces of K,L. This gives a direct sum

decomposition of T(u,z,T,w)Imµ.

Based on this observation, we define the coorientation o∗(τ, τ ′) = ∗ o(τ, τ ′) of

Imµ in π−1U × π−1V ≈ (U × F ) × (V × F ) = (U × V ) × (F × F ) by the tensor

product

o∗(τ, τ ′) = o∗U×V (M2(η)) ⊗ (o∗E(K) ∧ o∗E(L)). (3.8)

Since M2(η) is the image of the embedding ϕ : B × (0,∞) → B × B, ϕ(u, T ) =

(u,ΦT−η(u)), we may define

o(M2(η))(u,v) = dϕ∗(o(B)u ∧ dT ), o∗U×V (M2(η))(u,v) = ∗ o(M2(η))(u,v),

where ∗ is the Hodge star operator and dϕ∗ is the map induced by dϕ under the

identification T (B × (0,∞)) = T ∗(B × (0,∞)) by an orthonormal basis. If τ is a

flow-line between critical loci t, t′, then o∗E(K), o∗E(L) can be given as follows.

o∗E(K)b = o∗E(Dt(ξ))b ∧ o
∗
E(At′(ξ))b, o∗E(L) = o∗E(Dp′ (ξ)).

Similarly, o(Aq(ξ, η)σ)γ′ , o(H 0
pq(ξ, η)σ)γ can be defined by the same formula as

(3.8), letting τ ′ = Aq′(ξ) for Aq(ξ, η)σ, τ
′ = Aq′(ξ) ×B Dp′(ξ), o

∗
E(L)(x,y) =

o∗E(Aq′(ξ))x ∧ o∗E(Dp′(ξ))y for H 0
pq(ξ, η)σ, respectively.

3.11.3. Preliminary lemmas concerning the orientation of ∂Dp(ξ, η)σ and ∂Aq(ξ, η)σ.

According to (3.8), the coorientation of the stratum of Z-paths induced on a path

in ∂M 2(η) is given by the tensor product of the coorientation of ∂M 2(η) and

o∗E(K) ∧ o∗E(L). Since the natural map ∂M 2(η) → B × B is locally an immersion

near a generic point, the coorientation of ∂M 2(η) in B×B at a generic point makes

sense and it is induced from that of M 2(η) as follows.

Lemma 3.21 ([Wa2, Lemma 5.4]). Suppose that a flow-line of ∂M 2(η) between

u, v ∈ B passes through one critical point r ∈ P∗(η). Then we have

o∗B×B(∂M 2(η))(u,v) = (−1)(|r|+1)dimBo∗B(Ar(η))u ∧ o
∗
B(Dr(η))v.

In particular, when |r| = dimB, the sign is (−1)(|r|+1)dimB = 1. For a critical

point m of η, let Dm(η),A m(η) denote the compactifications of Dm(η),Am(η)

obtained by adding singular flow-lines passing through several critical points (e.g.,

[BH, Wa3]). If a flow-line γ ∈ Dm(η) of −η that starts from m has one singular

point at a critical point r (|r| = |m| − 1), then γ is determined uniquely by a point

b on a flow-line between m and r, and the terminal point a = γ(1). Similarly, if a

flow-line γ ∈ A m(η) of −η that ends at m has one singular point at a critical point

r (|r| = |m|+1), then γ is determined uniquely by a point b on a flow-line between

r and m, and the initial point a = γ(0). The orientations induced on the strata of

such singular flow-lines are as follows.

Lemma 3.22 ([Wa2, Lemma 5.1, 5.2]).

o(∂Dm(η))γ = (−1)|r|ε(m, r)b o(Dr(η))a, o(∂A m(η))γ = −ε(r,m)b o(Ar(η))a.
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3.12. Boundaries of chains of Z-paths. In the following, we assume that (f, ξ, η)

satisfies Assumptions 3.1 and 3.5. Here, we let c to be the maximal point of the

Morse function h : B → R. Here, we denote the chains ev2 : Dp(ξ, η) → E∞, ev1 :

Aq(ξ, η)→ E∞ by Dp(ξ, η), Aq(ξ, η), abusing the notation. Let C∗ = C∗(ξc) = ZP∗

be the Morse complex for the v-gradient ξc and let g : C∗ → C∗+1 be a combinatorial

propagator for C∗. Let C∗ be the graded Z-module defined by Ck = Ck for k 6= 0, 4,

C4 = C4⊕〈ℓ+∞〉, and C0 = C0⊕〈ℓ−∞〉. We define a Z-linear map ∂ : C∗ → C∗−1 by

∂p =





∂p if p ∈ P∗ and |p| 6= 1,

∂p+#M ′
p∞(ξc) ℓ

−
∞ if |p| = 1∑

q∈P3
#M ′

∞q(ξc) q if p = ℓ+∞
0 if p = ℓ−∞

Then (C∗, ∂) can be considered as the Morse complex of a ‘singular’ gradient on

S4 and one can show that H∗(C∗, ∂) ∼= H∗(S
4;Z) ∼= Z ⊕ Z by perturbing the sin-

gular gradient on S4 slightly. We put P ∗ = P∗ ∪ {ℓ−∞, ℓ
+
∞}, Dℓ+∞(ξ, η)σ = D∞(ξ),

Aℓ−∞(ξ, η)σ = A ∞(ξ)¶, and Dℓ−∞(ξ, η)σ = Aℓ+∞(ξ, η)σ = ℓ∞. The following proposi-

tion will be used in §5.5.

Proposition 3.23. Let σ be the fundamental cycle of B and let p be an element of

P ∗. Then the following identities for chains in E∞ hold modulo degenerate chains.

∂Dp(ξ, η)σ =
∑

r∈P |p|−1

〈∂p, r〉Dr(ξ, η)σ, ∂Aq(ξ, η)σ =
∑

r∈P |q|+1

Ar(ξ, η)σ〈∂r, q〉

Proof. In the iterated integral description of Dp of Proposition 3.20, the first two

terms in S′
n (Lemma 3.16) and the two terms in T ′

n+1 cancel each other by Propo-

sition 3.19. The following holds.

∂Dp(ξ, η)σ =
∞∑

k=0

∫

σ

(ep ×c Ω)Ω · · ·Ω︸ ︷︷ ︸
k−1

Y T +
∞∑

k=0

∫

∂σ

epΩ · · ·Ω︸ ︷︷ ︸
k

Y T

Here, the signs are determined by using (3.7), (3.8), and Lemma 3.21 (the case

|r| = dimB in the notation of Lemma 3.21). The first term in the right hand

side is
∑

r

〈∂p, r〉Dr(ξ, η)σ, and by Lemma 3.22, the second term is fibered over

¶Modulo degenerate chains, this definition of D
ℓ
+
∞
(ξ, η)σ (resp. A

ℓ
−
∞
(ξ, η)σ) is the same as the

space of Z-paths from ℓ+∞ (resp. the space of inverse Z-paths to ℓ−∞).
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∂Dc(η) = (−1)|c|
∑

c′

M
′
cc′(η)×Dc′(η). Thus, considered modulo degenerate chains,

∞∑

k=0

∫

∂σ

epΩ · · ·Ω︸ ︷︷ ︸
k

Y T = (−1)|c|
∑

c′

∑

k1,k2≥0

∫

M ′
cc′

ep Ω · · ·Ω︸ ︷︷ ︸
k1

×

∫

Dc′

Ω · · ·Ω︸ ︷︷ ︸
k2

Y T

= (−1)|c|
∑

c′

∑

p′

|p′|=|p|

(∑

k1≥0

∫

M ′
cc′

epΩ · · ·Ω︸ ︷︷ ︸
k1

e
T
p′

)
×
(∑

k2≥0

∫

Dc′

ep′ Ω · · ·Ω︸ ︷︷ ︸
k2

Y T
)

= (−1)|c|
∑

c′

〈∂ηc, c
′〉
(∑

k2≥0

∫

Dc′

ep Ω · · ·Ω︸ ︷︷ ︸
k2

Y T
)

= (−1)|c|
∑

c′

〈∂ηc, c
′〉Dp(ξ, η)Dc′

= (−1)|c|Dp(ξ, η)∂σ = 0.

Here, we used Lemma 3.14 and Φα = 1 of Assumption 3.5 (2) in the third equality.

The proof for ∂Aq is similar. �

Let H 0
pq(ξ, η)σ = Aq(ξ, η)σ ×B Dp(ξ, η)σ be the pullback of the fiberwise space

H 0
pq(ξ, η) over B by σ : Dc(η) → B. By an argument similar to the proof of

Proposition 3.23, the following proposition is obtained.

Proposition 3.24. If ∂σ = 0, then ∂H 0
pq(ξ, η)σ, considered as a chain of E∞ ×B

E∞, is given by the following formula modulo degenerate chains.

∂Aq(ξ, η)σ ×B Dp(ξ, η)σ + Aq(ξ, η)σ ×B ∂Dp(ξ, η)σ

=
∑

r∈P∗
|r|=|q|+1

〈∂r, q〉Ar(ξ, η)σ ×B Dp(ξ, η)σ +
∑

s∈P∗
|s|=|p|−1

〈∂p, s〉Aq(ξ, η)σ ×B Ds(ξ, η)σ

Let g be a combinatorial propagator for C∗(ξc) and let g : C∗ → C∗+1 be the

Z-linear map defined by g(p) = g(p) for p ∈ P∗ and g(ℓ−∞) = 0. Then ∂g + g∂ is

not the identity. More precisely, for |p| = 1, 2, 3, (∂g + g∂)(p) = (∂g + g∂)(p) = p,

and for |p| = 0,

(∂g + g∂)(p) = ∂g(p) =

{
p+ ℓ−∞ (p 6= ℓ−∞)

0 (p = ℓ−∞)

Indeed, for p 6= ℓ−∞, |p| = 0, we have ∂g(p) = ∂g(p), where g(p) is a 1-chain with

∂g(p) = p. Hence g(p) has another end at ℓ−∞ and ∂g(p) = p− (−ℓ−∞) = p+ ℓ−∞ by

the orientation convention of Remark 3.11. For |p| = 4,

(∂g + g∂)(p) = g∂(p) =

{
p (p 6= ℓ+∞)∑

p′∈P4
p′ (p = ℓ+∞)

where the last identity for p = ℓ+∞ can be obtained by the identities ∂(−ℓ+∞ +∑
p′∈P4

p′) = 0 and g∂(ℓ+∞) =
∑

p′∈P4
g∂(p′) =

∑
p′∈P4

p′, by the orientation con-

vention of Remark 3.11 again.

Let Trg : S∗(E
∞ ×B E∞) ⊗ C∗(ξc)

⊗2 → S∗(E
∞ ×B E∞) be defined for τ ∈

S∗(E
∞ ×B E

∞), x, y ∈ P∗(ξc) by

Trg(τ ⊗ x⊗ y) = −〈g(x), y〉τ.
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Lemma 3.25. Let σ be the fundamental cycle of B and let θ0 be the chain of

E∞ ×B E∞ defined by

θ0(ξ, η) =M0(ξ) + Trg

( ∑

p,q∈P∗(ξc)

H
0
pq(ξ, η)σ q ⊗ p

)
,

where M0(ξ) is the natural map M ∞
2 (ξ) → E∞ ×B E∞ and the sum is taken for

p, q ∈ P∗(ξc) such that |p| = |q| + 1. Then the following identity holds modulo

degenerate chains.

∂θ0(ξ, η) = ±∆E − E
∞ ×B ℓ∞ − ℓ∞ ×B E

∞.

Proof. By Proposition 3.24, Trg

(∑
p,q ∂H 0

pq(ξ, η)σ q ⊗ p
)
can be rewritten as

Trg

( ∑

p,q∈P∗

∑

r∈P∗

Ar ×B Dp 〈∂r, q〉q ⊗ p
)
+Trg

( ∑

p,q∈P∗

∑

s∈P ∗

Aq ×B Ds 〈∂p, s〉q ⊗ p
)

=Trg

( ∑

p,q∈P ∗

∑

r∈P∗

Ar ×B Dp 〈∂r, q〉q ⊗ p
)
+Trg

( ∑

p,q∈P ∗

∑

s∈P ∗

Aq ×B Ds 〈∂p, s〉q ⊗ p
)

=Trg∂+∂g

( ∑

p,r∈P∗

Ar ×B Dp r ⊗ p
)
= −

∑

p,r∈P∗

〈(g∂ + ∂g)(r), p〉Ar ×B Dp,

(3.9)

where A∗ = A∗(ξ, η)σ and D∗ = D∗(ξ, η)σ . For 1 ≤ |p| = |r| ≤ 3, we have

〈(g∂ + ∂g)(r), p〉 = 〈r, p〉. For |p| = |r| = 0, we have (g∂ + ∂g)(r) = r + ℓ−∞ if

r 6= ℓ−∞, and (g∂ + ∂g)(r) = 0 if r = ℓ−∞. Hence the sum of terms for |p| = |r| = 0

in (3.9) is

−
∑

r∈P0

∑

p∈P 0

〈r + ℓ−∞, p〉Ar ×B Dp = −
∑

r∈P0

(Ar ×B Dr + Ar ×B Dℓ−∞)

=−
∑

r∈P0

Ar ×B Dr −
(∑

r∈P0

Ar

)
×B ℓ∞.

For |p| = |r| = 4, we have (g∂+ ∂g)(r) = r if r 6= ℓ+∞, and (g∂+ ∂g)(r) =
∑
p′∈P4

p′

if r = ℓ+∞. Hence the sum of terms for |p| = |r| = 4 in (3.9) is

−
∑

r∈P4

∑

p∈P 4

〈r, p〉Ar ×B Dp −
∑

p∈P 4

〈 ∑

p′∈P4

p′, p
〉
Aℓ+∞ ×B Dp

=−
∑

r∈P4

Ar ×B Dr − ℓ∞ ×B
(∑

p∈P4

Dp

)
.

Hence (3.9) is equal to

−
∑

r∈P∗

Ar ×B Dr −
(∑

r∈P0

Ar

)
×B ℓ∞ − ℓ∞ ×B

(∑

p∈P4

Dp

)
. (3.10)

Here, we decompose as σ =
∑

i σi, where σi is the restriction of σ on the closure

of a codimension 0 stratum in the conic stratification of Db0(η) of Lemma 3.2. Let

bi be a base point of σi in the interior of the image, and let ψi : C∗(ξ0)→ C∗(ξbi)

denote the parallel transport defined by Z-paths on a flow-line of −η between b0
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and bi. Let (X0)σi
, (Y0)σi

be the pullbacks of the fiberwise spaces X0, Y0 over B

respectively by σi. Then the first term in (3.10) above can be rewritten as follows.
∑

i

Trψi◦id◦ψ
−1
i

(∑

pi,qi

A qi(ξ, η)σi
×B Dpi(ξ, η)σi

qi ⊗ pi
)

=
∑

i

Trid

(∑

pi,qi

A qi(ξ, η)σi
×B Dpi(ξ, η)σi

qi ⊗ pi
)

= −
∑

i

(X0)σi
×B (Y0)

T
σi

= −X0 ×B Y
T
0 .

Then we use the identity ∂M ∞
2 (ξ) ∼= −sξ+X0×BY T0 −A ∞(ξ)×Bℓ∞−ℓ∞×BD∞(ξ)

of Proposition 3.19, where the signs are correct by Lemma 3.21 and the convention

(see also the proof of [Wa3, Proposition 5.5]), and obtain ∂θ0(ξ, η) = ±∆E −(∑
r∈P 0

Ar

)
×B ℓ∞− ℓ∞×B

(∑
p∈P 4

Dp

)
= ±∆E−E∞×B ℓ∞− ℓ∞×BE∞. This

completes the proof. �

3.13. Proof of Theorem 3.13. By the definition of θZ(ξ, η), we have

∂θZ(ξ, η) = ∂M(ξ, η) + Trg

(∑

p,q

∂Hpq(ξ, η)σq ⊗ p
)
.

We define Lpiqi(ξ) = Dpi(ξ)×E∞ A qi(ξ) with respect to the natural maps Dpi(ξ)→

E∞ and A qi(ξ) → E∞. By ∂M(ξ, η) = −sξ +X0 ×B Y T0 (Proposition 3.19) and

the argument in the proof of Lemma 3.25, ∂θZ(ξ, η) can be rewritten as follows.

− sξ +X0 ×B Y
T
0 −X0 ×B Y

T
0 +

∑

i

Trψigψ
−1
i

(∑

pi,qi

∂Hpiqi(ξ, η)σi
qi ⊗ pi

)

= −sξ −
∑

i

Trψigψ
−1
i

(∑

pi,qi

ST v(Lpiqi)σi
qi ⊗ pi

)
.

The last Tr term in the second row corresponds to the collision of two endpoints of a

separated segment that occurs on a flow-line between pi and qi. This term and the

corresponding term in ∂θ∗Z(ξ, η) cancel each other since o∗E(Aqi(ξ))z∧o
∗
E(Dpi (ξ))z =

(−1)|qi|(4−|pi|)o∗E(Dpi(ξ))z ∧ o
∗
E(Aqi(ξ))z = o∗E(Dpi(ξ))z ∧ o

∗
E(Aqi(ξ))z implies the

equivalence of the coorientations of ST v(Lpiqi) and ST v(Lqipi) in ST v(E), and

since the coefficients of them are given by (ψigψ
−1
i )qipi and −(ψigψ

−1
i )Tpiqi =

−(ψigψ
−1
i )qipi , respectively. Hence we have ∂θZ(ξ, η) + ∂θ∗Z(ξ, η) = −sξ − s−ξ. �

3.14. Transversality: Proof of Lemma 3.15. By the definition of iterated in-

tegrals, each term of

∫

σ

X Ω · · ·Ω︸ ︷︷ ︸
n

Y T consists of spaces of the form of the pullback

in the following diagram:

A q1 ×M ′
q1q2
× · · · ×M ′

qnqn+1
×Dqn+2

φ1×···×φn+2

��

Dc(η) ×∆n+1

σ̂
// Bn+2

(3.11)

where σ̂(γ; s1, . . . , sn+1) = (γ̄(s1), . . . , γ̄(sn+1), γ̄(1)). We shall prove that σ̂ and

φ1 × · · · × φn+2 can be made strata transversal ([BT, Appendix] for the definition
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of strata transversality). Note that since σ̂ cannot be perturbed in arbitrary direc-

tion in the space of smooth maps, the transversality is not obvious from Thom’s

transversality theorem.

