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ADDENDUM TO: SOME EXOTIC NONTRIVIAL ELEMENTS OF
THE RATIONAL HOMOTOPY GROUPS OF Diff(5%)
(HOMOLOGICAL INTERPRETATION)

TADAYUKI WATANABE

ABSTRACT. In this addendum, we give a differential form interpretation of the
proof of the main theorem of [Wa4], which gives lower bounds of the dimensions
of m(BDiff(D*,0)) ® Q in terms of the dimensions of Kontsevich’s graph
homology, and explain why it can be extended to arbitrary even dimensions
d > 4. We attempted to make the proof accessible to more readers. Thus we
do not assume familiarity with configuration space integrals nor knowledge of
finite type invariants. Part of this addendum might be joined to the original
article when it will be re-submitted to the journal. This is not aimed at giving
a correction to the previous version.

1. Introduction

The extended result is the following. We refer the reader to [Wad] for back-
grounds and consequences in 4-dimension.

Theorem 1.1 (Theorem 3.10). Let d be an even integer such that d > 4. For each
k > 1, evaluation of Kontsevich’s characteristic classes on D%-bundles over S(4=3)k
gives an epimorphism from w4z (BDiff(D?,0)) @ R to the space "™ @ R of
trivalent graphs (definition in §2.2).

Remark 1.2. Theorem 1.1 gives no information about the mapping class group
mo(Diff (D4, 9)) = 7, (BDiff(D*,9)) because @¥*® = 0. The first nontrivial ele-
ment is detected in o5V = Q (Remark 2.1). It should be mentioned that after
the first version of this paper was submitted to the arXiv, S. Akbulut announced
a proof that mo(Diff(D*,d)) # 0 based on his theory of corks ([Ak]). Also, Budney
and Gabai constructed some elements of 7o (Diff (D*, 3)) explicitly in [BG, §5], and
some structure of the group mo(Diff (D%, 9)) has been studied recently by D. Gay
([Gal]), Gay-Hartman ([GH]), and an alternative proof of Gay’s result is given by
Krannich and Kupers in [KK].

Remark 1.3. In our previous preprint [Wad], we proved a result slightly different
from Theorem 1.1 in terms of Morse theory. The techniques used in this paper to
prove Theorem 1.1, which uses differential forms, is quite different from [Wad4].
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In fact, the construction needed is not different between d = 4 and d > 4 even.
This is similar to the fact that the cocycles of Emb(S!,R?) given by configuration
space integrals are nontrivial for all d > 4 and d = 4 is not exceptional there
([Kon, CCL]). In earlier versions of this paper, we gave a proof of Theorem 1.1
only for d = 4 to simplify notations. However, we learned that some remarkable
progresses on the topology of Diff(D?,d) for higher even dimensions d > 6 have
appeared recently (e.g., Weiss ([We]), Boavida de Brito-Weiss ([BABW]), Fresse—
Turchin-Willwacher, Fresse-Willwacher ([FTW, FW]), Kupers-Randal-Williams
([KRW])) and we thought it would be worth giving a proof of our result for arbitrary
even integer d > 4. It would be very interesting to compare the results in this paper
and those of [We, BABW, FTW, FW, KRW].

Let r: D* — D9 be the reflection r(x1,2s,...,24) = (—21,%2,...,24). The
conjugation r o gor~! for g € Diff(D?, 9) gives an involution on Diff (D%, ) which
is a homomorphism, and hence an involution on 7, (BDiff(D%, 3)).

Corollary 1.4. Let d be an even integer such that d > 4. The (—1)¥-eigenspace of
the reflection involution in (4_s),(BDiff (D, 0)) @R is nontrivial whenever a7
s nontrivial.

Proof. This follows from Theorem 1.1 and Proposition 1.7 below. Namely, let
W(d_3)k(BDiH(Dd,8)) ®@ R = Vi_ij» @ V{_1jr+1 be the eigenspace decomposition
with respect to the reflection involution. If £ € V(_1yk+1, then by Proposition 1.7,
we have (—1)*Z;.(&) = Zx(¢') = (=1)**1Z;(¢) and hence Z(¢) = 0. This shows
that the image of Z, agrees with Zy(V(_1yx). O

Remark 1.5. For example, the (+1)-eigenspace of ma4_g(BDiff(D4,9)) ® R is at
least one dimensional. This is compatible with a result of Kupers and Randal-
Williams ([KRW, Corollary 7.15]) that there is at least one dimensional nontrivial
subspace in the (41)-eigenspace of 7;(BDiff(D%,9)) ® Q for some i in 2d — 9 <
i < 2d — 5 (the fourth band), d > 6 even, as pointed out in [KRW]. As also
pointed out in [KRW, Example 6.9], Corollary 1.4 has a nontrivial consequence for
the group C(D™) = Diff (D™ x I,0D™ x I U D™ x {0}) of pseudo-isotopies. The
following corollary holds since the (+1)-eigenspaces of . (BDiff (D%, 9)) ® R inject
into 7, (BC(D% 1)) ® R ([KRW, Example 6.9]).

Corollary 1.6. Let d be an even integer such that d > 4. If k > 2 is even and if
A2V £ 0, then m(4_s),(BC(DY1) @R # 0.

Proposition 1.7 ([KRW, Remark 7.16]). Let d be an even integer such that d > 4.
For an element & of m(q—3)x(BDiff(D?,0)) @ R, let £ be the element obtained from

& by the reflection involution r. Then we have
Zi(€) = (=1)"Z(©).

A proof of Proposition 1.7 is given in Subsection 2.5.

The method of this paper is essentially the same as [Wa2], where we studied
the rational homotopy groups of Diff(D*~1 9). Namely, we construct some ex-
plicit fiber bundles from trivalent graphs, by giving a higher-dimensional analogue
of graph-clasper surgery, developed by Goussarov and Habiro for knots and 3-
manifolds ([Gou, Hab]). Then we compute the values of the characteristic numbers
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for the bundles, by giving a higher-dimensional analogue of Kuperberg-Thurston’s
computation of configuration space integrals for homology 3-spheres ([KT, Les2]).
Thus, what is new in this paper is to give higher-dimensional analogues of the ideas
of Goussarov—Habiro and Kuperberg—Thurston so that they fit together well and
to check that they indeed work.

In earlier versions of this paper, we gave a proof of Theorem 1.1 by means of
parametrized Morse theory. We believe that the idea of the Morse theoretic proof
is more straightforward and is suitable to understand why nontrivial values can be
obtained, like the formula for the linking number counting crossings. However, in
that proof it is unavoidable to describe thorough detailed arguments of transversal-
ity and orientation, which makes the paper surprisingly long, due to the inefficiency
of the author. In this paper we attempted to make the proof accessible to more
readers and gave a proof of Theorem 1.1 by means of differential forms (or algebraic
topology), as in [Wa2]. It is easier for the author to write shorter proof with dif-
ferential forms, though the main body of the proof is compressed into one lemma,
whose proof is abstract and long. Nevertheless, the latter requires only elementary
algebraic topology and we consider it convenient for most readers.

1.1. Contents of the paper. The aim of this paper is to give a proof of Theo-
rem 1.1 by means of differential forms and to give a foundation of graph surgery
which works for manifolds of arbitrary dimensions > 3. There are roughly three
ingredients in this paper.

(i) Kontsevich’s characteristic classes for framed disk bundles defined by a
graph complex and configuration space integrals. This will be explained in
§2.

(ii) Surgery on “graph claspers”, a higher dimensional analogue of Goussarov—
Habiro’s theory. This will be explained mainly in §3, and technical details
are described in §5.

(iii) That Kontsevich’s configuration space integral invariants can be computed
explicitly for the disk bundles constructed by graph clasper surgeries. The
method for the computation is a higher dimensional analogue of Kuperberg—
Thurston’s computation of configuration space integrals for homology 3-
spheres ([KT, Theorem 2]), for which a detailed exposition has been given
by Lescop ([Les2]). This will be explained in §4, §6, §7.

In the appendices, we will explain about the following.

(A) Smooth manifolds with corners.

(B) Blow-up in differentiable manifolds.

(C) Fulton—-MacPherson compactification.

(D) Orientations on manifolds and on their intersections.

E) Well-definedness of Kontsevich’s characteristic class.
)

(
(F) Homology class of the diagonal.

The readers who do not need to check the technical details for the moment can
read only §2-4.
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§3, 5 of this paper corresponds to §4 of [Wad]. §2, 4 of this paper can be
considered as simplifications of §2, 3, 5 of [Wad]. Proofs of §4.8 of [Wad] was
separated and joined to [Wa3]. The correspondence is roughly as follows.

This paper || §2 | §3, 5 | §4-7
[Wad] 82 | §4 |83,85|8§4.8
[Wa3] O

1.2. What is different from higher odd dimensional case in [Wa2]. As we
mentioned above, the idea of the proof of Theorem 1.1 is essentially the same as
that of [Wa2], although there are some technical differences.

In a (2k + 1)-dimensional manifold, there is a Hopf link consisting of two un-
knotted round k-spheres, which are linked together with linking number 1 (see
§3.1). The special case k = 1 corresponds to the Hopf link of circles in a 3-
manifold, which is used in [Gou, Hab, KT|]. Thus many constructions in di-
mension 3 can be generalized to higher odd dimensions in a similar way just by
replacing 1-spheres with k-spheres. For example, a closed surface of genus 3 is
(Sk x SF)#(Sk x S*)#(S* x S*), a solid handlebody of genus 3 is the boundary
connected sum (D**1 x SF)p(DFHL x Sk) g (DEFL x SF).

For higher even-dimensional manifolds of dimension d, we need to consider Hopf
links with components of different dimensions, namely, a pair p, ¢ of integers such
that 1 <p<¢<d—2and p+g=d—1. We found that we need only to consider
Hopf links for a fixed pair p,q, say (p,q) = (1,d — 2), to define surgeries for all
the trivalent graphs, which are given by links of handlebodies whose handles are
linked along Hopf links and which are arranged along an embedded trivalent graph.
Moreover, we need only to consider combinations of two types of handlebodies (type
I and IT) to generate trivalent graph claspers which can be detected by Kontsevich’s
characteristic classes. We checked that by explicitly describing surgeries on the
handlebodies.

In [Wa2], we followed the line of the computation of [KT, Les2] of Kontsevich’s
invariants for homology 3-spheres. When the dimension of the manifold is 2k +1 >
5, it turned out that many of the steps in the computation of [KT, Les2] can be
skipped by dimensional reasons. On the other hand, for even dimensions, such a
shortcut fails and we needed to give higher dimensional analogues of all the steps
needed. At the time we wrote [Wa2], we were not able to do so, however, we did
that later with the help of [Les3]. Also, the proof of Lemma 7.17 for bundles is
not a straightforward analogue of the corresponding lemma [Les3, Lemma 11.13]
for 3-manifolds.

1.3. Notations and conventions.

(a) The diagonal {(z,z) € X x X | z € X} is denoted by Ax. We identify
its normal bundle NAx and tangent bundle TA x with T'X in a canonical
manner, namely, identifying (—v,v) € Nz )Ax, (v,v) € Tz Ax with
veT,X, asin (E.11).

(b) Let I denote the interval [0, 1].

(c) We abbreviate the vector field

as 0x;.
6:@» !
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(d) Throughout this paper, we assume that manifolds and maps between man-
ifolds are smooth, unless otherwise stated.

(e) For manifolds with corners, smooth maps between them and their (strata)
transversality, we follow [BTa, Appendix]. See also Appendix A in this
paper.

(f) For a sequence of submanifolds Aj, As, ..., A, C W of a smooth Riemann-
ian manifold W, we say that the intersection A1 NAsN---NA, is transversal
if for each point z in the intersection, the subspace N A1 + N Ao + -+ +
N A, C T,W is the direct sum N, A1 ® N, As D ---D N, A,, where N, A; is
the orthogonal complement of T, A; in T,,W with respect to the Riemann-
ian metric. Note that the transversality property does not depend on the
choice of Riemannian metric.

(g) Homology and cohomology are considered over R if the coefficient ring is
not specified.

(h) For a fiber bundle 7: F — B, we denote by TVFE the (vertical) tangent bun-
dle along the fiber Kerdn C TE. Let STVFE denote the subbundle of T'E
of unit spheres. Let 0V E denote the fiberwise boundaries: | J,. 5 &(7~'{b}).

(i) We represent an orientation of a manifold M by a nowhere-zero section of
A M T M and use the symbol o(M) for orientation of M. When dim M =
0, we give an orientation of M by a choice of sign +1 at each point, as
usual. We orient the boundary of a manifold by the outward-normal-first
convention. We orient the total space of a fiber bundle over an oriented
manifold by the rule o(base) A o(fiber). In Appendix D, we describe more
orientation conventions adopted in this paper.

(j) We interpret a normal framing of a submanifold A of a manifold X of
codimension r by a sequence of sections (s1,...,s;) of the normal bundle
N A of A that restricts to an ordered basis of each fiber of N A.

(k) In Appendix B, we recall the definition of the blow-up in differentiable
manifolds.

1.4. Acknowledgements. I would like to thank B. Botvinnik, R. Budney, K. Fu-
jiwara, D. Gabai, D. Kosanovié¢, M. Krannich, A. Kupers, F. Laudenbach, A. Lobb,
S. Moriya, K. Ono, M. Powell, O. Randal-Williams, J. Reinhold, K. Sakai, T. Saka-
sai, T. Shimizu, C. Taubes, P. Teichner, M. Weiss for helpful comments or questions.
I would like to thank the organizers of “HCM Workshop: Automorphisms of Mani-
folds (Hausdorff Center, 2019)” for giving me an important opportunity to present
my result. This work was partially supported by JSPS Grant-in-Aid for Scientific
Research 21K03225, 20K03594, 17K05252, 15K04880, and by Research Institute for
Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

I am deeply grateful to the referees for spending much time to read my paper
and for giving me numerous important comments.

2. Kontsevich’s characteristic class

The aim of this section is to give a self-contained exposition of Kontsevich’s
characteristic classes for even dimensional disk bundles, which were developed in
[Kon] and play a crucial role in the main result of this paper. There are no new
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results in this section. We try to make the exposition as complete as possible since
there seems to be no literature about the detail of that for higher even dimensions,
though necessary ideas are given in [Kon]*. What will be needed in the proof of
our main result from this section are the definition of Kontsevich’s invariant and
the statement of Theorem 2.15 and of its corollary.

2.1. Framed smooth fiber bundles and classifying spaces.

2.1.1. (X, A)-bundle. In this paper, we consider pointed smooth fiber bundles, where
we say that a smooth fiber bundle is pointed if the base space is a pointed space
and if the bundle is equipped with a smooth identification of the fiber over the
basepoint with a standard model of the fiber. Let X be a compact manifold and
A be a submanifold of X. An (X, A)-bundle is a pointed X-bundle E — B over a
pointed space B, equipped with maps of smooth fiber bundles

A%BXA—¢>E (2.1)
l Pll l
+—' sB—=-B

where ¢ is the inclusion map of the basepoint *, iis given by the identification
A = {x}x A, p1 is the projection onto the first factor, and ¢ is a fiberwise embedding
such that cpoz agrees with the inclusion A C X into the fiber over . In other words,
an X-bundle equipped with trivializations on a subbundle with fiber A (given by
¢) and on the fiber over %, which are compatible on their intersection A C 7=1(%).
This can instead be defined as pointed X-bundles with structure group Diff (X, A),
the group of diffeomorphisms X — X each of which fixes a neighborhood of A
pointwise, or equivalently, as X-bundles corresponding to a pointed classifying map
from a pointed space to BDiff(X, A). The main objects in this paper are (D%, dD?)-
bundles, or (D%, d)-bundles for short.

Studying a (D%, d)-bundle is equivalent to studying a (S¢, Us,)-bundle, where
S? = R4 U {00} and U, is a small d-ball about co, and we will often consider
the latter instead. More explicitly, a (D? 9)-bundle over B can be canonically
extended to an S%bundle by attaching a trivial bundle over B with fiber the disk
{r € 84 = R U {co} | |z| > 1}, along the boundaries where the bundles are
trivialized.

2.1.2. Framed (X, A)-bundle. Now suppose that TX is trivial and we fix a trivial-
ization 7: TX = RIMX  x , which we think as a standard one. For an X-bundle
m: E — B, let T'E := Kerdm, that is, the linear subbundle of T E whose fiber
over z € E is the subspace Ker(dr.: T.E — Ty)B) C T.E. Suppose that a
Riemannian metric on TV E is given. A wertical framing on TYE is a trivialization
T'E 5 RImX x B For an (X, A)-bundle, we usually consider a vertical framing

*For 3-dimensional rational homology spheres, there are several expositions about Axelrod—
Singer’s or Kontsevich’s configuration space integral invariants ([Fu, BC, KT, Les1l, Wa3]) other
than the original papers ([AS, Kon|). Among these, Lescop’s [Lesl] (also [Les4]) gives a thorough
exposition of a complete detail of the definition and well-definedness of the invariant and that was
helpful to write this section.
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that agrees with the standard one 7 on (B x A) Un~1(x) = (B x A) Un~1(x),
where ¢ is the map in (2.1). We call such a framed bundle a pointed framed bundle.

2.1.3. Classifying space for framed (X, A)-bundles. Let Fr(X, A;7) be the space of
framings on X that agree with 7 on A, equipped with the topology as the subspace
of the section space of the principal SO4-bundle over X associated to T'X, which is
also known as the oriented orthonormal frame bundle. Then Fr(X, A; 7) is naturally
a left Diff (X, A)-space by g-0 = oo (dg)~! for g € Diff (X, A), o € Fr(X, A;7). We
set

BDIff(X, A; 7) := EDiff(X, A) X pigr(x.4) Fr(X, A; 7).
This is a fiber bundle over BDiff (X, A) with fiber
FT(X7 A; T) = Map((Xu A)7 (SOd7 1d))

This homotopy equivalence depends on the choice of 7. Then EI\)_IE (X, A;7) is the
classifying space for pointed framed (X, A)-bundles in the sense that there is a natu-

ral bijection between [(B, *), (EBEF(X, A; 7), *)] with the set of isomorphism classes
of framed (X, A)-bundle over B. Since there is a (pointed) homotopy equivalence
Fr(D%,0D% 1) ~ Q4S0,, we have a fiber sequence

Q1S0, — BDift(D?, 8;7) — BDiff(D, d). (2.2)

2.2. Graph complex. We recall the notion of Kontsevich’s graph complex given
in [Kon] relevant to even dimensional manifolds.

2.2.1. Space of graphs. By a graph we mean a finite connected graph with valence
at least 3. For a graph I' with v vertices and e edges, a label is a choice of bijections
p: {vertices of T'} — {1,2,...,v} and p: {edges of T'} — {1,2,...,e}. We identify
two labelled graphs related by a label preserving graph isomorphism. An orientation
of T" is a choice of an orientation of the real vector space

R{edges of '} i

A label (p, ) on a graph I' canonically determines an orientation of I', which we
denote by o(T, p, ). In this way, we consider a labelled graph also as an oriented
graph. Let V77" be the vector space over Q generated by labelled graphs (T, p, u)
with v vertices and e edges, modulo the relations

i) @0, p)=—=(T,p,pn) if ¢’ and p differ by an odd permutation,

(i) (T, p,p) =0 if T has a self-loop. (23)

It follows from the relation (i) that (', p, ) is zero in V77" if it has a pair of
vertices with multiple edges between them. The equivalence class of (T, p, ) in
V™ without self-loop bijectively corresponds to the oriented graph (I', o(T', p, 1))
considered modulo the relation (I',—0) = —(T',0). We will omit p,u from the
notation of labelled graph, and use the same notation I' for the equivalence class of
a labelled graph I' in V77" to avoid complicated notations.
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2.2.2. Graph complexr. We set

geven @ ‘/;}i\éen'
As in [BNM, Definition 3.6], we impose a bigrading on ¥V by the “degree”
E=e—v=—x()=b(I) -1, and the “excess” £ = 2¢ — 3vf. We denote by
P,4°v" the subspace of ¢°V" of degree k, and by ¥;V°" the subspace of ¥°ve"
of excess ¢, where we observe ¢4°V°" = 0. The graded vector space ¢4°V" is made
into a chain complex by the differential 6: 47¥" — ¥7¥(" defined on an element
represented by a labelled graph I' without self-loop as

§(T,0) ==Y (T'/i,olil),

1: edge
of T

where 0 = o(T") or —o(T"), T'/i is the labelled graph obtained from I" by contracting
the edge 7, equipped with the induced label: if the endpoints of the edge ¢ are
Jo,j1 with jo < j1, then the set of vertices of I'/i is labelled by shifting the labels
{j1+1,j1+2,...,0}in {1,...,0} — {j1} by —1, the set of edges of I'/i is labelled
by shifting the labels {i+1,i+2,...,e} in {1,...,e} —{i} by —1. The orientation
on I'/i, denoted by o[i], induced from an orientation o of I' is determined by the
rule

iNoli]=o0 (2.4)
as an element of the vector space \°R{cdsesofTt  FEyen if o = o(T), the induced
orientation o[¢] may be either o(I'/7) or —o(T'/7). It follows from (o[i])[j] = —(o[4])]]

that § 0 = 0. The chain complex (4°V°",4§) is a version of Kontsevich’s graph
complex in [Kon]. The “graph cohomology” is defined by
Ker (0: @pven — &gvem)

HZ even) __ {41 )
@™ = TG g 5 g

Note that § preserves the degree and thus H(9°V°") = @, H*(P,@°""), and it
makes sense to set Py H'(9°V") = HY(P,geven).

We will also consider the dual chain complex (4°v°* §*), which is defined by
identifying ¢;v°" with Hom(%;V*", Q) by the canonical basis given by graphs, and
by letting 6* be the dual of 6. The “graph homology”# is defined by

Ker (5% 4gven — gven)

H geven — .
A7) = T Geyen —y goven)

2.2.3. The 0-th graph (co)homology. Since Y™ = 0, we have
HO (gcvcn) — Ker (5, gocvcn _) glcvcn)7 HO (gcvcn) — gOCVCn/(s* (gfvcn%

where 45" is the subspace of trivalent graphs. It follows from the definition of §*

that §*(¢47V") is spanned by the IHX relation shown in Figure 1. We set
" = Py Ho(9°V") = Pp9yY" /THX.

TIn [BNM], ¥°ve™ is denoted by ®¢C, and Ppgpven is denoted by bcCﬁ.
Hn [Wi], the complex (¢°Ve™ §*) is denoted by GCg4.
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Ficure 1. THX relation. Each term is the equivalence class in
@even of a labelled graph.

Any class in H%(¢°°") can be obtained in the following way. Let Z£V°" be the set
of all labelled trivalent graphs with 2k vertices and with no multiple edges and no
self-loops, and let

Goi= Y. Tel e RIS @ R
reggven

It is obvious that any element v € P,%5V" can be represented as

y=Weidg= ) WIOT
Teggven

for some linear map W: P,%5V" — Q. Since we have

([d@d) = Y Teil=Y 6T el RY" o RIS,
Fezkeven F/

where the sum of IV is over all generating labelled graphs in P,%7V", it follows

that v = 0 if and only if W (§*(P,%:V°")) = 0, or equivalently, w factors through
a linear map W: &¢*" — Q. Hence any class [y] € PH?(4°"") can be written
uniquely as

[ =W @id)([]©id)Ck
for some linear map W: /¥ — Q. We define

= 1 1

Ck == ,(H ®id)<k = W

(2k)!(3k) > Mol e o RG ™, (2.5)

reggven

which can be considered as the universal class in Py H%(4°V°"; «7¥"). The reason
for the coefficients m in the formula of (j is just to avoid a coefficient in the
right hand side of Theorem 3.10(3).

Remark 2.1. It is an easy exercise to see that o/°V°" = 0, and 75" is 1-dimensional

and generated by the class of the complete graph Wy on four vertices with some
labels. That Wy represents a nontrivial class in /" is a special case of [CGP,
Example 2.5]. One may also easily check that @7 V*" = 0. The dimensions of &7Ve"
for 4 < k < 9 are computed in [BNM] as in the following table (*HY in the notation
of [BNM] is P, H?(%4°"*"), so that dim <7V = dim **HY).

k 1
dim /" | 0

2 3 45 6 7 89
1 0 0 1

A lot more is known about H,(¥4°""), e.g. lower bounds through [Br, Wi] and
the Euler characteristics ([WZ]).
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2.3. Compactification of configuration spaces.

2.3.1. Differential geometric analogue of the Fulton-MacPherson compactification
due to Axelrod-Singer and Kontsevich. Let X be a manifold without boundary.
The configuration space of labelled tuples of n points on X is

Co(X) ={(z1,...,2n) € X" | 2y £z if i # j}.

For a subset A of N = {1,2,...,n}, we consider the blow-up Blx,) (XA, where
A(A) € X? denotes the small diagonal {(z,...,r) € X* | 2 € X}. Roughly,
the blowing up of X* along A(A) replaces A(A) with its normal sphere bundle
SNA(A). See Appendix B for more information about blow-ups. Let C (X) € X
denote the configuration space of points labelled by A, analogously defined by
replacing N with A in the above definition of C,(X). There is a natural map
Ca(X) — Blaa)(X™) into the interior of Bla(a)(X*). By precomposing the
forgetful map Cy,(X) — Ca(X), amap in: Cpp(X) = Blaa)(X?) is defined. The
inclusion C,,(X) — X" and the maps i give an embedding

Co(X) = X" x ] Blaw)(X™). (2.6)
|A]>2

Then the space C,,(X) is defined to be the closure of the image of this map. The
following properties are proved in [FM, AS] (see also Theorem 4.4, Propositions 1.4,
6.1 of [Si])%.

Proposition 2.2 (Fulton-MacPherson, Axelrod—Singer). (1) Cn(X) is a man-
ifold with corners.
(2) If X is compact, so is Cp(X).
(3) The forgetful map Cp(X) — Cpn(X) for m > n which forgets the last m—n
factors extends to a smooth map C,,(X) — C,(X). The same is true for
other choices of the m — n factors.

The structure of manifold with corners on C,,(X) can be obtained from X" by
a sequence of blow-ups. Let X"(r) := X" x ] x5, Bla) (X%). Then there is a
sequence of embeddings ¢, and projections g,:

Cn(X) (2.7)

X"=X"(n+1) <TX"(n) <anX"(n— 1) ~— <o X"(2)

where g, is the forgetful map which forgets the factors Bl x)(X*) for [A] =r. Let
6,(;) (X) be the closure of the image of ¢, in X™(r) of (2.7). Then one can show

§More precisely, Proposition 2.2 (3) was proved in [FM, §3] for nonsingular algebraic varieties
over algebraically closed fields by constructing Cr11(X) — Cpn(X) by a sequence of blow-ups. In
[AS, Kon], an analogue of the construction of [FM] was given for differentiable manifolds. That
the construction of [Si] for X = R™ is canonically diffeomorphic to that of [AS] (given via (2.6))
follows by an analogue of [FM, Corollary 4.1a] and since an image in X" x Sk for the fiber S* of
the sphere bundle 8B€A(A)(XA) over A(A) with canonical trivialization recovers a unique lift in
X™ x Blaay(XM).
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that for r > 2, U;T_l)(X ) can be obtained from US)(X ) by a sequence of blow-ups

along submanifolds of codimension d(r — 2) and thus C,(X) = af)(X ) can be
obtained from X™ by a sequence of blow-ups (Lemma C.1)1

We will also use the following important property of C\,(X) given in [Si, Corol-
laries 4.5, 4.9].

Proposition 2.3 (Sinha). (1) The inclusion Cp,(X) — Cpn(X) to the interior
is a homotopy equivalence.
(2) The diagonal action of Diff(X) on C,(X) extends to an action on Cp(X).

In [Si], there are also explicit charts near the boundary (and corners) of C,,(X).
The following is a compactification of C,,(R%), given in [BTa].

Definition 2.4. For S¢ = R? U {cc}, we define the space C,, (5% o) to be the
preimage of {co} under the map p"*': C,41(S%) — S¢ induced by the projection
(T1,0 0y Tng1) = Tpgr.

Lemma 2.5 (Proof in §C.4). The map p"*1: Cp11(SY) — S? is a fiber bundle
such that the fiber C,,(S% 00) is a manifold with corners.

An example of the construction of the compactification C(S%; 00) of Co(R?) is
given in §2.3.4.

2.3.2. Codimension 1 strata. We give a description of the codimension 1 strata
of C,,(S% c0), following [AS, Kon, BTa, Si, Les4]. We refer the reader to these
references for detail. By the definition of C,(X) given above, the codimension 1
strata of C, (5% 00) are caused by the boundaries of the factors Bla(a)(X™*) in
(2.6) (see the proof of Lemma C.1 for the meaning of “caused by”). Thus the set of
codimension 1 strata of C,,(S%; 00) can be parametrized by subsets A C N U {oo}
with [A] > 2. Now we set X = S9 X° = S¢ — {00} = RY, though the following
description is also valid for almost parallelizable d-manifolds.