For each point y = (y1, . . . , yn+2) = (γ̄(s1), · · · , γ̄(sn+1), γ̄(1)) ∈ Bn+2 of the

image of σ̂, we prove that TyB
n+2 = Ty1B⊕· · ·⊕Tyn+2B is spanned by the images

of dσ̂ and dφ1⊕ · · ·⊕ dφn+2. It suffices to prove that for each j, the subspace TyjB

of TyB
n+2 is spanned by vectors of these images. In the following, we assume that

σ : Dc(η) → B and the stratum B(1) of i/i-intersections are strata transversal,

without loss of generality.

Case 1: Suppose that M ′
qjqj+1

is the moduli space of i+ℓ/i-intersection (ℓ ≥ 1) for

all j and that y is in the image from the codimension 0 stratum of A q1 ×M ′
q1q2
×

· · · ×M ′
qnqn+1

× Dqn+2 . In this case, φ1 × · · · × φn+2 is locally a submersion, and

hence transversal to σ̂.

Case 2: Suppose that either M ′
qj−1qj

is the space of i/i-intersections for some j,

or y comes from a point of A q1 ×M ′
q1q2
× · · · ×M ′

qnqn+1
×Dqn+2 that includes a

point of codimension 1 stratum of M ′
qj−1qj

of i+1/i-intersections. Since the latter

is equivalent to the former, we need only to consider the former case. Note that

by Lemma 3.2 the strata of B(1) of codimension ≥ 2 are transversal intersections

of several codimension 1 strata. So it suffices to check the transversality at a

point of each codimension 1 stratum gathering around a codimension ≥ 2 stratum.

Since B(1) consists of immersed codimension 1 submanifolds in B, the image of

dφj : TM ′
qj−1qj

→ TB is a codimension 1 subbundle over the image of φj . Since

we assume that σ and B(1) are strata transversal, B
(1)
σ = σ−1(B(1)) consists of

immersed codimension 1 submanifolds of Dc(η) and intersects ∂Dc(η) transversally.

The image of dσ̂ in TyB
n+2 is spanned by (dγ̄

ds
)y1 , . . . , (

dγ̄
ds
)yn+2 , and the tuple of

tangent vectors that a perturbation of γ̄ along Dc(η) induces on Ty1B, . . . , Tyn+2B.

Now we assume that M ′
qj−1qj

is a space of i/i-intersections. If φj : M ′
qj−1qj

→ B

and γ̄ is transversal at yj, then TyjB is spanned by Im dφj and ( dγ̄
dsj

)yj . If such a

transversality condition is satisfied for each i/i-intersection over y, then it follows

that σ̂ and φ1×· · ·×φn+2 are transversal at y. If φj and γ̄ are not transversal at yj ,

then we need extra work. In this case, ( dγ̄
dsj

)yj is included in the image of dφj . Since

B(1) consists of codimension 1 strata of B, TyjB
(1) is the image of dφj in TyjB. The

remaining 1-dimension needs to be taken from a direction in TyjDc(η) − TyjB
(1)
σ .

We shall see below that such a direction can be obtained by a perturbation of γ̄.

If, for each ℓ 6= j, φℓ and γ̄ are transversal at yℓ (e.g., Figure 6 (1)), then the proof

is easy. For a vector ν̄j in TyjDc(η)−TyjB
(1)
σ , choose a tangent vector ν ∈ TγDc(η)

that induces ν̄j in TyjDc(η). Namely, if we put ν̄ = dσ̂(ν) = (ν̄1, . . . , ν̄n+2), then−ν̄ℓ
can be written as a linear combination of a vector in Im dφℓ and ( dγ̄

dsℓ
)yℓ since dφℓ and

γ̄ are transversal at yℓ. Then we may obtain ν̄ −
∑

ℓ 6=j ν̄ℓ = (0, . . . , 0, ν̄j, 0, . . . , 0).

This implies the transversality at y.

When there is ℓ 6= j such that φℓ and γ̄ is not transversal at yℓ too (e.g., Figure 6

(2)), one cannot construct the correction term −ν̄ℓ in arbitrary direction in TyℓB as

the span of Im dφℓ and ( dγ̄
dsℓ

)yℓ , but only in TyℓB
(1). If TyℓB

(1)
σ is carried by the flow
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Figure 6. The case where γ̄ is not transversal to B
(1)
σ

of η to TyjB
(1)
σ , then the argument above does not work. Namely, if γ̄ is perturbed

by moving in a direction independent from TyjB
(1)
σ , then one cannot construct a

vector in the image of dφℓ that cancels ν̄ℓ ∈ TyℓB. We shall see that such a situation

can be avoided by perturbing ξ. For the critical point c of h, put a0 = h(c). For

a small ε > 0, put Q = σ−1(h−1(a0 − ε)), which is a codimension 1 submanifold

of Dc(η). Without loss of generality, we may assume that h(B
(1)
σ ) ⊂ (−∞, a0 − ε),

namely, B
(1)
σ lies under Q with respect to the height of h. If B

(1)
σ is carried upward

by the flow of η, then B
(1)
σ − ∂Dc(η) arrives at Q. This gives a piecewise smooth

map ̟ : B
(1)
σ − ∂Dc(η)→ Q.

Now we assume that γ̄(1) ∈ Dc(η) for γ̄ as above. In this case, γ̄ is nonsingular

and intersects Q at a point v in the image of ̟. By assumption, v is a critical value

of ̟ and there are at least two singular points, including yj , yℓ, in the preimage

̟−1(v) ⊂ B
(1)
σ . It is known that when dimX = dimY , finite maps X → Y

between manifolds is residual in C∞(X,Y ) ([GG, Theorem VII.2.6 (p.169)]). If a

smooth map X → Y is finite, it is “finite-to-one” on compact subsets of X ([GG,

Proposition VII.2.2 (p.167)]). Hence after a small perturbation of ξ which may

perturb B
(1)
σ , we may assume that the number of singular points in the compact

set ̟−1(w) ⊂ B
(1)
σ is finite for every point w in the image of ̟. Under this

assumption, the preimage̟−1(O) of a small neighborhoodO of v ∈ Q−̟(∂Dc(η))

consists of finitely many sheets. Let U1, . . . , Ur be the sheets of ̟−1(O) that have

singularities mapped by ̟ to v. By perturbing B
(1)
σ further inside U1, . . . , Ur, we

may assume that the restrictions of ̟ on U1, . . . , Ur is transversal at v. By an

inductive argument with a locally finite open cover {Oα} of the paracompact set of

multiple singular values in Q−̟(∂Dc(η)), i.e., the values v of ̟ with at least two

singular points in ̟−1(v), the transversality of ̟ between singularities at every

multiple singular value can be proved.

For the resultingB
(1)
σ , if the singular points of̟ in {y1, . . . , yn+2} are yj , yℓ1 , . . . , yℓr ,

then d̟yℓ1
(Tyℓ1B

(1)
σ )∩ · · · ∩ d̟yℓr

(TyℓrB
(1)
σ ) and d̟yj are transversal in TvQ. We

take a nonzero vector δ in d̟yℓ1
(Tyℓ1B

(1)
σ )∩ · · · ∩ d̟yℓr

(TyℓrB
(1)
σ ). Then a pertur-

bation of γ̄ that induces δ on TvQ induces a tangent vector µ̄ = (µ̄1, . . . , µ̄n+2) ∈
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TyB
n+2. By the assumption on δ, we see that µ̄ℓ1 , . . . , µ̄ℓr is tangent to B

(1)
σ ,

and µ̄j is independent from TyjB
(1)
σ . Hence for every ℓ 6= j, we may obtain

µ̄′ = (0, . . . , 0, µ̄j, 0, . . . , 0) by adding vectors in TyℓB
(1)
σ = Im dφℓ. Since µ̄j and

TyjB
(1)
σ spans TyjB, this proves the desired transversality at y under every multiple

singular value in Q −̟(∂Dc(η)).

Next we assume that γ̄(1) lies in the image of ∂σ : ∂Dc(η) → B, in which

case γ̄ may pass through critical points of h on the way. At a critical point cj of

h that γ̄ passes, take a level surface Qj located just below cj. Then applying the

argument given above for c = cj and Q = Qj , we may assume that the intersections

between singularities of ̟ are transversal in Qj by perturbing B
(1)
σ . Also, by

applying similar argument for M ′
ccj

(η) with the Q just below c, we may assume

a similar transversality condition for M ′
ccj

(η). Hence the transversality at y on a

singular flow-line from M ′
ccj

(η)×Dcj(η) is proved. Since transversality is a generic

condition, we may then assume that the transversality of (3.11) is satisfied on a

small neighborhood of γ̄ in Dc(η). This proves the transversality of (3.11) on the

codimension ≤ 1 strata of Dc(η). The result for higher-codimension strata can be

proved inductively in a similar way.

Now, we have proved that σ̂ and φ1×· · ·×φn+2 are strata transversal. Since each

entry of the iterated integral

∫

σ

X Ω · · ·Ω︸ ︷︷ ︸
n

Y T is the fiber product of σ̂ and φ1 ×

· · · × φn+2, its codimension 1 stratum is given by the fiber product of codimension

1 stratum and a codimension 0 stratum or vice versa ([BT, Proposition A.5]). Sn
of (3.6) comes from ∂(X×Ω× · · · × Ω︸ ︷︷ ︸

n

×Y T ), Tn+Un comes from C×∂∆n+1, and

Vn comes from ∂C ×∆n+1. �

4. Cycles in BDiff(D4, ∂) associated to graphs

We shall construct (D4, ∂)-bundles by an analogue of Goussarov–Habiro’s graph-

clasper surgery that would be detected by Ẑadm
k , and shall review some fundamental

properties of the surgery.

4.1. Borromean rings (e.g., [Ma]). If d is a positive integer and if p, q, r are

integers such that 0 < p, q, r < d, p + q + r = 2d − 3, then the Borromean rings

is defined as the three-component link B(p, q, r)d : Sp ∪ Sq ∪ Sr → Rd, whose

components are given by the submanifolds of Rd = Rd−p−1 × Rd−q−1 × Rd−r−1 of

points (x, y, z) such that

|y|2

4 + |z|2 = 1, x = 0 or

|z|2

4 + |x|2 = 1, y = 0 or

|x|2

4 + |y|2 = 1, z = 0.

Standard (normal) framings for the Borromean rings is given as follows. Let

n1, n2, n3 be the outward unit normal vector field on Sp ⊂ Rp+1, Sq ⊂ Rq+1,

Sr ⊂ Rr+1, respectively. Then the normal framings on the three components
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are given by ( ∂
∂x1

, . . . , ∂
∂xd−p−1

, n1), ( ∂
∂y1

, . . . , ∂
∂yd−q−1

, n2), ( ∂
∂z1

, . . . , ∂
∂zd−r−1

, n3),

respectively.

A long version of the (framed) Borromean rings is obtained as follows. We call an

affine embedding Rp → Rd a standard inclusion. Given a link L : Rp∪Rq∪Rr → Rd

consisting of disjoint standard inclusions, and a Borromean rings B(p, q, r)d that is

disjoint from L, we join the images of Rp and Sp, Rq and Sq, Rr and Sr, by three

mutually disjoint arcs that are also disjoint from components of the links L and

B(p, q, r)d except their endpoints. Then replace the arcs with thin tubes Sp−1 × I,
Sq−1× I, Sr−1× I to construct connected sums. The result is a (naturally framed)

long link B(p, q, r)d : R
p ∪Rq ∪Rr → Rd. One may also consider partial connected

sum, which joins B(p, q, r)d to a link of standard inclusions with less components

and denote the resulting embedding byB(p, q, r)d etc. Long Borromean embeddings

Dp ∪Dq ∪Dr → Dd such that the preimage of ∂Dd is ∂Dp ∪ ∂Dq ∪ ∂Dr can also

be defined similarly and we denote them by the same symbols as above.

Let Embf(Dp ∪ Dq ∪ Dr, Dd) denote the space of (normally) framed long em-

beddings such that the boundaries are all mapped to ∂Dd. Its subspace consisting

of embeddings that are properly isotopic to the standard inclusion is denoted by

Embf0(D
p ∪ Dq ∪ Dr, Dd). The subspace of Embf(Dp ∪ Dq ∪ Dr, Dd) of embed-

dings such that some components are standard near the boundaries is denoted like

Embf(Dp ∪Dq ∪Dr, Dd), where the underlined component(s) is standard near the

boundary.

4.2. Vertex-oriented arrow graph. We orient each edge of a trivalent graph

such that each vertex has both input and output incident edges. That any trivalent

graph has such an orientation can be proved by induction on the number of edges.

We call a trivalent graph equipped with such an orientation an arrow graph. The

edge orientation for arrow graph is independent of the edge orientation for ~C-graph.

Possible status of input/output of the three incident edges at a vertex of an arrow

graph are as shown in the following figure.

The quotient by the label change relation in the definition of Ak is equivalent to

considering unlabeled oriented graph (Γ, o) (o is an orientation of the real vector

space REdges(Γ)) modulo the relation (Γ,−o) ∼ −(Γ, o). This orientation determines

a vertex-orientation for an arrow graph as follows. We decompose each edge e of

an arrow graph Γ into half-edges H(e) = {e+, e−} ordered according to the arrow

orientation of e, namely, so that e− is input and e+ is output, and let deg e+ = 1,

deg e− = 2. Then an orientation of Γ is given by o = (e1+∧e1−)∧· · ·∧(e3k+∧e3k−),
and this can be rewritten as o = τ1 ∧ τ2 ∧ · · · ∧ τ2k, τi = ep± ∧ eq± ∧ er± by

rearrangement, where ep±, eq±, er± are half-edges meeting at the i-th vertex. Each

term τi gives a vertex-orientation, namely, an ordering of the half-edges meeting

at each vertex. Conversely, given a vertex-labelling and a vertex-orientation to an
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Figure 7. An embedded arrow graph to a Y-link

arrow graph, an orientation of REdges(Γ) is obtained. In this section, we mainly

represent oriented graphs by vertex-labelled vertex-oriented arrow graphs.

4.3. Y-link associated to a trivalent vertex. To a vertex-oriented arrow graph

Γ, we associate a Y-link G = G1 ∪ · · · ∪G2k in D4 as follows (Figure 7).

(1) We take an embedding ι : Γ→ IntD4.

(2) For each edge e, let P (e) ⊂ IntD4 be a small closed 4-ball centered at the

middle point of ι(e) such that P (e) is disjoint from vertices and other edges

of ι(Γ). Further, we assume that P (e) ∩ P (e′) = ∅ if e 6= e′.

(3) We decompose the closed interval P (e)∩ι(e) into three subintervals: P (e)∩
ι(e) = [a, b] ∪ [b, c] ∪ [c, d]. Then we remove the middle one [b, c] and insert

a standard Hopf link S1 ∪ S2 → IntP (e) instead, so that the image of S2

is attached to b ∈ [a, b] and the image of S1 is attached to c ∈ [c, d].

The above procedure gives a disjoint union G1 ∪ G2 ∪ · · · ∪ G2k of 2k = |V (Γ)|
components. We call each component Gi a Y-graph, and G = G1 ∪G2 ∪ · · · ∪G2k

a Y-link (or a graph clasper). There are two types for a Y-graph, according to

whether the corresponding vertex is of type I or II in the following figure.
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By taking a small smooth closed tubular neighborhood Vi ⊂ IntD4 for each com-

ponent Gi, we obtain a tuple ~VG = (V1, . . . , V2k) of mutually disjoint handlebodies

in IntD4.

4.4. Surgery along Y-links. We shall construct a (D4, ∂)-bundle by a family

of surgery along ~VG = (V1, . . . , V2k). We take a family αi : K → Diff(∂Vi) of

diffeomorphisms parametrized by a compact manifold K. This defines a bundle

automorphism ᾱi : ∂Vi×K → ∂Vi×K of the trivial Vi-bundle over K in a natural

way. We put

(D4 ×K)Vi,αi = ((D4 − IntVi)×K) ∪ᾱi
(Vi ×K),
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where the boundaries are glued together by ᾱi. Then the product structures on the

two parts induce a bundle projection π(αi) : (D
4 ×K)Vi,αi → K.

Since the handlebodies Vi are mutually disjoint, the surgery can be done at every

Vi simultaneously. Taking ~α = (α1, . . . , α2k), αi : Ki → Diff(∂Vi), we do surgery

at each Vi by using αi, and then we obtain a family of surgeries parametrized by

K1 × · · · ×K2k and a bundle projection

π(~α) : (D4 ×
2k∏

i=1

Ki)
~VG,~α → K1 × · · · ×K2k.

More precisely, we may write the sub (Vi, ∂)-bundle of (D
4×Ki)

Vi,αi corresponding

to Vi ×Ki as
⋃
ti∈Ki

Vi(ti), and we define (D4 ×
∏2k
i=1Ki)

~VG,~α by

((D4 − Int (V1 ∪ · · · ∪ V2k))×
2k∏

i=1

Ki) ∪∂
⋃

(t1,...,t2k)

(V1(t1) ∪ · · · ∪ V2k(t2k)).

In the following, we take a special one as αi. Put V = Vi for simplicity.

• Let αI : S0 → Diff(∂V ), S0 = {−1, 1}, αI(−1) = id, αI(1) be the “Bor-

romean twist” corresponding to B(2, 2, 1)4. Detailed definition of αI will

be given in §4.5.
• Let αII : S

1 → Diff(∂V ) be the “parametrized Borromean twist” given by

parametrizing B(2, 2, 1)4 over S1. Detailed definition of αII will be given

in §4.6.

Vertex-orientation is used to associate the components in the Borromean string link

B(2, 2, 1)4 to handles of a handlebody.

Definition 4.1. Let Γ be a vertex-oriented labelled arrow graph with 2k vertices.

According to the type of the i-th vertex of Γ, we put αi = αI or αII, and put

~α = (α1, . . . , α2k). Then we put

πΓ = π(~α), EΓ = (D4 ×
2k∏

i=1

Ki)
~VG,~α, BΓ =

2k∏

i=1

Ki.

We also consider the straightforward analogue of this surgery for (R4, U ′
∞)-bundles

which is given by replacing D4 with R4 in the definition above.

Theorem 4.2 (Proof in §4.8 and §5). (1) πΓ : EΓ → BΓ is a (D4, ∂)-bundle.

(2) The (D4, ∂)-bundle bordism class of πΓ : EΓ → BΓ corresponds to an

element of ImH, and the following holds.

Ẑadm
k (πΓ) = [Γ].

Theorem 2.8 follows immediately from Theorem 4.2. Namely, letting

Ψk : G
′
k → ImH ⊗Q

be defined by Ψk(Γ) = [πΓ : EΓ → BΓ] by choosing arrows on Γ arbitrarily, then by

Theorem 4.2, this satisfies the condition of Theorem 2.8. We do not know whether

the bordism class of Ψk(Γ) depends on the choice of the arrows.

Let M be a compact 4-manifold. For an embedding ι : Γ → M , one may

also consider the straightforward analogue of the surgery defined above, giving an



EXOTIC ELEMENTS OF THE RATIONAL HOMOTOPY GROUPS OF Diff(S4) 43

(1) (2)

Figure 8. (1) T in V of type I. (2) T in V of type II.

(M,∂)-bundle πι : Eι → BΓ. The following theorem can be proved just by replacing

D4 with M in the proof of Theorem 4.2.

Theorem 4.3. The class of πι represents an element of Ωk(BDiff(M,∂)), and it is

contained in the image of the natural map H : πkBDiff(M,∂)→ Ωk(BDiff(M,∂)).

The class of πι depends only on the homotopy class of ι, which can be described

by Γ as above with edges decorated by elements of π1(M), considered modulo

certain relations as in [GL].

4.5. Parametrized Borromean surgery of type I. In the following, we shall

define parametrized Borromean twists αI. As a preliminary, we fix a coordinate on

V . Let T be a handlebody obtained from a 3-disk by removing several 1-handles

and 0-handles, and we put V = T × I. We fix a coordinate on T as follows. Let

T0 = [0, 4] × [−1, 1] × [0, 1], and for n = 1, 2, 3 and ε > 0, we define T as follows

(Figure 8).

h1n = {(x, y) ∈ R2 | (x− n)2 + y2 < ε2} × [0, 1],

h0n = {(x, y, z) ∈ R3 | (x− n)2 + y2 + (z − 1
2 )

2 < ε2},

T = T0 − (he11 ∪ h
e2
2 ∪ h

e3
3 ), (e1, e2, e3) =

{
(1, 1, 0) (V : type I)

(1, 0, 0) (V : type II)

The handlebody V of type I is diffeomorphic to a handlebody obtained from D4

by removing two 2-handles and one 1-handle, which are thin. We represent the thin

handles in D4 by a framed string link. If this framed string link is changed, the

complement of it in D4 changes accordingly. Especially, we consider the handle-

body V ′ that is the complement to the framed Borromean string link B(2, 2, 1)4 of

π0Embf(D2 ∪D2 ∪D1, D4). Since string links are standard near boundary and we

are considering framed embeddings, a framed string link induces a trivialization of

the sides of handles as sphere bundles over the cores, and ∂V ′ is naturally identified

with ∂V .

For the type I handlebody V , we shall see that the handlebody V ′ thus obtained

can be realized as the mapping cylinder of a relative diffeomorphism ϕ0 : (T, ∂T )→
(T, ∂T ), which is defined by C(ϕ0) = (T ×I)∪ϕ0 (T ×{0}). Note that the boundary
of C(ϕ0) is (T × {0, 1})∪ (∂T × I) = ∂V .
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Lemma 4.4. For a handlebody V of type I, there exists a relative diffeomorphism

ϕ0 : (T, ∂T )→ (T, ∂T ) and a relative diffeomorphism (V ′, ∂V )→ (C(ϕ0), ∂V ) that

restricts to id on ∂V .

Proof. By considering the third component of the framed tangle B(1, 1, 1)3 (Fig-

ure 9 (1)) as a 1-parameter family of points, we obtain an element of π1Embf0(D
1∪

D1 ∪D0, D3). By realizing this as a graph in the trivial D3-bundle T0× I → I, we

obtain a framed string link B(2, 2, 1)4 in D4. Since the complement of a tangle of

Embf0(D
1 ∪D1 ∪D0, D3) is a handlebody relatively diffeomorphic to T , V ′ can be

considered as the total space of a (T, ∂T )-bundle that is trivialized on ∂I. Hence

V ′ is the mapping cylinder of a relative diffeomorphism of T . �

The relative diffeomorphism ϕ0 : (T, ∂T )→ (T, ∂T ) of Lemma 4.4 extends to a

diffeomorphism ϕI of ∂V = (T × {0, 1}) ∪ (∂T × I) by setting ϕ0 on T × {0} and
id otherwise.

Definition 4.5. We define the map αI : S
0 → Diff(∂V ) by αI(−1) = id, αI(1) = ϕI.

Let Ṽ be the total space of the bundle V ′∪(−V )→ S0 that is the union of V ′ → {1}
and −V → {−1}.

4.6. Parametrized Borromean surgery of type II. The handlebody V of type

II is diffeomorphic to a handlebody obtained fromD4 by removing one 2-handle and

two 1-handles, which are thin. Let us construct a (V, ∂)-bundle Ṽ → S1 by using

an element β ∈ π1Embf0(D
2 ∪D1 ∪D1, D4) corresponding to a framed Borromean

rings B(2, 2, 1)4. If the second component of B(2, 2, 1)4 is considered as the locus

of a 1-parameter family of string knots I → T0× I whose endpoints are mapped to

T0 × {0, 1}, then a map β′′ : I → Embf0(D
2 ∪D1 ∪D1, D4) is obtained. Although

this is not a loop, one may obtain a loop β′ : S1 → Embf0(D
2 ∪ D1 ∪ D1, D4) by

taking fiberwise closures of the second component by a trivial arc, as in Figure 9 (2).

Moreover, we deform the family of 1-disks for the second component by pressing a

neighborhood of the boundary onto that of the standard inclusion I → T0× I;w 7→
(2, 0, 0, w) simultaneously for all parameters, and get a family

β ∈ π1Embf0(D
2 ∪D1 ∪D1, D4).

For a family of framed long embeddings D2 ∪ D1 ∪ D1 → D4 giving β, the com-

plement W̃ of its open ε-tubular neighborhood in D4 is a family of manifolds each

diffeomorphic to V . The framing gives a bundle isomorphism ∂W̃ ∼= ∂V × S1 over

S1, which gives Ṽ a structure of a (V, ∂)-bundle Ṽ → S1.

Next, let us show that thus obtained Ṽ is a 1-parameter family of mapping

cylinders for an element of π1Diff(T, ∂T ). For a family of relative diffeomorphisms

ϕ0,t : (T, ∂T ) → (T, ∂T ) (t ∈ S1), we put C̃({ϕ0,t}) =
⋃
t∈S1 C(ϕ0,t). This has a

natural structure of a (V, ∂)-bundle over S1.

Lemma 4.6. For a handlebody V of type II, there exist a family of relative diffeo-

morphisms ϕ0,t : (T, ∂T )→ (T, ∂T ) (t ∈ S1) and a relative bundle isomorphism

(Ṽ , ∂V × S1)→ (C̃({ϕ0,t}), ∂V × S
1)

that restricts to id on the boundary.
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(1) (2) (3)

Figure 9. (1) B(1, 1, 1)3 parametrized by (z, w) ∈ I × I. (2)

B(1, 1, 1)3 parametrized by S1 × I. (3) β′′ : I → Embf0(D
2 ∪D1 ∪

D1, D4). Horizontal section is parallel to the 3-disk T0 on the top.

Proof. We shall see that β ∈ π1Embf0(D
2 ∪D1 ∪D1, D4) is obtained by rewriting

an element β0 ∈ π2Embf0(D
1 ∪D0 ∪D0, D3) into a family over I by suspension.

We shall construct β0 explicitly. The 1-handles and 0-handles in T0 become

2-handles and 1-handles in T0 × I, whose complement is V . We saw that β is

obtained by replacing the trivial S1-family of the handles in (T0×I)×S
1 by a family

corresponding to the Borromean string link B(2, 2, 1)4. Let w be the parameter of

I in V = T × I and let s be the parameter of J = [0, 1] ⊂ S1 = [0, 2π]/0 ∼ 2π. We

may assume that the first and second components C1, C2 ⊂ T0 × I of B(2, 2, 1)4
are standard 2-disks. Hence in particular, the second component can be written by

using z ∈ I as

C2(z, w) = (2, 0, z, w) ∈ T0 × I.

This is a map to a single fiber of (T0 × I)× S1 → S1. By replacing the parameter

z with s ∈ J , the second component C2 can be considered as a 1-parameter family

of 1-disks in T0 × I varying with respect to s ∈ J . Also, the third component may

be assumed to be monotonic with respect to the height w, and may be written as a

curve C3(w) (w ∈ I) in T0× I. Moreover, C3(w) can be taken as the lift of a simple

curve c3(t) in T0. If C′
1, C

′
2(s, w), C

′
3(w) are the projections of C1, C2(s, w), C3(w)

on T0, then

C′
1 ∪ C

′
2(s, w) ∪C

′
3(w) ⊂ T0

gives a 2-parameter family of D1 ∪D0 ∪D0 → T0 with respect to (w, s) ∈ I × J .
The locus of the projection of the family of embeddings on T0 is D1 ∪ c2 ∪ c3 of

Figure 9 (1), which gives B(1, 1, 1)3.

Let us see that this 2-parameter family gives β and β0. If we realize the I × J-
family of embeddings D1 ∪D0 ∪D0 → T0 as a graph in T0 × I × J , an element

β′′ : J → Embf0(D
2 ∪D1 ∪D1, D4)

is obtained. Then by closing this family by replacing J with S1 and by shrink-

ing the boundary of the second component as before, we obtain an element β ∈
π1Embf0(D

2 ∪D1 ∪D1, D4), and moreover, by taking a 2-parameter family of the
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complemental 3-dimensional handlebodies for β as explained above, we obtain an

element β0 ∈ π2Embf0(D
1 ∪D0 ∪D0, D3).

Finally, β0 corresponds to a (T, ∂T )-bundle over I × J , and it is a 1-parameter

family of the mapping cylinder on T . �

Definition 4.7. We define the map αII : S
1 → Diff(∂V ) by extending {ϕ0,t} to a

1-parameter family of diffeomorphisms of ∂V by id.

There is a natural “graphing”mapG : π1Embf0(D
2∪D1∪D1, D4)→ π0Embf(D3∪

D2 ∪ D2, D5), which is obtained by representing a 1-parameter family of framed

long embeddings D2∪D1∪D1 → D4 by a single map (D2∪D1∪D1)×I → D4×I.

Lemma 4.8. The image of β ∈ π1Embf0(D
2 ∪D1 ∪D1, D4) under G is the class

of B(3, 2, 2)5.

Proof. The element G(β) can be represented by the graph of an I-family of embed-

dings D1 → D4−(D2∪D1), whose image covers the third component in B(2, 1, 2)4.

Thus in the graph of the family, the first two components are standard, and most

of the third component can be collapsed into a single fiber L, which coincides with

the third one in B(2, 1, 2)4. The result is an embedding D3∪D2∪D2 → D5, which

is obtained by taking suspensions of the first two components in B(2, 1, 2)4 in L.

It is B(3, 2, 2)5. �

4.7. Homotopical properties of αI and αII. We take standard cycles a1, a2, a3, b1, b2, b3
of ∂V as follows. Here we again use the standard coordinate of V fixed in §4.5.
When V is of type I, we let b1, b2, b3 ⊂ T = T × {1} be defined by

b1 = S1
2ε(1, 0)× {

1
2
}, b2 = S1

2ε(2, 0)× {
1
2
}, b3 = S2

2ε(n, 0,
1
2
).

Here, we denote by S1
δ (a, b) ⊂ R2, S2

δ (a, b, c) ⊂ R3, the codimension 1 spheres

centered at (a, b), (a, b, c) respectively, with radius δ. We consider b1, b2 as 1-cycles

by counter-clockwise orientations in circles of [0, 4] × [−1, 1]. We consider b3 as a

2-cycle by inducing an orientation from R3 by outward-normal-first convention. We

define disks aT1 , a
T
2 , a

T
3 ⊂ T by aT1 = {1} × [−1,−ε]× [0, 1], aT2 = {2} × [−1,−ε]×

[0, 1], aT3 = {3} × [−1,−ε]× { 12}, and put

aℓ = (aTℓ × {1}) ∪ (∂aTℓ × I) ∪ (−aTℓ × {0}) ⊂ ∂V.

We orient aℓ so that aℓ · bℓ = 1. When V is of type II, we change b2 and aT2 as

b2 = S2
2ε(n, 0,

1
2 ), aT2 = {2} × [−1,−ε]× { 12}

in the definitions above for type I. We define the cycles ãℓ, b̃ℓ of ∂V × S1 by

ãℓ = aℓ × S
1, b̃ℓ = bℓ × S

1,

and orient them so that ãℓ · bℓ = 1, aℓ · b̃ℓ = 1.

Proposition 4.9. (1) (Type I) By the diffeomorphism αI(1) : ∂V → ∂V , the

cycles aℓ, bℓ change as follows.

αI(1)∗ aℓ ≃ aℓ ± [bm, bn], αI(1)∗ bℓ ≃ bℓ. (4.1)

Here, [ , ] is the Whitehead product, andm,n are numbers such that {ℓ,m, n} =
{1, 2, 3}. The ± on the right hand side is the connected sum between base



EXOTIC ELEMENTS OF THE RATIONAL HOMOTOPY GROUPS OF Diff(S4) 47

(1) (2)

Figure 10. aT1 , a
T
2 , a

T
3 , b1, b2, b3 ⊂ T , (1) in V of type I, (2) in V

of type II.

points. In particular, aℓ and αI(1)∗ aℓ, bℓ and αI(1)∗ bℓ belong to the same

bordism classes of Ω∗(∂V ).

(2) (Type II) By the bundle automorphism ᾱII : ∂V ×S1 → ∂V ×S1, the cycles

ãℓ, b̃ℓ change as follows.

ᾱII∗ ãℓ ≃ ãℓ ± [bm, bn], ᾱII∗ b̃ℓ ≃ b̃ℓ. (4.2)

Here, m,n are numbers such that {ℓ,m, n} = {1, 2, 3}. In particular, ãℓ and

ᾱII∗ ãℓ, b̃ℓ and ᾱII∗ b̃ℓ belong to the same bordism classes of Ω∗(∂V × S1).

We shall prove Proposition 4.9 in the rest of this subsection.

Type I: Since bℓ is parallel to ∂T , the relation αI(1)∗ bℓ ≃ bℓ is immediate. We

shall consider the change of aℓ. We have seen in Lemma 4.4 that V ′ is the mapping

cylinder of a relative diffeomorphism ϕ0 of T (Lemma 4.4). The differential of the

restriction of the natural map T × I → V ′ = C(ϕ0) on {x}× I gives a gradient-like

vector field ν on V ′. By taking T = T × {1} along the flow Φ−ν : R × V ′ → V ′

until it gets to the bottom face, ϕ0 is obtained.

Let L(aTℓ ) be the locus in V ′ of aTℓ under the flow. Put

S = T ×{0} and aSℓ = L(aTℓ )∩S. In order to prove (4.1), we

consider the difference of aTℓ and aSℓ , both considered as disks

in T under the identification S = T . Since ϕ0 is a relative

diffeomorphism of T , the boundaries of aTℓ and aSℓ agree.

Let p be the dimension of the disk aTℓ , which is 1 or 2. By

definition, L(aTℓ ) is the image of a level preserving embedding

λ : Dp×I → V ′ = C(ϕ0). We choose a base point c ∈ ∂Dp so

that λ(c, 0) is mapped to a point of ∂T0×{0} that is disjoint
from the attaching map of the handle heℓℓ , and put U = (Dp × {0}) ∪ ({c} × I) ∪
(∂Dp × {1}), O = ∂Dp × {1}, P = (Dp × {0}) ∪ (∂Dp × I), Q = Dp × {1}. The

following is observed.

(1) λ is standard on U .

(2) The relative homotopy class of λ|P : (P,U) → (V ′, λ(U)) represents a

unique element of πp(V
′, λ(O)) since λ(U) deformation retracts to λ(O).

(3) The relative homotopy class of λ|Q : (Q,O) → (V ′, λ(O)) represents an

element of πp(S, λ(O)).
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(4) The inclusion map S → V ′ induces a bijection πp(S, λ(O)) ∼= πp(V
′, λ(O)).

In the following, we identify the two by this correspondence.

Lemma 4.10. The identity [λ|P ] = [λ|Q] in πp(V
′, λ(O)) holds.

Proof. We denote the boundary P ∪ (−Q) of Dp × I by P −Q. The map λP−Q :

(P −Q,O)→ (V ′, λ(O)) induced by λ extends to a relative map λ : (Dp× I, O)→
(V ′, λ(O)). Hence λP−Q is relatively nullhomotopic, fixing λ(O). �

Proof of Proposition 4.9 (1). The Borromean string link B(2, 2, 1)4 can be deformed

by isotopy in D4 into one with two trivial components around which the remaining

component links. If it is the ℓ-th component, the homotopy class of the difference

between αI(1)∗aℓ and aℓ is given by the third component. The homotopy type

of the complement D4 − (Dp ∪ Dq) of the two trivial components is the same as

S3−p ∨ S3−q, and as is well-known, the third component in the Borromean string

link Dp ∪ Dq ∪ Dr → D4, considered as an r-disk in D4 − (Dp ∪ Dq), represents

the Whitehead product in [π3−p, π3−q] ⊂ πr S3−p ∨ S3−q ([Ma, §5]). This together
with Lemma 4.10 completes the proof. �

Type II: Recall that Ṽ is a 1-parameter family of mapping cylinders of relative

diffeomorphisms of T .