Definition 2.6. (1) Let Sy be the codimension 1 stratum of C,,(S% c0) cor-
responding to A.
(2) For a finite dimensional real vector space W and an integer r > 2, let
C} (W) be the quotient of C,. (W) by the subgroup of affine transformations
in W generated by the diagonal actions of translations and multiplications
of positive real numberl. The space C*(R%) can be identified with the
subspace of C,.(R?) of (y1,...,y,) characterized by

P+l =1, yi+-+y. =0, or (2.8)
i+ + g’ =1, y =0 (2.9)
(3) The compactification C.(R?) is defined as the closure of C(R%) in C,.(R%).

This has the structure of a manifold with corners induced from C,.(R?). The
compactification C(W) is defined analogously.

IThis sequence of blow-ups is different from the analogue of the successive blow-ups given in
[FM, AS] in their derivation of the definition from (2.6). The sequence of blow-ups along (2.7)
will be convenient for our purpose.

I1n [Si], Tn(X), C:(W), Sp are denoted by Cn[X], Crr(W), Cp(X), respectively.



12 TADAYUKI WATANABE

(4) Let C*(TX) denote the C(R%)-bundle over X associated to the oriented
orthonormal frame bundle over X. The C,(R%)-bundle C.(TX) is de-
fined by replacing the SOg-space C*(R?) with C.(R%) in the definition of
CHTX).

The strata Sp and its closures can be described explicitly as follows.
When oo ¢ A, let

Coa(X°) :={(z1,...,2n) € (X°)" |2y =, (i #j) if and only if ¢, 7 € A}.
There is a diffeomorphism Cj, A (X°) 2 Cj,—r41(X°), where r = |A|. Then the stra-
tum Sy of C, (5% 00) can be identified with the pullback of the bundle C (T X) —

X by the projection Cy, a(X°) — X, which forgets the (n — r)-factors labelled by
N — A and maps the multiple factors for A to X° C X by the natural map.

CHTX)
Sp = lim l (2.10)
Cn(X°) —= X

A framing on X° induces a trivialization C(T'X°) =5 Xex C*(RY) and a diffeo-
morphism

Sp = Cpa(X°) x CH(RY).
The projection Sy — Cj, A(X°) is compatible near Sy with the bundle projection

Crn(X°) = Cp_ry1(X°), which forgets points with labels in a subset of A with r—1
elements. Then the closure Sy of Sy in C,, (5% 00) is diffeomorphic to

Crrp1(5% 00) x Ch(RY). (2.11)

The case oo € A is similar. In this case, we consider the pullback by the map
Cn_n(X°) x {00} = {00} instead of the bottom horizontal map in the diagram in
(2.10), where we set r = |A|, so that [N — Al =n — |A — {o0}| =n —r + 1. Hence
we have

Sa = Cn_a(X°) x O:f(TOOX),

_ ; . (2.12)
SAZCN_A(S ;OO) XCT(TOOX).

2.3.3. Unusual coordinates on C)(TooX ). We will use seemingly unusual coordi-
nates on C* (T X) ((2.13) below) in which the origin does not correspond to oo, so
that it is consistent with the coordinate system of C,.(X°) = C,.(R%) with respect to
the limit. To fix such a coordinate system, we identify Too X — {0} with T X — {0}
through the diffeomorphism o: Toe X — {0} & S¢ — {0,00} = TpX — {0} given
by the stereographic projections™*. This is equivariant with respect to the positive
scalar multiplications in the sense that o(ay) = 1o(y) for @ > 0. The following
lemma is evident.

**See e.g., [Kos, Ch.I-(1.2)]. In the notation of [Kos], o is hy o h_! and by the formula for
h+, it follows that o(y) = # This identification can be visualized by considering S% — {0, 0o}

as an S 1-family of geodesic arcs between 0 and oo, so that a linear half-ray from the origin in
ToX corresponds to another linear half-ray to the origin in Toc X.
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Lemma 2.7. The diffeomorphism o: Too X — {0} — TpX — {0} induces a dif-
feomorphism Cr_1(0): Cr_1(Too X — {0}) — Cr_1(ToX — {0}), equivariant with
respect to the positive scalar multiplications (y1,...,yr—1) — (ay1,...,ay-—1) and
(Y1, Yr—1) = (@ ty1,...,a ty,—1). Hence it induces a diffeomorphism

Cr(0): CH(TwX) = C(ToX) = CE(RY).

We identify O (T X ) with C* (R?) via the diffeomorphism C (o). Since C*(R?)
can be naturally identified with a subspace of C,.(R?) as in Definition 2.6 (2), we
obtain the following explicit coordinates:

CiToX)

= {1y yr—1) € RT={ON)" " [P 4+ |y P =1, ws # 5 i # 5}
(2.13)

The right hand side is identified with C*(R?) by considering one of the r points is
restrained at the origin (as in (2.9)), which in (2.12) plays the role of the limit point
where the non-infinite n —r 41 points gather together, and which is the alternative
of putting the infinity at the origin. These coordinates will be used in Lemma 2.9
and in the derivation of (E.8).

Remark 2.8. The coordinates (2.13) obtained via the identification by C*(o) look
unusual but natural when taking relative directions. For example, we fix points
z,7' € R? — {0}, x # 2/, and consider a smooth path a: [1,00) — (59)*3 given by
t — (tx,ta’, 00), which converges to (0o, 00, 00) ast — oo. Taking the unit direction
(z1,29,00) + 22=% ¢ §9-1 on the path a gives a map ¢q: [1,00) — S971

[z2—x1]

which is a constant map in this case. If we consider C3(R?%) x {oc0} as a subset
of C'3(8% 00), the path a can be extended to a path a: [1,00] — C2(S% 00) such
that a(oo) € Sq1,2,00) = C3(ToX). With the coordinates (2.13), the limit point
a(o0) agrees with (x,2’) up to a scalar multiplication and ¢, can be extended to

[1,00] — S9! by the same formula =t
2—1|

The coordinate description (2.13) of C;f(TooX) also allows us to consider it as
a subspace of C,.(R%) by mapping (y1,...,%r—1) to (y1,...,yr—1,0) and hence as
a subspace of C,.(R%). Then the compactification C,(TsX) can be obtained by
the closure of C}(TxX) in C,.(RY). This is compatible with the compactification
of C¥ (T X) obtained by identifying To, X with R? and C} (T X) with C(RY) C
C,(R?) in a usual way.
2.3.4. Example: the case of two points. We describe the structure of a manifold
with corners on Co(S%; 00), following [BTa, Section III] and [Lesl, §3]. According

to (C.2) in the proof of Lemma 2.5, the compactification C'3(S%; 00) can be obtained
by the closure of the embedding

V' Co(X°) = X2 X Bla({1,2,000) (X7 x {o0})

X BU({1,00) (X % {00}) X Bla({2,00}) (X x {00}) x Bla(q1,2)(X?),
(2.14)

where BUA({1,2,00}) (X% {00}) = Bl (00,00} (X?), Ba({i,00}) (X x{00}) = Bl{oo} (X).
We claim that Ca(S¢; 00) is obtained from X2 x {co} by the sequence of blow-ups
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{ Ry
/\4 q3 >\/ q9 /\‘: ‘

FIGURE 2. 05 (5% 00) ¢2- T (5% 00) ¢2 TV (5%; 00)

along the strata Ay 5 o0y C Aq1 o0y UAf2 00} UA 1 2y. Indeed, there is a sequence
of embeddings analogous to (2.7):

Ca(X°)
| oS
X% = X2(4) X2(3) X2(2)

q3 q2

where X2(3) = X2 x Bla({1,2,001)(X? x {o0}) and X?(2) is the right hand side
of (2.14). Let C. T)(S 00) be the closure of the image of ¢,. It is straightfor-
ward that 02 (S’d, ) = X? and 02 (Sd; 00) 2 Bl{(co,00)}(X?). The next term
622) (8%; 00) = C(S5%; 00) is obtained by blowing up 623) (8%; 00) along the closures
of the preimages of the strata X° x {oo}, {o0} X X°, Axo under g3 (see Figure 2).
Let S{1,2,00} be qgl(a€§3)(sd; 00)), and let S{1 00y, S{2,00}, S{1,23 be the (closed)
codimension 1 strata obtained by the blow-ups along the closures of the preimages
of X° x {oco}, {00} x X°, Axo, respectively. Then the boundary of Cy(S%;00) is
512,001 US (1,000 US{2,000 USq123,
where the pieces are glued together along the strata of Co(S%; 00) of codimension
> 2. The product structures (2.11) and (2.12) for this case can be given directly as
follows.

(1) The stratum S{12.00} = C3(TsX) is the blow-up of 86;3)(5’(1; o0) =
S2=1 = L(y1,y2) € (RH? | |y1]®> + |y2|?> = 1} along the codimension d
submanifold D = ({y; = 0} U {y2 = 0} U {y1 = y2}) N S2¢~1L,

(2) The stratum Sy o0} is OBl{oy (Too X ) x C1 (5% 00) = 6* (T X) ><61 (S’d; 00).

(3) The stratum Sy oo} is C1(S% 00) x 0By (T X ) = C1(5% 00)xC (T X).

(4) The stratum S{l 2} is AC (S4; )xaBﬁ{(O 0)}((T(0 O)ACl( )) ) ACl(Sd o0) X
C5(R%) by the canonical identification (T(0,0A7, (s4;00 ) =TyC1(8% 0) =
R

The proof of the following lemma was given in [BTa, p.5266-5267] and [Lesl,
§3.2]. A more detailed proof is given in Appendix C.5.

Lemma 2.9. The smooth map ¢: Co(R?) — S9=1 defined by

¢(CL‘1,LE2) =

T2 — 11
|z2 — 1]
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FIGURE 3. Points in 005(S% ). A € S{1,00}, B € g{lm} N
S(1,2,001s C € S{1,2,001s D € Sf1,2,00) N S(12), B € Sp1,9y

extends to a smooth map ¢: Co(S%; 00) — S4=1. The extension ¢ on the boundary
of Cy(S%; 00) is explicitly given as follows' :

(1) On the stratum S{1 2,00y = Blo({(y1,92) € RY)? | |y1]? + [y2* = 1}),
¢ = ¢'oi, wherei: ?{1)2700} — C3(R?) is the map induced by the embedding
it S012,00p = C5 (T X) = C2(R1—{0}) given by (2.13), and ¢': C2(R?) —
S9=1 s the smooth extension of ¢ defined by the coordinates of the blow-up
(Lemma B.2(3)).

(2) On the stratum g{lm}, ¢ is the composition

/

5100} = Oa(Too X) x C1 (5% 00) 25 T (Too X) —25 591, (2.15)

1R

(3) On the stratum §{2,oo}7 @ is the composition
Spame) = C1(S% 00) x Ta(ToX) 22 T (Tw X) 25 591 (2.16)

(4) On the stratum 3{112}, ¢ is the composition
St12) = A, (50100 X Ca(RY) 22 Ty(RY) % g1, (2.17)

In each case of (1)—(4), we take a projection to the space of ‘limit configurations’:
Cy(R%), T5(R?) etc., that is a subspace of Co(R?), then take the relative direction
from the first point y; to the second point y2. In (2), y2 (in the limit configuration

ttOne can observe that the signs of +¢’ are correct by drawing a picture for d = 1. Note that
we have chosen unusual coordinates on C}f(Too X) as in §2.3.3.



16 TADAYUKI WATANABE

of O3 (Ts X)) is assumed to be at the origin, so the relative direction from y; to
y2 = 0 agrees with —¢'. In (3), y; is assumed to be at the origin, so the relative
direction from y; = 0 to y» agrees with ¢’. In (4), the orthogonal projection
T, X xT,X = NioAx — R is the limit of (z1,72) + (g™, g iy 25
as in (E.11), the relative direction for the limit configuration agrees with ¢'.

2.4. Propagator. We need to fix a certain closed form on the configuration space
called a propagator to define the configuration space integrals.

2.4.1. de Rham Cohomology of C(S%; 00). Throughout this subsection, we assume
d > 1. Since ¢: C3(S% 00) — S9! is a homotopy equivalence, it follows that

e ©u(stso0) = (st = { L

In particular, H¥~1(Cy(S%; c0)) is generated by [¢*Volga—1], where

1
Volga—1 = —————

i—1
VOl(Sdil) (—1) zidry A\ --- ANdxi—1 ANdzip1 A--- Ndxg, (218)

d
=1

3

and vol(S9~1) is the volume of the unit sphere S?~! in R<, so that / Volga-1 =
Sd—1
1. By Poincaré-Lefschetz duality,

R (x=d+1,2d),

* (7 d. Yol d. o~ d—1y ~
H*(C3(S% 00),0C3(S% 00)) = Hag—+(S )_{ 0 (otherwise).

The following lemma is evident from the explicit formula (2.18).
Lemma 2.10. Let ¢: S~ — S9=1 be the involution 1(x) = —x. Then we have

1*Volga—1 = (—1)¢ Volga-1.

2.4.2. Propagator in a fiber. Suppose we are given a framing 7: T(S? — {oc}) =
(8% — {o0}) x R? on 8% — {c0} = R? that agrees with the standard framing 7 of
R? outside a d-ball of finite radius about the origin. Then 7 induces a smooth map

p(7): 862(5“1; o00) = g1

which extends the map obtained by restricting ¢ of Lemma 2.9 to g{lﬁgyoo} U§{1,oo} U
g{gyoo} and agrees on g{lﬁg} with the composition

§{1,2} i Aal(Sd;oo) x §4-1 £> Sdil,

where the first map is induced by 7. By Lemma 2.9, p(7) can indeed be extended
to a smooth map.

Lemma 2.11 (Propagator in fiber). Let 7 be a framing of T(S? — {oc}) that is
standard near oo.
(1) The closed (d — 1)-form p(7)*Volga—1 on dC(S% 00) can be extended to

a closed form w on Co(S%;00) so that its cohomology class [w] agrees with
[Q_S*Volsd—l].
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(2) For a fized framing T, the extension w is unique in the sense that for two
such extensions w and w', there is a (d — 2)-form pu on Ca(S% c) that
vanishes on 0C4(S%; 00) such that

W' —w=dpu.
We call such an extended form a propagator for T.

Proof. The proof is an analogue of [Tau, Lemma 2.1], [BC2, p.2], or [Lesl, Lem-
mas 2.3, 2.4]. The assertion (1) follows immediately from the long exact sequence
of the pair

0=H"1(C,00) - HY(C) - HY(0C) — H(C,dC) = 0,

where we abbreviate as C = Cy(S% 00). Here both [w] and [¢*Volga—1] restrict
to the same generator of the de Rham cohomology of % x S C SNAga, their
cohomology classes agree. The assertion (2) follows since the difference w’ — w
vanishes on dC and represents 0 of H4~1(C,dC), which is the cohomology of the
subcomplex of the de Rham complex Qi (C) of forms that vanish on 9C. O

2.4.3. Propagator in family. The group Diff (%, U,,) acts on C,,(S%; 00) by extend-
ing the diagonal action g - (x1,...,7,) = (¢9-21,...,9 - ¥,) on Cn(R?). Namely,
Diff (5S¢, U,,) acts diagonally on the target space of the embedding ¢’ of (C.1) which
induces an automorphism of the subspace C,,(S% 00) = Closure (Im¢'). For a
(D%, 8)-bundle 7: E — B, we consider the associated C,,(S%; 0o)-bundle

C,(m): EC,(7) — B.
Its fiberwise restriction to the boundary of the fiber gives the subbundle
C(x): 0°EC, () — B.
A vertical framing 7g: T E 5 F x R? induces a smooth map
p(E): O°ECy(m) — §41
by applying a similar construction as above in each fiber.

Lemma 2.12 (Propagator in family). Suppose that B is a manifold.

(1) The closed (d — 1)-form p(tg)*Volga—1 on O"ECy(w) can be extended to a
closed form w on ECy().
(2) For a fized framing g, the extension w is unique in the sense that for two

such extensions w and w', there is a (d—2)-form u on ECo(r) that vanishes
on OVECy(m) such that

W —w=dpu.
We call such an extended form a propagator (in family) for 7.

Proof. The Leray—Serre spectral sequence of the relative fibration

(C,0C) — (ECy(m),0"ECy(r)) — B,



18 TADAYUKI WATANABE

has FEs-term Eg,q = HP(B; {Hq(a;,a@b)}beg), where {H‘I(Ub,aa))}beg is the
local coefficient system on B given by the cohomology of the fiber. Also, we know
that H4(C,0C) = 0 for ¢ < d + 1. Hence we have

H"(ECy(n),0"EC(m)) =0 for n < d +1,

and the natural map H4~1(EC; (7)) — HY 1 (0" EC; (7)) is an isomorphism. This
implies the assertion (1). The proof of the assertion (2) is the same as Lemma 2.11(2).
O

Corollary 2.13. Suppose that (1: E — B,Tg) is a framed (D?,0)-bundle over a
cobordism B between closed manifolds Ag and A1. Suppose given propagators wgy
and wy for 7p on Co(m) 1 (Ag) and Ca(m)~1(A1), respectively. Then there exists
a propagator w for T on ECs(7) that restricts to wy and wy on Ca(m) 1 (Ag) and
Ca(m) "1 (Ay), respectively.

Proof. We identify a collar neighborhood of B with Ag x [0,e]UA; X [1—¢,1] and ac-
cordingly identify as Co(7) ™! (Ag x [0,¢]) = Co(m) "1 (Ap) x [0, €] and Cq(m) 1 (A; x
[1 —e,1]) = Ca(m) 1 (A4g) x [l —¢,1]. Then we may pull back wp and w; to
Ca(m)~1(Ap) x[0,¢] and Co(7) "1 (A1) x [1—¢, 1], respectively. Moreover, we assume
without loss of generality that 7z is compatible with these product structures. Let

B =B~ ((Ag x [0,6)) U (A; x (1 —¢,1])).

By Lemma 2.12(1), there exists a propagator w, on ECy () for 7. By Lemma 2.12(2),
there are (d — 2)-forms o and p; on the collar neighborhoods such that they vanish
on 9"ECy(7), and

wo — We =dpo, w1 —wg = du1
where they make sense. We take a smooth function y: ECo(m) — [0, 1] that takes
the value 1 on Cy(7)~!(0B) and takes the value 0 on Cy(7)~!(B’). Let u be a
(d — 2)-form on EC(7) extending p1g and 1, which vanish on 9* EC (7). We set

W= wq+ d(X/J’/)v
which is well-defined as a smooth closed (d — 1)-form on EC»(7). As yu/ vanishes
on 9V ECy(7), we have Wlg0 55, (x) = Walgw e, () and
w|62(ﬂ_)71(Ai) = W; fOl“iZO,l.
This completes the proof. O

2.5. Configuration space integrals.

2.5.1. Kontsevich’s integral. Now we assume that d is even and d > 4. Let 7: £ —
B be an (D? 9)-bundle over a closed oriented manifold B, equipped with a vertical
framing 7. Let C,(7): EC, (1) — B be the C, (5% co)-bundle associated to 7.
We take a propagator w in family ECo () for 7 as in Lemma 2.12. For a labelled
graph T' = (T, p, u) € 4V without self-loop, we choose orientations on edges of T',
namely, make a choice of the order of the two boundary vertices of each edge. This
choice determines the projection map

¢i: ECy(m) — ECy(7)
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defined by forgetting the points other than the two points for the labels of the
boundary vertices of the edge ¢, which is smooth by Proposition 2.2.

Definition 2.14. We set

wl) = N ¢jwell V(EC, (1)),
velEe (2.19)

I(T) := Cy(m)e w(l) € QLV"(B),

where C\, (7). : QéR “(EC, ( ) — Qfﬁ;l)e*dv(B) denotes the pushforward or in-
tegration along the fibers ([BTu, p.61], [GHV, Ch.VII], see also §E.1). This extends
linearly to the linear map

I: R — QY (B),
where k = e — v, { = 2e — 3v as in §2.2.2.

Note that the integral along the fibers (2.19) is convergent since the fiber C', (S%; c0)
is compact.

Theorem 2.15 (Kontsevich [Kon|. Proof in §E). Let d be an even integer such
that d > 4.

(1) I is a chain map up to sign, namely,
dI(F) _ (_1)(d73)k+l+11(5r)

for T' € P95Ve". In particular, if v € Py9;¥" is such that 6y = 0, then
dI(y) = 0. If v is such that v = 6n, then I(y) = (—=1)@=3kH+1q](p).
Hence I induces a linear map I.: PL,H* (9™, Q) — H=3)*+(B:R).

1. does not depend on the choice of propagator w in family for Tg.

L. does not depend on the choice of edge orientations (used to define ¢; ).

(2
(3
(4
(5) I

1. is invariant under a homotopy of Tg.

. gives characteristic classes of framed (D%, d)-bundles, that is, I, is nat-
ural with respect to bundle morphisms of framed (D?,0)-bundles, in the
sense that the following diagram for a framed bundle map over f: B — B’

NN NN

commutes.

Pka (geven; Q) I H(d—3)k+€ (B; R)

\ Tf*

H(d73)k+E(B/; R)

Remark 2.16. When d is odd and at least 3, the construction in Definition 2.14 is
also valid if ¢7v*" is replaced by another version %"dd, which is defined similarly as
&pver, except that Riedgesof I} ig replaced by Riedgesof I't g H'(T;R) and that the
“induced ori” in the definition of § (§2.2.2) is defined suitably, as in [Kon, p.109].
The statement (3) of Theorem 2.15 is not true for d odd, although other statements
are true also for d odd. The odd case was studied in [Wal, Wa2].
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Since the universal class ( € Py Ho (ZV™) Q@ P9sVe™ in (2.5) satisfies (id®68)C, =
0, it follows from Theorem 2.15 (1) that it gives a class

L(G) = m ; I(D)[[] € HE9%B, /™ oR).  (2.20)

Recall that Z¥°" the set of all labelled trivalent graphs with 2k vertices with no
multiple edges and no self-loops. When dim B = (d — 3)k, the evaluation of this
class at the fundamental class of B produces an element of &77V" @ R.

Corollary 2.17. Let d be an even integer such that d > 4. The evaluation of
L.([¢k]) for bundles over closed oriented manifold B of dimension (d — 3)k gives
well-defined linear maps

Z: m(a—syx(BDUE(D?,0;m0)) @ R = /3" @ R,
22: Q80 4 (BDIff(D?, 9;70)) © R = 7" @ R,

Furthermore, the real homotopy group W(d,g)k(f/ﬁ\)/iﬁ(Dd, 9;70)) @R can be replaced

with (43 (BDiff (D%, 8))®R in the sense that the natural map L?I\)/iff(Dd, 9;79) —
BDiff(D?,9) induces an isomorphism in mq—z)(—) ® R.

Proof. We consider a framed (D9, 9)-bundle over an oriented cobordism B between
(d — 3)k-dimensional manifolds Ay and A;. Let iq: A, — B, ¢ = 0,1, be the
inclusion. Since ¢ = I([(x]) gives a closed (d — 3)k-form on B with coefficients in

VM we have
[ [ ae=[ ¢= [ a0
Ay Ap OB B

by Theorem 2.15 and the Stokes Theorem. This shows the well-definedness of the
map. The linearity follows from the linearity of the integrals.

That W(d,g)k(%(Dd, 9;70)) ®R can be replaced with 7(4_3), (BDiff (D%, 8)) @
R follows since in the long exact sequence for the fibration (2.2) the term 7;(24504)®
R is zero for i = (d — 3)k,(d — 3)k — 1 when d is even, d > 4, and k > 1. Indeed,
the rational homology of SOy for d even is well-known (e.g. [HatAT, 3.D]):

H.(SO2;Q) = N\ (3,27, ., Zan—5,020-1)  (2; € Hi(SO02,;Q)).

It follows from the isomorphism 7.(G) ® Q = PH,(G;Q) (P denotes the primitive
part of a Hopf algebra, [MM, Appendix]) for G = SOa, that m,(SOs2,) ® Q =
(5% x 87 x -+ x §475 x §2n=1) @ Q. In particular, the highest i such that
mi(SO0q) ® Q # 0 for d even is 2d — 5 and we have {(d —3)k —1+d} — (2d - 5) =
(d—3)(k—1)+1>0. O

Remark 2.18. The connecting homomorphism
F(d,g)k(BDiff(Dd, )R — W(d,g)k,l(QdSOd) QR

is zero when d is even, d > 4, and k > 1. On the other hand, without tensoring
with R, the group 7;(24S0,) may be nontrivial for many i. Thus, it would be
natural to ask what the homomorphism

7;(BDiff (D%, 0)) — mi_14.a(SO0y)
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is. Since the elements constructed by graph clasper surgery in §3 admit vertical
framings, they are in the kernel of this map. As in earlier versions of this paper, one
could define configuration space integrals over Z or Z[Mik] for some explicit integer
Mj, in terms of piecewise smooth chains in the infinitesimal configuration spaces
ng(V) or its quotient by &g associated to a vector bundle V. They might be
related to the above question. Nontriviality of the corresponding homomorphism
for mg(BDiff (D', 9)) is proved in [CSS].

Proof of Proposition 1.7. Let m: E — S(4=3% and 7': E/ — S(@=3)k be the (D%, 9)-
bundles corresponding to £ and &', respectively. The involution r induces an iso-
morphism r: EC,(7') — EC, (7). For a propagator w on ECj(7), the pullback
7*w is —1 times a propagator on EC5(7’) since the restriction of r to a single nor-
mal (d — 1)-sphere over a point of the diagonal Ag is orientation reversing. Also,
7.0(ECo (")) = (=1)?*0(EC (7). Hence we have

/ () = (—1)% / (), = (—1)2 (1) / (),
E62k(ﬂ',) E62k(ﬂ") Eazk(ﬂ')

O

3. Surgery on graph claspers

In this section, we construct (D9, d)-bundles by an analogue of Goussarov—
Habiro’s graph-clasper surgery that will be detected by Zj of Corollary 2.13, and
review some fundamental properties of the surgery.

3.1. Hopf link and Borromean link (e.g., [Ma, §3]). Graph-clasper surgery is
constructed by combining Hopf links and Borromean links. If d is a positive integer
and if p,q are integers such that 0 < p,q < d—1 and p+ ¢ = d — 1, then the
Hopf link is defined as the two-component link H(p,q)q: S? U S? — RY whose
components are given by the inclusions of the following submanifolds

{(t,u,v) € R [t + Juf? =1, v =0},
{t,u,v) € R | [t = 1>+ [v|? =1, u =0},

where we consider R? = R x R? x R%. A standard (normal) framing for the Hopf
link is given as follows. Let ni,ns be the outward unit normal vector field on the
two components H (p, q)a(S?) C R x RP x {0} and H(p,q)q(S?) C R x {0} x RY,
respectively, both codimension 1. Then the normal framings on the two components
in R? are given by (n1,0v1,...,0v,), (na,du1,...,0u,), respectively. See §1.3(j)
for the convention of normal framing.

If d is a positive integer and if p, g, r are integers such that 0 < p,q,r < d—1,p+
q+ 1 = 2d — 3, then the Borromean link is defined as the three-component link
SP U SYUS” — RY, whose components are given by the inclusions of the following
submanifolds

Ll:{(xvyaZ)ERd|%+|Z|2:1, .I:O},
Z2

ng{(x,y,z)eRd|%+|:v|2=1, y =0}, (3.1)
2

Ly={(z,y,2) e R | EE 1 g2 =1, 2 = 0},
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where we consider R? = R47P~1 x RI=9=1 x R¥="=1 We denote by B(p,q,)q this
link. A standard (normal) framing for the Borromean link is given as follows. Let
ni,ng,n3 be the outward unit normal vector field on the three components L; C
{0} x RPFL Ly ¢ REP=Lx {0} x R4="=1 L3 € R™! x {0}, respectively. Then the
normal framings on the three components in R? are given by (n1, 021, ...,0T4—p—1),
(n2,0y1,...,0¥d—q-1), (n3,0z1,...,024—r_1), respectively. The Borromean links
have the following significant feature, which is well-known, or can be checked easily
from the coordinate description (3.1).

Lemma 3.1. If one of the three components in a Borromean link is removed, then
the link consisting of the remaining components can be isotoped into an unlink.
Here, the trivializing isotopy can be taken so that it fizes neighborhoods of the points

(0,...,0,-2)x0x0, 0x(0,...,0,—-2)x0, 0x0x(0,...,0,—2)
in R4=P=1 x RA=a=1 5 RI="=1 op the components.