Proof of Proposition 4.9 (2). Put T̃ = T ×S1, and let ãTℓ be the disk ãℓ ∩ T̃ . After

the replacements V ′ → Ṽ , aTℓ → ãTℓ , T → T̃ , the arguments for type I can be

applied here and Proposition 4.9 (2) is proved similarly. �

4.8. Primitiveness of πΓ. We shall prove Theorem 4.2 (1) and the first half of

Theorem 4.2 (2).

Proposition 4.11 (The first half of Theorem 4.2 (2)). The (D4, ∂)-bundle πΓ :

EΓ → BΓ is bundle bordant to a (D4, ∂)-bundle ̟Γ : FΓ → Sk. Namely, there exist

a compact oriented (k+1)-cobordism B̃ with ∂B̃ = BΓ

∐
(−Sk) and a (D4, ∂)-bundle

π̃ : Ẽ → B̃ such that the restriction of π̃ on ∂B̃ agrees with πΓ and ̟Γ.

Let kℓ be the index of the ℓ-th handle of V with nonzero index and let V[ℓ] ⊂ D
4

be the handlebody obtained from V by attaching a (kℓ+1)-handle along a kℓ-sphere

on ∂V that is parallel to the core of the ℓ-th handle in V , more precisely along bℓ.

By extending the bundle projection Ṽ → Sa by the trivial family of (kℓ+1)-handles,

one obtains a (V[ℓ], ∂)-bundle Ṽ[ℓ] → Sa.

Let us describe a standard model for Ṽ[ℓ]. Recall that Ṽ is given by the com-

plement of the family β of framed string links of π0Embf0(D
2 ∪ D2 ∪ D1, D4) or

π1Embf0(D
2∪D1∪D1, D4) corresponding to the Borromean rings. Put U = T0×I,

L2
n = {(n, 0, z, w) | z, w ∈ I}, L1

n = {(n, 0, 0, w) | w ∈ I} (n = 1, 2, 3), and let He
n

(e = 1, 2) be the open ε-tubular neighborhood of Len ⊂ U for a sufficiently small

ε > 0. Let Le11 (t) ∪ Le22 (t) ∪ Le33 (t) ⊂ U (t ∈ Sa) be a family of framed string links

corresponding to β such that Leℓℓ (t0) = Leℓℓ at the base point t0 ∈ Sa. Let He
n(t)

be the open ε-tubular neighborhood of Len(t) ⊂ U . Put

W (t) = U − (He1
1 (t) ∪He2

2 (t) ∪He3
3 (t)), W[ℓ](t) =W (t) ∪Heℓ

ℓ (t),

W̃ =
⋃

t∈Sa

W (t)× {t}, W̃[ℓ] =
⋃

t∈Sa

W[ℓ](t)× {t}.
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Figure 11. Two framings on ∂W̃

Framing on string link gives trivializations ∂V × Sa ∼= ∂W̃ , ∂V[ℓ] × S
a ∼= ∂W̃[ℓ],

which are extended to bundle isomorphism Ṽ ∼= W̃ , Ṽ[ℓ] ∼= W̃[ℓ]. Then we may

consider W̃ , W̃[ℓ] as standard models for Ṽ , Ṽ[ℓ].

Although the following lemma is independent from Proposition 4.11, it will be

used in Lemma 5.6, which plays a key role in computing the value of the invariant.

Lemma 4.12. Let τ0 be the SO4-framing on a single fiber V induced from the

standard framing of D4. Let τ̃0 be the vertical framing on T vṼ |
∂Ṽ=∂V×Sa induced

from τ0 by the product structure. Then there exists a vertical framing τ̃ on Ṽ that

extends τ̃0.

Proof. It suffices to prove the lemma for V = W (t0). Since τ̃0 on ∂Ṽ induces a

vertical framing υ̃0 on ∂W̃ by the differential of the trivialization ∂Ṽ = ∂V ×Sa ∼=
∂W̃ slightly extended to its neighborhood, we need only to find a vertical framing

on W̃ that extends υ̃0 induced from outside. Since τ̃0 for V = W (t0) is induced

from the direct sum of normal and tangent framings of Lenn on the side of each

handle, υ̃0 is induced from the direct sum of normal and tangent framings of Lenn (t)

on the side of each handle, too (Figure 11 (2)).

Since W̃ is a codimension 0 submanifold of U ×Sa, the standard SO4-framing of

U induces a standard vertical framing σ̃0 on W̃ (Figure 11 (1), (3)). We would like

to glue ṽ0 from outside and τ̃0 from inside of Ṽ after a suitable homotopy. Since

υ̃0 and σ̃0 may not agree on ∂W̃ , we shall replace σ̃0 with the deformed one in a

neighborhood of the boundary. It follows from a property of the Borromean rings

that each component Leii (t) is fiberwise regularly homotopic to Leii as a framed

string knot in U . Hence there is a regular homotopy F (t, s) (s ∈ I) from Hei
i (t) to

Hei
i in U . A GL4(R)-framing υ̃s on the immersion F (t, s) : Hei

i → U is induced

from the standard framing of Hei
i ⊂ U by d(F (t, s)) : THei

i → TU . At s = 0, υ̃s
agrees with υ̃0 defined above, and at s = 1, we have υ̃1 = τ̃0 = σ̃0 (Figure 11 (1))

since Hei
i is a standard embedding. The difference between υ̃s and σ̃0 gives a map

Hei
i → GL4(R), and the restriction of this map on ∂Hei

i gives a homotopy from

υ̃0 to σ̃0 in ∂W̃ . Therefore, we may deform σ̃0 by a homotopy on a neighborhood

of ∂W̃ so that it agrees with υ̃0 on ∂W̃ . Let τ̃ be the vertical framing of W̃ thus

obtained. Then obviously this extends υ̃0 inside Ṽ , as desired. �

Lemma 4.13. The bundle Ṽ[ℓ] → Sa is a trivial (V[ℓ], ∂)-bundle, and hence the

corresponding classifying map Sa → BDiff(V[ℓ], ∂) is nullhomotopic.



50 TADAYUKI WATANABE

Figure 12. Collapsing Le22 (t) ∪ Le33 (t), when the first component is removed.

Proof. We only prove the lemma for ℓ = 1 since the proof for the other cases are

similar. Replacing W (t) with W[1](t) corresponds to removing the first component

in the string link Le11 (t) ∪ Le22 (t) ∪ Le33 (t) in U . It follows from a property of

Borromean rings that the remaining components Le22 (t)∪Le33 (t) is fiberwise isotopic

to the trivial ones Le22 ∪ L
ee
3 (Figure 12). The fiberwise isotopy can be given by

shrinking Le22 (t) along its standard spanning disk, and shrinking Le33 (t) along a

curved spanning disk, which avoids Le22 (t). This implies that the bundle Ṽ[1] → Sa

can be deformed into the trivial one. �

Corollary 4.14 (Theorem 4.2 (1)). If α = αI or αII, then the bundle π(α) :

(D4 × Sa)V,α → Sa obtained from the trivial D4-bundle D4 × Sa by surgery along

V is a trivial (D4, ∂)-bundle. Hence the bundle πΓ : EΓ → BΓ obtained by doing

surgery 2k times is a (D4, ∂)-bundle, too.

Proof. Since the trivial subbundle V ×Sa of D4×Sa extends to a trivial subbundle

V[ℓ] × S
a, surgery of D4 × Sa along V and surgery along V[ℓ] using Ṽ[ℓ] produce

equivalent results. By Lemma 4.13, the result is a trivial D4-bundle. �

Let V[ℓ,ℓ′] ⊂ R4 (ℓ 6= ℓ′) be the handlebody obtained from V by attaching a

(kℓ + 1)- and a (kℓ′ + 1)-handle along the cycles bℓ and bℓ′ , which are parallel to

the ℓ-th and ℓ′-th handle of positive indices kℓ, kℓ′ respectively. The handlebody

V[ℓ,ℓ′,ℓ′′] ⊂ R4 is defined similarly. Also, Ṽ[ℓ,ℓ′], Ṽ[ℓ,ℓ′,ℓ′′] etc. are defined similarly as

Ṽ[ℓ].

Lemma 4.15. (1) The nullhomotopies of the classifying maps for Ṽ[ℓ] and for

Ṽ[ℓ′] of Lemma 4.13 are homotopic through nullhomotopies for Ṽ[ℓ,ℓ′].

(2) There is a ∆2-family of nullhomotopies of the classifying maps for Ṽ[ℓ,ℓ′,ℓ′′]

that extends the homotopies (between nullhomotopies) for Ṽ[ℓ,ℓ′], Ṽ[ℓ′,ℓ′′],

Ṽ[ℓ′′,ℓ] on the boundary.

Proof. (1) We consider nullhomotopies of the classifying maps for Ṽ[1,2]. Let Ai

be a fiberwise isotopy deformation of Ṽ[1,2] induced by the standard compressing

regular homotopy of Leii (t) given in the proof of Lemma 4.13. This is a path in

the space of bundle isomorphisms of Ṽ[1,2] starting from id. Let A′
i be a fiberwise

isotopy deformation of Ṽ[1,2] induced by the curved regular homotopy of Leii (t) that

avoids L
ei−1

i−1 (t) (considering L−1 = L3 and e−1 = e3), as in Figure 12. Note that

Ai and A
′
i are defined only if all the strings that intersects the regular homotopy

of the i-th component are deleted. Then there are fiberwise isotopies from A′
i to
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Figure 13. A 2-parameter family of nullhomotopies of the classi-

fying maps for Ṽ[1,2,3].

Ai. Now the nullhomotopy for Ṽ[1] is induced by the composite path A′
3 ◦A2, and

that for Ṽ[2] is induced by A3 ◦A′
1. A homotopy from A′

3 ◦A2 to A3 ◦A′
1 in Ṽ[1,2] is

constructed in 2 steps: A′
3 ◦ A2 → A′

3 → A3 ◦ A
′
1. In the first step, shrink the A2

deformation of Le22 (t) to that of the trivial one Le22 . Note that the A2 deformation

on Le22 is trivial. In the second step, homotope A′
3 to A3, which is possible. The

deformation id→ A′
1 is similar to A2 → id.

(2) Consider a hexagon P1P2P3P4P5P6 around the origin O (Figure 13). We

put the nullhomotopies A2 ◦ A
′
3, A

′
3, A3 ◦ A

′
1, A

′
1, A1 ◦ A

′
2, A

′
2 on the vertices

P1, P2, P3, P4, P5, P6 respectively. As in the proof of (1), one can find homotopies for

edges and extend them to a family of nullhomotopies parametrized by the hexagon.

The homotopy on the path P1P2P3 is for Ṽ[1,2], P3P4P5 is for Ṽ[2,3], P5P6P1 is for

Ṽ[3,1]. This completes the proof. �

Let BΓ[i] be the subspace of BΓ = K1×· · ·×K2k obtained from BΓ by replacing

Ki with base point {∗} ⊂ Ki. The following lemma is an analogue of the fact that

surgery along a graph clasper with unlinked leaf is trivial up to isotopy ([Hab]).

Lemma 4.16. Let f̃(πΓ) : BΓ → BDiff(D4, ∂) be the classifying map for πΓ :

EΓ → BΓ. For 0 ≤ i ≤ 2k, the restriction of f̃(πΓ) to BΓ[i] is nullhomotopic.

Proof. The restriction of πΓ on BΓ[i] is obtained by surgery along the tuple ~VG[i] of

2k−1 handlebodies that is obtained from ~VG = (V1, . . . , V2k) by removing Vi. Since

Vj (j 6= i) with a handle h
(j)
ℓ that links with a handle of Vi is included in ~VG[i],

and the handle h
(j)
ℓ of Vj does not link with any handles of other handlebodies

in ~VG[i], Vj can be extended to Vj[ℓ] by attaching a disk that is disjoint from

other handlebodies in ~VG[i]. Thus surgery along Vj[ℓ] and that along Vj produces

equivalent (D4, ∂)-bundles. Moreover, since by Lemma 4.13, surgery along Vj[ℓ]
can be deformed in Vj[ℓ] to the trivial surgery, it is equivalent to surgery along

the tuple ~VG[i, j], which is obtained from ~VG[i] by removing Vj . By repeating

similar arguments, the bundle (πΓ)∗EΓ → BΓ[i] can be deformed to the trivial

(D4, ∂)-bundle. Namely, the restriction of f̃(πΓ) to BΓ[i] is nullhomotopic. The



52 TADAYUKI WATANABE

nullhomotopy on BΓ[i] is constructed along a spanning tree L of Γ, by gradually

extending a neighborhood of the i-th vertex in L. �

Proof of Proposition 4.11. Put B∗
Γ =

⋃2k
i=1BΓ[i]. By Lemma 4.16, the classi-

fying map ψΓ : (BΓ, b0) → (BDiff(D4, ∂), ∗) for πΓ : EΓ → BΓ is homotopic

to a map (BΓ, BΓ[i]) → (BDiff(D4, ∂), ∗). To prove that f̃(πΓ) is bordant to a

map from Sk = K1 ∧ · · · ∧ K2k = BΓ/B
∗
Γ, we need to check that the nullhomo-

topies on BΓ[i] and BΓ[i
′] for i 6= i′ induce homotopically consistent nullhomotopies

on BΓ[i] ∩ BΓ[i
′] = BΓ[i][i

′] (i.e., the paths associated to the nullhomotopies are

homotopic rel. ends). Fix a spanning tree L of Γ and assume that the null-

homotopies on BΓ[i] for every i are constructed inductively along L. The two

vertices i and i′ of Γ are connected by a unique path γi,i′ in L. The essential

difference between the induced nullhomotopies on BΓ[i][i
′] from BΓ[i] and BΓ[i

′]

arises from different orders of collapses at vertices on γi,i′ : i → · · · → i′ and

i′ → · · · → i. By using Lemma 4.15 (1), the order of collapses along γi,i′ can be

reversed through homotopies. This proves the homotopical consistency at BΓ[i][i
′].

For example, we consider a nullhomotopy on BΓ[1][6] for the

spanning tree L in the figure on the right. Suppose that a null-

homotopy induced from that of BΓ[1] is given by a sequence

(1) → 2 → 3 → (6) → 4 → 5 of collapses, where (1) and

(6) correspond to constant homotopies at V1 and V6 respec-

tively. By a continuous parameter change, this is homotopic to

(6)→ (1)→ 2→ 3→ 4→ 5. The collapse at the vertex 3 is ap-

plied after 2, which can be homotoped to the one applied after (6), by Lemma 4.15

(1) for the vertex 3. After the homotopy, we obtain (6) → 3 → (1) → 2 → 4 → 5,

followed by (6)→ 3 → 2 → (1)→ 4→ 5 by Lemma 4.15 (1) again. Now the path

(1)→ 2→ 3→ (6) has been reversed and the resulting path gives a nullhomotopy

induced from that of BΓ[6].

The homotopical consistency at deeper intersections, such as BΓ[i][i
′][i′′] etc.,

can be checked by using Lemma 4.15 (3) at the trivalent vertex of L connecting

three input vertices.

Therefore, one may extend the classifying map ψΓ to one from BΓ∪B∗
Γ
C for a CW

complex C that is homotopy equivalent to the cone over B∗
Γ with a base point c0

corresponding to the cone point that is mapped to the base point of BDiff(D4, ∂).

The complex BΓ ∪B∗
Γ
C can be considered as a deformation retract of its small

neighborhood U in RN for some N . Since BΓ ∪B∗
Γ
C is homotopic to a cone over

B∗
Γ embedded in U , and U also deformation retracts onto the cone, there is a

homotopy of ψΓ that takes B∗
Γ to the base point. The result is bordant to a map

from Sk = BΓ/B
∗
Γ. �

5. Computation of the invariant

In this section, we complete the proof of Theorem 4.2 (2). The main idea is

to prove that after modifying the v-gradient suitably we need only to count Z-

graphs whose trivalent vertices are caught by the handlebodies V1∪· · ·∪V2k for the

surgery (Key Lemma 5.6) and that the sum of counts of such Z-graphs are given by

homological intersections among relative cycles in the handlebodies (Lemma 5.14).
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Figure 14. Morse function on R4 adapted to a Y -link

5.1. Fiberwise Morse functions compatible with Y-links. Let G = G1∪G2∪
· · · ∪G2k ⊂ D4 be the Y-link given in §4.3 and V1, V2, . . . , V2k be the handlebodies

associated to G. We take a Morse function µi : Vi → (−∞, 0] for each i satisfying
the following conditions.

• µ−1
i (0) = ∂Vi.

• µi has four critical points. If Gi is a Y-graph of type I, then the indices

of critical points of µi are 0, 1, 1, 2. If Gi is a Y-graph of type II, then the

indices of critical points of µi are 0, 1, 2, 2.

• µi gives a standard handle decomposition of Vi via some gradient-like vector

field.

We extend the Morse function µ1 ∪ · · · ∪ µ2k on V1 ∪ · · · ∪ V2k to a Morse func-

tion m : R4 → R so that it satisfies Assumption 3.1 (4) (Figure 14). More-

over, we assume that m satisfies m−1(−∞, 0] = V1 ∪ · · · ∪ V2k ∪ R4
− (R4

− is a

half-plane). Let m(1), . . . ,m(3k) : R4 → R be a sequence of Morse functions

that satisfy Assumption 3.1 (4) that are obtained from m by compact support

small perturbations and small SO4-rotations outside compact sets. We assume

(m(j))−1(0) = ∂V1∪· · ·∪∂V2k∪gj ·∂R4
− and (m(j))−1(−∞, 0] = V1∪· · ·∪V2k∪gj ·R4

−

(gj ∈ SO4) for each j.

Next, we extend m to a fiberwise Morse function on a (R4, U ′
∞)-bundle. Let

f be the function on the product R4 × BΓ defined by f = m ◦ pr1, where pr1 :

R4 ×BΓ → R4 is the projection. Suppose that R4 is equipped with a Riemannian

metric that is standard outside a compact set and whose gradient vector field for

m is gradient-like for m, and that R4×BΓ is equipped with a product Riemannian

metric. Let ξ be the v-gradient of f that is obtained from the gradient of m.

Since the surgery along G can be performed along the 0-level surface locus of

f , it naturally induces a fiberwise Morse function fG : EΓ → R. Similarly, for

f (j) = m(j) ◦ pr1 : R4 × BΓ → R, fiberwise Morse functions f (j)G : EΓ → R are

induced. Let ξ(1), . . . , ξ(3k) be the fiberwise gradient vector fields for f (1), . . . , f (3k),

and let ξ(1)G, . . . , ξ(3k)G be the fiberwise gradient vector fields for f (1)G . . . , f (3k)G.

Here, G may be replaced by its subset G′ =
⋃
i∈I Gi, and f (j)G′

, ξ(j)G
′

etc. are

defined similarly.

Let B1
Γ, B

2
Γ, . . . , B

2k

Γ be the path-components of BΓ. Each component is a copy

of the k-torus S1 × · · · × S1. We take the Morse functions λ : S1 → R, λ(eiθ) =

Re eiθ = cos θ and λ′ : S1× · · · ×S1 → R, λ′(x1, . . . , xk) = λ(x1) + · · ·+λ(xk). Let

η be a Morse–Smale gradient-like vector field for λ′. This gives an h-gradient for
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πΓ. We take the maximal point of λ′ as a base point b0 of S1× · · · ×S1, and let bn0
be the corresponding base point of BnΓ .

5.2. Coherent v-gradients. ‖

We would like to count Z-graphs for the v-gradients ξ(1)G, . . . , ξ(3k)G and the

h-gradient η. To simplify the computation, we take convenient v-gradients. Let

p
(i)
1 , p

(i)
2 , p

(i)
3 be the three critical points of the Morse function µi : Vi → (−∞, 0] cor-

responding to p
(i)
1 , p

(i)
2 , p

(i)
3 of µi. Let Ṽi be the subset of (D

4×Ki)
Vi,αi given by the

component of (fGi)−1(−∞, 0] corresponding to Vi. We also denote by p
(i)
1 , p

(i)
2 , p

(i)
3

the critical loci of the induced fiberwise Morse function µ̃i : Ṽi → (−∞, 0] of index

1 or 2. Let B
(i)
ℓ (ℓ = 1, 2, 3) be the intersection of A

p
(i)
ℓ

(ξ) with Vi×Ki and let A
(i)
ℓ

(ℓ = 1, 2, 3) be the intersection of A
p
(i)
ℓ

(ξGi) with Ṽi.

The restrictions A
(i)
ℓ ∩ (∂Vi ×Ki) (ℓ = 1, 2, 3) and B

(i)
ℓ ∩ (∂Vi ×Ki) (ℓ = 1, 2, 3)

both forms a disjoint triple of simple cycles in ∂Vi×Ki. Note that A
(i)
ℓ ∩ (∂Vi×Ki)

and B
(i)
ℓ ∩ (∂Vi × Ki) may intersect and by Proposition 4.9, they are bordant

in ∂Vi × Ki. Let C
(i)
ℓ be an oriented bordism between A

(i)
ℓ ∩ (∂Vi × Ki) and

B
(i)
ℓ ∩ (∂Vi×Ki) in ∂Vi×Ki whose image lies in (∂Vi−{∗})×Ki for some point ∗.

Lemma 5.1. Suppose that Gi is a Y-graph of type I, in which case Ki = S0. The

gradient-like vector fields for µ̃i and the bordism C
(i)
ℓ can be chosen so that they

satisfy the following.

(1) There exists an embedded handlebody Ti ⊂ ∂Vi×Ki with a handle filtration

T
(0)
i ⊂ T

(1)
i ⊂ T

(2)
i = Ti with at most 2-handles and C

(i)
ℓ is a map into Ti

for ℓ = 1, 2, 3.

(2) The bordism C
(i)
ℓ is “parallel” to Ti, where we say that a map β from a

manifold S into a handlebody T is parallel to T if the restriction of β to the

preimage of each r-handle σ of T with r > 0 is a (not necessarily disjoint)

union of bundle maps Dr×F → σ = Dr×D3−r over Dr for some compact

manifolds F .

(3) The 0-, 1- and 2-handles of Ti can be taken as arbitrarily small tubular

neighborhoods of their cores. Namely, for every ε > 0, we may arrange that

the diameters of 0-handles are less than ε and that the thickness of 1- or

2-handles are less than ε/2.

We say that such a v-gradient ξGi is coherent.

Proof. Since the surgery on Gi is trivial on −1 ∈ Ki (Definition 4.5), the cycles

A
(i)
ℓ and B

(i)
ℓ agree on −1. Thus A

(i)
ℓ ∩ (∂Vi × {−1}) and B

(i)
ℓ ∩ (∂Vi × {−1}) are

connected by a trivial bordism, that is, the one of the form x+(−x), and it satisfies

the conditions of the lemma trivially.

On 1 ∈ Ki, they may differ by surgery. Let δ
(i)
ℓ be an oriented bordism in

∂Vi × {1} such that ∂δ
(i)
ℓ = B

(i)
ℓ ∩ (∂Vi × {1}) − A

(i)
ℓ ∩ (∂Vi × {1}). Then δ

(i)
ℓ is

given by a smooth map from a manifold of dimension 4 − |p
(i)
ℓ | = 2 or 3. We take

a minimal Morse function ν : ∂Vi → R whose critical points of ν are disjoint from

‖The content of this subsection was inspired by Pajitnov’s C-approximation theorem [Pa, Ch. 8].
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Figure 15. Immersed handlebody is obtained after a long time

gradient flow

∂δ
(i)
ℓ for all ℓ. Then the critical points of ν form a basis of the Morse homology of

ν. Now we define a filtration T
(0)
i ⊂ T

(1)
i ⊂ T

(2)
i = Ti by the handle filtration for

the Morse–Smale gradient-like vector field of ν up to index 2. Then we modify δ
(i)
ℓ

by applying the negative gradient flow Φ−ν : R×∂Vi → ∂Vi for ν. For a sufficiently

large T , the bordism Φ−ν(T, ·)◦ δ
(i)
ℓ concentrates on a small neighborhood of the 2-

skeleton of the cellular decomposition of ∂Vi with respect to the gradient-like vector

field for ν (Figure 15) and in particular, the image of the bordism is included in

Ti. The conditions (1) and (3) are fulfilled. Moreover, we may assume that the

intersections of the bordisms δ
(i)
ℓ and the horizontal ascending manifolds of critical

points of ν of positive indices are all transversal. Hence we may assume that the

restriction of Φ−ν(T, ·) ◦ δ
(i)
ℓ for large T to the preimages of 1- or 2-handles of Ti is

a sum of morphisms D1×F → D1×D2 or D2×F → D2×D1 of bundles over the

cores of handles, where F is some compact manifold with boundary. The condition

(2) is fulfilled. All the modifications above can be realized by isotopies of ∂Vi and

the isotopies can be realized by modifying the gradient-like vector field for µi. �

Next, we consider the case Ki = S1 and Vi is of type II. Let T
(0)
i ⊂ T

(1)
i ⊂

T
(2)
i = Ti be a handle filtration of ∂Vi obtained from a minimal Morse function

ν : ∂Vi → R, as in the proof of Lemma 5.1. We also take a handle filtration

U (0) ⊂ U (1) = S1 of the base space S1 such that U (0) is a small disk around a

point, and U (0) is disjoint from the two critical points of λ : S1 → R. Then

T̃
(m)
i =

⋃

p+q≤m

T
(p)
i × U (q),

gives a handle filtration T̃
(0)
i ⊂ T̃

(1)
i ⊂ T̃

(2)
i ⊂ T̃

(3)
i = T̃i ⊂ ∂Vi × S1 of ∂Vi × S1

with at most 3-handles. The direct product of a p-handle of {T
(p)
i } and a q-handle

of {U (q)} is a (p+q)-handle. We define its index by (p, q) and call it a (p, q)-handle.

Lemma 5.2. Suppose that Gi is a Y-graph of type II, in which case Ki = S1. The

gradient-like vector fields for µ̃i, T̃i, and the bordism C
(i)
ℓ can be chosen so that they

satisfy the following. Put c
(i)
ℓ = 3− |p

(i)
ℓ |.

(1) C
(i)
ℓ is a map into T̃i for ℓ = 1, 2, 3.

(2) If |p
(i)
ℓ | = 1, then the handles of T̃i that may intersect C

(i)
ℓ are of indices

(0, 1), (2, 1), (0, 0), (1, 0), (2, 0).

(3) If |p
(i)
ℓ | = 2, then the handles of T̃i that may intersect C

(i)
ℓ are of indices

(0, 1), (1, 1), (0, 0), (1, 0), (2, 0).
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(4) In a (c
(i)
ℓ , 1)-handle, C

(i)
ℓ is a trivial bordism. Namely, a trivial family of

immersed subbundle that is parallel to a c
(i)
ℓ -handle of Ti.

(5) In a (1, 0)- or (2, 0)-handle, C
(i)
ℓ is the sum of trivial bordism as in (4) and

an immersed subbundle that is parallel to the handle.

(6) The handles of T̃i can be taken as arbitrarily small tubular neighborhoods

of their cores. Namely, for every ε > 0, we may arrange that the diameters

of 0-handles are less than ε and that the thickness of handles with indices

(1, 0), (2, 0), (0, 1) are less than ε/2, and that the thickness of handles with

indices (1, 1), (2, 1) are less than ε/4.

We say that such a v-gradient ξGi is coherent.

Proof. Let δ
(i)
ℓ be an oriented bordism in ∂Vi × S1 such that ∂δ

(i)
ℓ = B

(i)
ℓ ∩ (∂Vi ×

S1)−A
(i)
ℓ ∩(∂Vi×S

1). We take a minimal Morse function ν : ∂Vi → R. Let ν̃ be the

fiberwise Morse function on the trivial bundle ∂Vi × S1 → S1 given by ν̃ = ν ◦ pr1.
We modify αII by a homotopy so that the support of the diffeomorphism of ∂Vi
for the surgery is disjoint from all the critical points of ν, and the projection of

the support on S1 is included in the interior of the small disk U (0) ⊂ S1. Such a

modification is possible by the definition of αII. Here, for sufficiently large T > 0,

the bordism Φ−ν̃(T, ·) ◦ δ
(i)
ℓ satisfies the conditions (1), (2), (3). Moreover, since

the twists of ∂Vi over the 1-handle of {U (q)} is done by a trivial family, we may

take a trivial bordism there, and (4) is satisfied. Over U (0), where the family

A
(i)
ℓ ∩ (∂Vi ×Ki) of cycles may be nontrivial, the family of cycles is the connected

sum of B
(i)
ℓ ∩ (∂Vi × Ki) and a loop that represents a Whitehead product, by

Proposition 4.9. Since the connecting part for the connected sum may be assumed

to be disjoint from the horizontal ascending manifolds of ν̃, we may assume that

the connecting part would be included in the (0, 0)-handle after taking it by the

flow Φ−ν̃(T, ·) for large T . Hence, the difference of the two families of cycles over

U (0) is represented by a nullbordant (c
(i)
ℓ + 1)-loop in ∂Vi × U

(0) whose base point

is in the (0, 0)-handle. It does not intersect the locus of the maximal point of ν,

and thus intersects only (0, 0), (1, 0) or (2, 0)-handle. After taking the bordism by

a long time gradient flow of −ν̃, it becomes parallel on (1, 0) and (2, 0)-handle, by

a similar reason as in the proof of Lemma 5.1. Now (5) has been proved. �

We remark that the bordisms C
(i)
ℓ for different ℓ may intersect each other.

Definition 5.3. We say that the v-gradient (fG, ξG) is coherent if its restriction

on Vi is the direct product of the restriction of the coherent one (fGi , ξGi) over

Ki with K1 × · · · × K̂i × · · · × K2k (the i-th factor excluded). We say that the

v-gradient (fG, ξG) is generic with respect to ~VG = (V1, . . . , V2k) if a property in

question is satisfied if for each i the v-gradient ξ(i)G is perturbed slightly, preserving

the following conditions.

(1) The restriction of ξ(i)G to (R4 − Int (V1 ∪ · · · ∪ V2k)) × BΓ is the constant

family with respect to the parameter in BΓ.

(2) The restriction of ξ(i)G to
⋃

(t1,...,t2k)∈BΓ
(V1(t1) ∪ · · · ∪ V2k(t2k)) is of the

form
⋃

(t1,...,t2k)
(ξ(i)G1(t1) ∪ · · · ∪ ξ

(i)G2k(t2k)).
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Lemma 3.6 still holds for a v-gradient (fG, ξG) that is generic with respect to
~VG. See §B.2 for a proof.

Let F
(i)
ℓ be the cycle in the closed manifold Si = Ṽi ∪∂ (−Vi ×Ki) defined by

F
(i)
ℓ = A

(i)
ℓ −B

(i)
ℓ + C

(i)
ℓ .

We denote the class of F
(i)
ℓ in H∗(Si) by α

(i)
ℓ .

Lemma 5.4. (1) 〈α
(i)
ℓ , α

(i)
ℓ′ 〉Si

= 0 for ℓ, ℓ′ ∈ {1, 2, 3},

(2) 〈α
(i)
1 , α

(i)
2 , α

(i)
3 〉Si

= ±1.

Proof. (1) follows from the homological property of the Borromean surgery in

Proposition 4.9. Since the left hand side of (2) is the triple intersection among

cycles in closed manifold Si, the result follows from [Wa2, Lemma 5.3]. Roughly

speaking, α
(i)
ℓ can be represented by the cycle obtained by gluing “immersed Seifert

surface” of a component of the Borromean string link in its complement Ṽi with

that of a trivial string link in −Vi ×Ki. The triple intersection can be seen in the

coordinate description of the Borromean rings in §4.1. �

Since critical points of the Morse function m on fiber do not change by the

surgery along G, the correspondence between critical points gives a canonical Z-

linear isomorphism φn : C∗(fbn0 )→ C∗(f
G
bn0
).

Lemma 5.5. If (fG, ξG) is coherent and generic with respect to ~VG, then the

following hold.

(a) For each n, φn is a chain isomorphism.

(b) (fG, ξG, η) satisfies Assumption 3.5.

(c) (fG, ξG, η) satisfies Assumption 3.1.

Proof. (a) It suffices to check that the boundary operator is invariant under the

surgery on Gi of type I. The i+ 1/i-flow-lines that result in the difference between

the counts of the flow-lines are those from critical points outside Vi to those inside

Vi. Hence the change of the count under surgery is given by the intersection of the

chains Dp(ξbn0 )∩∂Vi and (A
(i)
k ∪(−B

(i)
k ))∩∂Vi for some k. Generically, Dp(ξbn0 )∩∂Vi

intersects transversally with cores of the handles in the handlebody Ti of Lemma 5.1

in a single fiber over bn0 . Since it intersects boundaries of each parallel bordism in

C
(i)
k for a coherent v-gradient, the intersection number cancels in pair, which shows

that the intersection of Dp(ξbn0 ) ∩ ∂Vi and (A
(i)
k ∪ (−B

(i)
k )) ∩ ∂Vi is zero.

(b) That the critical values of fG are constant over BΓ is clear by the definition

of fG. For each pair a, b ∈ Σ(η) with |a| = |b| + 1 and for a flow-line α : I → BΓ

of −η between them we shall prove that nα(x, y) = 0 for x 6= y, x, y ∈ Σ(ξG),

where nα(x, y) was defined in (3.2). For this we only need to prove that the count

of the transversal intersections between Dx(ξ
G) and Ay(ξ

G) over α, i.e., the j/j-

intersections between x and y, is 0. By the definition of ξG, the flow-lines in question

that may be counted are those between critical points outside and inside Vi. It suf-

fices to consider the case where α intersects the support of the diffeomorphisms for

a surgery of type II since otherwise nα(x, y) = 0 is obvious. In that case, the count

of the flow-lines in question are given by the intersection of the chains Dx(ξ
G)∩∂Ṽi
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and (A
(i)
k ∪ (−B

(i)
k ))∩ ∂Ṽi for some k. By coherence and Lemma 5.2, the latter fits

into a thin handlebody in ∂Ṽi and generically Dx(ξ
G)∩∂Ṽi intersects transversally

with the cores of the thin handles with positive indices. Also, since the intersection

with the parallel pieces of (A
(i)
k ∪ (−B

(i)
k )) ∩ ∂Ṽi is that with the boundary of the

parallel bordisms in thin handles, it is generically 0. Thus nα(x, y) = 0 for x 6= y

follows.

(c) Assumption 3.1 (1) is satisfied by choosing ξG generically with respect to
~VG. Assumption 3.1 (2), (4) are clear from the definition of (fG, ξG). For Assump-

tion 3.1 (3), we prove that there are no i/i + ℓ-intersections (ℓ ≥ 1) for ξG. Put

EΓ
+ = (fG)−1[0,∞), EΓ

− = (fG)−1(−∞, 0]. Inside EΓ
+, the v-gradient ξ

G is a trivial

family, and thus there are no i/i + ℓ-intersections (ℓ ≥ 1) there. Also, inside EΓ
−,

there are no i/i+ℓ-intersection (ℓ ≥ 1) by the definition of the surgery of v-gradient.