Remark 3.2. (1) We will also call a link that is isotopic to H(p,q)q (resp.
B(p,q,7r)q) a Hopf link (resp. a Borromean link). We will use the same
symbol H(p,q)q (resp. B(p,q,7)q) for its isotopic alternative, abusing of
notation (like T'(p, q), X(p, q,r) in low-dimensional topology). Similar con-
vention applies to B(p,q,r)q etc. in Definition 3.6 below.

(2) For each component L; in the Borromean link, let D; be the standard
spanning disk defined by replacing the ‘= 1’ by ‘< 1’ in (3.1). The spanning
disks D; have natural coorientations 0z1 A« - -AOxg—p—1, OY1 A+ - - AOYd—q—1,
0z1 N -+ N O0zg—r_1, respectively. They determine the orientations of the
components of B(p,q,7)q by the rule (D.1).

The spanning disks D; have triple intersection at the origin and its intersection
number is +1. The intersection of the spanning disk D; of L; with an other com-
ponent L;, which is a sphere or empty, can be resolved by a surgery, which is given
by attaching to D; the normal sphere bundle of L; restricted to a submanifold of
L; and by removing the interior of the normal disk bundle of D; N L; whose bound-
ary agrees with the boundary of the normal sphere bundle attached. The detail of
this surgery is described in [Tak, §3.3]. Let D} be the result of the surgery for D;
(Figure 4). The following lemma is evident from the definition of the Borromean
link by (3.1).

Lemma 3.3. (1) D! is a compact submanifold of R? bounded by L;, which is
disjoint from other two link components and is diffeomorphic to D;#(S™ x
SY) for some u,v such that u+v = dim L; + 1. More explicitly,

D} = Dy#(ST797 ) ST DYy & Dyh(STTPT x ST,
Djy = D3 (S97P~1 x gd—a=1y,

(2) The normal bundle of D} is trivial.
(3) DiND4iND4 = DiNDsND3 and the triple intersection number of DY, D}, D4
counted with sign is +1.

Definition 3.4 (Suspension of the Borromean link). The suspension of the Bor-
romean link B(p,q,7)q is the link in R?*! defined by replacing z € R¥"~! in the
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FIGURE 4. The spanning surface D} of L;.

equations (3.1) for the three components with 2z’ = (z,t) € R~ x R, which is
B(p+1,q+1,7)441 and its intersection with R? x {0} is B(p,q,7)q. The normal
framing of B(p,q,7)q extends naturally to B(p + 1,q + 1,7)4+1 by extending the
outward unit normal vector fields. By symmetry of the equations (3.1), suspensions
for other variables x, y are defined similarly.

Also, the explicit conditions in (3.1) suggest that the “desuspension” is possible
whenever two of the p,q,r are at least 2. For example, if p,q > 2, then that
B(p,q,7)q is the suspension of B(p — 1,q — 1,7)4—1 can be seen by restricting
z=(2,t) e R = RE-D==1 xR to (,0).

3.2. Long Borromean link.

Definition 3.5. For 0 < p,q,r < d, let Embf(Ip UI?UI", I?) denote the space of
strata preserving (Appendix A), normally framed embeddings of I? U I? U I" into
I? such that

(1) the preimage of OI¢ agrees with the boundary of the domain, and
(2) embeddings are transversal to the boundary.

We allow components and normal framings on them to be non standard near the
boundary, though what we will need later is the subspace of Embf(Ip uriIurIr, 14
defined by imposing some boundary conditions. We call an affine embedding
f:RP — R? or its restriction to f~1(I9), suitably reparametrized so that the
restriction is an embedding from I? = f~!(I%), a standard inclusion. We call
an element of Emb'(I? U I9 U I",I%) a (framed) string link, and call a path in
Emb! (1P UTTUI", 1) a (framed) isotopy of framed long embeddings.

The subspace of Emb'(I? U 17 U I", I%) of framed embeddings such that some
framed components are standard near the boundaries, i.e., agree with standard
inclusions near the boundaries, is denoted like Embf(l PUITUIT, 1Y), where the
underlined component(s) is standard near the boundary. Here, we fix a standard
inclusion Ly : IP UT? U I" — I? given by

P STV S {p ) x 19N 19 S 19 S {po) x 1971 1 S 1971 5 {ps) x 191

for fixed distinct points p1,pe2,ps3 € (0,1), where the inclusion IP S 1971 ete. s

given by (z1,...,2p) — (x1,...,Tp, %, ..., %) etc. We equip the standard inclusion

]
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with the standard normal framing given by the euclidean coordinates. The subspace
of Emb! (IPUIYUI", I9) consisting of framed embeddings that are relatively isotopic
to the standard inclusion is denoted by EmbfJ (IPUIIUI" 1.

Definition 3.6 (Long Borromean link). Given a link L: R?P UR? U R" — R?
consisting of disjoint standard inclusions, and a Borromean link B(p, q,7)q that is
disjoint from L, we join the images of RP and SP, R? and S9, R” and S”, by three
mutually disjoint arcs that are also disjoint from components of the links L and of
the spanning disks D; of B(p,q,r)q except their endpoints. Then replace the arcs
with thin tubes SP~! x I, 8971 x I, 87! x I to construct connected sums. The
result is a long link B(p,q,7)s: RP URYUR" — R? with a natural framing Fp in
the sense of connected sum of framed submanifolds (e.g., [Kos, Ch.IX,2]).

One may also consider partial connected sum, which joins B(p, g, )4 to the link
L of standard inclusions with less components and denote the resulting embedding
by B(p, g, r)a etc. Long Borromean embeddings 1P U I9 U I" — I? such that the
preimage of 9I¢ is OI? U OI7 U OI" can also be defined similarly and we denote
them by the same symbols as above. A natural analogue of Lemma 3.1 for the
long Borromean link holds. Also a natural analogue of Lemma 3.3 for the long
Borromean link holds: For each component L; in the long Borromean link, let D;
be the standard spanning disk obtained from D; by boundary connect-summing
the half-planes

{p1} x [0, %] x IP x {(%,,%)}, {p2} x [0, %] w ]9 % {(%7,%)}7
d—2—p di"Qiq
3.2
{ps} x [0, 3] x I" x {(},..., })} (3:2)
d—2—r

The intersection of the spanning disk D; of L; with an other component L;, which
is a sphere or empty, can be resolved by a surgery as before. Let D} be the result
of the surgery for D; (Figure 5). o
Lemma 3.7. (1) D! is a compact submanifold of I¢ whose boundary agrees
with that of the i-th half plane in (3.2), which is disjoint from other two
string link components and is diffeomorphic to Di#(S" x SV) for some u, v
such that u+v=dim L; + 1.
(2) The normal bundle of D} is trivial.
(3) D\ND4NDY = D1NDoND3 and the triple intersection number of Dy, D, Dj

counted with sign is +1.

A suspension of the long string link B(p,q,7)q can be defined analogously to
that of B(p,q,7)q. In fact, a suspension can be defined for more general string
links. A precise definition of a suspension of a string link is given in Definition 5.2
later, which is slightly complicated. What will be important below is the following
lemma, which can be seen from Definition 5.2.

Lemma 3.8. The following procedures yield the same result up to relative isotopy:

connected .
sum suspension P

(1) B(p,q,r)a — B(p,q¢;r)a —— {B(p.¢,r)a} -



ADDENDUM 25
=
=
2 R
e
=
=N

\

FI1GURE 5. Long Borromean link and the spanning surface D_’1 .

) N connected
suspension sum

(2) B(pv%r)d B B(p+17Q+17T)d+l E— B(p+17Q+1uf)d+l-

3.3. Vertex oriented arrow graph. We impose extra combinatorial structures
on a labelled trivalent graph: an arrow orientation and a vertex orientation. They
are used to decompose the graph into two types of vertices, each equipped with an
orientation.

3.3.1. Arrow graph. We orient each edge of a trivalent graph such that each vertex
has both input and output incident edges. That any trivalent graph without self-
loop admits such an orientation follows by induction on the number of edges: there
is an edge e in a trivalent graph without self-loop such that removing e yields a
graph with two bivalent vertices. Then merging the two edges indicent to each
bivalent vertex gives a trivalent graph with less edges. We call a trivalent graph
without self-loop equipped with such an orientation an arrow graph. Possible status
of input/output of the three incident edges at a vertex of an arrow graph are as
shown in the following picture:

Type I Type 1T

Note that it is possible to include graphs with self-loops in the following construc-
tions though we exclude these for simplicity.

3.3.2. Vertex orientation. To define vertex orientation, we decompose each edge e
of an arrow graph I into half-edges H(e) = {e_, e} ordered according to the arrow
orientation of e, namely, so that e_ includes the input vertex and e includes the
output vertex. We denote by %Edges(l") the set of all half-edges in I'. Then a vertex
orientation of a vertex v of I' is a choice of linear ordering of the three half-edges
meeting at v.
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3.3.3. Half-edge orientation. Given a vertex labelled arrow graph, the following
notions of orientations are canonically equivalent:

(a) An orientation of RF4&s(I) (as in §2.2.2).
(b) An orientation of RzEdges(T),

Here we consider RzEdges(I) a5 graded vector space by setting the degrees of the

half-edges in H(e) = {e_,e;} as dege; = 1, dege_ = d — 2 for each edge e. The
correspondence between them is canonically given using the arrow orientation by

e N Nesg < (€1+ A 61,) VARERIAN (63k+ AN egk,) (H(el) = {ei,, 6i+}).

3.3.4. Vertex labelled, vertex oriented arrow graph compatible with (a)-orientation.
If a vertex labelled, vertex oriented arrow graph is given, then an orientation in the
sense of (b) above is given by

vi AU A ANVgk, U = ept A egt N erg,

where epy, €41, -+ are the half-edges meeting at the i-th vertex (£ are determined
by the arrow orientation). When d is even, the term v; determine the relative
orders of the degree 1 half-edges at each type I vertex, up to an even number of
transpositions.

In this section, we fix one choice of vertex orientation and arrow orientations for
a given labelled trivalent graph so that they give a compatible orientation in the
sense of (b) determined by the edge labels.

3.4. Y-link associated to trivalent graph. Let X be a compact d-manifold.
Given a framed embedding f: I' — Int X of a vertex labelled, vertex oriented
arrow graph I' whose restriction to each edge is smooth, we associate a Y-link
G=G1U---UGy in X as follows (Figure 6).

(1) For each edge e of T', let P(e) C Int X be a small closed d-ball centered at
the middle point of f(e) such that P(e) is disjoint from vertices and other
edges of f(T'). Further, we assume that P(e)NP(e’) =0 if e # €', and that
P(e) N f(e) is diffeomorphic to a closed interval.

(2) We decompose the closed interval P(e)N f(e) into three subintervals: P(e)N
f(e) = [a, b]U[b, c]U]c, d], in a way that the image of the input (resp. output)
vertex under f is a (resp. d). Then we remove the middle one [b,c] and
attach a suitably rescaled standard Hopf link S'US?2 — Int P(e) instead,
so that the image of S972 is attached to b € [a,b] and the image of St is
attached to ¢ € [c, d].

a. b c

e

(3) We give orientations of the components of the Hopf link by du, at (1,0,...,0) €
H(1,d—2)4(S") and by Qvi A- - -Advg_2 at (0,0,...,0) € H(1,d—2)4(S%2)
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FIGURE 6. An embedded arrow graph to a Y-link

in the coordinates of §3.1*. These are chosen so that their linking number
is +1.

Here, the linking number of a two component link aUb: SPUS? — Int P(e) with
p+q=d—1is defined by the usual formula:

Lk(a, b) = / ¢*V015d—1,
SP xS

(3.3)
_ b(y) — a(x)

B: 5 x ST ST Gla,y) = ,

b(y) — a(z)|

where we identify Int P(e) with an open set of R?, Volga—1 is the unit volume form
in (2.18), and we give orientation of S? x S? by o(S?) A 0(S?) (as in §D.3).

The above procedure gives a disjoint union Gy UG2U- - - UGgg of path-connected
objects with 2k = |V(T")| components. We call each component G; a Y-graph, and
G =G UGaU---UGe a Y-link (or a graph clasper). There are two types for
a Y-graph, according to whether the corresponding vertex is of type I or II in the

following figure:
O
S & ©

Type I Type 11

By taking a small smooth closed tubular neighborhood V; C Int X for each com-
ponent G;, we obtain a tuple VG = (V4,..., Vo) of mutually disjoint handlebodies
in Int X. Here, by a small closed tubular neighborhood of G;, we mean the union
of piecewise small tubular neighborhoods, where we consider G; consists of three
oriented spheres (consisting of S' and S972), a trivalent vertex, and three edges
connecting them. We take the radii of the tubular neighborhoods of edges to be
less than half the radii of the tubular neighborhoods of the vertex components and
we smooth the corners.

*Note that the latter is opposite to the usual one induced from the standard orientation of the
tv-plane R x {0} x R4.
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3.5. Surgery along Y-links. The surgery on a Y-graph will be defined by a
parametrized Borromean surgery, which roughly replaces the exterior of a trivial
string link with the exterior of Borromean string link. We shall construct a (X, 9)-
bundle by a family of surgeries along Vo = (Vi,..., Vo). We take a smooth family
a;: K — Diff (0V;) of diffeomorphisms parametrized by a compact manifold K with
OK = (). This defines a bundle automorphism &;: K x 9V; — K x dV; of the trivial
0V;-bundle over K by a;(t,x) = (t, a;(t)x). We put

(K x X))V = (K x (X —IntV;)) Ua, (K x V}), (3.4)

where the fiberwise boundaries are glued together by &; in a way that (t,z) €
K x 0V; C K x V; is identified to a;(t,z) € K x 0V; C K x (X — IntV;). This
defines a surgery along V; with respect to a;, which yields a smooth fiber bundle over
K. The product structures on the two parts induce a bundle projection 7(c;): (K x
X))V 5 K,

Since the handlebodies V; are mutually disjoint, the surgery can be done for
every V; simultaneously. Namely, taking & = (aq,...,a), a;: K; — Diff (OV;),
we do surgery at each V; by using «;, and then we obtain a family of surgeries
parametrized by K; X --- X Ky and a bundle projection

m(@): (K1 x - x Koy, XX)VG@—>K1 X - X Kop.
More precisely, let
Voo =X —Int (V3 U--- U Vi)

and we define ((Hfﬁl K)x X )VG@ by the parametrized gluing of the two trivial
bundles

2k 2k
(HK) X Voo and (HK) x (ViU U Vag)
i=1 i=1
along the fiberwise boundary (Hfﬁl K;) x (0V4 U---U9Va) by the map

2k 2k
& (HK) X OV U - UdVay) — (HK) % (AV1 U - U dVay);
=1 =1

(tl, . ,tgk,.’L‘) — (tl, ..., tog, (al(tl) U---u Oégk(tgk))x).

This defines a surgery along a Y-link with respect to &, which yields a smooth fiber
bundle over [[, K.

In the following, we take o; = a1 or agr defined below for each i. We write
V =V, for simplicity.

(1) If V is of type I, we take K = S° = {—1,1}, and we let ar: S° — Diff(9V)
map (—1) to the identity map of 9V, and «a;(1) be a “Borromean twist
associated to B(d —2,d — 2, 1)4” constructed in §3.7.

(2) If V is of type II, we take K = S9=3 and we let agr: S¢=2 — Diff(9V) be
a “parametrized Borromean twist associated to B(d —2,d —2, 1)3” con-
structed in §3.8.

We now consider the special case X = D¢ and define the main construction.
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Definition 3.9. Let I' be a vertex oriented, vertex labelled arrow graph with 2k
vertices without self-loop. Fix a framed embedding f: I' — Int D?. We use the
framing from f and the vertex orientation of §3.3 to associate the components in
the Borromean string link B(d — 2, d — 2, 1)4 to the three handles of a handlebody
V; at each vertex. According to the type of the i-th vertex of I', we put «; = ag or
agr, and let @ = (aq, ..., asx). Then we define a smooth fiber bundle 7'': E¥ — Br
by

' =n(d@), Br= HK“ = (Br x D%)Ve:d,

We also consider the stralghtforward analogue of this surgery for (S%, U, )-bundles
which is given by replacing D¢ with S? in the definition above, to compute invariants
in §4.

In a joint work with Botvinnik ([BW, §3]), we give another interpretation of 7'
in terms of surgeries on families of framed links in D¢, which would be more simple,
though Definition 3.9 is suitable for proving the main theorem of this paper.

Theorem 3.10 (Proof in §3.9 for (1), (2) and in §4 for (3)). Let d be an even
integer such that d > 4. Let T' be as in Definition 3.9.

(1) #¥: EY — Br is a (D?,0)-bundle and admits a canonical vertical framing
r
.
(2) The framed (D%, 8)-bundle bordism class of (7' : E¥ — Br,7V) is contained
in the image of the natural map

H: m4_s)(BDiff (D%, 9)) — Q50 . (BDiff (D%, ).
(3) If T has no multiple edges, we have
Zi(ns7h) = £[T,
where the sign depends only on k (not on T' in P9§ve" ).

Theorem 1.1 follows immediately from Theorem 3.10. Namely, let
P95 — Im H @ Q

be a Q-linear function defined by ¥, (T) = [r!': EY — Br] by fixing labels and
arrows on ' arbitrarily for each class. Recall that P,%;V®" is the subspace of ¢V
spanned by trivalent graphs of degree k. Then by Theorem 3.10(3), the composition

Q
PRI @R Y5 ImH @ R 225 PuHo(9°"°™;R) = /%" @ R

agrees with the quotient map P,%5" @ R — P, Ho (9™ R). Hence Z = Zi!o H
is surjective over R and Theorem 1.1 follows.

Remark 3.11. We have chosen the framed embedding f, the labels, vertex orien-
tation, and arrow orientations on graphs to define ¥, as an auxiliary data. In
particular, we have not proved ¥y (—T") = —U(T), which seems likely to be true.
We do not know whether the bordism class of ¥ (I") changes under a change of the
choice of the vertex orientation and the arrow orientations which preserves graph
orientation. Although it would not be hard to determine the effect of different
choices in the bordism group, it is not necessary for our purpose.
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Let X be a compact d-manifold. For a framed embedding f: I' — X of a vertex
oriented labelled arrow graph I’ with 2k vertices, one may also consider the (X, 9)-
bundle 77 : Ef — Br by surgery on f given by replacing D¢ in Definition 3.9 with
X. The following theorem can be proved just by replacing D? with X in the proof
of Theorem 3.10 (1), (2).

Theorem 3.12. The relative bundle bordism class of ©f represents an element of
Q(Sdo_3)k(BDiﬁ(X, 0)), which is contained in the image of the natural map

H: ma_3),(BDIff(X,0)) — QF 5, (BDiff (X, 9)).

The class of 7/ does not change if f is replaced within the same homotopy class,
which can be described by I' as above with edges decorated by elements of 71 (X),
considered modulo certain relations as in [GL, p.566]. Note that the same remark
as Remark 3.11 applies to this case.

Example 3.13 (k =2, ' = Wy). Now we consider the complete graph Wy, edge-
oriented as in the following picture:

jige

I

I

In this case, By, = K1 x Ko x K3x K4, where K = K4 = 543 and Ky = K5 = S°.
Hence Byy, is the disjoint union of four components By, 1, = K1 X {(t2,13)} x K4,
to,t3 = %1, each canonically diffeomorphic to S92 x 473, It will turn out from
Lemma 3.23 that the restriction of the (D% 8)-bundle #"+: EWs+ — By, over
Biy 1, (t2,t3) # (1,1), is a trivial (D9, d)-bundle. Let us focus on the restriction of
74 to the only component Efvf := (7"4)~1(By 1) that may be nontrivial. This is
constructed by gluing the pieces

Big % Ve, VW =VixKy, V{=K xVi, BiixVl), BiyxVs1)
along their boundaries

Bi1 x (VL UdVa UdV3 UV, UODY), Big xdVi, Byy x Vi,
Bl,l X 8V2, Bl71 X 6‘/3

The identifications are given by using the trivializations OV = Ky x V.

Let us look at the restrictions of 74| pwa to the preimages of the two submanifold
1,1

cycles 41 = S973 x {t} and 2 = {t0} x S973 in By 1, where t} is a basepoint of
K. The restricted bundle over ; does not depend on the parameter t; € v,
outside V; x {t9}. The restricted bundle over 72 does not depend on the parameter
ty outside {t9} x V. Again it will turn out that these restricted bundles are both
trivial by Lemma 3.23 and there is a trivialization of the bundle over the (d — 3)-
skeleton 1 U 7y of By,;. Moreover, it will turn out that this trivialization cannot
be extended to the bundle over By ;. The obstruction can be detected by Z,
(Theorem 3.10). O
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. 0 0
1 hlz 1 h2 h3
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(1) (2)
FIGURE 7. (1) Tin V of type I. (2) T in V of type IL

3.6. Standard coordinates on V;. As a preliminary to define the Borromean
surgeries, we fix coordinates on V; using the vertex orientation fixed as in §3.3. Let
T be a handlebody obtained from a (d— 1)-disk by removing several (d — 3)-handles
and 0-handles, and we put
V=Tx1I.

We fix an explicit coordinates on T as follows. We fix three distinct points p1, p2, ps €
(=1,1) and let Ty = [~1,1]71, and for n = 1,2,3 and small € > 0, we define T as
follows (Figure 7).

h}L ={(x1,22) € R? | (z1 —pn)2 —l—x% < 52} x [—1, 1]d_3,
h% ={(z1,...,24-1) € Ré-1 | (z1 —pn)2 + 3:% ot 3:2_1 < 52},

T =Ty— (K UKL URS),  (en,enes) = { 858% E“j e 3)
Let HS = hg x I.

Now we use the vertex orientation to fix the correspondence between handles of
V and components of the link. Namely, we rearrange the order of the three half-
edges within its class of vertex orientation at the i-th vertex so that the first one
or two are of degree 1 (or incoming) and the rest are of degree d — 2 (or outgoing).
Then this order of half-edges determines a correspondence between the spheres
SY or S92 associated with the half-edges of that trivalent vertex and the three
components hi', h5?, hs3.

We take standard cycles by, b, b3 of V' that generates the reduced integral homol-
ogy of V. We choose an identification V; = V so that the the homology classes of
the cycles by, ba, bs correspond to those of the oriented sphere components from the
Hopf links introduced in §3.4. When V is of type I, we let by, be, b3 C T x {1} C OV
be defined by

by = S%s(pla 0) x{(0,...,0)}, b2= S2ls(p2a 0) x {(0,...,0)},
—— ——
d-3 d-3
b3 = Sg;z(p3, O, ceey O)
d—2

Here, we denote by S}(a,b) C R?, S’gl_2(a, b,c) C R471 the codimension 1 round
spheres of radius §, centered at (a,b) € R2, (a,b,c) € RI™1 = R x R¥3 xR
respectively. We consider b1,bs as 1-cycles by counter-clockwise orientations in
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circles of R?2. We consider b3 as a (d — 2)-cycle by inducing an orientation from a
(d — 1)-disk of radius 2¢ in R4~! by outward-normal-first convention. When V is
of type II, we replace by for type I with

b2 = ;93;2([)2,07 . ,O)
N——
d—2

with an orientation given similarly as bs.
3.7. Borromean surgery of type I.

3.7.1. Twisted handlebody V' of type I. We shall define “Borromean twist” ag as
announced before Definition 3.9. The handlebody V of type I is diffeomorphic to a
handlebody obtained from I?, where we identify Ty x I = [~1,1]?~! x I with I¢, by
removing two open (d—2)-handles H{ and H4 and one 1-handle HY, which are thin.
We now define another handlebody V', which is obtained from V' by changing the
thin handles as follows. We represent the relative isotopy class of the thin handles
in I¢ by a framed string link relative to the attaching region, in the sense that the
map
res: Emb(H1 U HY U HY, 1) — Emb (192U 142 U I, 1)

induced by restriction is a homotopy equivalence. Since framed string links here
are assumed to be standard near the boundary, a framed string link induces a
trivialization of the sides of the closed handles ﬁz as sphere bundles over the
cores, which is canonically extended to a parametrization of the boundary of the
complement of the images of the embeddings of the open handles H¢ in I¢. Then
we have a natural map

co: mo(Emb(H} U Hy U HY, 1Y) — .7H(V,0V), (3.5)

given by taking the complement, where the right hand side is the set of relative
diffeomorphism classes of the pairs (W,0W) of compact d-manifolds with oW =
O(T xI) such that H,(W;Z) = H,(T xI;Z). The image of the class of the standard
embedding under the map ¢, gives (V,0V). The image of the framed Borromean
string link B(d — 2, d — 2, 1)4 under ¢, gives another relative diffeomorphism class,
which we denote by (V’,0V’). We identify the boundary 0V’, which is the union
of T'x {0, 1} and the sides of the handles, with OV by using the parametrization of
embeddings of the handles.

Remark 3.14. Although the relative diffeomorphism class of (V/, 9V’ = 9V) suffices
to define the surgery of type I in Definition 3.9, we describe below a further property
of the surgery. Namely, that the surgery can be obtained by attaching the standard
handlebody along its boundary by a twisting map.

3.7.2. Mapping cylinder structure on V'. For the type I handlebody V', we will see
that the handlebody V' thus obtained can be realized as the mapping cylinder of
a relative diffeomorphism ¢q: (T,0T) — (T,9T), which is defined by

Cleo) = (T x I) Uy, (T x {0}),

where we consider the T' x {0} on the right as a copy of the original one T, and
identify each (z,0) € T x {0} C T x I with (¢o(z),0) € T x {0}. Note that the
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boundary of C(yo) is (T x {1}) U (9T x I) Ugg, (T x {0}) = (T'x {0,1}) Uidyr, (0.3
(0T x I) = OV and we consider that the canonical identification dC(pg) = 9V is a
part of the structure of the mapping cylinder.

Proposition 3.15 (Proof in §5.2). For a handlebody V of type I, there exists
a relative diffeomorphism ¢o: (T,0T) — (T,0T) and a relative diffeomorphism
(V',0V) = (C(po),dV) that restricts to id on IV

The relative diffeomorphism g : (T,9T) — (T,0T) of Proposition 3.15 extends
to a self-diffeomorphism ¢ of OV = (T x {0,1})U (9T x I) by setting ¢ on T x {0}
and id otherwise.

Definition 3.16 (Type I Borromean twist). We define the map ay: S° — Diff(9V)
by ar(—1) = id, az(1) = 1. Let V be the total space of the bundle V'U(-V) — S°
that is the disjoint union of V' — {1} and -V — {-1}.

Remark 3.17. (1) We assume that the corners arose in the construction above
are all smoothed (in the sense of [Wal, Ch.2,2.6] or [Tam, Ch.3,3.3]).
(2) When d = 3, the surgery on Y-graph in [Gou, Hab] is given by surgery for
ap of Definition 3.16.

3.8. Parametrized Borromean surgery of type II.

3.8.1. Family 1% of twisted handlebodies of type II. We define the “parametrized
Borromean twist” aj; € Q4-3Diff(9V), announced before Definition 3.9. The han-
dlebody V of type II is diffeomorphic to a handlebody obtained from I¢ by removing
one (d—2)-handle and two 1-handles, which are thin. We now define a (V, 9)-bundle
V — 5973 which is obtained from a trivial V-bundle over $%~3 by changing the
trivial family of thin handles as follows. We construct 1 by taking the image under
the map

ot mg_3(EmbL (1972 U It U I, 1Y) — m4_3(BDIff(V,9)),
which is given by taking the complement, of the class of a certain loop
B e QP Embl (192Ut u I, 19)

corresponding to a framed Borromean link B(d — 2, d — 2, 1)4, based at the stan-
dard inclusion. We will define 3 later in §5.3. Roughly, the loop ( is constructed
by replacing the second component in B(d — 2, d — 2, 1)4 with a (d — 3)-parameter
family of 1-disks with framing, so that the locus of the family of 1-disks recovers
the original (d — 2)-disk component after a small change on the boundary. Then
the image of the homotopy class of 8 under ¢, gives a (V,9)-bundle V — 5473,

3.8.2. Mapping cylinder structure on the bundle V. We will show that thus ob-
tained (V,d)-bundle V is a (d — 3)-parameter family of mapping cylinders for an
element of mg_5(Diff (T, 9T)). For a given smooth family of relative diffeomorphisms
woi: (T,0T) — (T,0T) (t € S473),let ¢: S43xT — S973 X T be the map defined
by @(t, ) = (t,¢0.(z)). Here we say that an S¢~3-family of diffeomorphisms g ;
in Diff (T, 9) is smooth if the associated map @ is smooth, as usual. Now we set

C{wor}) = (ST73 x T x I) Ug (S%7% x T x {0}),
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where we consider S92 x T'x {0} on the right as a copy of S9~3 x T, and identify
each (t,7,0) € ST 3xTx {0} C S43xT x I with (¢(t,z),0) € S43xT x{0}. This
has a natural structure of a (V, d)-bundle over S¢~3 whose boundary is S¢=3 x OV'.