Hence there may be only i/i+ ℓ-intersections between critical points of EΓ
+ and EΓ

−

for ℓ ≥ 1. Since the indices of critical points in EΓ
− are 0,1,2 and 0/1-intersection

is impossible, there may be only 1/2-intersections. For a critical locus p of index

1 in EΓ
+, Dp(ξ

Gi) ∩ ∂Ṽi is a trivial dimKi-parameter family of 0-manifolds. By

coherence of ξGi , this may be assumed to be disjoint from Ti or T̃i of Lemmas 5.1

and 5.2, and thus may also be assumed to be disjoint from the ascending manifolds

of critical points of index 2 in EΓ
−. Namely, there are no 1/2-intersections. This

completes the proof. �

5.3. Key Lemma. The following is a key lemma to simplify the computation. Put

Ṽ ′
i = K1 × · · · ×Ki−1 × Ṽi ×Ki+1 × · · · ×K2k.

This is a bundle over BΓ = K1 × · · · × K2k, which is the pullback of the bundle

Ṽi → Ki by the projection BΓ → Ki.

Lemma 5.6 (Key Lemma). Let k ≥ 1. If (f (j)G, ξ(j)G) is coherent for each j ∈

{1, 2, . . . , 3k}, generic with respect to ~VG, and if the width ε in Lemmas 5.1, 5.2 is

sufficiently small, then we have the following.

(1) The value of ẐMorse
k for πΓ (Theorem 3.7) agrees with the sum

(−1)3k

23k

∑

εi=±1

ZMorse
k ((ε1ξ

(1)G, · · · , ε3kξ
(3k)G), η)

for the coherent v-gradients (ξ(1)G, · · · , ξ(3k)G). We denote the value of

ZMorse
k ((ξ(1)G, . . . , ξ(3k)G), η) by ZMorse

k (πΓ).

(2) The Z-graphs that may contribute to ZMorse
k (πΓ) are such that for each i

there are exactly one black vertex in Ṽ ′
i . (We say that such a Z-graph

occupies G.)

Proof. (1) Since the manifold Ṽi can be obtained from Vi ×Ki by spherical mod-

ifications, namely, the Borromean rings (B(2, 2, 1)4 or B(3, 2, 2)5 = B(2 + 1, 1 +

1, 1 + 1)4+1, see Lemma 4.8) can be obtained by surgery on three Hopf links,

similar to [GGP, Figure 1], one can find a compact oriented manifold Ti with

∂Ti = Si = Ṽi ∪∂ (−Vi × Ki). Put W 0 = D4 × BΓ × I, which gives a (k + 5)-

cobordism between the trivial D4-bundles D4 × BΓ × {1} and −D4 × BΓ × {0}.

Let B̃Γ be an oriented cobordism between BΓ and −Sk and put W 1 = D4 × B̃Γ.
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We construct a (k + 5)-cobordism WΓ with corners between EΓ and −D4 × Sk

by modifying W 0 ∪D4×BΓ×{0} W
1. Let α′

i : BΓ → Diff(∂Vi) be the composi-

tion of the projection BΓ → Ki with αi : Ki → Diff(∂Vi). By attaching the

(k + 5)-manifold T ′
i = K1 × · · · ×Ki−1 × Ti ×Ki+1 × · · · ×K2k to W 0 ∪W 1 along

Vi×
∏2k
j=1Kj = K1×· · ·×Ki−1× (Vi×Ki)×Ki+1×· · ·×K2k in D4×BΓ×{1}, a

(k+5)-cobordism T ′
i∪Vi×

∏
j Kj

(W 0∪W 1) between (D4×BΓ)
Vi,α

′
i and the trivialD4-

bundle over Sk is obtained. Moreover, by attaching T ′
1, . . . , T

′
2k to W 0 ∪W 1 along

(V1 ∪ · · · ∪ V2k)×
∏
jKj simultaneously in a similar manner, a (k+5)-dimensional

cobordism WΓ = (T ′
1 ∪ · · · ∪ T

′
2k) ∪ (W 0 ∪W 1) between EΓ and the trivial bundle

over Sk is obtained. By Proposition 4.11 and Lemma 4.12, this gives a pair of a

bundle and cobordism that satisfies Assumption 2.11.

Let us prove that the correction term of ẐMorse
k for WΓ vanishes. There is an

SO4-framing in TW 0 induced by the structure of trivial D4-bundle, which spans

a trivial linear R4-bundle T vW 0. On the D4 × BΓ × {1} side, there is an ad-

missible section of ST vW 0|D4×BΓ×{1} given by the trivial family of the v-gradient

ξ(j), and on the −D4 × BΓ × {0} side, there is a tuple ~v of admissible sections of

ST vW 0|−D4×BΓ×{0} given by constant sections. We take a tuple ~ηW 0 of admissible

sections of ST vW 0 that extends the two, which may be assumed to be independent

of the parameter of BΓ. We take a tuple ~ηW 1 of admissible sections of ST vW 1

by the constant admissible sections ~v. Also, we can find a tuple ~ηT ′
i
of admissible

sections on T ′
i as follows. By Lemma 4.12, there is a vertical framing on Ṽi that

extends the standard framing on the boundary. Thus one can find a trivializa-

tion τSi
of the rank 4 vector bundle T vSi, which is obtained by gluing T vṼi and

T v(Vi ×Ki) along the boundary, where the fibers of T vSi over ∂Ṽi are not tangent

to Si. By gluing the trivial vector bundle R4 × Ti to T vSi by using the bundle

isomorphism τSi
, we obtain a trivial vector bundle T vTi → Ti that extends T vSi.

There is a tuple of admissible sections of T vTi that extends those of T vSi given by

the v-gradients on Ṽi and Vi × Ki. Extending this trivially to T ′
i by the product

structure, we obtain a tuple ~ηT ′
i
of admissible sections of T vT ′

i . We define the tuple

~ηWΓ of admissible sections of T vWΓ by setting ~ηW 0 on W 0, ~ηW 1 on W 1, and ~ηT ′
i

on T ′
i . Then clearly we have

αadm
k (~ηWΓ) = αadm

k (~ηW 0) + αadm
k (~ηW 1) +

2k∑

i=1

αadm
k (~ηT ′

i
).

Since W 0 is a trivial D4-bundle and ~ηW 0 is a trivial family with respect to BΓ,

we have αadm
k (~ηW 0 ) = 0 by a dimensional reason. Similarly, αadm

k (~ηW 1) = 0 by a

dimensional reason. Also, for k ≥ 2 and for each i, there is j 6= i such that Vj is of

type I. Then T ′
i is decomposed into two parts by the coordinate of Kj = {−1, 1},

and accordingly αadm
k (~ηT ′

i
) is decomposed into two parts. Since the result is of the

form A−A, its sum αadm
k (~ηT ′

i
) is 0 and thus αadm

k (~ηWΓ) = 0 for k ≥ 2. For k = 1,

if Vi is of type II, then the proof is the same as for k ≥ 2. If k = 1 and Vi is of

type I, then T ′
1 = T1 × S1. Since ~ηT ′

1
is defined as a trivial 1-parameter family of

admissible sections on T1, we have αadm
k (~ηT ′

1
) = 0 by a dimensional reason. When

k+5 ≡ 0 (mod 4), we need to prove Pk(W
Γ; τEΓ) = 0. The proof of this fact is the
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same as the vanishing of αadm
k (~ηWΓ) above by using the additivity of the integral

and by dimensional reasons. Thus (1) has been proved.

Next we prove (2). If a Z-graph I with 2k black vertices does not meet Ṽ ′
i ,

then the count of such I vanishes by a dimensional reason since we assume that

the v-gradients outside Ṽ ′
i are constant families over Ki. If a Z-graph I with 2k

black vertices meets Ṽ ′
i but no black vertices of I lie there, then there must be

white vertices of I in Ṽ ′
i . Let p be the critical point attached to one of such white

vertices. If |p| = 0, then the Z-graph I can be interpreted as a 0-chain in the bundle

of configuration space of points in fiber of EΓ \ Ṽ ′
i . This shows that the count of

I vanishes by a dimensional reason. If |p| = 1 or 2, then p = p
(i)
k for some k and

the Z-graph I, viewed as a 0-chain in the configuration space of points in the fibers

of EΓ, can be interpreted as the transversal intersection of the ascending manifold

locus of p and a piecewise smooth chain of EΓ \ Ṽ ′
i . Now we use the coherence

of (f (j)G, ξ(j)G). The count of I is the transversal intersection of the locus of

the (upward) gradient flow from the boundary of a thin parallel piece in C
(i)
k of

Lemma 5.1 or 5.2 with the piecewise smooth chain of EΓ \ Ṽ ′
i . Since the locus

from the parallel piece can be made arbitrarily thin, the number of the transversal

intersections is 0. Namely, the Z-graphs that does not have any black vertices in

Ṽ ′
i for each i does not contribute to ZMorse

k . �

Corollary 5.7. Let k ≥ 1. Under the assumption of Lemma 5.6, only the Z-graphs

that are the disjoint union of 2k Y -shaped components may contribute nontrivially

to ZMorse
k (πΓ).

Proof. By Lemma 5.6, a Z-graph I that may contribute to ZMorse
k occupies G. Thus

there is no compact edge in I connecting two black vertices. Namely, every edge of

I must be separated one. �

As we will see in §5.7, the counts of Y-shaped Z-graphs can be computed explic-

itly in terms of the homology of the closed manifold Si. According to Lemma 5.6

(1), the computation of the correction terms is no longer necessary and the value

of the invariant can be computed exactly.

5.4. Graphs of surviving type. Let I be a Z-graph in EΓ consisting only of Y -

shaped components and suppose that I occupies G. This implies that every output

white vertices of a Y -shaped component are mapped to critical points in some Ṽ ′
ℓ .

Thus we may assume the following.

(1) The index of the critical point attached on any output white vertex of I is

either of 0,1 or 2.

(2) The index of the critical point attached on any input white vertex of I is

either of 1,2 or 3.

We define the index of a Y -shaped component J in I as (a1, . . . , ar | ar+1, . . . , a3)

if the indices of the critical points attached on the input white vertices of J are

a1, . . . , ar and if the indices of the critical points attached on the output white

vertices of J are ar+1, . . . , a3. Let ℓ ∈ {1, . . . , 2k} be such that the black vertex of

J lies in Ṽ ′
ℓ . In fact, the moduli space of J in EΓ is the pullback of the moduli

space of J in the restriction EΓ|Kℓ
of EΓ on Kℓ under the projection BΓ → Kℓ.
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If there is a component J whose moduli space in EΓ|Kℓ
has negative dimension,

then the moduli space of the whole Z-graph including J is empty. Hence we need

only to consider J whose moduli space in EΓ|Kℓ
is exactly 0 dimensional. Let

M Z
J (
~ξGℓ) = M Z

J (
~ξGℓ , ηℓ) denote the moduli space of Z-graphs from J into EΓ|Kℓ

,

where ηℓ is a Morse–Smale h-gradient for the Morse function λ′|Kℓ
(§5.1). The

condition that the dimension of the moduli space of J in EΓ|Kℓ
is 0 is given by the

equation
r∑

j=1

(4− aj) +
3∑

j=r+1

aj =

{
4 if Vℓ is of type I

5 if Vℓ is of type II

All the indices of J that satisfy this equation are as follows.

(Type I) (2, 3, 3 | ), ( | 0, 2, 2), ( | 1, 1, 2), (1, 3 | 0), (2, 2 | 0), (2, 3 | 1), (3, 3 | 2),

(1 | 0, 1), (2 | 0, 2), (2 | 1, 1), (3 | 1, 2)

(Type II) (1, 3, 3 | ), (2, 2, 3 | ), ( | 1, 2, 2), (1, 2 | 0), (1, 3 | 1), (2, 2 | 1), (2, 3 | 2),

(1 | 0, 2), (1 | 1, 1), (2 | 1, 2), (3 | 2, 2)

(5.1)

Note that the edge-orientation of a ~C-graph J is independent of the type (I or II)

of J . We say that Y -shaped component in a ~C-graph is of surviving type if its index

is on the above list (5.1).

5.5. Algebraic Seifert surface of a leaf and linking number. Here, we shall

give a formula for the chain Dg(p) ∩ Ṽℓ for a combinatorial propagator in terms of

the linking number.

Let σ be the fundamental cycle ofBnΓ . In the following, we denote D∗(ξ
G, η)σ,A∗(ξ

G, η)σ
simply by D∗,A∗, respectively. Suppose that an R4-bundle E1 → S1 has sub Sa-

bundle c̃ and sub S2−a-bundle c̃′ with c̃∩ c̃′ = ∅, and that c̃ bounds an (a+1)-chain

d in E1. Then the linking number of c̃ and c̃′ is defined by ℓ̃k(c̃, c̃′) = 〈d, c̃′〉.

Lemma 5.8. Let p, p′ be critical points of Morse functions µi : Vi → (−∞, 0] and
µℓ : Vℓ → (−∞, 0] (i 6= ℓ) respectively with |p|, |p′| > 0. We consider p and p′ are

points in the base fiber F0. The following holds.

(1) ∂Dg(p) = Dp, ∂Dg(p)(ξbn0 ) = Dp(ξbn0 ).

(2) 〈Dg(p),Dp′(ξbn0 )〉(R4×Kℓ)
Vℓ,αℓ = ℓk(c(p), c(p′)) for p′ 6= p, |p| + |p′| = 3,

where c(p) etc. is the cycle in R4 given by Dp(ξbn0 ) etc.

(3) If Vℓ is of type II, then 〈Dg(p),Dp′〉(R4×Kℓ)Vℓ,αℓ = ℓ̃k(c̃(p), c̃(p′)) for p′ 6= p,

|p|+ |p′| = 2, where c̃(p) etc. is the cycle in (R4×Kℓ)
Vℓ,αℓ given by Dp(ξ

G)

etc.

Proof. By ∂g(p) = ∂g(p) = (∂g + g∂)(p) = p and Proposition 3.23, we have

∂Dg(p) =
∑

r

〈∂g(p), r〉Dr =
∑

r

〈p, r〉Dr = Dp.

Also, 〈Dg(p),Dp′(ξbn0 )〉(R4×Kℓ)
Vℓ,αℓ = 〈Dg(p)(ξbn0 ),Dp′(ξbn0 )〉F0 = ℓk(c(p), c(p′)) and

the identity (2) is proved. The identity of (3) follows from (1) and the definition of

ℓ̃k. �



62 TADAYUKI WATANABE

Lemma 5.9. Let p be one of critical points of µi : Vi → (−∞, 0] with 0 < |p| ≤ 2.

Let p1, p2, p3 be the critical loci of µ̃ℓ : Ṽℓ → (−∞, 0] (ℓ 6= i) of positive indices.

Then Dg(p) induces a (piecewise smooth singular) relative cycle of (Ṽℓ, ∂Ṽℓ) on Kℓ,

and its Z-homology class is
∑

j

ℓk(c(p), c(pj)) [Apj ].

Here the sum is taken for j such that |p|+ |pj | = 3.

Proof. By Proposition 4.9, the families of twists of ∂Ṽℓ are homologically trivial

and we have H∗(Ṽℓ, ∂Ṽℓ) ∼= H∗(Vℓ, ∂Vℓ) ⊗ H∗(Kℓ), whose basis is given explicitly

by the ascending manifolds of pj. Thus we may put

[Dg(p) ∩ Ṽℓ] =





∑

j

cj [Apj ] (Vℓ is of type I)

∑

j

cj [Apj ] +
∑

j′

cj′ [A pj′
(ξbn0 )] (Vℓ is of type II)

(cj , cj′ ∈ Z). Here, the first sum in both lines is taken for j such that |p|+ |pj | = 3,

and the second sum in the second row is taken for j′ such that |p| + |pj′ | = 2. By

Lemma 5.8, we have 〈Dg(p) ∩ Ṽℓ,Dpj (ξ
G
bn0
)〉 = 〈Dg(p),Dpj (ξ

G
bn0
)〉 = ℓk(c(p), c(pj)),

〈Apj ,Dpj′
(ξGbn0

)〉 = δjj′ , and thus we have cj = ℓk(c(p), c(pj)). If Vℓ is of type II and

|p|+ |pj| = 2, then by Lemma 5.8 again, we have 〈Dg(p)∩ Ṽℓ,Dpj′ 〉 = ℓ̃k(c̃(p), c̃(pj)),

〈A pj ,Dpj′ 〉 = δjj′ , and thus we have cj′ = ℓ̃k(c̃(p), c̃(pj′)). Moreover, by looking at

the way of linking of the Y-link G1 ∪ · · · ∪G2k, we see that all ℓ̃k are 0 and hence

the sum for j′ is 0. �

5.6. Orientations of completely separated graphs. LetH be an edge-oriented,

vertex-oriented labelled trivalent graph with 2k vertices. Let H◦ be a ~C-graph ob-

tained from H by replacing every edge with separated one. Then H◦ is a disjoint

union of Y -shaped components. Let H◦
i (i = 1, 2, . . . , 2k) be the Y -component of

H◦ that includes the i-th black vertex.

Recall that the orientation of a trivalent graph was defined by o = (e1+ ∧ e1−)∧
· · · ∧ (e3k+ ∧ e2k−), where {ej+, ej−} is a half-edge decomposition of the j-th edge

ej, and this can be rewritten as o = τ1 ∧ · · · ∧ τ2k, τi = ep± ∧ eq± ∧ er±, where
ep±, eq±, er± are the half-edges adjacent to the i-th vertex. In §4.2, we used an

arrow on each edge e to determine a decomposition of e into half-edges {e+, e−}
such that deg e+ = 1 and deg e− = 2. Here, we do not use arrows to avoid confusion

with the edge-orienation of a ~C-graph. Instead, we use the indices of the pair of

critical points attached to the white vertices of a separated edge. Namely, we

identify each segment in a separated edge with a half-edge and we define its degree

(mod 2) by the index of the critical point attached to the segment. For example,

if a separated edge e consists of two segments e′, e′′ with critical points of indices

1 and 2 attached to the white vertices of e′ and e′′ respectively, then we define

deg e′ = 1 and deg e′′ = 2, independent of the edge-orientation of e for a ~C-graph.