Proposition 3.18 (Proof in §5.3). For a handlebody V' of type II, there exist a
smooth family of relative diffeomorphisms ¢o: (T,0T) — (T,0T) (t € S4=3) with
©o,« = id for the basepoint * € 5973 and a relative bundle isomorphism

(V5972 x 0V) = (C({po.}), 5972 x V)
that restricts to id on the boundary S%=3 x OV

Definition 3.19 (Type II Borromean twist). We define the map ag: S93 —
Diff(8V) by extending {wo,} to a (d — 3)-parameter family of diffeomorphisms of
OV by id on the complement of 7' x {0} in IV.

There is a natural “graphing” map
W: mg_3(Embh (172U It U, I%) — mo(Emb (12475 U 1972 U 1972, 1%473)),

which is obtained by representing a (d — 3)-parameter family of framed long embed-
dings in Emb{(1972UI' UI!, I?) by a single map (192U UIY) x 1973 — [4x 193
with the corresponding framing. The following lemma will be used in Lemma 4.2.

Lemma 3.20 (Proof in §5.4). The image of [] € mq_3(Embl(I472 u ' U I, I%))

under W is the class of B(2d —5,d — 2, d — 2)2q_3 with the normal framing Fp
giwen in §3.1 and Definition 3.6.

3.9. Framed handlebody replacement. We shall see that the surgery of type
I or IT is compatible with framing agcl_t/hat surgery along a graph clasper gives an
element of the homotopy group of BDiff(D?,9). Let V be the standard model in
§3.6 of the handlebody of type I or II.

Proposition 3.21. (1) There is a bundle isomorphism
p: Vo KxV

that induces a: K x OV = 0V — K x V. Here, K = S° or S973, a = a;
or air, and the identification OV = K x 9V is the trivialization given by
the mapping cylinder construction of Proposition 3.15 or 3.18.

(2) The vertical framing on V induced from the standard framing st on Ty x 1 C
R? has the property that it can be modified by a homotopy supported in a
small neighborhood of OV into one whose restriction to v agrees with

(d@)~* (stlov ).

Proof. The assertion (1) follows from Proposition 3.15 or 3.18. The assertion (2)
follows from [Wa3, Lemma A]. O

That the homotopy of (2) is supported in a small neighborhood of OV will be
used in the proof of Lemma 7.14. Proposition 3.21 gives a trivialization of the
bundle V as a V-bundle, but not as a (V,d)-bundle. Propositions 3.21 shows that
the surgeries of type I and II are framed ones, in the sense of the following corollary.
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Corollary 3.22. If X is framed, then the surgery of X on (V,a: K — Diff(0V))
of type I or II gives a framed bundle w(a): (K x X)V'* = K, K = S° or §%73, on
which the framing agrees with the original framing outside V. In other words, the
vertical framing on K x (X —Int V') canonically induced from the original one on
X —IntV extends to that on (K x X)Ve.

For ¢ € {1,2,3}, let Vj¢ denote the handlebody constructed in the same way as
V except we forget the ¢-th component in H{* U Hy? U H3®.

Lemma 3.23 ([Wa3, Lemma A and Remark 7)). Let 7(a): V — K be the bundle
obtained by twists a: K — Diff(OV') of type I or II. Let m(a)yq: ‘N/[g] — K be the
bundle obtained from w(a) by extension by filling a trivial framed family into the
L-th complementary handle. Then 7(c)

(1) admits a vertical framing that extends the standard one on the boundary
induced from the given one on 'V, and _ B
(2) becomes trivial as a framed relative bundle if V is extended to V.

Remark 3.24. Although Lemma 3.23 is the statement for the standard model, it is
also true for any other handlebody V in a framed d-manifold X that is obtained
from the standard model in a small ball by an isotopy of the embedding V" — X
from the inclusion.

Proposition 3.25 (Theorem 3.10 (1),(2)). (1) #¥': B — Br is a (D% 0)-
bundle and admits a vertical framing.

(2) There is a vertical framing 77 on 7¥ such that the framed (D?,0)-bundle
(¥, 7F) is oriented bundle bordant to a framed (D?,0)-bundle w' : F¥' —
S=3)k gyer SUU=3F with some vertical framing o¥. Namely, there ex-
ist a compact oriented (d — 3)k + 1-dimensional cobordism B with 8B =
Br[[(-=SY=3*%) and a framed (D%, d)-bundle 7: E — B such that the re-
striction of T on OB agrees with (77, 77) and (@', o%) (with the opposite
orientation).

Proof. (1) We see that if @ = a1 or agr, then the bundle 7¥:@: (§¢ x D?)V»* — g,
a =0 or d— 3, obtained from the trivial (D%, d)-bundle S® x D? by surgery along
V is a trivial (D9, d)-bundle. Indeed, V can be extended to Vig in D4 and the
surgery along V' and Vg produce equivalent results, where the surgery along Vi, is
defined by replacing S¢ x V}, with 17[4]. By Lemma 3.23 (2), the result is a trivial
D?bundle. By the definition of the surgery along Vig, the trivialization on the
(Vig, 0)-bundle ‘N/m obtained by Lemma 3.23 (2) can be extended to a trivialization
of a (D4,0)-bundle. Also, by Lemma 3.23 (1), the restriction of the standard
framing on S x D9 to S¢ x (D — Int V) extends over (S x D4)V:e.

By applying the above for type I surgeries, it follows that the restriction of
7' over (S°)¥ C Br has a trivialization as a (D9, 0)-bundle. Now we have a
trivialization of (D?, d)-bundle at the basepoint of each path-component of Br, the
whole bundle 7% must be a (D?, 9)-bundle, by the definition of the type II surgery.
The vertical framing on ET can be obtained by doing the parametrized gluing in
§3.5 with framing.
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(2) The proof is parallel to that of [Wa3, Claim 3] (see also [Wa3, Remark 7]) for
d even and with (S*~1)*2" replaced by a product (S°)** x (§473)** and we do not
repeat that here. We should remark that we used in [Wa3, Lemma B] the claim that
YA — XX splits with cofiber ¥(X/A), where X is a product of spheres and A is the
maximal skeleton of X of positive codimension for a certain cell decomposition. The
splitting holds even for the products like (S°)** x (S4=3)*™ (including 0O-spheres),
by the wedge decomposition of XX given in [Pu, Satz 20]. O

4. Computation of the invariant

The strategy for computing the configuration space integrals taken in [K'T, Les2],
which we follow for higher-dimensional manifolds, is to reduce the computation of
Zy, to homological (or combinatorial) one, like the linking number.

4.1. Normal Thom class. For a topologically closed oriented smooth submanifold
A of an oriented manifold N, we denote by na a closed form representative of the
Thom class of the normal bundle v4 of A. We identify the total space of v4 with a
small tubular neighborhood N4 of A C N and assume that 14 has support in N4. It
has the useful property that [14] is the Poincaré-Lefschetz dual of [A] € H.(N,0N),
when both N and A are compact. A basic textbook reference is [BTu, Ch. I, Section
6].

4.2. Standard cycles on 0V. Recall that V; C X is defined in §3.4 as a handle-
body obtained by thickening a Y-graph G;. In §3.6, we fixed a standard model V'
of V; and we have taken cycles by, ba, b3 of V. Now we take more standard cycles
a1, as,az of AV, which are null-homologous in V, as follows. Here we again use the
standard coordinates of V fixed in §3.6.

We define disks af,al,al C T by af = {p1} x [-1,—¢] x [-1,1]973, ol =
{pQ} X [_15 _5] X [_15 1]d737 ag = {p3} X [_15 _5] X {(07 e '50)}7 and put

——
d—3
ar = (al x {1}) U (da} x I)U (—a] x {0}) C V.
(See Figure 8 (1).) We orient a; so that
Lk(b;, CLg) =41,

where b, is a copy of by C T x {1} in T' x {1 — ¢} obtained by shifting, and Lk
is defined by using the Euclidean coordinates of Ty x I of §3.6 and the formula
(3.3). The collection (a1, b1,as,ba,as,bs) of cycles gives a Z-basis of H1(0V;Z) ®
H;_2(0V;Z) such that

Lk(b, ,a;) = 0¢; (when dimb; + dima; =d — 1), and

[a;] - [ae] = [bj] - [be] = O

(when dima; + dimay = d — 1 and dimb; + dimb, = d — 1).
When V is of type II, we replace by and al for type I with

by = S5 2(p2,0,...,0), a3 ={p2} x [-1,—¢] x {(0,...,0)}.
SN—— SN——
d—2 d—3
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FicUuRe 8. af,a¥,al bi,ba,b3 C T, (1) in the top face of V of
type I, (2) in the top face of V of type II. (Not the pictures of the
whole of V.)

We define the cycles Zig,gg of 8973 x OV by
=893 % ay, by =593 x by,
and orient them by
o(ar) = (=1)430(8%3) A o(ar), o(be) = (—1)?30(S3) A o(by). (4.1)

This strange-looking orientation convention, which is not as in §D.3, is for the
coorientations of S(ay), S(b¢) (defined in §4.4) to be compatible with S(as), S(bs)
(defined in §4.3), respectively (see Lemma D.2).

4.3. Normalization of linking pairing of Y-link. First, we consider the sub-
space V; x V; C Co(S%00), i # j, 4,7 # oo, and see that a propagator can be
described explicitly by means of the n forms. Let ag‘, bg‘, ¢ =1,2,3, be the gener-
ating cycles of H,(0Vy;Z) for p = 1,d — 2, corresponding to the standard cycles
ag,be in the standard model given in §3.6 and §4.2. The spherical cycle az\ bounds
a disk S(a}) in Vi, and moreover, by the construction of Vo = V1, ..., Vak), the
spherical cycle b) bounds a disk S(b)) in X — Int V), which intersects some other
Vo, N # X Then H*(V)) is spanned by the classes of

L, M50y M5(ad)> M5(ad)-
By the Kiinneth formula, it follows that H¢~1(V; x V;) is spanned by Ms(ai)] ®

[ns(a%)], where £, m are such that dima} + dimaj, = d — 1. Thus a propagator
we ng_{l (C2(S5%; 00)) satisfies

[wlvixv,] = ZLEm 775(a,Z [775(@;%)] (4.2)

in H4=1(V; x V;) for some Ly}, € R. Let Lk(b,b') = [, , w for a link b]]¥".
Lemma 4.1 (Proof in §D.4). We have the following identities.
(1) / NS(ag) = (—=1)FdTRTA=1 phere k = dim ay.

£

(2) / Nswe) = (—1)F, where k = dim ay.
+
Ay

(3) Ly = (—1)*'Lk(b},b%,) fori,j,0,m such that dimb} + dimbj, = d — 1.
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The identities (1) and (2) will be used later in §6.2. The integral of w gives the
linking pairing
Lk: P H,(Vi) @ Hy(V;) = R.
p+g=d—1
The right hand side of (4.2) has the following explicit closed form representative as
a form on V; x Vj.

Z LEm P NS(ai) N P> Ns(ad, ) (4.3)

where p,,: Ca(S% 00) — Cl(Sd; 00) is the map induced by the n-th projection.

4.4. Spanning submanifolds and their 7-forms in V. The formula (4.3) can
be naturally extended to families of V) x V},. Let m(ay): IN/A — K, be the relative
bundle obtained by the twists ay: Ky — Diff(9V)) of type I or II in Definition 3.16
or 3.19. Let

52‘ = K X a? C@VA = K, x dV,.
The following lemma, which will be used to make the integrals in the main compu-
tation of the invariant in §4.6 explicit, follows from Lemmas 3.7 and 3.20.

Lemma 4.2. For each { there exists a compact oriented submanifold S’(?i?) of Va
with boundary such that

(1) BS(%) =a, = S(Ziz\) N OV, and the intersection is transversal.

(2) S(@)) Nm(ax)~(t%) = S(a}) over the basepoint t° € K.

(3) S(a)) is diffeomorphic to the connected sum of Ky x S(a}) with S* x SV
for some u,v such that u+ v = dim S(ay).

(4) The normal bundle of S(a}) is trivial.

(5) S(ay) N S(az) N S(a3) is one point, and the intersection is transversal.

Proof. By Lemma 3.7, the three components in a Borromean string link have span-
ning submanifolds D1, D5, D%. The restrictions of these submanifolds to the family
of I — (Hy' U Hg? U HS?) give submanifolds satisfying the conditions (2), (3), (4),
(5). To see that we can moreover assume (1), we need to show that a standard
collar neighborhood of Ziz\ agrees with that induced by the spanning disk Dy of the
corresponding component.

By a standard argument relating a normal framing of an embedding and a triv-
ialization of its tubular neighborhood, it suffices to check the compatibility of the
normal framings of the two models: one given in Definition 3.6 and one given by
the parametrization of the family of handles H{' U H5> U H5? in I¢. But this is
proved in Lemma 3.20. O

Note that S(a}) need not be a subbundle of 7(ay). The product (a;) x
m(a;): Vi x V; = K; x K; is a bundle whose fiber over the basepoint is V; x Vj.
The formula (4.3) is naturally extended over V; x V; by

Z Ly, pins@ i) AP2 g0 (4.4)

where Ns@i) ete. is a closed form on V; etc. Note that the form (4.4) is currently

defined only on the space Vi x ‘N/j and we still have not seen that this is a restriction
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of a propagator on the corresponding (D?,d)-bundle over K; x K, although we
will do so in Proposition 4.5 below.

4.5. Normalization of propagator in family. To state Proposition 4.5, we de-
compose bundles into pieces. Let Uy is a small closed d-ball about co and let
7t>°: BT — Br be the (8%, Uy, )-bundle obtained by extending the (D4, 9)-bundle
7. EUV — Br by the product bundle Br x U.

We decompose ET> into subbundles compatible with surgery, as follows. We
extend the vertical framing 77 on ET over the complement of the oo-section Br x
{00} in ET™ by the standard framing 79 on R? = S9 — {co}. This extension is
possible since 7! is standard near the boundary. Let

Voo = S —Int(Vy U--- U Vag).
For A € {1,2,...,2k}, let
VIi=Ky X x K1 X Vy x Kxpq X+ X Kop.
This is a bundle over Br, which is canonically isomorphic to the pullback of the
bundle 7(ay): VA — K by the projection Br — K. Let
170’0 = Br x V,

and we consider the projection ‘70/0 — Br as a trivial V-bundle over Br. Then we
have the decomposition

E'™ =V/U---UVj, UV,
where the gluing at the boundary is given by the natural trivializations 817)( =
Br x 0V, for A € {1,...,2k} (given in §3.7.2 and §3.8.2) and OV, = Br x (0¥} U

U OV, k)-
We also consider a natural decomposition of EC;(7") accordingly, as follows.

Notation 4.3. For i,j € {1,...,2k} such that i # j, let
QO =V x5 Vj,
namely, the pullback of the diagram XN/Z-’ — Br + XN/J-' , where the map XN/Z-' — Br etc.
is the projection of the V;-bundle. For i € {1,...,2k, 00}, let
Q{; = p]_s’é (‘71/ X Br ‘7'/)7 Qzroo = p]_s’é (‘71/ X Br ‘7010)7 ngz = p;; (‘7010 X Br ‘71'/)7

K3

where ppe: ECo(n") — ET> x g. E' is the fiberwise blow-down map.

The projection j; — Br is a subbundle of Cy (") : ECy(7") — Br, whose fiber
over the basepoint (#),...,t3,) € Br is V; x V; or pp,(Vi x V;), which is either a
manifold with corners or the image of a manifold with corners under a smooth map
(Lemma C.6). Then we have

ECy(=") = a3,
4,

where the sum is over all 4, j € {1,...,2k,00}. This decomposition is such that the
interiors of the pieces do not overlap. The closed form (4.4) can be defined on most
terms in this decomposition, except those of the forms Q} or those involving oco.
Over the latter exceptions we will extend by “degenerate” forms.
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Notation 4.4. For J C {1,2,...,2k}, let

Ky (AelJ),
{8y (¢ J),

and let Q};(J) — Br(J) be the restriction of the bundle Qf; — Br on Br(J). More
generally, for a bundle & — Br, we denote by &(J) — Br(J) its restriction on
Br(J).

2%k
Br(J) = H Ky\(J), where Ky(J)= {
A=1

If welet Ji; = ({i}U{j})N{1,..., 2k}, we have Br(Ji;) = [[ ¢, K, and there
is a natural bundle map

51’]'
of s Qb (J;)

L

Pij
Br —— Br(Ji;)
over the projection p;;. For example, if 4,5 € {1,...,2k} and ¢ # j, then J;; =
{i,j}, BF(JZ']‘) = K; X Kj, and QZ =V, x ‘/J Ifi e {1,...,2k}, then J;; = {l},
Jioo = {Z}, and BF(J“) = Kz = BF(Jzoo) 1AISO7 Joooo = @ and BF(Joooo) = %,

Proposition 4.5 (Normalization of propagator). There exists a propagator w €
Qgﬁl (ECy (")) satisfying the following conditions.

(1) Fori,je{l,...,2k oo},
W|Q{j :ﬁjwlﬂfj(Jij)'
(2) Fori,je{l,...,2k}, i #7,

w|Q£j(Jij) = ZLanI 773(6};) /\p; ns(agn),

Lm

where LG = (=1)*1Lk(b%, bJ,) and the sum is over £,m such that dim a}+
dimal, =d — 1.

This is the heart of the computation of the invariant. The statement of Propo-
sition 4.5 looks natural, although its proof given in §6 and §7, mostly following Le-
scop’s interpretation [Les2] of Kuperberg—Thurston’s theorem ([KT, Theorem 2]),
is not short. In fact, as in [Les2] we will prove a statement stronger than (2), which
includes co. Nevertheless, Proposition 4.5 is sufficient for the main computation in
§4.6 due to Lemma 4.8.

The following lemma is a restatement of Lemma 4.2(5), which will also be used
in the computation of the invariant.

Lemma 4.6 (Integral at a trivalent vertex). Let S(ay),S(a3),S(a3) be the sub-
manifolds of Vs of Lemma 4.2. Then we have

/~ Ns@») Ns@y) NMs@y) = +1.
Vi
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4.6. Evaluation of the configuration space integrals. From now on we com-
plete the proof of Theorem 3.10, assuming Proposition 4.5, by proving the following
theorem, whose idea of the proof is analogous to that of [KT, Theorem 2], [Les2,
Theorem 2.4], and [Wa2, Theorem 6.1].

Theorem 4.7 (Theorem 3.10(3)). Let d be an even integer such that d > 4 and let
I" be a vertezx oriented, vertex labelled arrow graph with 2k vertices without self-loop
(as in Definition 8.9). If moreover T has no multiple edges, we have

Z(nl V) = £[17,
where the sign depends only on k (not on I' in P,94sve").

For i1,49,...,191 € {1, .. .,2I€, OO}, let
r —1 (77 > >
Qiliz"'izk = PpBe (‘/1/1 X Br Vzlz XBr " XBr Vi;k)’
where pgy: ECor(n') — E' xp,. --- x g, E'® is the canonical projection, which
is induced by the Diff (S, U, )-equivariant projection Cax (5% 00) — (S4)*2*. This
is the subspace of ECy;(n") consisting of configurations (21, x2, ..., o2;) such that
710 (z1) = -+ = 7" (x9x) and x, € V; for each r, and is either a manifold with
corners or the image of a manifold with corners under a smooth map (Lemma C.6
and Remark C.8). More precisely, QF is the image of a bundle over Br with

11927 U2k

fiber a product of the compactifications Cp(Vy;0Vy) of configuration spaces of V¢
(Definition C.7 and Remark C.8) under a smooth projection®. Then we have

ral Ty _ T
ECu(x") = U  Qfipeians
11,1202k

where the sum is taken for all possible choices i1,i2,...,i2; € {1,...,2k,00}. Tt
follows from the formulas (2.20) and (E.3) that

> [ -

[ e
Ie.geven ECs(nT)

> ¥ [ e

TV €LV i1,02,.. 02k iig o

(2k)!(3k)! Z (=5 71)

I Effven

Thus, to prove Theorem 4.7, it suffices to compute the integrals

) w(T) (4.5)
Qiliz-“izk

for all I € Z¢V". For a labelled graph I", we denote its edges by e1,...,es
according to the edge labels. Then the integral (4.5) is the one over the configura-
tions such that the vertices of I labelled by 1,2,...,2k are mapped to a fiber of
Qf i,...i,, - If the image of the ordered pair (j;, £;,) of the (labelled) endpoints of the

edge e, under the map {1,2,...,2k} — {1,2,...,2k};q — iq are (ja,%q), namely

*The stratification of the compactification of configuration spaces of manifolds with boundary
is described in [CILW, §3.6].
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Ja = ij: and £, = ig , and if the propagator w is normalized as in Proposition 4.5,
then by Proposition 4.5 (1),

W(F/)kzr

i1ig-igy

3k
= /\ ¢Zaﬁ?aeaw|n§ala (Jjata)" (4-6)
a=1

Lemma 4.8. Suppose that the propagator w € Qgﬁl (ECo(n")) is normalized as in
Proposition 4.5. Let A € {1,...,2k}. If i1,... 00k € {1,...,2k, 00} — {A\}, then

OJ(PI) =0.
or .
i1igig

Hence the integral (4.5) can be nonzero only if {i1,... 42t} = {1,...,2k}.

Proof. We think Br({1,...,2k}—{A}) as a subspace of Br by taking the A-th term
to be the basepoint, and denote it by Br/K. Let

é?/}(A — l}fv/}()

denote the restriction of a bundle & — Br over the subspace Br/Ky. If ig # A for
all ¢ € {1,...,2k}, the bundle map p;, ¢, factors through the bundle map

r r
Qjala Qjala /KA

N

Br Br/K,

foreacha € {1,..., 3k}, since Br(Jj,¢,) does not have the factor K for all a. Hence
by (4.6), w(I") is the pullback of w(I')| gz, (rry/x, by the projection ECo(nT) —
ECq (7)) /K. If Vy is of type II, w(I") is the pullback of a 3k(d — 1)-form on a
3k(d — 1) — (d — 3)-dimensional manifold ECq(7')/K, which is zero. If V) is of
type I, we can integrate w(I"”) over Ky = S° first:

Jo 5=

@192 i) @192 i)
=+ / w(l) — / w(l) p =0.
£2E1i2"'i2k/K>‘ gl£1i2...i2k/K>\
This completes the proof. O

Lemma 4.9. Suppose that the propagator w € Qi (ECy (")) is normalized as in
Proposition 4.5. If T' has no multiple edges, we have

S
/ Ww(I) = +£1 T _'jzl",
Qr 0 otherwise

12---(2k)

for eachT' € Zgv°". Here, we write I = +T if there exists an isomorphism I'' — T’
of graphs that sends the i-th vertex of T' to the i-th vertex of T'.
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Proof. By (4.6) and Proposition 4.5(2), the restriction of w(I") to 9{2»»»(21@) can be
described explicitly as follows.

W(FI) lor

12..(28)

N | DL i Apinl, | (4.7)
(4,9) l,m
edge of T/

where L = (=1)4=1Lk(b}, b ), ni = Ns(ai), . = Mg,y @nd the sum is over £,m
such that dimaj 4+ dimaj, = d — 1. Note that there is a symmetry of the linking
number L}/ = L?', when d is even and that one of 7} and 7}, is of even degree, the
result does not depend on the choice the order of (i,7). The form (4.7) is a linear
combination of products of 6k 7 forms.

Furthermore, if I" does not have multiple edges, we may assume that each term
in the linear combination is the product of 6k different n forms since there is at
most one edge of ' between each pair (4, 5) of vertices with ¢ # j, and for a given
pair (i,£) the coefficient LY is nonzero for at most unique pair (j,m). Thus we
have

2k
w(l—‘/”ﬂ{zm(%) ==+ H Z Ly, /\ (pi;n? Aping Appng),
(4,5) \(&;m)€EP;; q=1

where Pij = {1 < ¢,m < 3| dima} + dimal, =d — 1, L} # 0}. The cardinality
of P;; is the number of edges between ¢ and j in I', which is 1 or 0 by assumption.
Hence the right hand side is nonzero only if | P;;| = 1 for all edges (4, 5) of I'V. This
condition is equivalent to IV = 4I'. More precisely, if I' does not have multiple
edges, we have

2k
_1)3k(d—1) NP
/QF w(l) = +(-1) /QF /\ (Pq771 APy /\pqn3) if IV = 4T,

12---(2k) q=1

12...(2k) 0 otherwise.

Here the sign 4 is determined by the graph orientations of T' and I (the inter-
pretation of the graph orientation in terms of orderings of half-edges was given in
§3.3.3 and §3.3.4). Note that there is a canonical diffeomorphism

ﬁlx"'xﬁQk:Q{Q...(Qk)_)Vl X - X Vo,

where py : QI;Q___(%) — YN/q is the natural projection, which gives the ¢-th point. This
diffeomorphism is orientation-preserving. Namely, Q{Q (2k) is oriented by

(o(K1) A o(E2) A+ A o(Kai)) A (o(Vi) AoVa) A=+ Ao(Var))
— (0(K1) A o(V1)) A (oK) A o(Va)) A+ A (o(Kax) A ofVa))
= o(Vh) A o) A -+ A ol Vi),
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where o(WW) denotes the orientation of W. Note that o(V}) is of even degree for
each j. Hence in the case I = £T" and T" does not have multiple edges, we have

2k
/ w(l) = i/ /\ Pq(Nsq@sy A nse@zy N Ns@2))
Q§2---(2k) Q§2---(2k) q=1
2k
=+][ /~ ns@n sy N s@g) =
q=1 Vq
by Lemma 4.6. O

Lemma 4.10. Suppose that the propagator w € ng_{l(Eag (1)) is normalized as
in Proposition 4.5. If I' has no multiple edges and has no orientation-reversing
automorphism, then we have

/. wm) = [ )

o(1)o(2)-- o (2k) 12-..(2k)

for each I" € V" and 0 € Gy

Proof. If TV 2 4T, the vanishing of the integral on the LHS is the same as
Lemma 4.9. If IV = £T" and if T’ (and I"”) does not have an orientation-reversing
automorphism, then for a permutation o € Gg, we have

' _ o(@)o(i) w o) n x o(s)
WA oy = (_/\_) ;Lzm pin " A ping!
edge of T/ ’ (4,8)
) ) 2k
==]] Soo Ly A s (i nsng),
(1,5) \(€,;m)EP;(i)o(j) q=1

where the sign is the same as for Q{Q.“(%), and 95(1)0(2)“,0(%) is oriented by
(o(K1) No(Ka) A+ No(Kak)) A (0(Vay) Ao(Vo)) A Ao(Vagar))
= (o(K1) Ao(V1)) A (o(K2) Ao(Va)) A+ - A (o(Kak) A o(Var))
=o(Vi) ANo(Va) A -+ A o(Vag).

We abbreviated n{ A nd Ani as nf ndni for a typesetting purpose. (Similar abbre-
viation is used in Example 4.11 below.) Now (4.8) gives

2k
/QF w(l) ==+ /QF /\ Po-1(g) M@y A Ms@s) A Ns@))

o(1)o(2)---o(2k) o(1)o(2)---0(2k) g=1

2k
== H/~ Ns@?) NNs(@g) N Ms@l) = /F w(I),
q=1 Va Ql2---(2k)
where py-1(g): 95(1)0(2)”,0(%) — YN/q is the projection onto the o~1(¢)-th factor,
and the sign is the same as for 9{2 (2k)" (An example of this computation is given
below in Example 4.11.) O
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FIGURE 9. Oriented graphs I' and I for k = 2. The left T' is
oriented in terms of the convention of §3.3.4. The middle and
right TV are oriented in terms of the convention (a) of §3.3.3.

Proof of Theorem 4.7. Let w be a propagator normalized as in Proposition 4.5.
Suppose that T' does not have multiple edges. If TV = +T and if T (and I”)
does not have an orientation-reversing automorphism, then the same value +[I']
(with the same sign) is counted |Aut I'| times, according to Lemma 4.10. Hence by
Lemmas 4.8 and 4.9,

I(T)[I] = +|Aut T|[T].

If T has an orientation-reversing automorphism, then the sum of the integrals for
IV 2 4T over the (2k)! components 95(1)0(2)”,0(%) cancels in pairs. Nevertheless,
in this case we also have [I'] = 0.