5.7. Homological description of graph counting. If the half-edges e, e′, e′′

around the i-th black vertex of H◦ gives τi in this order, and if the critical points
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that are attached to the white vertices of e, e′, e′′ are p, p′, p′′ respectively, then we

write H◦
i = H◦

i (p) (p = (p, p′, p′′)). Also, if H◦ = H◦
1 (p1) ∪ · · · ∪ H

◦
2k(p2k), then

we write H◦ = H◦(p1, . . . ,p2k) and allow substitution H◦(p′
1, . . . ,p

′
2k) by differ-

ent tuple (p′
1, . . . ,p

′
2k) with possibly different indices from (p1, . . . ,p2k). When

p1, . . . ,p2k are such that every separated edge is of degree 1 (in the sense of §3.5)
and that H◦

i (pi) is of surviving type for each i, we denote by S
H◦

2k (p1, . . . ,p2k)

the subset of S2k consisting of bijections β : {1, 2, . . . , 2k} → {1, 2, . . . , 2k} such

that H◦
j (pj) is of type I (resp. type II) in the list (5.1) of surviving type if and

only if Vβ(j) is of type I (resp. type II). Let sgn′(σ) be defined by the identity:

τσ(1) ∧ · · · ∧ τσ(2k) = sgn′(σ) τ1 ∧ · · · ∧ τ2k. Note that sgn′(σ) depends on the choice

of p1, . . . ,p2k. The following lemma is a consequence of Corollary 5.7 and the

observation in §5.4.

Lemma 5.10. Under the assumption of Lemma 5.6, the contribution in 23k(2k)!(3k)!ZMorse
k (πΓ)

of the Z-graphs from graphs of the form H◦ is

∑

p1,...,p2k

∑

σ∈

SH◦
2k

(p1,...,p2k)

sgn′(σ) Tr~g

(

#M
Z
H◦

1 (p1)
(~ξGσ(1) ) · · ·#M

Z
H◦

2k
(p2k)(

~ξGσ(2k) )H◦(p1, . . . ,p2k)
)

,

(5.2)

where p1, . . . ,p2k are such that every separated edge is of degree 1 and that H◦
i (pi)

is of surviving type for each i. The orientation of M Z
H◦

i (pi)
(~ξGσ(i)) is given by the

coorientation in Ṽσ(i) that is the wedge of coorientations of descending or ascending

manifolds associated with the vertex-orientation τi. We denote (5.2) by I(~ξG, H).

Each term #M Z
H◦

i (pi)
(~ξGℓ) is the triple intersection of some three chains in Ṽℓ

formed along the vertex-orientation. For example, if among the three white vertices

in H◦
i (pi, p

′
i, p

′′
i ) the one with pi attached is incoming and the other two with p′i, p

′′
i

attached are outgoing, then #M Z
H◦

i (pi)
(~ξGℓ) = 〈Dpi ,Ap′i ,Ap′′i 〉Ṽℓ

. The reason of

sgn′(σ) is that the pullback of the projection of the moduli space M Z
H◦

i (pi)
(~ξGσ(i)) on

Kσ(i) to BΓ has coorientation ±o(Kσ(i)), where ± is determined by the orientation

of the triple intersection. Then the moduli space of the whole graph H◦ projected

on BΓ has coorientation ±o(Kσ(1))∧· · ·∧o(Kσ(2k)) = ±sgn
′(σ) o(K1)∧· · ·∧o(K2k).

The term #M Z
H◦

1 (p1)
(~ξGσ(1)) · · ·#M Z

H◦
2k(p2k)

(~ξGσ(2k))H◦(p1, . . . ,p2k) is an inte-

ger multiple of a graph with 3k inputs and 3k outputs. Let y1, y2, . . . , y3k be the

critical points that are attached on the input white vertices of H◦(p1, . . . ,p2k),

and let x1, x2, . . . , x3k be those on the corresponding output white vertices, so

that yi and xi are attached on the i-th separated edge of H◦. The combinato-

rial structure of the graph H gives the bijective correspondence (p1, . . . ,p2k) ↔
(x1, . . . , x3k; y1, . . . , y3k). The following lemma is evident.

Lemma 5.11. For a permutation σ ∈ S
H◦

2k (p1, . . . ,p2k), put

Rσ(x1, . . . , x3k; y1, . . . , y3k) = sgn′(σ)#M
Z
H◦

1 (p1)
(~ξGσ(1)) · · ·#M

Z
H◦

2k(p2k)
(~ξGσ(2k)),

Xσ(x1, . . . , x3k; y1, . . . , y3k) = Rσ(x1, . . . , x3k; y1, . . . , y3k)H
◦(p1, . . . ,p2k).
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Then I(~ξG, H) can be rewritten as
∑

x1,...,x3k
y1,...,y3k

∑

σ∈

SH◦
2k

(p1,...,p2k)

Tr~g

(
Xσ(x1, . . . , x3k; y1, . . . , y3k)

)

= (−1)3k
∑

x1,...,x3k

∑

σ∈

SH◦
2k

(p1,...,p2k)

[
Rσ(x1, . . . , x3k; g

(1)(x1), . . . , g
(3k)(x3k))Close(H

◦)
]
.

(5.3)

Here, x1, . . . , x3k, y1, . . . , y3k are such that every separated edge is of degree 1 and

that H◦
i (pi) is of surviving type for each i, Rσ(x1, . . . , x3k; y1, . . . , y3k) is extended

to sequences of chains by Z-linearity and Close(H◦) is the trivalent graph that is

obtained from the ~C-graph H◦ by identifying the pair of white vertices in each

separated edge.

We will denote sgn′(σ) for x = (x1, . . . , x3k; g
(1)(x1), . . . , g

(3k)(x3k)) by sgn′
x
(σ),

which is determined by x1, . . . , x3k since we only count ~C-graphs that are occupied.

Under the assumption of Lemma 5.6, we have, for k ≥ 1 and the coherent v-

gradients ξ(j)G (j = 1, 2, . . . , 3k),

ZMorse
k (πΓ) =

1

23k(2k)!(3k)!

∑

H

I(~ξG, H) (5.4)

by Corollary 5.7 and Lemma 5.10. Here, the sum is taken for edge-oriented labelled

trivalent graphs H with 2k trivalent vertices. Let SH(σ(1), . . . , σ(2k)), σ ∈ S2k,

denote the part of I(~ξG, H) in (5.4) consisting of terms of Z-graphs such that for

each i the i-th black vertex lies in Ṽσ(i). Then we have

ZMorse
k (πΓ) =

1

23k(2k)!(3k)!

∑

σ∈S2k

∑

H

SH(σ(1), . . . , σ(2k)).

The following lemma is evident from Lemma 5.11.

Lemma 5.12. The following identity holds.

SH(σ(1), . . . , σ(2k)) = (−1)3k
[ ∑

x1,...,x3k

sgn′
x
(σ)Q(1)

x
(σ)Q(2)

x
(σ) · · ·Q(2k)

x
(σ)Close(H◦)

]

Here, the sum is the same as (5.3), x = (x1, . . . , x3k; g
(1)(x1), . . . , g

(3k)(x3k)),

Q(i)
x
(σ) =

{
#M Z

H◦
i (pi)

(~ξGσ(i)) if the types of H◦
i (pi) and Vσ(i) agree,

0 otherwise

and p1, . . . ,p2k are sequences of linear combinations of critical points that corre-

spond to x.

The Morse indices of the critical points x1, . . . , x3k in the formula of Lemma 5.12

may be restricted further as follows.

Lemma 5.13. After perturbing the coherent v-gradients without affecting the pre-

vious assumptions, we may restrict the Y -shaped Z-graphs in Corollary 5.7 to those

such that all the critical points attached on input white vertices are of index 2 or 3

and that all the critical points attached on output white vertices are of index 1 or

2.
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Proof of Lemma 5.13 is a bit technical and will be given in §5.8. We assume

Lemma 5.13 in the rest of this subsection, in which case there are no output white

vertex of index 0 and Lemma 5.9 can be applied. The following lemma describes

SH(σ(1), . . . , σ(2k)) only by homological data, as done in [KT].

Lemma 5.14. Recall that Si = Ṽi ∪∂ (−Vi × Ki) (defined after Definition 5.3).

Let β
(i)
1 , β

(i)
2 , β

(i)
3 be the classes in H∗(Si) given by the cores of the three handles of

Vi with positive indices. If a coherent v-gradient is chosen as in Lemma 5.13 and

generic with respect to ~VG, then the following identity holds.

∑

x1,...,x3k

sgn′
x
(σ)Q(1)

x
(σ) · · ·Q(2k)

x
(σ)

= ±
{ ∏

e=(j,ℓ)

∈Edges(H◦)

∑

1≤a,b≤3

ℓk(β(j)
a , β

(ℓ)
b )

} 2k∏

i=1

〈α
(i)
1 , α

(i)
2 , α

(i)
3 〉Si

,
(5.5)

where the sum in the left hand side is the same as (5.3).

Proof. Recall that tach term Q
(i)
x (σ) = #M Z

H◦
i (pi)

(~ξGσ(i)) is given by a linear com-

bination of triple intersections like 〈Dg(p),Ap′ ,Ap′′〉Ṽj
(j = σ(i)). We claim that the

triple intersections do not change if each A∗ is replaced with the cycle F
(j)
∗ (defined

after Definition 5.3) in Si by closing it using the trivial family B
(j)
∗ in −Vj × Kj

and the bordism C
(j)
∗ in ∂Vj ×Kj.

Indeed, by the coherence of v-gradients, C
(j)
ℓ is collapsed into a small neigh-

borhood of a skeleton of ∂Ṽj of less dimension. So we may consider C
(j)
ℓ as an

object of less dimension. In particular, for Vj of type I, if |p
(j)
ℓ | = 2, then C

(j)
ℓ

can be considered as a map from a ribbon graph, and if |p
(j)
ℓ | = 1, then C

(j)
ℓ is

included in a small neighborhood of a 2-dimensional subcomplex of ∂Ṽj . For Vj

of type II, if |p
(j)
ℓ | = 1, then C

(j)
ℓ has parts parallel to (2, 1), (1, 0), (2, 0)-handles

(with 3,1,2-dimensional cores), and it is included in a small neighborhood of codi-

mension ≥ 1 subcomplex in dim ∂Ṽj = 4 dimension. If |p
(j)
ℓ | = 2, C

(j)
ℓ has parts

parallel to (1, 1), (1, 0), (2, 0)-handles (with 2,1,2-dimensional cores), and it is in-

cluded in a small neighborhood of codimension ≥ 2 subcomplex in dim ∂Ṽj = 4

dimension. Then the triple intersections of chains including C
(j)
ℓ may be assumed

to be empty by a dimensional reason. Hence the additions of C
(j)
ℓ do not affect the

triple intersections above, and A∗ can be replaced with the cycle F
(j)
∗ .

Now Q
(1)
x (σ) · · ·Q

(2k)
x (σ) can be described as follows. We consider the following

formal tensor product:

3k⊗

i=1

(Axi
⊗ Dg(xi)). (5.6)

By Lemma 5.9, Dg(xi) induces a relative cycle at each (Ṽ ′
j , ∂Ṽ

′
j ) described as follows.

[Dg(xi) ∩ Ṽj ] =
∑

j,ℓ

ℓk(c(xi), c(p
(j)
ℓ ))[A

p
(j)
ℓ

].
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If the terms Dg(xi) in the tensor product (5.6) are replaced with
∑

j,ℓ ℓk(c(xi), c(p
(j)
ℓ ))A

p
(j)
ℓ

,

then we obtain a linear combination of tensor products of 6k A∗-terms. Each

term in the linear combination may be permuted to a tensor product of 2k triple

products by using the combinatorial structure of the graph H , and the value of

Q
(1)
x (σ) · · ·Q

(2k)
x (σ) will be obtained after replacing the triple products with their

triple intersection numbers. Here, one may see that the replacements of Dg(xi) with∑
j,ℓ ℓk(c(xi), c(p

(j)
ℓ ))A

p
(j)
ℓ

do not affect the triple intersection numbers, as follows.

Since Dg(xi)∩(∂Vℓ×Ki) = Dg(xi)∩∂Ṽℓ does not change by surgery, we may obtain a

cycle of Sℓ by gluing together the two Dg(xi)’s before and after the surgery along the

boundary, which is homologous to the one obtained from
∑

j,ℓ ℓk(c(xi), c(p
(j)
ℓ ))A

p
(j)
ℓ

by closing with C
(j)
ℓ . Since Q

(j)
x (σ) is given by products among homology classes in

a closed manifold Sj , a change of a cycle within its homology class does not affect

the resulting value.

Based on the above observations, it follows that the left hand side of (5.5) can

be described in the homology level as follows. Let e = (j, ℓ) be a separated edge of

H◦. Consider the following element of Hk+5(Sj × Sℓ) ∼= H3(Sj × Sℓ)

Le =
∑

a,b

ℓk(β(j)
a , β

(ℓ)
b )α(j)

a ⊗ α
(ℓ)
b ,

where the sum is taken for (a, b) such that |α
(j)
a | + |α

(ℓ)
b | = k + 5. Let L̂e be

the element of H9k−3(S1 × S2 × · · · × S2k) obtained from the fundamental class

[S1]⊗ [S2]⊗ · · ·⊗ [S2k] by replacing the j-th and the ℓ-th factors with Le. Now the

following identity holds.
∑

x1,...,x3k

sgn′
x
(σ)Q(1)

x
(σ) · · ·Q(2k)

x
(σ) = ±

∏

e∈Edges(H◦)

L̂e

where the product in the right hand side is the usual intersection form among cycles

H9k−3(
∏2k
i=1 Si)

⊗3k → H0(
∏2k
i=1 Si) = Q. The product in the right hand side can

be rewritten as the right hand side of the formula of the lemma. �

Although the sign in the right hand side of (5.5) depends on the graph orientation

of H◦, it is cancelled out by the graph orientation after multiplying (5.5) to an

oriented graph.

The following lemma is immediate.

Lemma 5.15.
∏
e=(j,ℓ)∈Edges(H◦)

∑
a,b ℓk(β

(j)
a , β

(ℓ)
b ) 6= 0 iff there exists an isomor-

phism H ∼= ±Γ that preserves the labels of vertices.

For an abstract trivalent graph Γ, let AuteΓ be the group of automorphisms of

Γ that fix all the vertices of Γ. Let AutvΓ be the group of permutations of vertices

of Γ that give automorphism of Γ. We have |AutΓ| = |AuteΓ||AutvΓ|.

Lemma 5.16. If the coherent v-gradients are chosen as Lemma 5.13 and generic

with respect to ~VG and if we choose orientations of the ascending manifolds A
(i)
ℓ so

that the value of Lemma 5.4 is +1, then the following identity folds.

1

23k(2k)!(3k)!

∑

σ∈S2k

∑

H

SH(σ(1), . . . σ(2k)) = (−1)3k[Γ]. (5.7)
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Proof. By Lemma 5.4 (2), the value of the right hand side of (5.5) agrees with

±
∏
e=(j,ℓ)∈Edges(H◦)

∑
a,b ℓk(β

(j)
a , β

(ℓ)
b ). Each nonvanishing coefficient in the sum∑

H SH(σ(1), . . . , σ(2k)) gives the same element in Ak after multiplying it to Close(H◦).

Thus

SH(σ(1), . . . , σ(2k)) =





(−1)3k|AuteΓ|[Γ] if there exists an isomorphism H ∼= ±Γ
that preserves the labels of vertices

0 otherwise

Among the permutations σ ∈ S2k of the set of vertices, there are |AutvΓ| elements

satisfying the condition of Lemma 5.15. For a trivalent graph, there are 23k(2k)!(3k)!
|AutΓ|

different ways of giving edge-orientations and labellings. Therefore, the LHS of

(5.7) is

1

23k(2k)!(3k)!

23k(2k)!(3k)!

|AutΓ|
(−1)3k|AutvΓ||AuteΓ|[Γ] = (−1)3k[Γ].

This completes the proof. �

Proof of Theorem 4.2 (2). To complete the proof of Theorem 4.2 (2), we shall prove

that ZMorse
k ((ε1ξ

(1), . . . , ε3kξ
(3k)), η) agrees with ZMorse

k ((ξ(1), . . . , ξ(3k)), η) for all

εi = ±1 for the coherent v-gradient ξ(j)G as in Lemma 5.6. Z-graphs for non-

vanishing terms in ZMorse
k ((ε1ξ

(1), . . . , ε3kξ
(3k)), η) are exactly the same as those

for ZMorse
k ((ξ(1), . . . , ξ(3k)), η). Here, although the orientations of the Z-graphs may

change under the replacements ξ(i) → εiξ
(i), the orientations of graphs change

accordingly and the changes do not affect the product #M Z
Γ (
~ξG) ·Γ. Thus we need

only to show that in such a Z-graph a separated edge of εjξ
(j), εj = −1, gives the

same coefficient as that of εj = 1. The analogue of the identity ∂g(p) = p in the

proof of Lemma 5.8 for εj = −1 is p = ∂
∗
g∗(p), where ∂

∗
, g∗ are given by matrix

transpose for ∂, g, respectively. Then we have

ℓk(c(p), c(p′)) = 〈Dg∗(p)(ξbn0 ),Dp′(ξbn0 )〉F0 = 〈Dp(ξbn0 ),Dg(p′)(ξbn0 )〉F0 .

There are no changes in Lemma 5.9 for εj = −1 except that g(p) becomes g∗(p),

and there are no other changes in the argument of §5.7 except that D and A

are exchanged. Hence by Lemma 5.16 we have ZMorse
k ((ε1ξ

(1), . . . , ε3kξ
(3k)), η) =

ZMorse
k ((ξ(1), . . . , ξ(3k)), η) = (−1)3k[Γ]. This completes the proof. �

5.8. Proof of Lemma 5.13. Among the Y -shaped components J in a Z-graph in

EΓ that are of surviving type, listed in (5.1), the cases (2, 3, 3 | ), ( | 1, 1, 2), (2, 3 | 1),
(3, 3 | 2), (2 | 1, 1), (3 | 1, 2), (2, 2, 3 | ), ( | 1, 2, 2), (2, 2 | 1), (2, 3 | 2), (2 | 1, 2), (3 | 2, 2)
satisfy the condition of the lemma. We will show below that if J has a white

vertex with index 0 critical point, i.e., the index of J is one of ( | 0, 2, 2), (1, 3 | 0),
(2, 2 | 0), (1 | 0, 1), (2 | 0, 2), (1, 2 | 0), (1 | 0, 2), then such a graph does not contribute

to ZMorse
k (πΓ). Since an input white vertex with index 1 critical point is paired

with an output white vertex with index 0 critical point, the cases (1, 3, 3 | ), (1, 3 | 1),
(1 | 1, 1) can then be excluded, too. This will complete the proof Lemma 5.13.