Hence, the term I(I”)[I'] is nonzero only if IV = 4T" and if IV does not have
an orientation-reversing automorphism, in which case I(I')[I”] = £|Aut T'|[I'] by
Lemma 4.9. Moreover, the sign in £|Aut T'|[T'] is the same for different choices of T’
such that T7 22 £T, since I(—I") = —I(I") and the value I(I'")[T"] does not depend
on the labelling to orient I'V. Now there are (2@)&3’1@‘)! labellings on each graph I'' up
to graph isomorphism, and hence we have

1 (2k)(3k)!
OIGR) JAutr] AUt LI = £

Z]?(TFF;TF) =+

The sign 4 in the last term is of the form o*j3* for the signs o, 8 € {—1,1} of
Lemma 4.6 for types I and II families of handlebodies, respectively. This completes
the proof. O

Example 4.11. Let us give an example which confirms the proofs of Lemma 4.9
and Theorem 4.7 for k = 2. Let " and I be the oriented trivalent graphs for k = 2
given in the left and middle of Figure 9, respectively. We use I" to define surgery.
(Recall the convention of §3.3 for the orientation of I" for the surgery.) According to
Lemmas 4.8 and 4.9, the integral I(I") for (7', 7") may be nonzero only if I = +T"
and over Qgiziam with {i1,12,13,i4} = {1,2,3,4}. By (4.7),
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W(F1)|Q§234 = W12 W23 W31 W14 We2 We3
= pins A D35 Apsm3 Apsns Apsns Apint
A ping APt ADins Apsni Apins Apsny
= pi(ni mam3) A ps(ni m3 n3) A ps(ni m3 m3) A pa(ui mans)

where w1z = ping A psn3, was = pan3 APEnNs, wa1 = P5N5 AP, wia = PiN A Pini,
wao = Pims A pint, waz = pini Apins (odd degree forms are underlined). Hence

/ w(I) :/~ 3 1 /~ Ui 77577;?,/~ 03 773 /~ minpns = (£1)*(£1)° = 1.
(917 Vi Va Vs \Z
Here, the orientation of Q,,, is given by ez e3 9t A 9t A QM Ao A o) =
€2 €3 (Ot A GvM) A dv @ A v A (9t™ A Gv™), where ¢; = +1 € K; = {—1,1}
(j = 2,3), 9t is the orientation of K; = S%73 (i = 1,4), dv® is the orientation
of the fiber V;.

We consider the permutation o: 1 — 2, 2 — 3, 3 — 1, 4 — 4, which gives rise
to the graph automorphism from the right to the middle one in Figure 9. We have

! _ / / ! ! ! ! (i) ! ! ! ! / /
w(l )|Q§314 = W3 W3y Wyp Wyg Wyz Wiy = Wip Wog W3y Wiy Wyp Wy3

= p3nz APin3 A PIIE A s Apsn; Aping
ADP5nz AP Apina ADint Aping Apsny
= p3(ni m3m3) A pi(nf n3 n3) Aps(ni mi n3) A pi(ni n3ng),

where why = ping A psns, wiy = pan3 APEnL, Wis = Piny APins, wWis = Dina APINT
Whs = ping Apin3, Wiy = pims A pint (odd degree forms are underlined). Hence

[ ey [ abuias [ e [ oatutad [ ontuini—1
Qlg1a Vi Va Vs Vi

Here, the orientation of Q5;,, is given by

ez €5 0t A 9t A v A 0B A 9 A v
= ege3 (AtD A G A 9vP A ) A (9t A du™).

The equality of the integrals of w(I") over Qly,, and Q5;;, can also be explained by
means of the bundle isomorphism g,: Q1,3, — QL5 induced by the permutation
o: VixVax VaxVy — Vox Vax Vi x Vy; (21, 22,23, 24) — (22,23, 21,24). The map
go preserves the orientation of the fiber in the sense that g,.0(Q%g54) = 0(25314)-
Also, according to the computations above, we have

g;w(F’) |Qggl4 = w(r/)|511;234 ’

Hence
[ w@lap, = [ @@, = [ @y,
521234 511234 512314

Similarly, the same value is obtained for other permutations of &4 since a graph
automorphism of I in Figure 9 always preserves graph orientation and the equality
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as in () above holds. Therefore, we have

I(r'y = w(I’) = 41 = |AutT.

ceS Q;
4 o(1)o(2)o(3)0(4)

The plus sign is because the graph orientations of IV and T" are the same. Hence
[[V] =[] and

(T[] = |Aut T|[T].

5. Proofs of the properties of the Y-graph surgeries

We shall prove Propositions 3.15, 3.18, and Lemma 3.20, whose proofs are techni-
cal and were postponed. In §5.5, we will give an explicit model for our parametrized
surgery which will be used later in Lemma 7.17.

5.1. The idea. The proofs of Propositions 3.15 and 3.18 are instances of the same
principle.

Lemma 5.1. If an element = of m;(Emb' (I? U IP U I?, I%)) lies in the image of the
graphing map

U: g (Bmbh (PP U1t Ut 197Y) = m(Emb (P U I U I, 1Y),

which is defined by considering an I'T*-family of embeddings IP~* UT9=*UI"~t —
1971 as an I'-family of isotopies (IP~UT Y UI™ 1) x I — I971x I, then c.(z) as a
bundle over I* can be realized as the mapping cylinder C(@) of a bundle isomorphism
¢ of a trivial (d — 1)-dimensional handlebody bundle over I*.

Proof. We prove this only for (i,p,q,7) = (0,d —2,d—2,1) and (d — 3,d — 2,1, 1),
which correspond to type I and II handlebodies, respectively, for simplicity. Since
the complement of a thickened tangle of Emb(H' UHS*UHS*, I?) (= Embf (P71
171y "1 1%7Y)) is a handlebody relatively diffeomorphic to T, we have the

following commutative diagram:

Tipr(Embh (1P~ 19 Ut 1Y) — L (Embl(IP U I U I, T9))

Ti+1 (Blef(T, 6)) T (H[W,BW] BDIff(W, 8))

where the disjoint union is taken for the class in . (V,9V), and the bottom
horizontal map W is given by considering a (7', d)-bundle over I°*t! as a mapping
cylinder of a bundle isomorphism ¢ between two (T, d)-bundles over I*. If z = ¥ (7),
we have ¢, (z) = ¢, o U(Z) = ¥ o ¢, (7). This completes the proof. O
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5.2. Proof of Proposition 3.15: mapping cylinder structure on V.

Proof of Proposition 3.15. The following argument is essentially based on the fact
that B(d — 2,d — 2,1)4 is the suspension of B(d — 3,d — 3,1)4—1 (Definition 3.4).
By considering the third component of the framed tangle B(d —3,d —3, 1)4_1
(Figure 11 (1)) as a l-parameter family of points, we obtain an element 7 of
71 (Embh (I973 U 1973 U 19, 19°1)). Then the class of B(d—2,d—2,1)4 lies in
the image of v under the graphing map

W (Embl (I3 U143 U0 197Y) = mo(Emb (19720 1472 U I, 1)).
Then the result follows by Lemma 5.1. O

5.3. Proof of Proposition 3.18: mapping cylinder structure on V. We
now construct the family 8 € Q4 3Emb{ (172U I' UI', I?) of framed string links
explicitly to find a parametrized twist map in 4 steps. The basic idea is to construct
3 so that the projection of the second component onto its last coordinate of I¢ is
a submersion. We will also give another explicit model for 3 later in §5.5 which is
more simple at least for the purpose of only defining the cycle.

5.3.1. Step 1: From a Borromean string link B(d — 2, d — 2, 1)4 to an I?3-family

B" of string links in Embh (I*"2UI' UI', I%). Let Ty = [—1,1]?"'. We assume that

the first and second components of B(d — 2, d — 2, 1), are the standard inclusions
Li: [-1,1]7 3 xT - TyxI (i=1,2)

given by L;(s,w) = (p;,0, s,w) (p; is fixed in §3.6), which is possible by Lemma 3.1.
A normal framing of L; is given explicitly by (dz1,0z2). We consider Ly as a
(d — 3)-parameter family of string knots I — Ty x I given by the maps

Log: I = {(p2,0)} x [-1, 1" P x I CTyx I (sel?);

Lo s(w) = (p2,0,s,w). For each s, the endpoints of Ly, are mapped to Ty x {0,1}
and depend on s. The tuple (0z1,0x2,0x3,...,0x4—1) gives a normal framing of
Ly 5. Moreover, we assume that the third component L3 of B(d —2,d —2, 1)4 is
equipped with a normal framing as in Definition 3.6. Thus we obtain a map

B’ 173 — Embh (142 urt urt, 1

defined by mapping each s to the family L; U Ly ¢ U L3 with the normal framings,
where we consider Ly and L3 are independent of s, and by identifying Ty x I with
14,

5.3.2. Step 2: Closing the I1973-family B" into a loop . We alter the 1% 3-family
B" to a loop

B (I973,017%) — (Emb(I*2Uu Tt UI' 1Y), )
for some point a as follows. We consider the (d — 3)-cycle 6 in Tj given by

O{pa} x [~1+2,0] x JI79)
= ({200} x T2 ) U ({2 =1+ )y > 272 ) U ({pa) > [=1 42,01 x 9J272),
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L

(1) Step 1 (2) Step 2 (3) Step 3

FIGURE 10. (1) Family of 1-disks in 8", parametrized by 193
(2) in @', parametrized by s € S93 endpoints on the top and
bottom not fixed. 1-disks are drawn as vertical lines in the middle
component. (3) S?3-family of (vertical) 1-disks in 3,, endpoints
fixed.

where 0 < £ < 1/100, J373 = [-1+¢,1 — £]973. Roughly, 6 is a cycle obtained by
closing the (d— 3)-disk {(p2,0)} x J¢=3 in T within the disk {p2} x [~1,1]¢~2 along
its boundary. The part {(p2,0)} x J273 of @ is a part of {(p2,0)} x [-1,1]973 =
Im Ly N (Ty x {0}). We emphasize that the (d—3)-cycle 6 is considered in a (d—1)-
dimensional slice Ty x {0} in Ty x I, which corresponds to the bottom horizontal
disk in Figure 10 (2). We fix a loop A: (I973,0I973) — (0, (p2, —1+¢,0,...,0)) of
degree one, and define the map

Ly I —0xICTyxI (se€l®?)

by L5 ((w) = (A(s),w). The tuple (0z1,0x2,0z3,...,024-1) gives a normal fram-
ing of this family of 1-disks. Now we obtain the map ' by mapping each s to the
family L, U L5 , U L3 (Figure 10 (2)) with the normal framings, where we again
consider Ly and L3 are independent of s. Note that L U L'Q)S U L3 is a link since
the closing disk (6 — {(p2,0)} x J3=3) x I lies in a small neighborhood of (0Tp) x I
and does not intersect the components L1 and Ls.

5.3.3. Step 3: Making B’ into a loop B, in Embg(ld72 urturt,14). We make
the family 8’ into that of 1-disks whose boundaries are fixed with respect to s, as
follows. Let p: [0,1] — [0, 1] be a smooth function such that
(i) p(x) =0 on a neighborhood of {0,1}, and p(x) =1 on [¢/,1 — &’] for some
0< ¢ <1/10,

(ii) %p(m)EOon [0,€'], (z) <0on [1-—¢,1].

az’
We define the ‘pressing-to-standard’ map p’: Ty xI — ToxI by p'(x,w) = (p(w)a:—l—
(1 = p(w))(p2,0,...,0), w) By replacing Lj , with p’ o L and by a similar

replacement for the closing disks § — {(p2,0)} x J¢~3, we obtain an S¢~3-family of
1-disks I — Ty x I that are standard near I (Figure 10 (3)). This replacement
can be obtained by a family of isotopies of the second component which does not
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intersect the other components, so that the S¢~3-family of 1-disks obtained after
composing p’ gives a family of embeddings 1972 U I' U I' — I?. This is because
the locus of {0} or {1} in the family of I — Ty x I for 8’ forms a (d — 3)-sphere in
Ty x {0} or Ty x {1} which bounds a disk {pa} x [-1+4¢,0] x J¢=3 x {i} (i =0 or
1) in Ty x {0,1} that is disjoint from other components, and the pressing map p’
retracts the spanning disk into a point on that disk.

This family of embeddings of the second component admits a family of normal
framings as follows. The orthogonal projection of the tuple (0x1, Ox2, dxs, ..., 0xq-1)
of sections of T(To)|im pror;, , € T(To % I)|im prory, , to the normal bundle N(Imp’o
Ly ) gives a normal framing of p’ o L, . With this family of normal framings, we
obtain a family

Ba: (I973,01%73) = (Emb{ (172U I UI', 1), a).

Note that this map does not take 9743 to the basepoint of Embg (ld_2 uIturt, 14
since the third component L3 is not standard.

5.3.4. Step 4: Making B, into a loop B based at the basepoint. We choose any path
in Embg (ld_2 Ull Ull, Id) from a to the basepoint which isotopes L3 with framing
into the standard one and fixes other components, and use it to extend 5, to a
slightly bigger cube I’*=3 by taking the collar I’*=3 —Int I%=3 = 9143 x I through
the composition of the maps dI%3 x I — I and v: I — Emb(I472 u ' U ', I%).
We assume ~(t) is the basepoint for 1 —&” < ¢ < 1 for some small ¢’ > 0. The
extended map takes a neighborhood of 91’3 to the basepoint and we obtain
an I'¥3_family of framed embeddings in Embg (ld_2 ultu ll,Id), which after a
rescaling 1’3 — I%=3 gives a loop

B e QP Embl (192Ut Ul 19).

Then this gives rise to a (V,d)-bundle V — §4-3.

basepoint

1 (all standard)

a

(1st: standard)

e [T

(1st, 2nd: standard)

Proof of Proposition 3.18. We see that the loop 8 € Q4 3Emb} (192U U, I?)
can also be obtained by considering certain element

Bo € Q4 2Embl(14 3 U U I°, 1471



ADDENDUM 51

\\‘u;

Ficure 11. (1) B(d =3, d —3, 1)4—1 parametrized by (s,w) €
I973 x 1. (2) B(d—3,d— 3, 1)4_1 parametrized by S?=3 x I. (3)
B": I3 — Embl (142U UI', I?). Horizontal section is parallel
to the (d — 1)-disk Tj on the top.

as an [4=3-family of isotopies (1973 U I° U I°) x I — I?~! x I where each isotopy
gives rise to an embedding 1972 U I' U I' — I¥. Then we have [8] = ¥([5]) and
we can apply Lemma 5.1.

We construct By explicitly. The idea is to modify embeddings 14~ 2Urturt — 14
into isotopies (I 3UTPUI%) x I — I9=1 x I (that are height-preserving). Recall that
the open (d—3)-handles and 0-handles in Ty given in §3.7 become (d—2)-handles and
1-handles in Ty x I, whose complement is V. We saw that ( is obtained by replacing
the trivial S9~3-family of the (d — 2)- and 1-handles in S92 x (T, x I) by a family
corresponding to the Borromean string link B(d — 2, d — 2, 1)4. We would like to
find parametrizations of the family of string links that behave nicely with respect
to the “height” parameter I in Ty x I, by modifying the family L; U (p" o L5 () U L3
of framed string links in Emb{ (1972 U I U I*, I?) in the definition of fG,.

We observe that the first two components L1, p’ o L/275 are already nice in the
sense that the natural maps pryo Ly: [-1,1]3 x I — I and pryo Ly .+ I — I
are submersions, where pry: Ty x I — I is the second projection. Also, we may
assume that the third (1-dimensional) component Lg is a section of the projection
pry: ToxI — I,as B(d — 2, d — 2, 1)4 is the suspension of B(d — 3, d — 3, 1)4—1 for
d > 4 (see §3.2 and §5.4 (Definition 5.2 below) for the suspensions of the Borromean
links). Furthermore, L3(w) (w € I) can be taken as the lift of a simple closed curve
{3(w) in Ty as in Figure 11 (1). Then we obtain a 973 x I-family By, of framed
embeddings in Emb! (143U 10U 10, 19-1):

x = Ly(z,w) U (p' o Ly ) (w) U L3(w) (z € [-1, 11973, s € 1973, w e I).

Indeed, this family possesses a natural framing. Namely, since the first 1973-
component agrees with a standard inclusion and does not depend on the parameter,
the basis (0x1, dx2) gives a normal framing of Ly (-, w) in Tp. Since the second and
third components are family of points, the basis (0z1, . .., dz4—1) gives normal fram-
ings of p’ o L ,(w) and Lz(w) in Tp. One may see that S, gives the I¢~3-family
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Ba by considering the 1973 x I-family of framed embeddings I3 U I° U I’ — T,
as an 9~ 3-family of framed embeddings (192 UT°UT%) x I — Ty x I.

Extending the 1973 x I-family Sy, to a slightly bigger cube by a null-isotopy of
L3 as in the step 4 above, we obtain a map

Bo: (1972 x I,0) — (Embl(I43 U I°U 1% 1971, Ly).

This is possible since the null-isotopy of L3 can be chosen to be height-preserving.
Finally, we see that [3] = ¥([By]) by construction, and the result follows by
Lemma 5.1. 0

5.4. Equivalence of the two models: graph of spinning and iterated sus-
pension. We prove Lemma 3.20, which relates the graph of the spinning family
construction 8 with a Borromean string link obtained by iterated suspension.

Definition 5.2 (Suspension of string link). Let L = LyULyULg: TPUTIUI" — Ié
(0 < p,q,r < d) be a string link in Emb' (I? U I U I", I) equipped with a framed
isotopy L1, U Loy: IP UT? — I? (¢t € [0,1]) of the first two components fixing
a neighborhood of the boundary 9I? U 019, such that LU Lo is the standard
inclusions of the first two components and L;; U Ls 1 = L U Ly. Suppose that Ls
agrees with the standard inclusion I — I? outside a ball about a = (%, Ceey %) el”
with small radius R < . Then the suspension L' = Ly UL,ULY: IPT1UT9TI U™ —
I+ of L is defined by

Lll(ulvw) = (Ll,x(w)(ul)vw)v L/2(u25w) = (L2,X(w) (U’Q)aw)a

/ _ (L3(U3), l) (|U3 - a| < R)?
LS(“S)‘{ (B3 117" 0 pr o pr(uz) (lus — a| > R),

where x: I — [0,1] is a smooth function supported on a small neighborhood
of 3 such that x(3) = 1, py: [0,1]" — [-1,1]* is the embedding defined by
pn(te, ... tn) = (2t1 — 1,...,2t, —1,0,...,0), and p,: [-1,1]¢ — [~1,1]? is the
diffeomorphism defined by

or(T1, . q) = (X1, .o, Ty 1, Ty Ty 1,y - -+, Tg—1,Ty), Where

z. =z, cos(|z]) — zgsin(|z]), ) =z, sin(|z|) + x4 cosv(|z|), (5.1)

2l = e+ a3
for a smooth function t: [0,v2] — [0, Z] with %1/)(15) > 0, which takes the value
0 on [0,2R] and the value Z on [R’,/2] for some R’ with 2R < R’ < @ (The
diffeomorphism p, rotates the sphere of radius |x| by angle ¢(|x|) along the z,x4-
plane.) The resulting embedding L’ has a canonical normal framing induced from
the original one since the embedding p;. o i1, can be extended to the diffeomorphism
pr. By permuting the coordinates, L’ with the induced framing can be considered
giving an element of Emb' (IPT! U 177 U [", I%1). (Figure 12 (b).) Suspensions
for other choices of components are defined similarly by symmetry.

Here, we interpret normal framings of embeddings by the model of the “embed-
ding modulo immersion”, as in [Wa3, (0.3)]. Let Embg(I” U I? U I",I%) be the
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path-component of the point (Lgt,const) in the homotopy fiber of the derivative
map
Embo(IP UI?U ", I%) — Bun(T(IP UIP U I?), TI%),
where
o Bun(T(I" UITUL"), TT) =~ QP (550%-) x Q¥(gg0t-) x Q' (g574) is the
space of bundle monomorphisms T'(IPUI?UI") — T1% with fixed behavior
on the boundary, and the identification in terms of the orthogonal groups
is induced by the standard framings of the disks,
e const is the constant path at the basepoint of Bun(T'(I? UI?UI"),TI?)
given by the standard inclusion.
A point of Emby(IPUI?UI", I?%) can be represented by an element f of Embg (/7 U
19U I", I?) with a regular homotopy, which is a path of immersions, from f to the
standard inclusion.
The component Embg (IP U I U I",I%) of the standard inclusion Ly with the
standard normal framing can be interpreted as the path-component of the point
(Lgs, const?) in the homotopy fiber of the map

Embo(I? UITUI", I%) — QP(BSO4_,) x Q4(BSO4_q) x Q" (BSO4_,)
given by taking normal bundles. Then there is a natural map
ind: Embo(IP UI?7U ", I%) — Emb{(IP U I U I", T%)

induced by the map Bun(T(I* UI? U I"),TI%) — QP(BSO4—_,) x Q4(BSO4_,) x
Q"(BSO,4-,) given by taking normal bundles. Let

fg: Emb (/P UI9UI", I%) — Emb(IP UI7U I", I%)

be the map given by forgetting framing. The following diagram is commutative:

Ta—s(Embo (142U It UI', I%)) —L s 7o (Bmb(I245 U 1972 U 1972, [24-3))

ind l lind*

Ta—s(Embh (1972 U1  UT", 1)) —2s mo(BEmb! (12475 U 1972 U 192, [24-3))
(5.2)
where the horizontal maps are the ones induced by graphing.

Lemma 5.3. (1) The class fg,([3]) € ma_s3(Emb(I*"2 U I' U I', I%) has a
canonical lift [] € mq_s(Embo(I*2UI' UL, I%)) such that ind.([8]) = [4].

(2) The class [B(2d — 5,d — 2,d — 2)24_3] € mo(Emb(I**~°UI?2u%72, [27-3))

has a canonical lift [§(2d —5,d—2,d—2)94-3] € 7T0(M(l2d_5 uli2u

1772, 1%473)) such that W([B]) = [B(2d = 5,d — 2,d — 2)sq-s].

Proof. (1) This is a straightforward analogue of the proof of (1’) in the proof of
[Wa3, Lemma A] (obtained just by replacing (D* U D¥ U D*, Q%+1) with (1972 U
I U T', 1), and by exchanging the role of the first and second component).

(2) A lift §(2d —5,d—2,d — 2)9q_3 is constructed as a result of iterated suspen-
sion of the first and third components in B(d — 2,d — 2,1)4 with the spanning disks
D; (i = 1,2,3) by extending the suspension of string links to those with spanning

disks in a straightforward manner.
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Ur

I x {0}

I x {0}

(a) graph of spinning (b) suspension

FIGURE 12. The two models for the second component.

To prove U([B]) = [B(2d — 5,d — 2,d — 2)54_3], we compare the two elements of
M(lw—f’ uriruri?, I%4=3) represented by the following objects:
(a) The string link (172U I* U T) x 973 — I x 1973 with spanning disks
obtained from E by graphing.
(b) The string link obtained from B(d —2,d — 2,1)4 with the spanning disks
D; by the (d — 3)-fold suspension for the first and third components.

The family of spanning disks of (a) is given by a straightforward analogue of those
in the proof of (1’) of [Wa3, Lemma A].

We assume without loss of generality the following. For (a), we assume that
the first and third components agree with the ones obtained from the constant
I9=3_families of the standard inclusions 192 U () U I' — I?¢. This is possible by
Lemma 3.1. Moreover, we also assume similar condition for the second component
outside a ball Dgr about (%, cee %) € I' x 1973 with small radius R < % Then
the associated graph is of the form that is obtained from the graph of the standard
spinning model p’ o Lj ; of §5.3.3 (assumed to lie in a small (2d — 3)-ball) by connect
summing a (d— 2)-sphere Ly in 12973 — (192U UI") x 193 which is disjoint from
the ball Ur about (ps, %, e %) € 1?13 with radius R and lies in a small tubular
neighborhood of %% {0} in I?*~?, by a thin band connecting the point (ps, 1,..., 3)
with a basepoint of L. We may perturb the object (a) within the class ¥([3]) into
one such that Ly lies in I x {0} and the restriction of the embedding of the second
component to D collapses into I¢ x {0} outside Ur (Figure 12 (a)).

For (b), we assume that the first and third components are standard as for (a).
Moreover, we may assume that the second component satisfies a similar condition
as above for (a), namely, it is standard outside Dy and is a connected sum of the
standard model for the suspension with Ly C I% x {0} (Figure 12 (b)).

Now we prove that the two models in Uy are related by an isotopy in Ug that fix
a neighborhood of OUg. Note that the first and third components do not intersect
Ug, and hence the intersection of the images of the embeddings of Dr with Ug
consist of a single component. By assuming that the bands for the connected
sums with ZQ is sufficiently thin, it suffices to prove that the two models without
connected sums with Ez are related by an isotopy. Let f1, fo: D — Ugr be the
embeddings of the two models, respectively. As fi can be isotoped to the restriction
of the standard inclusion, by collapsing the spinning model of §5.3.3 onto a base-
line, we need only to prove that fs can be so too. That fa can be isotoped to the
restriction of the standard inclusion can be seen inductively by using the explicit
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model given in Definition 5.2. More precisely, we replace the smooth function
¥: [0,v2] = [0, 3] with ¢ = (1—2)¢p+e: [0,v2] — [¢, 3] for small £ > 0. We only
consider the case of the suspension from B(d —2,d —2,1)4 to B(d —1,d — 2,2)44+1
as the subsequent steps are parallel to this case. When d = 4, more steps are not
necessary. Let p,.: [~1,1]¢ — [~1,1]¢ be the diffeomorphism defined similarly as
pr in Definition 5.2 by replacing ¢ with t.. Then it follows that p, o p;to fo is the
restriction of the graph of a 1-parameter family of r-cubes for 0 < e < 7 since the
derivative of p,. o p, 1 o fo along the x4-axis is positive. Then there is an ambient
isotopy {pr,(1—s)etsz © Py }sepo,1) of U perturbing pr.. o p ! o fa to the standard
inclusion, since p, z = idy, and p,” Lo fy is the standard inclusion. This completes
the proof. O

Proof of Lemma 3.20. By the commutativity of (5.2) and Lemma 5.3, we have

Y([8]) = ¥(ind.([A])) = ind.(¥([5]))

= ind,([B(2d = 5,d — 2,d — 2)2q4_3))
= [(B(2d=5,d = 2,d — 2)24_3, Fp)).

This completes the proof. O

5.5. Explicit model for type II surgery. Recall that a surgery on a type II
handlebody was defined by using a “family of embeddings I¢~2 U I' U I* — I¢
obtained by parametrizing the second component in the Borromean string link”.
Now we give an explicit model for the family of embeddings I' — I of the second
components, which will be used in Lemma 7.17. Note that the description below
gives the same element of g_3(Embf (1972 U I' U I', I9)) as the one given in §5.3
(Lemma 5.5 below).

5.5.1. Family of arcs in the upper hemisphere 81_2. We consider the upper hemi-
sphere Si‘z ={(@1,...,2q-1) € R |22 4. + 22 | =1, 24-1 > 0} and the
smooth arcs

for (=1,1) = 8772 tester + V1 — 2y,
where e; = (1,0,...,0), v = (0,a2,...,a4-1) € 51_2. We consider v € 51_3 =
D43,

Tg—1

1

NN

Lo, .., Lg—2

5.5.2. Extension to a family of smooth embeddings of lines. We take a smooth
function p: R9=2 — [0, 1] satisfying the following conditions:

(1) pis aradial function, i.e., p(z) = p(z’) whenever |z| = |2/|.
(2) p(x) =0 for |x| > 1 — ¢ for some § such that 0 < ¢ < 1/10.
(3) p(x) =1 for |z| < a for some a such that 0 < a < 1/10.
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0
(4) gp(:t) <0forr=|z| <1.
Let p': S92 — D% be defined by

P Tar) = (@1, s Ta2 p(@1, s Ta2)Ta ).

Then we define f/: R — R?~! by

, (t,0....,0) (it > 1),
ﬂ@‘{ﬂmﬁ» (I < 1).

This gives a family of piecewise smooth embeddings of lines.

5.5.3. Pressing to a thick band. Let k: [0,1] — [0, 1] be a smooth function such that
k(h) =0for 0 <h <mand k(h) =1form’ <h <1 forsome ) <m<m <1.
Let &': D4' — D91 be defined by
K (21,0 2a-1) = (21, K(Ta—1)T2, - . K(Ta—1)Ta—2, Ta—1)-
Tg-1

= m

Ty .., T2

Then we define f/: R — R?~! by
U () = w(fl(1)).

Since f!/(t) agrees with (¢,0,...,0) for |[t| > 1 — ¢ by the explicit formula, f is a
smooth embedding. As v = (0,az,...,a4-1) € ST 2 varies on a (d — 3)-disk, {7},
is a D% 3-family of smooth embeddings of lines in Ri_l such that for v € 9D%3,
1l agrees with the standard inclusion ¢ — (¢,0,...,0), and the images of f/ for
v € D973 covers the image of k' o p': Sfffz — fofl.