Lemma 5.17. Let J be a Y -shaped component in I as above. If J has a white

vertex with index 0 critical point, i.e., the index of J is one of the following:

(1) (Type I) ( | 0, 2, 2), (1, 3 | 0), (2, 2 | 0), (1 | 0, 1), (2 | 0, 2),
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(2) (Type II) (1, 2 | 0), (1 | 0, 2),

then such a graph I does not contribute to ZMorse
k (πΓ).

Proof. (∗, ∗ | 0): Let K be a Y -shaped component in I of index (2, 2 | 0) (type I).

Suppose that K has a black vertex in Ṽi = V ′
i

∐
(−Vi) and that the half-edges of

K with critical points of indices 2, 2, 0 are labelled by k, ℓ,m respectively. By (5.3),

we may consider that on the input white vertex of K of index 2 labeled by k, the

Morse chain g(p) for some critical point p of f
(k)
bn0

of index 1 with negative critical

value is attached, extending I to chains. Let q be the critical point of f
(ℓ)
bn0

of index 2

that is attached on ℓ in K. According to Lemma 5.9, g(p) induces a relative 2-cycle

σ in (Ṽi, ∂Ṽi). Let r be the critical point of f
(m)
bn0

of index 0 attached on m in K.

If q lies in Ṽi, then q is a 2-cycle in the Morse complex of the fiber over

bn0 . By Lemma 5.8 (2), K gives 〈σ,Ar ,Dq〉Ṽi
= 〈σ,Dq〉Ṽi

= ±(ℓk(c(p), c(q)) −

ℓk(c(p), c(q))) = 0, where the two terms of ℓk correspond to the components V ′
i

and −Vi respectively. Note that the linking number is invariant under the surgery

on Gi by the homological triviality result of Proposition 4.9. Hence the Z-graph

I having such K does not contribute to ZMorse
k (πΓ). The same argument can be

applied to K of index (1, 3 | 0) with |g(p)| = 3, |q| = 1.

If q lies outside Ṽi, it suffices to consider K with q replaced by g(q′) for some

index 1 critical point q′. As for g(p) on the half-edge k, g(q′) induces a relative

2-cycle σ′ in (Ṽi, ∂Ṽi). By gluing ∂V ′
i and −∂Vi together, we may think σ and σ′

are 2-cycles in Si = V ′
i ∪∂ (−Vi). The intersection number 〈σ,Ar, σ′〉

Ṽi
= σ · σ′ can

be interpreted as that for two 2-cycles in Si, which vanishes since the image of the

cup product H2(Si)⊗H2(Si)→ H4(Si) of such 2-cycles is zero (Lemma 5.4 (1)).

If K is of index (1, 3 | 0) (type I) and q lies outside Ṽi, then let g(p), q, r with

|p| = 2, |q| = 1, |r| = 0 be the Morse chains attached to the white vertex of K. Let

σ be the relative 3-cycle in (Ṽi, ∂Ṽi) induced from g(p). A leg of Dq converges to a

critical locus s of index 0 in Ṽi by assumption. We remark that since Dq induces a

relative 1-cycle of (Ṽi, ∂Ṽi ∪ s), the value of 〈σ,Ar ,Dq〉Ṽi
will not change by adding

to σ the boundary of a 4-chain in Ṽi that does not meet ∂Ṽi ∪ s. To obtain a

good modification of σ, we now assume that the v-gradient for the fiberwise Morse

function µ̃i and its perturbations µ̃
(1)
i , · · · , µ̃

(3k)
i are as follows. We assume that the

support of the relative diffeomorphisms of ∂Vi for the surgery on Gi (Definition 4.5)

is included in a thin handlebody R with at most 2-handles in ∂Ṽi. Then we may

assume that for a real number κ < 0 with small absolute value, both the manifolds

Ṽi and the gradient-like vector field for µ̃i agree on the complement of R × [κ, 0],

where the direct product structure R× [κ, 0] is the one generated by the gradient-

like vector field for µ̃i, and we consider that Ṽi is obtained from Vi×Ki by surgery

within R × [κ, 0]. Furthermore, we may assume that this property is satisfied for

every ξ(j)Gi . By perturbing the gradient-like vector field for f (ℓ) in R4 − Vi, we
may assume that Dq ∪ s does not meet R× [κ, 0] in Ṽi. Note that this perturbation

is independent of the gradient-like vector fields in Ṽi’s and does not affect all the

previous vanishing results.
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Figure 16

We may assume that the relative cycle σ is disjoint from s. By adding the

boundary of a 4-chain in Ṽi to σ that does not meet ∂Ṽi ∪ s, we may assume that

the restriction of σ on the complement of R × [κ, 0] is independent of parameter

in Ki = S0. See Figure 16, which summarizes the change of σ. Under all the

above assumptions, 〈σ,Ar ,Dq〉Ṽi
= 0 by cancellation since the intersections avoid

R× [κ, 0], and hence the Z-graph I does not contribute to ZMorse
k (πΓ) in this case,

too.

If K is of index (1, 2 | 0) (type II), then the proof of vanishing is almost the same

as above for (1, 3 | 0), except that |p| = 1, |q| = 1, ℓk is replaced with ℓ̃k.

( | 0, 2, 2): Let K be a Y -shaped component in I of index ( | 0, 2, 2) (type I).

Suppose that the black vertex of K lies in Ṽi and that the output half-edges of K

with critical points q, r, s of index 2,2,0 are labelled by k, ℓ,m respectively. Then

K gives 〈Aq,Ar,As〉Ṽi
= 〈Aq,Ar〉Ṽi

. By coherence of the v-gradients, the bordism

C
(i)
j of Lemma 5.1 for p

(i)
j = q or r is a map from a ribbon graph, and two such do

not have intersection in the 3-manifold ∂Ṽi generically. Thus we have 〈Aq,Ar〉Ṽi
=

〈F
(i)
j (ξ(k)Gi), F

(i)
j′ (ξ(ℓ)Gi)〉Si

, which is 0 by Lemma 5.4 (1). Therefore, it follows

that I does not contribute to ZMorse
k (πΓ), either.

(∗ | 0, ∗): LetK be a Y -shaped component in I of index (1 | 0, 1) (type I). Suppose

that the black vertex of K lies in Ṽi and that the input and output half-edges of

K with critical points of index 1 are labelled by k, ℓ respectively. Suppose that the

output half-edge of K with critical point of index 0 is labelled by m. Let q, r, s be

the critical points of index 1, 1, 0 attached on the half-edges k, ℓ,m, respectively.

Then we may assume that q lies outside Ṽi, andK gives 〈Dq,As,Ar〉Ṽi
= 〈Dq,Ar〉Ṽi

.

By the same argument as (1, 3 | 0) with both input white vertices outside Ṽi, the

difference of Ar before and after the surgery on Gi can be squeezed into R× [κ, 0]

for a thin handlebody R in ∂Ṽi. Since Dq can be made disjoint from R × [κ, 0]

by perturbing the gradient-like vector field for f (k) in R4 − Vi, the intersection

〈Dq,Ar〉Ṽi
is zero by cancellation, and the flow-graph I does not contribute to

ZMorse
k (πΓ) in this case. The case (1 | 0, 2) (type II) is almost the same as this, where

the difference of the ascending manifolds of index 2 can be squeezed into the union

of (1, 1), (1, 0), (2, 0)-handles on ∂Ṽi and disjoint from the locus of the descending

manifold from an index 1 critical locus. The case (2 | 0, 2) (type I) is similar to the

case where K is of index (2, 2 | 0) with q not in Ṽi, in which case the proof is the

same as before except that Aq for a critical point q of index 2 of an output white
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vertex is closed by using C
(i)
j , and the count of K is 〈σ,Aq,Ar〉Ṽi

= σ ·Aq = σ ·F
(i)
j .

This vanishes by the triviality of the cup product in Si for the corresponding classes

(Lemma 5.4 (1)).

Finally, note that the gradient-like vector fields may be perturbed so that every

Y -shaped component in any I with indices in the given list (1), (2) of the statement

simultaneously vanish. �

Appendix A. Orientations on manifolds and their intersections

For a d-dimensional orientable manifold M , we will represent an orientation on

M by a nowhere vanishing d-form of ΩddR(M) and denote by o(M). If M is a

submanifold of an oriented Riemannian e-dimensional manifold E, then we may

alternatively define o(M) from an orientation o∗E(M) of the normal bundle of M

by the rule

o(M) ∧ o∗E(M) ∼ o(E). (A.1)

Note that o∗E(M) is defined canonically by the Hodge star operator: o∗E(M) =

∗o(M). o∗E(M) is called a coorientation ofM in E. We assume that (A.1) is always

satisfied so that coorientation is just an alternative way to represent orientation.

Let N be an oriented smooth manifold and let π : N → E be a smooth map that

is transversal toM . Then the preimage π−1M is naturally an oriented submanifold

of N . We may define the coorientation of π−1M by π∗o∗E(M). We denote simply

by o∗E(M) the coorientation π∗o∗E(M).

If M has boundary ∂M , we provide an induced orientation on ∂M from o(M)

as follows: let n be an outward normal vector field on ∂M , then we define

o(∂M)x = ι(nx)o(M)x. (A.2)

Suppose M and M ′ are two cooriented submanifolds of E of dimension i and j

that intersect transversally. The transversality implies that at an intersection point

x, the form o∗E(M)x ∧ o
∗
E(M

′)x is a non-trivial (2e− i− j)-form. We define

o∗E(M ⋔M ′)x = o∗E(M)x ∧ o
∗
E(M

′)x. (A.3)

This depends on the order of the product.

For an F -bundle π : E → B, with both base and fiber oriented, we orient the

total space by

o(E)x = o(B)x ∧ o(Fπ(x))x. (A.4)

Appendix B. Transversality of flow-graphs

B.1. Proof of Lemma 3.6. It suffices to prove that the spaces of vertical flow-

graphs in fibers satisfy the property of the assertion. Let r be a sufficiently large

integer and let X (F0) be the space of Cr gradient-like vector fields on the base

fiber F0 that satisfy Assumption 3.1. Let U (ℓ) ⊂X (F0) be a small neighborhood

of a Morse–Smale element ξ
(ℓ)
0 . Let O be an open k-disk and let Ũ (ℓ) be the space

of Cr maps O → U (ℓ). An element of Ũ (ℓ) gives an O-family of gradient-like vector

fields on F0, which can be considered as a v-gradient on F0 ×O.
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Now we take a ~C-graph Γ. We define Eℓ(ξ
(ℓ)) (ℓ = 1, 2, . . . , 3k) as follows. If the

ℓ-th edge of Γ is separated and if the critical points p and q of ξ
(ℓ)
0 are attached

respectively to the input and output white vertex of the ℓ-th edge, then we define

Eℓ(ξ
(ℓ)) = Aq(ξ

(ℓ))×O Dp(ξ
(ℓ)), where we also denote by p, q the critical loci of the

v-gradient ξ(ℓ) on F0 × O which correspond to the critical points p, q of ξ
(ℓ)
0 , by

abuse of notation. If the ℓ-th edge of Γ is compact, we define Eℓ(ξ
(ℓ)) = M2(ξ

(ℓ)).

We define the map

Φ :
⋃

ξ(ℓ)∈Ũ (ℓ)

E1(ξ
(1))×O E2(ξ

(2))×O · · · ×O E3k(ξ
(3k))→ F 6k

0

between Banach manifolds as follows∗∗. A point of Eℓ(ξ
(ℓ)) can be represented by

s ∈ O and a pair (xℓ, yℓ) of noncritical endpoints of a possibly separated flow-line.

Thus, a point of E1(ξ
(1)) ×O E2(ξ

(2)) ×O · · · ×O E3k(ξ
(3k)) can be represented by

(x1, y1)×(x2, y2)×· · ·×(x3k, y3k)×{s}, and its fiber components (x1, y1)×(x2, y2)×
· · · × (x3k, y3k) gives a point of F 6k

0 . We define Φ({ξ(ℓ)}; (x1, y1)× (x2, y2) × · · · ×
(x3k, y3k)×{s}) to be this point. For each trivalent vertex v of Γ, we collect the three

components from (x1, y1)×(x2, y2)×· · ·×(x3k, y3k) corresponding to the endpoints

of the three edges incident to v on the v-side, and we identify F 6k
0 (ordered with

respect to the edge numbering) with F 3
0 × · · · × F

3
0 (ordered with respect to the

vertex numbering). Then we denote the main diagonal {(x, x, x) | x ∈ F0} of F 3
0

by ∆(3), and put ∆ = ∆(3) × · · · ×∆(3), which is naturally diffeomorphic to F 2k
0 .

Lemma B.1. Φ is transversal to ∆. Hence Φ−1(∆) is a Cr submanifold of codi-

mension 16k.

Proof. The idea is almost the same as in [Fu]. Namely, for each point z ∈ ImΦ∩∆,

one may see that any component of z can be shifted in arbitrary tangent direction

in TF0 by a small perturbation of a family of gradient-like vector fields near the

trivalent vertex. It follows that the tangent space TzF
6k
0 is spanned by Im dΦ and

Tz∆. That Φ−1(∆) is a Cr submanifold follows from the local presentation of

transversality (e.g., [AR, Corollary 17.2]). �

Lemma B.2. The projection π : Φ−1(∆)→ Ũ (1)×Ũ (2)×· · ·×Ũ (3k) is Fredholm,

and its index is 0.

Proof. The dimension of the fiber of the projection π̂ : DomΦ → Ũ (1) × Ũ (2) ×

· · ·× Ũ (3k) is k+5×3k = 16k. For z ∈ Φ−1(∆), the linear map dπz : TzΦ
−1(∆)→

Tπ(z)(Ũ
(1)×Ũ (2)×· · ·×Ũ (3k)) agrees with the composition of Fredholm operators

TzΦ
−1(∆)

⊂
→ TzDomΦ

dπ̂z→ Tπ̂(z)(Ũ
(1) × Ũ (2) × · · · × Ũ (3k)), and it follows that π

is Fredholm. Moreover, by the additivity of the index of Fredholm operators under

composition, we see that the index of π is (−16k) + 16k = 0. �

Proof of Lemma 3.6. It follows from the Sard–Smale theorem ([Sm3], [AR, Theo-

rem 16.2]) that the set of regular values of π is a residual subset of
∏
ℓ Ũ (ℓ). By

Lemmas B.1, B.2, we see that the fiber of π over each regular value (ξ(1), . . . , ξ(3k)) is

a 0-manifold. Here, one may check that (ξ(1), . . . , ξ(3k)) is a regular value of π if and

∗∗For fiberwise spaces Xi over O, we write X1 ×O · · · ×O Xr =
∫

s∈O
X1(s)× · · · ×Xr(s).
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only if the restriction Φ(ξ(1),...,ξ(3k)) : E1(ξ
(1))×OE2(ξ

(2))×O · · ·×OE3k(ξ
(3k))→ F 6k

0

of Φ on π−1({(ξ(1), . . . , ξ(3k))}) is transversal to ∆. Since C∞ sections are Cr

dense in the space of Cr sections, one can find a C∞ tuple in the image of π

that is arbitrarily Cr close to a regular value (ξ(1), . . . , ξ(3k)), by which one can

approximate E1(ξ
(1)), E2(ξ

(2)), . . . , E3k(ξ
(3k)) by C∞ submanifolds arbitrarily Cr

closely. Such approximations inherit the transversality property of Φ(ξ(1),...,ξ(3k)),

and it follows that we may assume after a small perturbation that the regular value

(ξ(1), . . . , ξ(3k)) consists of C∞ v-gradients.

One may see that the argument above also works even if Eℓ(ξ
(ℓ)) are replaced

with their compactifications. This completes the proof that M Z
Γ (
~ξ, η) is a compact

0-manifold, for a single ~C-graph Γ. Since there may be only finitely many ~C-graphs

with 2k black vertices and deg(Γ) = (1, . . . , 1), and finite intersection of residual

subsets is residual in
∏
ℓ Ũ (ℓ), the assertion follows for all the relevant ~C-graphs. �

B.2. Proof of the analogue of Lemma 3.6 for v-gradients that are generic

with respect to ~VG. Here, we assume that the open k-disk O in the proof of

Lemma 3.6 is O1 × O2 × · · · × O2k, where Oi is a point or an open interval. We

take ξ
(ℓ)
0 to be one that is adapted to ~VG, as in §5.1, and we replace Ũ (ℓ) with the

following one.

Ũ
(ℓ) = U

(ℓ)
+ × Ũ

(ℓ)
1− × · · · × Ũ

(ℓ)
2k−

Here, U
(ℓ)
+ is a small neighborhood of ξ

(ℓ)
0 |R4−Int(V1∪···∪V2k) in the space of v-

gradients on R4 − Int(V1 ∪ · · · ∪ V2k) that agree with ξ
(ℓ)
0 near the boundary. We

denote by U
(ℓ)
j− a small neighborhood of ξ

(ℓ)
0 |Vj

in the space of v-gradients on Vj

that agree with ξ
(ℓ)
0 near the boundary, and define Ũ

(ℓ)
j− to be the space of Cr maps

Oj → U
(ℓ)
j− . In this situation, Ũ (ℓ) still has enough freedom so that the proofs of

Lemmas B.1, B.2 are almost the same as above.
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théorème de la pseudo-isotopie, Publ. Math. I.H.É.S. 39 (1970), 5–173.
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