Now we define a normal framing of the embedding f//,
smooth D4 ~3-family of normally framed embeddings of lines. Observe that the first

df, (t)
dt

1 subspace of Tﬁ/(t)Rd’ spanned by 0xa,...,0x4—1. We put L) = Im f// and
let NL” be the orthogonal complement of TL” C TRY~!. By the transversality
of TyyLy and Tyy R4, the orthogonal projection TR *|L, — NL takes
0xa,...,0xq_1 € Tfé,(t)Rdfl to a basis of Ny, ;) Ly. This construction of a fiberwise

which gives rise to a

coordinate of the tangent vector is 1, it is transversal to the codimension

1

basis of N L gives a normal framing 7,, of L. Thus {(f”,7,)} gives a D?~3-family
of normally framed embeddings of lines, whose restriction to D9~3 consists of the
standard inclusion with the standard framing.
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5.5.4. Embedding into a small neighborhood of a sphere with arc. For a small posi-
tive real number €, let

QZ{(CL‘l,...,Id_l) ERd_l|
(1—e)? <af+ay+- - +ahy+ (ra1 —10)? < (1+¢)%},
R={(z1,...,2q-1) ER¥" | af 4+ - +27 , <% 0< 241 <9}

Then Q U R is a small closed neighborhood of an (d — 1)-sphere connected to the
origin by an arc.

We embed the family of embeddings f/ into R~2UQU R, as follows. We embed
the part R—[—1,1] onto R—[—¢, €] by scaling t + et, where R is the z; axis in R?~!,
and embed the locus L = Im(x' 0 p’) of f]/([—1,1]) into QU R. This is possible since
there is a small ball B in Int ' o p/ (D‘i_l), and L is included in the punctured disk
fo:1 —Int(B). It is easy to construct a diffeomorphism ¢: fofl —Int(B) - QUR
which extends the scaling z + ex of R9~2. Here, we consider that the corner of
Q U R is smoothed. Now we define an embedding g, : R — R?~! by

B Et (tER_[_lvl])v
gu(t)—{ vo flI(t) (te[-1,1]).

The family {g,}, is again a smooth I9~3-family of smooth embeddings R — R?~!,
This is a standard model of a “family of embeddings I' — I¢~! C I? that goes
around a small neighborhood of a sphere with arc”. The differential of the diffeo-
morphism ¢ takes the normal framing 7, to a normal framing o, of g,. Hence we
obtain a DY=3-family {(g,,0,)} of normally framed embeddings of lines. We may
assume that this model has the following property:

Property 5.4. For v € I973 such that the image of g, is included in R U R,
the image of g, is included in the 2-plane spanned by the vectors (1,0,...,0) and
(0,...,0,1). For such av, the normal framing o, is of the form (o), 0xa,...,0x4_2),
where o!, is a vector that lies in the plane (Ox1,0x4-1).

The D 3-family {(g,,0,)} can be considered as obtained from the standard
spinning model of the second component in the definition of 3, : 1973 — Embf0 (L a=2y
TI'UI*, 1) of §5.3.3 (Figure 10 (3)) by a family of isotopies that deforms the bubble
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into ), and the rest into a band in R, as in the following picture:

isotopy

By embedding 72 U Q U R into the complement of the standard inclusions of
the first and third components in 1%, so that 7?2 is a standard inclusion and Q is
embedded along the second (d — 2)-dimensional component of B(d —2,d — 2,1)g4,
we obtain a standard model of 5. Now the following lemma is evident.

Lemma 5.5. The classes in mq_3(Embh (I 2 U I' U I, I%))) of the two construc-
tions: through B, of §5.8.3 (Figure 10 (3)), and through the DY=3-family {(g,,0.)}
of embeddings of I' — I?, agree.

6. Normalization of propagator: Proof of Proposition 4.5

In this section, we shall prove that the normalization of propagator as in Propo-
sition 4.5 is possible on all the pieces ij except the diagonal ones 0}, (i # 00),
mostly following Lescop’s interpretation given in [Les2] of Kuperberg—Thurston’s
sketch proof for 3-manifolds ([KT, §6]).

6.1. Preliminaries. In the rest of this section, we put X = C(5%; 00).

(i) Let at,ab,al,bi,bh, b5 be the cycles in V; defined in §3.6 and §4.2. We
take a basepoint p* of 9V; that is disjoint from the cycles b%,a%. If V; is of
Type I, two of the cycles b} are circles and one of the cycles b} is (d — 2)-
dimensional sphere. If V; is of Type II, one of the cycles bj is a circle and
two of the cycles bj» are (d — 2)-dimensional spheres.

(ii) Let S(a%) be a disk in V; that is bounded by a}. Let S(b}) be a disk in
X —IntV; that is bounded by b}. Let 7" be a smoothly embedded path in
Voo from p? to oo € S9¢, which is disjoint from S(b),) for all (m,j). The
exsistence of such a ~? follows from the particular construction of V; from
Y-links as in §3.4. Further, we assume that v* Ny = () for i # j.

(iii) S(b}) may intersect a handle of V; (j # i) transversally. We assume that
the intersection agrees with S(a,) for some unique (m, j) up to orientation.
This is possible according to the special linking property of the handlebodies
in graph surgery.

(iv) For i # oo, we identify a small tubular neighborhood of dV; in X with
[—4,4] x 9V; so that {0} x 9V; = 9V, and {—4} x 9V, C IntV;. For a cycle
x of OV; represented by a manifold, let

xz[h] = {h} x x C [-4,4] x IV;

and let 2 denote a parallel copy of  obtained by slightly shifting « along
positive direction in the coordinate [—4,4]. Here, [—4,4] x JV; is a subset



(v)

(vi)
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of a single fiber X. Also, let

_ [ Viu(0,n] x 8V;)  (h>0),
Vilh] = { Vi — ((h,0] x OV;)  (h <0),

Su(b}) = { 5%8

Sn(ap) = { ggzgﬁ

Vao[h] = X — Int (V1 [~h] U

where, V,, was defined in §4.5.

Vilh]
N4 \
Sp(ab) S(ap)
h>0 h <0
The boundary of IN/Z (i # 00) is K; x OV;. The factor K; has nothing to do

with the [—4,4] in the previous item. Let
b= K; x bl
Let S(@i) be the compact submanifold of V; with 8S(a%) = @ given by

Lemma 4.2. We assume without loss of generality that the intersection of
S(ay) with [—4,4] x9V; = K; x ([—4,4]x0V;) (in V;) agrees with [—4, 4] x a}.

Vilhl, Voolh], V/[h], VL[h], Sh(@}) c ECa(x")({i}) etc. can be defined in
a similar way. QZF] [h, 1] is defined by replacing V/, V., in the definition of

Qj; with ‘Zl[h’]v V. [h], respectively.

and a; = K; X aj.

6.2. Normalization of propagator with respect to one handlebody Vj,
J # oo, unparametrized case. We put V = V; and abbreviate af ,bg,vj etc. as
a;, be, v ete. for simplicity. We identify X with S?~1, and its collar neighborhood
with [0,1] x S971, where {0} x S9=! = 9X. Let 7 be the closure of the lift of
7 —{oo} in X = Bl (59). Let 7, be a closed (d — 1)-form on X supported

on the

union of a tubular neighborhood of v and [0,1] x 9X C C1(S%; 00) whose

restriction to a tubular neighborhood of v in X —[0, 1) x 0X agrees with 7, (defined
on Int X') and whose restriction to {0} x 9X is the SOg4-invariant unit volume form

on 0X

= §9-1 which is consistent with the orientation of 9X.

Proposition 6.1 (Normalization for one handlebody). There exists a propagator
w on Co(S% 00) that satisfies the following (x+ = x[h] for some small h > 0).

(1)

Wy x—viy = (=D LK (b;, af) Y s, A P3Ny (50 + P3 T35
il
where the sum is over i,{ such that dimb; + dimay, = d — 1.
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w normalized

FIGURE 13. Where w is normalized for one V' (projection in X x X).

(2) w'(Xf‘D/B])xV = Z(_l)(dimai)d_lLk(G/ja b@) pglF nSQ(bz)/\pz nS(a[)‘f'(_l)de ﬁ'y[S];
il
where the sum is over i,£ such that dima; + dimby = d — 1.

(3)/ w:(),/ w =0 when dima; = d — 2.
pxSz(a;) Sz(a;)xp

(4) w=0, w=0 when d =4 and dima; = dimb; = 1.
b; xSs(ai) Sa(ai)xb;

See Figure 13 for the domain where w is normalized. The conditions (1), (2)
imply that w is an extension of (4.3) on V; x V;. The condition (3) and (4) are
technical conditions which will only be needed so that the induction in the proof
of Proposition 6.3 works. More precisely, in the proofs of Lemmas 6.4 and 6.5,
respectively.

Let A = V x (X — V[3]), where V denotes Int V. Each term in the formula
of Proposition 6.1 (1) represents the Poincaré-Lefschetz dual of an element of
Hiy1(A,0A), as shown in Lemma 6.2 (3) below. We start with any propagator wy
in C3(S8% c0) and check that its restriction to A gives the same class in H%~!(A)
as the formula of Proposition 6.1 (1). Then it follows that by adding some exact
form supported on a neighborhood of A to wy we obtain a propagator satisfying
Proposition 6.1 (1). To do so, we compare the values of the integrals along cycles
that represent a basis of the dual Hy_1(A). Verification of the condition (2) is
similar.

Lemma 6.2. (1) Hi(X = V) = Hi41(V,0V) for i >0 and Hy(X — V) =R.
Namely, H.(X = V) = ([+], [a1], [az], [as], [OV]).
(2) Hi(A) = Ho (V) @ ([#], [a], [az], [as], [OV]).
(3) Ha—1(A) is generated by [p x OV[3]], [b; X ae[3]] for dimb; + dima, = d — 1.
(4) Hyi1(A,0A) is generated by the following elements.

[S(a;) x S3(be)], [V x~[3]],
where dim a; + dimby = d — 1.



ADDENDUM 61

Proof. In the homology long exact sequence for the pair (X, X — V), we have
H.(X) =0 for * > 0. Also, by excision, we have H;11(X, X — V) = H;11(V,0V).
This gives (1). The rest is obtained by the Kiinneth formula and Poincaré-Lefschetz
duality. O

Proof of Proposition 6.1. This proof is similar to [Les3, Proposition 11.2, 11.6,
11.7]. Let wp be any propagator and w4 be the closed (d — 1)-form on

A=V x (X =V[2])

defined by the natural extension of the one given by the condition (1). This domain
A’ is the sum of A with a collar neighborhood, on which we connect wg and w4
by an exact form. The integrals of wy over the generators b; X a¢[3], p x V3] of
H; 1(A) (Lemma 6.2 (3)) are as follows.

/ wo = Lk(bi,aj), / wo = 1.
bi X ag[3] pxoV[3]

Also, by Lemma 4.1 (1) and (2), we compute
/ P10S(as) N P2 7155(be)
b; Xaz[?)]

_ /Zf nS(ai)/ 5 NS5 (bs) = (_1)kd+k+d—1(_1)d+k _ (_1)kd—l,
i as

where £ = dim a; = dim ay. From the identities

pXxOV[3]

/ PINS(a,) NP2 MS5(b,) = 05 / P37, =0,
pXOVI3] bixac[3]

it follows that the closed form w4 and the restriction of wg to A’ gives the same
element of H%(A’). Hence there exists a (d—2)-form p on A’ such that wa = wo+du
and du = 0 on V1] x 0X, since ws and wy agree with p3Volga-1 on V[1] x 0X
by assumption. Moreover, we may assume that 4 = 0 on V[1] x 9X by adding to
i a closed form on A’. Namely, since 0X is (d — 2)-connected, the natural map
HY2(V[1] x (X — V[2])) = H2(V[1] x 8X) is surjective, and there is a closed
extension u" of ply1jxox on A’. Then we replace p with p — i/, which vanishes on
V[1] x 0X.

Let x: C2(S%00) — [0,1] be a smooth function such that Suppx = A’ and
x=1on A=V x (X —VI[3]). Then let

/ PINS(a,) NP2 N85 (b)) = (—1)
b; ><a[[3]

W = wo + d(xp).

This is a closed form on Cy(S%; 00) that is as required on V x (X — V[3]) (as the
condition (1)) and agrees with wy on 9C5(S%; 00) because x = 0 on the diagonal
stratum of 9C3(S5%; 00) and p = 0 on the infinity stratum.

For the condition (3), let r; = fpxsg(aj)wa for dima; = d — 2. We would like
to cancel this value by adding to w, a form d(xpu.) for some closed form p. on
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A’, which vanishes on V[1] x 0X. This is possible because the addition of d(xp.)
changes the integral r; by

/ d(Xﬂc) :/ d(XMc) :/ e,
pxSs(aj) px([2,3]xa;) pxa;[3]

where the left equality is because Supp xN(px S3(a;)) = px([2, 3] xa;), and the right
equality is because x = 0 on p x a;[2]. By fpxaj[S] P3Ny = (—1)2728;0 = 650
for dima; = d — 2, dimb; = 1 from Lemma 4.1 (2), the first half of the condition
(3) will be satisfied if we replace w, with

wh = wa + d(xpe), Where pre = — > 15(p3ns,,))-
dimjb:jZI
For the condition (4) (only for d = 4), let \;; = fbixss(a_)wa for dimb; =

dima; = 1. For a closed form p, on A’, which vanishes on V1] P 0X, we have

/ d(xpe) = / d(xpe) = / e
bi><Sg(aj) bi><([2,3]><aj) bi><aj[3]

BY foxa;i3 PiNss(an) A P3Ny = (=D (=1 10udje = dindje for dimay, =
dimb, = 2 from Lemma 4.1 (1) and (2), the first half of the condition (4) will be
satisfied if we replace w!, with

wy = w,, + d(xpu.), where p, = — Z Aij (P1755 (i) A\ PaTS(b;))-
This change does not affect the previous modification since fbixaj (3] DP5NS4(be) = 0
for dimb; = dima; = dimby, = 1 and fpxaj[s] PiNSs(ar) N P3Nsp,) = 0 for dima; =
dimay = dim b, = 2.

A similar modification of w/ on (X — V[3]) x V is possible without touching
the previous modifications and yields another closed (d — 1)-form w that satisfies
the conditions (1)—(4). In this case the coefficients are determined by the following
identities:

/ wo = Lk(a;",bg), / wy = (—l)d,
ai[3]><b@ 8V[3]><p

/ DY N8a(by) NP5 NS (ap) = (—1) ™16 64, / Piv, =1,
a;[3]x by 14}

V[3]xp
/ PINS5(b,) NP3 NS(ay) = 0, / pi7, =0,
OV [3]xp a;[3]x by

6.3. Normalization of propagator with respect to a finite set of handle-
bodies, unparametrized case. Let Vi, ..., Vo be the disjoint handlebodies in X
that define 7. We normalize propagator with respect to this set of handlebodies.

Proposition 6.3 (Normalization for several handlebodies). There exists a propa-
gator w on Co(S%; 00) that satisfies the following conditions.
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(1) For each j=1,2,...,m,
Wy, e x vy = D (=D DL, 0l Y g as) A P3N, 40) + P3 T3
i
where the sum is over i,{ such that dim b{ + dim az =d-1.
(2) For each j=1,2,...,m,
W|(X—\?;-[3])x\/j = Z(—l)(dim“g)d_lLk(aﬁ, bg)p*{ M3, (00) ADS Ns(ad) + (—=1)4p: My (3]s
00

where the sum is over i, such that dim az + dim bz =d-—1.

(3)/ ‘w:O,/  w=0(G=12,...,m,dima) =d—2).
ijS;g(aZ) Sg(ai)xpj
(4)/ w:O,/ w=20 (¢ =1,2,...,m) when d = 4 and
ngs_g(ai) _ S3(al)xb!
dimb! = dimaj, = 1.

Proof. The following proof is an analogue of [Les2, Proposition 5.1]. We prove
Proposition 6.3 by induction on m. The case m = 1 is Proposition 6.1. For m > 1,
we take a propagator wg that satisfies the conditions of Proposition 6.3 for all j < m,
and w,, that satisfies the conditions of Proposition 6.3 for a single m, with V,,, and
X — V,,,[3] replaced by larger subspaces V;,[1] and X — V;,[2], respectively, so that
wo and wy, agree on V;,[1] x V;. By Lemma 2.11, there exists a (d — 2)-form p on
62(5‘1; o0) such that w,, = wp + du. We may assume that w,, agrees with wp on
0C05(S4; 00) and moreover that p = 0 there since H4~2(0C5(S5%; 00)) = 0 by the
exact sequence:

0=H¥2(Cy(8% 00)) = HI2(0C(5% 00)) = HIL(C5(5% 00), 9C5(5%; 00)),
and H11(C5(8% 00),0C3(S8% 00)) = Hyy1(C2(S% 0)) = 0 by Poincaré-Lefschetz
duality. Then we set

wa = wo + d(xp),
where x: C2(5% 00) — [0, 1] is a smooth function with Supp x = Vi [1]% (X =V,,,[2])
(Figure 15) that takes the value 1 on V,,, x (X —V;;,[3]). Then w, is a closed (d—1)-
form on C4(S%; 00), which is as desired on

05 00) U | (Vi > (X = V330 U [ (X — 0503 0 V1) x V).

(Figure 14.) We need to check that it can be normalized further on V;,[1] x U;n;ll V;
since the addition of d(xu) may change the previous normalization where the func-
tion x is non-constant.

The assumptions on wy and w,, imply that p is closed on V,,[1] X V; (j < m)
and vanishes on V,,[1] x 9X. Moreover, by Lemmas 6.4 and 6.5 below, we see that
w is exact on Vp,,[1] x V; (j < m). Hence we may assume that = 0 on that part.
Thus it remains to prove that we may assume moreover the conditions (3) and (4).

Now we shall prove that there is a linear combination p. of pj NS5 (b7) and a
linear combination !, of PiNss(ar) A\ P3Ns by that vanish on Vim[l] x Vj for j <m
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Vi3] V[

normalized

P X S3(ai) (by induction hypothesis)

FIGURE 15. Supp x = Vin[1] % (X — V,u[2]).

such that the new form w!, = wy 4+ d(xpe) + d(xp.) satisfies the following identities,
which correspond to the former parts of the conditions (3) and (4), respectively.

/ W, =0 (for dima}* =d - 2), (6.1)

pm><5'3(a}n)

/ W, =0 (for d=4,dimb}" = dima}’ = 1). (6.2)
b’l'chS;:,(azn)

We prove the existence of such p. and p, by modifying the proof of the conditions
(3) and (4) of Proposition 6.1 in a way that the induction works. Namely, let
re = prxS3(a;") we and Ay = fb;”xss(a;“) wa. As in the proof of Proposition 6.1,
there exist unique linear combinations . of p3 N5, (b and . of DIMSs(ar) NPINS (b7
(when d = 4) such that r, = fp 3) e for all £ with dimay" = d — 2 (&

m m
Xa,
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degns, @) = d — 2), and Agp = fb;c"xa;"[s] u., for all k, ¢ with dim b} = dima}* =1
(when d = 4). Then the form

wy, = wa + d(xpe) + d(xp), where

He = — ZTk(P3ﬁ52(b;g))a Mlc == Z)\ké(l?fnsg(a;g) /\p§775(b;"))
k ke

satisfies (6.1) and (6.2). In order that this modification does not affect the previous
normalization, it suffices to prove that p. (resp. u.) does not have the term of
D3 NS, (b7 (resp. PINSs(agm) /\pgng(bjzn)) such that its support intersects V,,[1] x V;
for 5 < m. Under our assumption on the linking property of the handlebodies,
this condition for the support of pj N8, (b OF pinss(a?) /\p§775(b2n) is equivalent to
So(by")NVj # 0. By Lemma 6.6 below, the condition S»(b)*)NV; # () implies 1, = 0
or Aie = 0 (depending on dima}*), and it follows that u. (resp. u.) does not have
the term of p3 1, ) (reSp. PiNg,(am) AP5Nsyy) for by with Sa(b7") NV # 0.

The normalization on the symmetric part (X —V;,[3]) X V;, can be done similarly
and disjointly from the previous normalization, again by using the straightforward
analogues of Lemmas 6.4 and 6.5 for V; x Vi, [1] (j < m). O

Lemma 6.4. Let i be the (d—2)-form on C(S%; 00) in the proof of Proposition 6.3
such that p = 0 on 9C2(S%00). For j < m and for £,0' such that dimb}® =

dim bi, =d — 2, we have
/ p=0, / p=0.
by o b,

Proof. For the first identity, let vJ, € X be the endpoint of 77 other than p.
Since p = 0 on 9C3(S%; 00), we have fb;”m?;o p =0, and by the Stokes theorem,

[ [ eyt [ e -
by x pi (b x77) by x7I

m 7 1
by x v, S (by") x v

oo

. m ] .
w,, normalized —> by x v/ wy normalized

S (b)) x p? l

Here, it follows from b* x 57 C V;, x (X — V,,[3]) and the explicit formula for w,y,
there (condition (1) of Proposition 6.3) that szn wxi Wm = 0, since 7/ is disjoint
from S(b}}) for all ¢/, as assumed in §6.1-(ii). Also,

/ Wozﬂ:/ wOZi/ w0¥/ w0=¥/ wo,
by x I S(by)x o7 S(b7) x vl S(by)xpi S(by ) xpi
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where & = (—1)? and the first equality holds by 9(S(b7*) x F7) = b x 77 +
(=1)?715(b) x 977 and dwp = 0, and the third equality holds by the explicit form
of wp on S(b*) x vi, C dC5(S? 00). Then it suffices to prove that the last integral
vanishes.

If S(by*) NV; = 0, the last integral vanishes by the explicit formula of wy on
(X —V;[3]) x V. If S(b7") NV # 0, the intersection of S(by") with V;[3] is +S5(a, )
for some ¢’ by the assumption §6.1-(iii), as in the following picture.

Then we have

/ wo = :|:/ _ wo +/ o wo,
S(bg*)xpl Sz (aj,)xpd (S(by)—Ss(aj,)) xp?

where S(b7") — Sy (ai,) is considered as a chain given by the submanifold S(b}") —
gg(ai,) with orientation induced from S(b}"), and the integral over Sg(az,) X pJ
vanishes by the condition (3) of Proposition 6.3. The integral over the remaining
piece (S(b}")— §’3(a£,)) x p? vanishes by the explicit formula of wy on (X —V;[3]) x V;
and the assumption S(b}*) N 77 = (). This completes the proof of the first identity.

The second identity can be verified similarly, except the roles of wy and w,, are
exchanged. Since p =0 on 9C5 (5% 00), we have [, u =0 and

J
mxbl,

/ ,u=—/ _u=—/ (wm — wo).
mebzl 8(7m><b;/) VmXbZl

Here, ™ x b}, C (X — V;[3]) x V; and the explicit formula for wy there imply
smpi, wo = 0, since ™ is disjoint from S(b},,) for all £”, as assumed in §6.1-(ii).
e

Also,

/ _wm:/ ‘wm:/ _wm—/ _wm:—/ .
ﬁmXbZ/ Bﬁmxs(b;,) vg’éXS(bz/) meS(bZ/) meS(bZ/)

Again, we need only to consider the case S (bg,) NV, # 0, in which case the integral
on the right hand side vanishes by the condition (3) of Proposition 6.3 and by the
explicit formula of w,, on V;,, x (X — V,,[3]). O

Lemma 6.5. Let d = 4 and p be the 2-form on Co(S%; 00) in the proof of Propo-
sition 6.5 such that y = 0 on 0C5(S8% ). For j < m and for £,¢' such that
dimb}* = dim b), = 1, we have
/ w=0.
by xb?,
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Proof. The idea of the proof is similar to Lemma 6.4. We use the identity

/ _u:—/ , u:—/  (wm —wo)
by xb, AbyxS(b7,)) by xS (b3,)

given by the Stokes theorem. We have

/ - Wo ::l:/ - Wo,
bZ"XS(bZ/) S(bz’l)xb;,

by A(S(B;*) x S(b,)) = by x S(b),) + S(b*) x b, and dwo = 0. If SG) NV =0,
the last integral vanishes by the explicit formula of wy on (X — V;[3]) x V;. If
SNV, # 0, the intersection of S(by*) with V;[3] is £53(aj},) for some £” by the
assumption §6.1-(iii). Then we have

S(by)xb?, Sa(ad,)xb

where fss(aj Jxbi, W0 = 0 by the condition (4) of Proposition 6.3. The integral
e// [/

, wo+/ oy - Wo,
7 (S(bzn)_SS(ajg//))szl

14

over the remaining piece (S(b}") — Sy (ag,,)) X bg, vanishes by the explicit formula
of wp on (X — VJ[3]) x V; and the assumption S(b*) N5 = (). Thus we have
fb;’”‘xs(bi/) wo = 0.

If S(bJ, )NV, = 0, then we have b x S(b),) C Vi x (X =V;,[3]) and Jop (e, @m =
0 by the explicit formula of w,, in Proposition 6.1 (1). If S(b),) N V;, # 0, then the
intersection of S(bJ,) with V,,[3] is +S3(aj) for some k by the assumption §6.1-(iii).
Thus we have

/ wm:j:/ wm—f—/ ] . wm:ﬂ:/ Wi,
by xS(by,) by x S3(af) by x (S(by,)—Ss(ai)) by x S3(aj™)

14

where the second equality holds by b} x (S(b,) — S3(ai)) C Vin x (X = V,u[3]) and

by the explicit formula of w,, there. Moreover, the last integral vanishes by the

condition (4) of Proposition 6.1, and we have fbmxs(bj yWm = 0. This completes
4 Y4

the proof. O

Lemma 6.6. Letr, and Ak be as in the proof of Proposition 6.5. If So(b7*)NV; # 0,
then rg =0 (when dima}* =d —2) and A\ =0 (when d =4 and dima}* =1).

Proof. Suppose aj is such that S»(b7*) N'V; # 0. By the assumption §6.1-(iii),
Ss(ay*) € S(b]) for some i. When dima* = d — 2, we have

ng/ wa::I:/ _wa—/ , ) Wq-
p™ X Ss(ay”) pmxS(b;) P X (S(6])N(X =V [3]))
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We prove that the two terms on the right hand side both vanish.

- —— (v, normalized

For the first term, let v7} € X be the other endpoint of ™ than p™. By (3™ x
S(b]) = vz x S(]) —p™ x S(b!) — 5™ x bl, we have

/ Vwa:/ Vwa—/ .
P xS (b)) v xS (b)) 7 xb]

Since v x S(b]) € 9C5(8%00) and 7™ x b} C (X — V;[3]) x V;, the integrals
on the right hand side are both zero by the explicit formula of w, on dCs(S%; 00)
and (X — V;[3]) x V;. For the second term, since p™ x (S(b?) N (X — V,u[3])) C
Vi X (X =V, [3]) and S(b?) is disjoint from ﬁml we have fpmx(S(b{)m(X—\Zn[S])) we =0
by the explicit formula of w, on V;,, x (X — V;,[3]). Hence we have r, = 0.

When d =4 and dimay* = 1, we have

)\kg:/ wa::I:/ _wa—/ ) i Weq-
by x S3(aj*) b xS (b7) b % (S(b1)N(X =V [3]))

The second term in the right hand side vanishes by b7* x (S(b?) N (X — Vin[3])) C
Vin X (X — Vi, [3]) and by the explicit formula of w, there. For the first term, we

use the identity
/ we = £ / Wa
by xS(b]) S(byr) <]

given by the Stokes theorem and dw, = 0. If S(b7*) N'V; = 0, then S(b7*) x b} C
(X — Vj[3]) x V; and the integral vanishes by the explicit formula of w, there. If

S(b) NV # 0, then the intersedction of S(b}*) with V;[3] is £S5(a],) for some i’
by the assumption §6.1-(iii). Then we have

/ We = :I:/ Wa +/ Wa-
S(b)xb? Ss(al,)xb! (S(b)—Ss(al,))xb]

The second term in the right hand side vanishes by (S(b}") — Sy (al)) x bl C (X —
1/3[3]) x V; and by the explicit formula of w, there. The first term vanishes too
by the condition (4) of Proposition 6.3. Hence we have fb;glx sy Wa = 0 This
completes the proof. O
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Vel2 T al2)

(b)

Vel2] Ty Va2 V2] Ty Val2
(©) (¢’)

FIGURE 16. The domains of (a) wa, (b) ws, (c),(¢") ws.

6.4. Normalization of propagator in parametrized pieces. The normaliza-
tion conditions of Proposition 6.3 for a single fiber allows us to extend the normal-
ized propagator to most pieces QF- in EC(r"). We shall do this and complete the
proof of Proposition 4.5 in five steps

6.4.1. Step 1: Normalization in a single fiber. In the following, let w; be the nor-
malized propagator on C3(S% c0) with respect to V3 U--- U Vo C Int X, as in
Proposition 6.3. We consider w; as a normalized propagator on the fiber over the
basepoint of Br.

6.4.2. Step 2: The most “degenerate” entry QL___. There is a bundle map

O =% By (Ve o0)

—

BF *

which can be slightly enlarged to a map P QL 12,2] = C2(Vo[2]; 00), where
QL _[h,h] = pBe(V' [h] x B, VL[I]). (See §6.1(vi) for the definition of Qi[h, 1))
We set

= (P wr € Q" (5uc[2,2))- (6.3)

Pooco
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6.4.3. Step 3: Explicit form in “generic” entry Q. i # j, {i,7} N {occ} = (). There

is a bundle map

'LJ’

Dij ~ ~
r Vo x Vi
Qi Vi x V;

|,

Br /> K; x K;
We define
wij = Z Lem pi Ns(ai) A ps Ms(al,) (6.4)

which is a form on Q;({4,j}) = Vi x V. It is immediate from the explicit formula
that @;; agrees with wy on

{(Ki % Kj) x (Vao[2] X Vao[2)) } N (Vi % V)
= (K; x K;) x {([-2,0] x 0V;) x ([-2,0] x 9V};)},
where the identification is given by the partial trivialization of Vi over the subbundle
with fiber [-2,0] x V). Hence @;; can be glued to we. Namely, the two forms
(f){ul) w;; and wo agrees on QF N QL L [2,2], where 13{5] 95[2, 2] — V;[2] x 17J[2] is
the fiberwise extension of p;j, and they are glued together to give a new form on
ij U QL _[2,2], by just extending the domain. Doing similar gluings for all (4, j)
such that i # j, {¢,j} N {oo} = 0, we obtain a form w3 defined on
U o
(4,4)
Then the following identity holds.

wslor = Pi;wij = Piwslar, (i) (6.5)

6.4.4. Step 4: Extension over Qb UQL . i # co. There are bundle maps

or L5 o Vi an, v, x 7 (6.6)
BF Pico KZ BF Pooi KZ
Let QE.)OO and ng(i) be the subspaces p;_! (‘7Z x (Voo [2]N(X —V;4]3]))) and Pt (Vao[2IN
(X —Vi[3])) x V;) of QX and QL respectively. We define the closed forms
Bivo = Y _ (=) ILk(b? ayt) p @) NP2 ss(v)) T P2 Ty f3)
4,

(for 4, ¢ such that dimb} + dimaj =d — 1),

Dooi = y_(=1) W ILK(alY, b)) p] 1, 00) A DS s + (—1) 05 ey
I
(for j, ¢ such that dim aé- +dimb, =d — 1)
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on Vi x (Vao[2] N (X — V;i[3])) and (Vao[2] N (X — V4[3])) X Vi, respectively. These
formulas are consistent with the formulas of Proposition 6.3 on the fiber over the
basepoint of K;. It follows from the explicit formulas that on the overlap of these
domains with D5({é}), which is the restriction of the bundle D3 — Br on Br({i})
as in Notation 4.4, the values of the overlapping forms agree. Hence pj. ws|p,({i})
and p}_,ws|p,(fi}) can be extended by p; Wico and pi;Weei to a closed form wy on

Then we have the following identities.
w4|(lfi)oo = DiooWico = f’?oow4|sz{i)m({i}),

(6.7)

sk~ =k
CL’4|ng(i) = PoiWooi = pooiw4|ﬂl;o(i)({i})a

where Q(Fl)oo({z}) and ng(l)({z}) are the restrictions of the bundles Q{i)oo — Br
and ng(i)({i}) — Br on Br({i}), respectively, as in Notation 4.4.

6.4.5. Step 5: Estension over QL[4,4], i # co. There is a bundle map

K22

92[47 4] L E€2(W(ai))[4a 4]

| |

Pii
B — =K

where EC(m(cu))[4,4] = Bla,, , (Vi[4]x x,Vil4]) = QF[4,4]({}). Let ST Ay, =
Ppy (Ay,(4)) denote the diagonal stratum in EC5(n(a;))[4,4]. By Lemma 3.23, the
standard vertical framing on K; x V,, extends over 171 Hence by pulling back the
symmetric unit volume form on S?~! by the framing as in Lemma 2.12, we obtain
a closed (d — 1)-form extension wj ; of wy over ST"Ay, ;. We will see in the next
section (in Lemma 7.1) that wj ; on

(Da({i}) N ECa(m(ei))[4,4]) U ST Ag,

can be extended to a closed (d — 1)-form on ECy(m(cv;))[4,4]. We postpone the
proof of this fact and assume this now. By pulling back this extension to Q;[4,4]
by pii, we obtain a closed form ws; on Q![4,4]. By doing similar extensions on
QL [4,4] for all i # oo, we obtain a closed form ws defined on ECa(n") that extends
wy, which satisfies the boundary condition for a propagator. By definition, we have
the following identity.

wslara.4] = Piscwslar (4.41((in)- (6.8)

Proof of Proposition 4.5. Now the closed form ws on ECy(n") is as desired in
Proposition 4.5. Namely, the condition (1) of Proposition 4.5 follows by (6.3),
(6.5), (6.7), (6.8). Note that (6.7) can be extended to the identity for QL U QL .
by using (6.8), both hold in subspaces of the same bundle ECo(7")({i}) over K;.
The condition (2) of Proposition 4.5 follows from (6.4). O
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7. Extension over the final piece QL, i #

To simplify notation, we set V = V;[4], V = V;[4], and EC(V) = QL [4,4]({i}).
We shall prove the following lemma, whose proof was postponed.

Lemma 7.1. The closed form w}; on P = (D4({i}) N E@(f/)) USTYAy can be
extended to a closed (d — 1)-form on ECa(V).

The problem is to show that the class of w}, in the cohomology H !(P) is
mapped to zero by the connecting homomorphism

HYY(P) = HYEC,(V), P).

It is easy to see that P deformation retracts onto (’“)E@g(‘N/) by shrinking the collar
neighborhoods. Thus the problem is equivalent to the analogous one for the pair

(ECy(V),0EC(V)),

and we consider the latter. In this section, we will prove the above cohomological
property of wj ; by evaluating on some explicit (d—1)-cycle in OEC,(V) by a higher
dimensional analogue of Lescop’s proof of [Les3, Lemma 11.11].

7.1. On the homology of C5(V). In this section, a chain is a piecewise smooth
singular chain, namely, a linear combination of smooth maps from simplices. Since
a manifold with corners admits a smooth triangulation, a linear combination of
smooth maps from compact oriented manifolds with corners can be considered as
a chain.

Lemma 7.2. Let d be an integer such that d > 4. Let A, = ([b; x b, | dimb; +
dimby = n).
. o\ <[bj><*],[>k><bj] |dimbj:2>EBA2 (d=4),
W) Ha2(V5) = { ([t x 4, [+ x by] | dimb; =d—2) (d>4),
Hy1(V?) = Ag1,

oy r A (d = 4)7
Hy(V?) = { 04 (otherwise),
Hy(V?) = { 36 Ecolt;eiz)t;ise).

(

(i) Ha-1(C2(V)) = Ha1(V?) © ([ST(x)]),
Hy(Ca(V)) = Ho(V?) & ([ST (b)) | dimb; = 1),
Hgd_3(02(v ) = <[ST(bl)] | dim bi =d-— 2>,
H;(Cy(V)) = Hi(V?) ifi #d—1,d,2d — 3, where ST (o) for a submanifold
cycle o CV denotes ST(V)|e = SN(Av)|a, (see §1.3 (a)).

Proof. We replace for simplicity V' and Cq(V) with V and Cg(f/), respectively,
without changing their homotopy types (especially for the excision argument be-
low). The assertion (i) follows immediately from the Kiinneth formula. In the
homology exact sequence for the pair

= Hyr(V?) = Hy i (V2 V2= Ay) — Hy(Co(V)) —

we see that the map H,11(V?) — Hpy1(V2,V? — Ay) is zero since the explicit
basis {[+], [b1], [b2], [b3]} 2 of H,(V2) can be given by cycles in V2 — Ay,. Hence we
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have the isomorphism
Hy(Co(V)) = Hy (VA V2 = Ap) @ Hy(V?).

We have H;(V2,V? — Ap) = Hy(D?, D% @ H;_q(Ay) (=2 Hi—a(V)) by excision,
and

H. (V) (r=0),

0 (r<0).

The assertion (ii) follows from this. O

Hywr(VEV2 = Ap) = {

Let a be a;[4] C OV that is (d — 2)-dimensional. Let ¥ = S4(a;). Suppose that
V' is of type I. We assume the following for X.

Assumption 7.3. (1) If V is the fiber over the non-basepoint 1 € K;, we
assume Y is given by a normally framed embedding from S' x S92 —
(open disk). This is possible since ¥ is a Seifert surface of one compo-
nent in the Borromean rings that is disjoint from other components, as in
Lemma 4.2.
(2) If V is the fiber over the basepoint —1 € K;, we assume that ¥ is either
D=1 or St x §4=2 — (open disk), the connect sum of a small S x S92 to
a (d — 1)-disk.

In any case, X = D4 14(S1 x S9=2)#9 for some g > 0. Let ¢y, ¢z, .. ., c24 be the
cycles of ¥ that form a basis of the reduced homology of ¥ over Z. Let c7,c3, ..., c3,
be the cycles of ¥ that represent the basis of H,(X;Z) dual to ¢y, co, . .. , Cag With
respect to the intersection form on X, so that ¢; - ¢j = d;;. Let c:r, C;Jr be the cycles
in V obtained by slightly shifting ¢;, ¢} along positive normal vectors on X. The
following lemma will be used in Lemma 7.7 to study a part of the homology class
of the diagonal in ¥ x X7,

Lemma 7.4. (a) The (d —1)-cycle Y, ¢, x ¢, is homologous to

Z /\jvé bj x by in V? for some /\}/z eR,
5.0
where the sum is over j,{ such that dimb; 4+ dimb, =d — 1.
(b) The (d —1)-cycle Y, ck x cit is homologous to

D A by X b+ 6(8)ST (%) in Co(V)

7.l
for some constant §(X) depending on the submanifold ¥ C V', where the
sum is over j, £ such that dimb; +dimb, =d — 1.

Proof. The assertion (a) follows from Lemma 7.2(i). For (b), one can show by using
the computation of Hq—1(C2(V)) in Lemma 7.2(ii) that the component of b; x by
in the homology class of >_, ¢ x ¢;T agrees with that of (a). The coefficient §(X)
of ST'(x) in the homology class is >, Lk(ck, ¢;T). O

Remark 7.5. If we chose ¥ to be a (d — 1)-disk, then the coefficient §(X) of ST (x)
of Lemma 7.4(b) was zero. In [Les3, Lemma 11.12], an explicit formula for the
coefficient )‘}/e is given, which is not necessary for our purpose.
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7.2. Extension over type I handlebody. We consider an analogue of Lescop’s
chain F%(a) of [Les3, Lemma 11.13]. We fix some notations to define the analogous
chain. Recall that we have put V' = V;[4], V[h] = V;[h] and chosen a C OV that is
(d — 2)-dimensional in §7.1.

(1)
(2)

We identify a small tubular neighborhood of @ in 0V with a x [—1,1] so
that a x {0} = a.

Let ¥t = (XN V[-1])) U{(5t — 1,a(v),t) | v € S42 t € [0,1]}, where
(5t — 1,a(v),t) € [-4,4] x (a x [-1,1]). We will also write X}y = ¥F or
Yy = X to emphasize that ¥ T or ¥ is considered in a particular V when V
is a single fiber in a family of handlebodies. Recall that we assumed that
YN ([—4,4] x OV[0]) = [—4,4] x a]0] (§6.1(iv)).

p(a) p(a)”

By S92 = (]0,1] x S9473)/({0,1} x S473U]0, 1] x {o0}) (reduced suspension
of S973), we equip a with coordinates from [0,1] x S9=3. Let p(a) be the
basepoint of a that corresponds to oo € S92, the basepoint for the reduced
suspension. Let p(a)™ = (p(a),1) € a x [-1,1] C IV.

Let diag(v)X be the chain given by the section of ST(V)|s by the unit
normal vector field v on ¥ compatible with the coorientation of the codi-
mension 1 submanifold ¥ of V. The restriction vy, := v|y: ¥ — STV gives
a submanifold chain diag(v)¥ of STAy C 9C2(V). We will also write
diag(vs )X to emphasize the choice of X.

Let T'(a): S3 x T — (a x {0}) x (a x {1}) be the (d — 1)-chain defined
for (v';y,2) € 8973 x T, where T = {(y, 2) € [0,1]? | y > z}, by

T(a)(vl; y,z) = ((a(y, Ul)v 0), (a(z, U/)v 1)).
To make this into a chain, we orient T'(a) by the one induced from dy A
0z A o(S973), where Oy A o(S973) = o(a).
Let A(a) be the closure of {((a(v),0), (a(v),t)) | t € (0,1], v € [0,1] x S4=3}
in Co(X), which is a compact (d — 1)-submanifold with boundary and is
diffeomorphic to S?2 x [0,1]. We orient A(a) by the one induced from
0((0,1]) A o(a).

We assume the following without loss of generality.

Assumption 7.6. (1) The unit normal vector field v on ¥ is such that its

(2)

restriction to [—1,4] x a is included in T(OV).

Let 7y be the framing on V' as in Corollary 3.22 and let p(7y): ST(V)|s —
541 be the composition ST (V)]s —% ¥ x 5471 25§41 We assume
that the restriction of p(7y) ov to [—1,4] X a is a constant map.

Thanks to Assumption 7.6 (2), the mapping degree deg (p(v) o v) of p(1v) o v
makes sense.
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Lemma 7.7 (Type I). The (d — 1)-chain
Fa(a) = diag(v)Xy — pla) x £ — By x pla)™ + T(a) + A(a)
- {Z AV by x b+ 6(Sv) ST(*)}
4,
in 0C(V) is a cycle and is null-homologous in Co(V).
Proof. Let C) 5 (X,%%) denote the first line of the formula of F&~1(a), which is

obtained from an analogue of C, >(X,X") in [Les3, Lemma 8.11] by homotopy.
Namely, if we let

a x> at ={(a@,y),a(v’,2)") [ v € ST y 2 €[-1,1],y > 2},
diag(X x ) = {(z,27) | z € ¥},
where the superscript + denotes the parallel copy in 1, and orient a X, > a™ by
Oy N Oz N o(Aga-3), then the chain
Co>(E,27) =diag(E x 1) —x x BT =S x +T +ax.>a’
of ¥ x ¥ is a (d — 1)-cycle since
da x,>a") = —diag(a x a™) + * x at +a x x| (7.1)
O(diag(X x 1) —x x BT —= ¥ x «1) =diag(a x a™) —x x ™ —a x T, (7.2)
where diag(a x a™) = diag(X x )N (a x a™*). The following holds in Hy—1(Z x
YT 7).

[Con(Z,20)] = > lex x ;] (7.3)
k
This identity can be proved by considering the closed manifold S obtained from X
by gluing a (d — 1)-disk D along their boundary. It can be shown that

[diag(S x ST)] =[S x *T] + [+ x ST] + Z[Ck x it
k

holds in Hyq—1(SxS™;Z) (Proposition F.1). We may define the cycle Cy > (—D,—D™)
analogously to C, > (X, X71) by replacing ¥ with —D in the definition of C, > (X, X7).
Then we have
[Ce2(E, 5] + [Coz (=D, =DM = [ex x ;7]
k

in Hy—1(S x S*;Z), and that [C\ >(—D,—D")] =0in Hq—1(D x DT;Z) = 0.

Now X x XF can be considered as embedded in C'(V) by considering the points
on XV in diag(X[—1] x ¥1[—1]) as lying on v(X) in SN(Ay). In this way, we may
identify C] 5 (%,%7") with C, >(%,%") up to boundaries, where diag(¥X x ¥F) +
a X4 >at corresponds to diag(r)¥ 4 T'(a) + A(a). Note that the boundaries of the
three chains diag(v)X, T'(a), A(a) cancel at their common boundaries since

0T (a) = —diag(a x a™) + p(a) x a™ +a x p(a) ™,
0A(a) = diag(a x a™) — diag(v)a,
ddiag(v)X = diag(v)a,
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where diag(v)a is defined by replacing 3 by a in the definition of diag(v)X. The
identity (7.3) also holds for C} (3, %7") in H. (C2(V);Z). Then the result follows
from Lemma 7.4.

We need to check that the signs of the right hand side of (7.1) are correct.
Suppose that o(Aga-3) at a point (v, v) is given by /\?:_13(61' +¢.), where {e;}, {€;}
are copies of a basis of T,,(S¢~3). Then the orientation of a x, > a* at (y,v) x (2, )
is Oy A 9z A /\Zd;l3 (e; + €}). The outward normal vectors at diag(a x a™), a x x|
* X at are Oz — Oy, —0z, Oy, respectively. Hence the induced orientation on these
parts are as follows:

i(0z — Oy) Oy A 9z A /\(ei +e))=—(0y+90z) A /\(ei +€)),
i(—02z) 0y A 0z A /\(ei +el) =0y A /\(ei +e) — Iy A /\ei ((z,v) = xT),
i(Qy) Oy A Oz A /\(ei +el) =0z A /\(ei +el) = 0z A /\e; ((y,v) = *),

where i(-) is the interior multiplication defined by i(w)u = (u,w) for the inner
product on Ty v)x (z,v) (@ X at) such that dy, 9z, e;, ej forms an orthonormal basis.
The results agree with —o(diag(a x a™)), o(a x *T), o(x x a™), respectively. Hence
the signs of the right hand side of (7.1) are correct. O

When V is of type I, we write V = V/U(—=V). By Lemma 7.7, there exist d-chains
G%i(ar), GE (az) of Ca(V') with coefficients in Z such that G (a;) = F *(ai)
(i=1,2).

Lemma 7.8 (Type I). Hy(Co(V"),005(V")) has the following basis.
{[GYV(a1)], [G%// (a2)], [Sa(as) x Sa(as)™]}  (if d =4),
{6V (ar)], [GV/(a2)]} (if d > 4),

where Sy(a3)™ is a parallel copy of Sy(as).

(
Proof. By Lemma 7.2 (ii), Hy(C2(V’)) has the following basis:
{[ST(ba[4])], [ST(bz)Fl])]v [bs x b1} (if d = 4),

{[ST (b1 [4])], [ST (ba[4])]} (if d > 4).

Then the result follows by Poincaré—Lefschetz duality (see Lemma C.9) and the
following intersections:

(G (ai)] - [ST(b;[4))] = [F(aq)] - [ST(b;[4])]
= [diag(v)Sa(a:)] - [ST(b;[4])] = £6i; (1 <14,5 <2),
(G (@i)] - [bs x b5] = [FH(a)] - [bs x b1 =0 (if d = 4),
[Si(as) x Si(a3)T] - [ST(B;[4)] =0 (fd=4,1<j<2),
[Sa(az) x Sq(az)™] - [bs x b =£1 (if d=4),
where - is the intersection pairing between homologies. ]

Lemma 7.9 (Type I). For the propagator w) ; of Lemma 7.1, the closed form

p— !/ —
Wo = W4,i|602(V/)
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on OC3(V') extends to a closed form on Ca(V").

Proof. We consider the following commutative diagram.

o

HYT,(V")) Ha(C2(V"))
0 0
8(lwa]) € HC2(V"),0C(V")) == Ha(C2(V"),Ca(V"))

)

~

[wa] € HI7L(OC (V")) — Hy 1(0C2(V"))

T

H* 1 (Co (V")) = Hy—1(Ca(V"))

where the horizontal isomorphisms are given by the evaluation pairing. To prove
that [wy] is in the image of the restriction induced map r, we prove §([wg]) =
0. Here, the natural map Hy(C2(V')) — Hy(Ca(V'),0C5(V')) is zero since by
Lemma 7.2, we have Hy(Co (V")) = Ha(V'?) @ ([ST(b;)]), where Hy(V'?) is A4 or 0
and dim b; = 1, and all the generators are mapped to zero in Hy(Ca(V'),0C(V")).
To prove 6([ws]) = 0, it suffices to show the vanishing of the evaluation of d([ws])
at the basis of Hy(C2(V'),0C2(V")) in Lemma 7.8.

The class §wy] can be represented by d g, where Wy is an extension of wy over
Co(V) as a smooth (d — 1)-form. Since

/ dwa:/ wo (i=1,2),
G, (as) F27 M (as)

\%

/ daa:/ wy (ifd=4)
Si(as)xSa(as)t 9(S4(az)xSa(az)t)

by the Stokes theorem, it suffices to check that the right hand sides vanish. By
Lemma 7.15 below, we have

/ waz/ wr (i=1,2),
F& a) Pyt ag)

/ Wy = / Wi,
9(S4(az)xSa(az)™) 9(S4(az)xSa(az)t)

where wy is a form as in Proposition 6.3. The right hand sides of (7.4) vanish since
Fd(a;) and 9(S4(az) x Si(az)t) are null-homologous in Co(V) by Lemma 7.7
and w; is defined there. Hence the left hand side of (7.4) vanishes, too. O

(7.4)

We give some lemmas to prove Lemma 7.15.

Lemma 7.10. Let (V,X) be as above, let wy be a propagator normalized as in
Proposition 6.3, and let wy is the form of Lemma 7.9. Then we have

/ waz/ w1 and/ waz/ w1.
p(a)x3f, p(a)x=y Sy xpla)t Sy xp(a)t
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Proof. We see that

wo = / w1 =0 (7.5)
/p(a)xz‘t/[—l] pla) xS [~1]

since p(a) x B, [—1] € (X =V’[3]) x V’[0] and By [—1] x p(a)t € V'[0] x (X —V'[3]),
and we have explicit formula for wp there. Note that we are assuming V' = V/[4]
and a = {4} x a}, but we consider V'[3], £i,[—1] etc. denotes V/[3], S(al[-1])"
etc. By the same reason, the second integral of (7.5) vanishes. We have similar
identities for the integrals over Yy [—1] x p(a)™ and Ty [—1] X p(a)*.

Also, we have

. wy = / . w1
/p<a>x<x¢,x¢,[u> pla)x (S —5F[-1))

since the domains are both included in the common subspace pg, (([—1,4] x0V’)?) =
pp(([=1,4] x 9V)?), where the two forms wp and w; agree. We have similar
identities for the integrals over (Sy — Xy [—1]) x p(a)t and (Zy — Xy [—1]) x p(a)*.
This completes the proof. O

Lemma 7.11. Let (V,X) be as above, let w1 be a propagator normalized as in
Proposition 6.3, and let wy is the form of Lemma 7.9. Then we have

/ wy = / wi.
T(a)+A(a) T(a)+A(a)

Proof. The identity holds since the domains are both included in the common
subspace pp, (([—1,4] x 9V")?) = pp,(([—1,4] x dV)?), where the two forms ws and
w1 agree. O

Lemma 7.12. Let (V,X) be as above and let wy be a propagator normalized as in
Proposition 6.3. Then we have

/ w1 = 5(2)
diag(v)X

Proof. First we prove that

/ w1 = / w1 — 5(2)
diag(v)Z—6(X)ST(*) diag(v)%

does not change if 3 is replaced with the spanning disk ¥ = (ajT x I)[4] bounded
by a = a;[4]. Namely, by the analogues of Lemmas 7.10 and 7.11 obtained by
replacing (V’, Xy/) and wy with (V,3g) and wy, respectively, we have

/ wl—/ w1=/ wl—/ w1.
cl(2,21) ! L (20,28) diag(v)S diag(v)Zo

On the other hand, it follows from Lemma 7.4 (b) that

/ w1 = / w1 = 5(2),
Sherxert 32,0 AV Xbe+8(S) ST (x)
where the right equality holds since Lk(b,, b;) = 0 for p # ¢. Since

[C (2, E9)] = [Ch > (20, 20)] = D lew x 6]
k
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in Co(V), it follows that

/ w1 — 6(2) = / w1 — 5(20)
diag(v)X diag(v)Xo

It is easy to see that the right hand side of this identity is zero. O

Lemma 7.13. Let 7y be the framing on'V as in Corollary 3.22 and let p(ty): ST(V)|s —
S9=1 be the composition ST(V)|s —% X x S4=1 25 §9=1 Let v be the unit normal
vector field on ¥ in V. Then we have

/ w1 = deg (p(1v) o v).
diag(v)Z

Similarly, we have
/ wy = deg (p(tv/) oy, ).
diag(vs,,, ) Sy

Proof. This follows since w1|sn(ay) = p(7v)*Volga—1 and its integral is the map-
ping degree. The latter identity holds since wg is defined on SN (Ay). O

Lemma 7.14. Let 1y and Ty+ be the framings on V and V', respectively, as in
Corollary 3.22. Let Yy be the restriction of S(a;) in Lemma 4.2. There is a
submanifold Xy bounded by a = a;[4] in V', respectively, such that

(1) Xy and By agree on [—4,4] x OV} = [-4,4] x IV].

(2) There is a diffeomorphism v = Xy relative to [—4,4] x 0Vj.

(3) deg (p(rv/) ovs,,) = deg (p(Tv) o vsy ).

(4) 8(Sv) = 6(Sv).
Proof. Recall that 7y was obtained from the standard framing st on the string link
complement model in the Euclidean space by perturbing st in a neighborhood of
the link components. We show that the pair (X, 7y ) has an interpretation similar
to this. Namely, consider the string link L[j] in Emb(Z472 U 1972 U I', I?) whose
Jj-th component is the j-th component L; of B(d —2,d —2,1)4 = L1 ULy U L3 and
other components are the standard embedding Le. As L; has the spanning disk
D; and the spanning submanifold D’ as before, and the restrictions of the framings

v, and Ty to D’ agree, we obtain Xy for L[j] that satisfies (1) and (2), and we
have p(1y+) o I/E_V/ = p(7v) o vy, for this particular model, proving (3). For (4), it
follows from the proof of Lemma 7.12 that

5(2\/) = / w1 and 5(2\//) =
O CkXCZ+)(EV)

/
w

/(Z;c erxer ) (Syr)

for any propagator w} on C3(V’) that does not detect Hy_1(V'?) (see Lemma 7.2).
The right hand sides of these identities are the sum of the linking numbers that
can be computed via the same submanifold D} with the same normal vector field.
Thus the two integrals agree. o O

Lemma 7.15. Let wy and wy be as in the proof of Lemma 7.9. We have

/ w :/ wi (1=1,2,3), (7.6)
D; (V') D;(V)
where for U =V" orV,
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(1) Dy(U) = —p(a) x 5 — Xy x pla)* + Ala) + T(a),
(2) Dy(U) = diag()Zy - ¥, qu by X by — 6(Su)ST (%),

(3) D3(U) = 9(S4(az)u x Si(az)s;) (only for d = 4).
The superscript + denotes the parallel copy in 3.

Proof. (1) The identity (7.6) for ¢ = 1 holds by Lemmas 7.10 and 7.11.
(2) We prove the identity (7.6) for ¢ = 2, which is equivalent to the following;:

/ Wy — 5(2\//) = / w1 — 5(2‘/), (77)
diag(uz;v,)EV/ diag(vsy, )2v

as in the proof of Lemma 7.12. By Lemma 7.12, the right hand side of this identity
does not depend on the choice of ¥y,. Thus we may choose ¥y as in Lemma 7.14.
For such a ¥y, we have deg (p(ry+)ovs,,,) = deg (p(1v)ovs, ) and 6(Xy) = 6(Ev),
which imply (7.7) by Lemma 7.13.

(3) For d = 4, we prove (7.6) for i = 3 as follows. The proof is similar to that of
Dy (U). Namely, for U = V', we have

8(S4(a3) X S4(a3)+) = ag[ ] X S4(CL3)+ + S4(a3) X CL3[4]+
= a3[4] x S_i(a3)* + S_i(a3) x a3[4]"
+ asf4] x (Sa(az)™ N ([-1,4] x OU)) + (Sa(as) N ([—1,4] x OU)) x as[4]".

Here, as[4] x S_1(as)t c (X = V'[3]) x V'[0] and S_;(as) x as[4]t C V'[0] x (X —
V’[3]), and the integral vanishes by the explicit formula of wy there. The same is
true for the integral of wy. The part as[4] x (Ss(as)™ N ([~1,4] x OU)) + (Sa(as) N
([-1,4] x 9U)) x az[4]* is included in pp; (([—1,4] x OV")?) = ppy(([—1,4] x 9V)?),
where the two forms wy and wy agree, and the integrals are equal. O

7.3. Extension over family of type II handlebodies. Now we consider V of
type II. Recall that V = V[ ].

(1) Let @ be @; = S%3 x a;[4] € OV that is of dimension (d —3) +1=d — 2.
Namely, i = 2 or 3 in the model of §4.2. Let a x [~1,1] = S92 x (a x
[—1,1]) € §973 x OV = AV be a parametrization of a $?~3-family of small
embedded annuli in dV such that @ x {0} = a.

(2) Let p(a) = S4% x p(a), p@)* = S92 x p(a)™.

(3) Let ¥ be the submanifold S(a@) of V of Lemma 4.2 (such that 85(a) = a),
and let ©F = (S(@) N V[=1])) U{(5t — 1,a(s,v),t) | (s,v) € S4 3 x S' t €
[0,1]}, where (5t —1,a(s, v),t) € [-4,4] x (a x [-1,1]). We will also denote
Y and £+ by E~ and E~, respectively, to emphasize that & and X+ is in

V.

(4) Let diag(7)S be the chain given by the section 7 of ST”( s C OEC,(V)
obtained by the normalization of a vector field on 3.

(5) Let A(a) = S92 x A(a), T(a) = S x T(a), where T'(a) and A(a) are
defined analogously for 1-cycle a as in §7.2 (5), (6). We orient T'(a) by the
one induced from dyAdzA0(S?3), where dyAo(S973) = (—1)130(S973)A
Oy = o(a) (8§4.2). Also, we orient A(a) by the one induced from o((0, 1]) A

o(@). We consider A(d) and T(a) as chains in dEC(V) = §973 x 9C5(V).



ADDENDUM 81

(6) Let V' be a type I handlebody included in the type II handlebody, cor-
responding to the inclusion of an S! leaf into an S¢~2 leaf of Y-graphs.
Such an embedding is possible since the S'-leaf bounds a 2-disk in a type
IT handlebody.

We assume the following without loss of generality.

Assumption 7.16. (1) The unit vertical vector field ¥ on % is such that its
restriction to [—1, 4] x @ is included in the subspace T%(ax [—1,1]) € T?(8V)
of T"V and is orthogonal to [—1,4] x @.
(2) Let 7 be the vertical framing on V as in Corollary 3.22 and let p(7y): ST (V s —

59-1 be the composition ST (V s IV 5 x §4-1 By gd-1 We assume
that the restriction of p(7y;) o v to [~1,4] x @ is a constant map.

Lemma 7.17 (Type II). The (d — 1)-cycle
F& (@) =diag(v) Sy — p(@) xsa-s 5% = S x50 p(@)" + A@) + T(@)
— S b x e+ 8(Sy)ST() }
7.4

in 8E62(‘7) is null-homologous in E@(f/), where /\}/ll is the same as that of
Lemma 7.7 for V'.

We first assume that @ is the second component S?~3 x ay[4], which corresponds
to the second component in the spinning construction in §3.8. To prove Lemma 7.17,
we decompose ¥ into two parts EO and El, and F p ( ) accordingly, and prove the
nullity of the two parts separately.

7.3.1. Pushing most of Y into a single fiber. To simplify the proof of Lemma 7.17,
we make an assumption on the string link in the construction of V. Recall that
the S94-3-family of embeddings 192U I' U I' — I? that defines V can be taken
so that the first and third components are constant families, and the locus of the
second component with the (unparametrized) first and third components forms a
Borromean string link B(d — 2, d — 2, 1)4 (§3.8). We assume that the family of the
second component is constructed according to the model described in §5.5, which
is possible by Lemma 5.5. By precomposing with an isotopy of the parameter
space S?73 of the family of framed embeddings, we may assume that the second
component agrees with the standard inclusion outside a small neighborhood Uy of
a single parameter s € S%3.

7.3.2. Decomposition of Y. After perturbing 5 suitably, it can be decomposed as
the sum of the submanifolds with corners 3y and X, (Figure 17) satisfying the
following conditions.
(1) SNy = 8% NI, and this is a (d — 2)-disk & such that 94 is included
in OV.
(2) 3 is diffeomorphic to S x 8972 — (open disk) and included in ;" (Us),
where 7y : V — $9-3 is the bundle projection.
(3) S is diffeomorphic to S x I2. The bundle structure of V induces a
product structure S¢=3 x I2 of ¥.



82 TADAYUKI WATANABE

+— fiber

FIGURE 17. ¥ = io Us f]l, where i]l is included in a small neigh-
borhood of a single fiber.

S

FIGURE 18. ¥F, 5, and 37 near §. ¥+ = 5f + 57

(4) Let ag) = 9% and agy = d%1. Then we have agy = 5973 x S and
E(l) ~ G892 Asa chain, E(O) +E(1) =a.
Let us look more closely at ¥ near the intersection disk 4. According to the explicit
model described in §5.5, the intersection apy N a1y forms a (d — 3)-disk family of
singular intervals in a(;) that restricts to a family of points over the boundary of
the (d — 3)-disk, and to a family of nondegenerate intervals over the interior, which
is a “lens” (Figure 19, right).

The fiberwise nonsingular vector field v € I‘(ST”1~/|§) on ¥ can be chosen so
that it is orthogonal to 3 near 9% and orthogonal to both Y and ¥; on 0, and
we choose such. By pushing @ slightly in a direction of v, we obtain parallels
EEB) and EZLI) of a(py and a(y), respectively. The chains iar and if are defined by
decomposing %[—1] into two pieces Sg[—1] = $473 x I2[—1] and £,[—1] (Figure 18)
so that ©+ = f);{ + 7} as chains. Note that 3;[—1] is not a subspace of $1. Then
the chains F‘il;l(ﬁ(o)), ngl(’d(l)) are defined similarly as above:

F& M (G(0)) = diag(#) S0 — p(@) X ga-s 3 — Zo Xga-3 p(@) " + AG(0)) + T(@(0)),
F& (@) = diag(#) 51 — p(@) x ga-s Tf = Tn xga-s p(@)F + A@)) + T(@))
- {Z Y by x by + 5(Ev/)ST(*)}.
7,

Note that these are chains of EC5(V) but not of dEC (V).
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Lemma 7.18. [Fg_l(a)] = [Fg_l(ﬁ(o))] + [Fg_l(ﬁ(l))].

Proof. To see this, we need only to prove the additivity of the term T'(@) = S9=3 x
T'(a) when the loci of the basepoints of @) and a(;) are chosen compatibly, as this
is the only term in Fg_l (@) for which the additivity is not obvious. Recall that T'(a)
was defined by taking coordinates on the sphere a by the reduced suspension of a
lower dimensional sphere. Here we consider a pair (@), a(1)) of (d — 3)-parameter
families of singular 1-spheres over U such that a(;) C w;l(Us). We modify the
definition of T'(a) at some fibers a of a(g) or a(yy over Uj slightly in a way that we
consider a 1-sphere as unreduced suspension of S°, which is suspended between the
points £oo, instead of the reduced suspension (Figure 19, left). Thus we consider
a 1-sphere as the quotient of S° x [—1,1], where S° x {—1} is identified with —oo
and SY x {1} is identified with co. Then T'(a): S x T' — (a x {0}) x (a x {1}),
where T = {(y,2) € [-1,1)> | y > 2}, is redefined with these coordinates by the
same formula:

T(a)(';9,2) = (a(v/,y),0), (a(v, 2), 1) ((t/3y,2) € §° x T).
and the following holds, similarly as (7.1).
T (a) = —diag(a x a¥) + 0o x a™ +a x (—o0)™.

Thus we need to modify accordingly the definitions of p(a) and p(a)* over Uy into
the ones given by the loci of +00 and —oo in @, respectively, so that F'(a) is still a
cycle. We take the locus of basepoints +00 to be the locus of the maximal points of
the intervals in the “lens” ¢ (Figure 19, right). Also, we take the locus of —oo to be
the locus of the minimal points of the intervals. Then one can choose coordinates
on T'(a«y) and T'(a()) so that they are consistent on § = @) N a¢yy. With this
choice of coordinates, the additivity T'(a) = T'(a()) + T'(a(1)) is obvious.

Note that the introduction of the two basepoints and the corresponding mod-
ification of Féfl(ﬁ) does not change its homology class. More precisely, what

may be changed under the modification of F’ g_l(ﬁ) are the chains p(a) x ga-3 i‘i;,

if, X gi—s p(a@)T, and T'(a). The changes of the first two chains are given by ho-
motopies. If we consider that the single point oo (for reduced suspension) is the
special case of the double basepoint +co (for unreduced suspension) where the two
basepoints agree, then the change of T'(a) is given by a homotopy. Note that con-
sidering a single basepoint as a special case of double basepoint does not change
the chain T'(a). O

7.3.3. Homological triviality of Fg_l(ﬁ) . Proof of Lemma 7.17 for the second com-
ponent. Once the additivity Lemma 7.18 has been proved, the terms | g_l(ﬁ(o))]
and [F 571 (@(1y)] can be separately altered by homotopies or addition of boundaries
since the two terms are both represented by cycles. We have [F. 571(5(0))] = 0 since
C.>(I% (I?)") as in the proof of Lemma 7.7 is null-homologous.

For [Féfl(a(l))], if the radius of Uy is sufficiently small, then 3, is close to a part
of S(a’) for a (d — 2)-cycle a’ of the boundary of a type I handlebody V” included
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EU
o

FIGURE 19. Left: Introducing a pair of basepoints 0o to modify
T(a). Right: Appearance of 4.

in a single fiber of IN/,

Type I Type 11

and there is a homotopy of f)l in w;l(US) which shrinks the part near ¢ and then
make the whole coincide with S(a’) that lies in a single fiber.

homotopy

_

almost included in fiber included in fiber

This deformation is similar to the one considered in the proof of Lemma 5.3 (2).
It does not matter if the boundary of ¥; becomes disjoint from the boundary of
V' during the homotopy, as long as it does not go out of V. Hence Fg_l(ﬁ(l)) is

homologous to Fi%, '(a’) in EC,(V). By Lemma 7.7 for the single fiber, we have

[P @))) = [Ff(@)] = 0. Hence we have [Fg ™ (@)] = 0. -

7.3.4. Proof of Lemma 7.17 for the third component. The case of the third compo-
nent can be proved similarly. Namely, in the proof of Lemma 5.3, we have seen that
B(2d —5,d —2,d — 2)24_3 can be represented as the graph of the suspension model
(b) in the proof of Lemma 5.3. The transformation from B(2d — 5,d — 2,d — 2)24-3
to the graph model of the suspension can be applied to the third component in the
same ambient space 1?3 x I¢ parametrized over 193 and can be done in a param-
eter preserving manner, as B(2d — 5,d — 2,d — 2)24_3 has the symmetry of the last
two componets, and there are two fiberwise isotopies in 1473 x I¢ over 1?3 from the
suspensions of B(d — 2,d —2,1)4 and B(d —2,1,d — 2),4, respectively, to the same
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string link B(2d — 5,d — 2,d — 2)24_3. Thus there is a fiberwise isotopy between the
two models. The third component of the family [3] € mq_3(Embl (147 2ur*ult, %))
can be treated similarly as the second component, and the proof of Lemma 7.17

above for the second component works also for the third component if we assume
the first and second components are standard. 0

7.3.5. Homology of EUQ(‘A})
Lemma 7.19 (Type II). Hoy_s(EC3(V)) =A@ A, where
A= ([ST*(b2)], [ST*(b3)]), A = ([ST"(b1)]) @ Hoa—3(V xga-s V),

and Haq_3(V Xga—s V) is nonzero only if d = 4, in which case Hs(V xg1 V) has
the following basis.
{[S" x (b x b})] | dimb; = dim b = 2},

where b} is a parallel copy of by in OV obtained by slightly shifting in a direction of
a normal vector field of by C OV.

Proof. The proof is an analogue of Lemma 7.2(ii). Put Ve =IntV and K = §9-3.
We consider the homology exact sequence for the pair

— Hp+1(‘70 XK ‘70) —Z> Hp+1(‘70 XK ‘70, ‘70 XK ‘70 — A“;O) — Hp(ECQ(‘f}O)) —
The bundle isomorphism ¢ of Proposition 3.21 induces trivializations of the bun-
dles V° xx V° and ECg(‘N/O) over K, which are natural with respect to the
exact sequence above. Hence the long exact sequence splits into tensor prod-
uct of that of the fiber and the homology of K. It follows from triviality of
H.(V?) — H.(V2, V2~ Ay) shown in the proof of Lemma 7.2 that i is zero,
and we have the isomorphism

Hy(BCy(VO)) 2 Hyyr (Vo xx Vo, VO xx Vo = Ap.) @ Hy(V° x i VO).

By excision, we have

(D%, 0DY) ® H. (V) (r > 0),

0 (r<0),
where the image of ([D%, D)@ H,.(V) in Hyyr—1(EC5(V°)) is spanned by ST ()
for r-cycles a of V' generating H,.(V'). The generators a can be given explicitly. We
have the following commutative diagram

Hd+r(‘70 XK ‘70,‘70 XK ‘70 — AVO) =

Vo gk xv
T i T
OV —= K x 9V
where NQZH is a bundle isomorphism by Proposition 3.21. It follows from this that
H;_»(V) is generated by the classes of the following cycles in K x 9V.
%X by, *xbg, by =K Xbi.
Namely, the image of Hd+(d_2)(\~/° xxV°,V° XK‘N/O—A%) (* > 0) in Hag_3(EC5(V°))

is generated by STV (bs), STV (b3) and STV (by).
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Since by Proposition 3.21 the bundle Ve x K Ve over K is a trivial 10/2—bundle,
we have N B
Haa—5(V° Xk V°) = Hag_3(K x V?).
It follows from Lemma 7.2(i) and the Kiinneth formula that
Haq 3(K x V%) = Hy_3(K) ® Hy(V?)
(IS x (bj x b)) | dimb; = dimb, =2) (d =4),
10 (otherwise).

The expression S x (b; x by) also makes sense in V° X VO since it is a cycle in
OV x g OV = K x (9V x 9V'), where the identification is given by the trivialization
0V = K x 9V. This completes the proof. O

(a2), G% (as) of EUQ(‘A}) such that

By Lemma 7.17, there exist d-chains G< v

\%4
0G (@) = F (@) (i = 2,3).
Lemma 7.20. Hy(EC5(V),0ECy(V)) has the following basis.
{[GV(a1)], [GE (@), (G (as)]}
U { {[S(a;) x S(ag)™] | dima; = dimay, =1} (d =4),
0 (d>4).

Proof. As in the proof of Lemma 7.8, the dimension of Hy(EC(V),dEC,(V))
is determined by Lemma 7.2 and by Poincaré—Lefschetz duality, the linear inde-
pendence of the generating d-chains can be checked by computing the intersection
numbers with the basis of Lemma 7.19. g

7.3.6. Extension of w) ;.

Lemma 7.21 (Type II). For the propagator wj ; of Lemma 7.1, the closed form
wWo = w:l,i|8E52(\~/)

on OEC,(V) extends to a closed form on ECo(V).

Proof. We consider the following commutative diagram.

3([wo]) € HY(ET,(V),0ECo(V)) ~—> Hy(EC,(V),0EC,(V))

| |
wo] € HEYQECy(V)) == Hy_ 1 (9EC,(V))

We would like to prove that 6(Jws]) = 0. As in the proof of Lemma 7.9, it suffices
to show that the evaluation of §([ws]) with a basis of Hy(ECy(V),0EC5(V)) of
Lemma 7.20 vanishes.

Moreover, by an argument similar to the type I case, we need only to check that
the following integrals are zero.

/ wa, / wp (1=2,3), and
F (ar) Fé*1(6i>

/ wyg (ifd=4and dima; = dima, =1).
9(S(a;)xS(ar)™)
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The computations of these integrals are similar to the proof of Lemma 7.9. Namely,
by Lemma 7.24 below, we have

/ wy =0 and / wy = 0.
F271 (@) B(S(as)xS(ae)*)

This completes the proof. O

The idea to prove Lemma 7.24 is similar to that of Lemma 7.15. We give some
lemmas to prove Lemma 7.24.

Lemma 7.22. Let (V,X) be as above and let wy is the form of Lemma 7.21. Then,

we have
/ _ wo = /~ wy = 0.
P(E)Xsd—sgg Yy Xga—sp(@)t

Proof. We see that

/ _ Wy = 0 (7.8)
p(@)X ga—3 Xy [—1]T

since p(a@) X ga—s X [~1]* € (BEY —Int V[3]) X ga—s V[0] and S5[~1] x ga—s p(@)* C
V0] xga-s (EY — Int V[3]), and we have explicit formula for wy there. We have
similar identities for the integrals over f]f/[—l] X ga-s p(a)t.
Also, we have
/ B B wp =10
P(@) X ga—3 (ST ~Int SEL[-1])

since the domain is included in the subbundle S%3 x pL;(([—1,4] x AV)?), where
wp is the pullback of wy in a single fiber pgy(([—1,4] x 9V)?) and the integral
vanishes by a dimensional reason. We have a similar vanishing of the integral over
(i‘i; — Int i;[—l]) X ga-3 p(@). This completes the proof. O

Lemma 7.23. Let (V,) be as above and let wy is the form of Lemma 7.21. Then,

we have
/ wy = 0.
T(3)+A(@@)

Proof. The identity holds since T'(@) = S¢~3 x T'(a) and A(a) = S?~3 x A(a) are
included in the subbundle S92 x py;(([—1,4] x 9V)?), where wy is the pullback of
wi in a single fiber p;(([—1,4] x 9V)?) and the integral vanishes by a dimensional
reason. O

Lemma 7.24. Let wy be as in the proof of Lemma 7.21. We have
/ wp =0 (i=1,2,3), (7.9)
Di(V)

where
(1) Di(V) = —p(@) X ga-2 B — % x ga—s p(@)* + A(@) + T(a),
(2) Dao(V) = diag(®)E = 32, , Ayy bp X by — (Sv)ST(#),

(3) D3(V) = 9(Sala;)y x Si(ag)V)) (dima; = dimag = 1, only for d = 4).
The superscript + denotes the parallel copy in XF.
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Proof. (1) The identity (7.9) for ¢ = 1 holds by Lemmas 7.22 and 7.23.
(2) To prove the identity (7.9) for i = 2, we prove the identity

/ Wy = 5(2{//).
diag(7)Z

Let 73 be the vertical framing on V as in Corollary 3.22 and let (1) ST (V s —
S4=1 be the composition ST (V s 1V, 5 x 841 25 gd—1 W use the decompo-

sition & = Eo U, given before Lemma 7.18. By Assumption 7.16 for the vertical
framing 7 and v near BV, we see that

/ _wp=0.
diag(¥)So

Moreover, as we assume p(7y;) is constant near ¢ = %0 N %, and near dV, we may
assume by a small perturbation of 21 in V that the result E’ of the perturbation
is included in a smgle fiber wvl(s), without changing the relative homotopy class
of p(r) o 55, - (51,0%1) = (8971, %). Thus we have

/ 5 wa:/ > wa:/ wolr1(s) = 0(Xv),
diag(v)X1 diag(7)%] diag(vzv,)EV/

/ ~u)az‘/ ~o.)@—i—‘/ ~w(9—5(2v/):0
Dy (V) diag(v)X¢ diag(v)X,

(3) The identity (7.9) for ¢ = 3 is for the integral in a single fiber and the same
as Lemma 7.15 (3). O

APPENDIX A. Smooth manifolds with corners

We follow the convention in [BTa, Appendix] for manifolds with corners, smooth
maps between them and their (strata) transversality. We quote some necessary
terminology from [BTa]. We refer the reader to [Jo] for more detail.

Definition A.1. (1) A manifold with corners of dimension & > 0 is a topo-
logical manifold X such that every point in X has a neighborhood which
is homeomorphic to [0,00)™ x R¥~™ for some integer 0 < m < k. The
transition function between two such coordinate charts is required to be
smooth.

(2) A map between manifolds with corners is smooth if it has a local extension,
at any point of the domain, to a smooth map from a manifold without
boundary, as usual.

(3) Let Y, Z be smooth manifolds with corners, and let f: Y — Z be a bijective
smooth map. This map is a diffeomorphism if both f and f~! are smooth.

(4) Let Y, Z be smooth manifolds with corners, and let f: Y — Z be a smooth
map. This map is strata preserving if the inverse image by f of a connected
component S of a stratum of Z of codimension ¢ is a union of connected
components of strata of Y of codimension 1.
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(5) Let X,Y be smooth manifolds with corners and Z be a smooth manifold
without boundary. Let f: X — Z and g: Y — Z be smooth maps. Say
that f and g are (strata) transversal when the following is true: Let U
and V be connected components in strata of X and Y respectively. Then
f:U—= Sand g: V — S are transversal.

APPENDIX B. Blow-up in differentiable manifold

B.1. Blow-up of R’ along the origin. Let 7!(R?) denote the total space of
the tautological oriented half-line ([0, 00)) bundle over the oriented Grassmannian
G1(RY) = S*~1. Namely, ¥} (R?) = {(z,y) € S x R, 3t € [0,00),y = tz}. Then
the tautological bundle is trivial and 5! (R?) is diffeomorphic to S*~! x [0, 00).
Definition B.1. Let

Bloy(R") =7'(R)
and call Bl{oy(R?) the blow-up of R" along 0.

Let 7: Blyoy(RY) = 3'(R") — R’ be the map defined by m = p1 o ¢ in the
following commutative diagram:

Bl (RY) = 7' (RY) ——=R? x §i~1 225 gi-1 (B.1)
\ lpl

Ri
where ¢: Y1 (R?) — S~ xR’ is the embedding which maps a pair (z,y) € S~ xR?
with y = tz to (z,y). If y # 0, then ¢(x,y) = (%,y) We call 7 the blow-down

map of the blow-up. Here, 771(0) = 97 (R?) is the image of the zero section of the
tautological bundle py o ¢: 31 (R?) — S*~1 and is diffeomorphic to S~ 1.

Lemma B.2. (1) The restriction of w to the complement of 7=1(0) = 07 (R?)
is a diffeomorphism onto R* — {0}.
(2) The restriction of ¢ to the complement of m=*(0) has the image in R* x §*~1
whose closure agrees with the full image of ¢ from F'(R?).
(3) The map ¢: R* — {0} — S~ ! defined by y — |z—| extends to a smooth map
@' = p2o: Bl (R?) — Si=1, in the sense that the composition

. -1 . . . .
R' — {0} == Int Blyy (R") - R x §771 22 i1

agrees with ¢.

(4) Blyoy(R") admits a collar neighborhood dBlgy (R")x[0,¢) such that {(0,z)} x
[0,¢) is the preimage of the half-ray {x} x {tz | t > 0} under ¢, which agrees
with ¢'~1(x).

B.2. Blow-up along a submanifold.

Definition B.3. When d > i > 0, we put Bfg:(RY) = R x 31 (R9~?) (the blow-up
of R? along R?) and define the projection pge: Blri (R?) — R? by idg: x 7.
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This can be straightforwardly extended to the blow-up Blx(Y) of a manifold
Y along a submanifold X, by working on one chart at a time and the naturality
properties of the blow-up with respect to linear isomorphisms ([ArK, Corollary 2.6]).

Lemma B.4. Let Y be a smooth manifold with corners and let X be a submanifold
of Y that is strata transversal to Y. Then Blx(Y) is a smooth manifold with
corners.

Proof. By strata transversality, a standard local model of X at a corner point
x € X NJY can be given by the following subspace

[0,00)" x RY € [0,00)" x RF™™ (0 <<k —m).
Hence the blow-up along X can be locally given by
[07 Oo)k X BéRE (Rkim)v

which is a manifold with corners. O

APPENDIX C. Fulton—MacPherson compactification

C.1. Compactification by a sequence of blow-ups.

Lemma C.1. Letr > 2 and 65:) (X) be the closure of the image of the embedding

bt Cu(X) = X™(r) = X" x [ BlawX™)
|A|>r

of (2.7). Then US_I)(X) can be obtained from 65:) (X) by a sequence of blow-ups:

CO(X) = My« My & My + -+ My =00 (x),

n

where each My is a manifold with corners and each step My <— Myy1 is the blow-
up along a submanifold of My of codimension d(r — 2) that is strata-transversal to

the boundary. Thus Cp(X) = US) (X) can be obtained from X™ by a sequence of
blow-ups.

Proof. By definition, X™(r — 1) = X™(r) x sz\il E; where E; = Blpy)(X*) for
some A with [A] =7 — 1. For 1 < £ < N, let X"(r —1,0) = X"(r) x [[._, Ei and
let ke: Cp(X) — X™(r—1,£) be the natural embedding defined similarly as ¢,. Let
My be the closure of the image of x; in X™(r — 1,£). Let Xy be the image of M,
under the natural projection X™(r — 1,£) — X™. Then by the local structure of
the natural stratification of X” formed by the diagonals, it follows that 3,41 — X
is a submanifold of X™ of codimension d(r — 2), which has a submanifold lift in
X"™(r — 1,¢). Moreover, by the standard local model of the successive blow-ups in
Lemma C.2 below, we have that the closure of the lift of ¥p41 — X, in X™(r — 1, /)
is strata-transversal to My, and that My, can be obtained by the blow-up along
the closure of ¥y — Xy in X™(r — 1,£). (We say that the preimage of the face of
OMp+1 under the projection X™(2) — X™(r — 1,£+ 1) that is not in the preimage
of OM, C X™(r — 1,4) is caused by the factor Eyy1.) O
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C.2. Standard local model of successive blow-ups. For a collection . =

{L,} of linear subspaces L) of a fixed real vector space R, we say that another

collection .#" = {L],} of linear subspaces of R is transversal modulo £ if for any

oy Ly, € ', either of the following holds:

e the intersection L), N---NLj, is transversal in R, or

e the intersection L), N---NLj is Ly in £ for some A, or

e there is a partition {u1,...,pr} = Mi[[--- ]I My (' > 2) such that
ﬂ#GMe LL is Ly, in .& for some A,.

: i
finitely many elements L), ,

Examples of collections . transversal modulo £ are given in Example C.4 and
Lemma C.5 below.

Lemma C.2. Let Lo = 0 and let Ly C Ly C -++ C Ly, C R® be a sequence of
subspaces satisfying the following conditions.

W k)

PR

(1) L; is the union of L;_1 and some finitely many linear subspaces L
of R¢ of dimension {;.
(2) 0<t <l <<ty <e.
(3) The collection £ = {LZ(-j) |1 <i<m,1<j <k} of linear subspaces of
R€ is transversal modulo L .
Let Yo = R®. Then there is a sequence Y; (1 < i < m) of smooth manifolds with
corners such that fori > 1,Y; is obtained from Y;_1 by blowing-ups along the lifts of
Ll(-l), . ,Ll(-ki). More precisely, Y; is obtained from Y;_1 by a sequence of blow-ups:

Yi1 =My My - My, =Y,

where M; is obtained from M;_q by blowing up along the closure of the lift of
LZ(-j) —(Lj—1 ULZ(-I) u---u ngfl)) in M;_1, which is a smooth submanifold of M;_,
with corners.

Lemma C.3. Let R be an e-dimensional manifold with corners, let L be an {-
dimensional submanifold of dimension ¢ < e, and let P be a p-dimensional sub-
manifold of L of dimension p < {. Suppose that OP C 0L C OR, L is strata
transversal to OR, and P is strata transversal to OL. Then the closure of the image
of the lift L — P — B{p(R) of the inclusion L — P C R — P is a submanifold of
Blp(R) strata transversal to 0Blp(R).

Proof. 1t suffices to prove the assertion for a standard local model: L, P are the
linear subspaces R? x 0, 0 x R~ of R = R®, respectively. In this case, the normal
bundle NP can be identified with R. We consider the following diagram:

Blp(R) 22w Rep x g1 P2 gep-1 T et

L g
a1 Pe—2

R_P incl R

where @p is the map induced by ¢: Bl (R®?) — R*? x §¢P~1 771 is the
natural inclusion, : = gpon ™!, p._p: R = R x R®~¢ — R is the projection, g is
the composition of the inclusions $¢7P~! C R®"P C R = R*xR*™¢, and f = p._s0g.
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In this diagram, the left triangle is induced by (B.1) and is commutative. The right
triangle is commutative, too, and the middle square is not commutative.
It can be shown that

(i) po2(0) = L, incl ™ (p,2,(0)) = L — P,

(ii) (fopzou) 1(0)=L—P,
(iii) (f op2owp)~1(0) is the closure of 7=*(L — P),
(iv) 0 € R®~¢is a regular value of f opy o pp.

The result for this standard local model follows immediately from (iii) and (iv).
The claim (i) is obvious. The claim (ii) holds since f~1(0) is the (¢ — p — 1)-sphere
consisting of the directions perpendicular to 0 x R¢™¢ in R®™P. As 0 x R*¢ is
the orthogonal complement of L in R, onto which f o ps o ¢ projects, we get (ii).
The claim (iii) follows from (ii) and by the commutativity of the left triangle. The
claim (iv) holds since pyopp: Blp(R) — S¢~P~1 is the projection to a fiber of the
normal sphere bundle of P, which is a submersion, and 0 is a regular value of f,
as g is transversal to L. This completes the proof for a standard local model at a
non-boundary point on P.
At apoint of P (C OL C JR), there are non-zero linear functions vy, ..., vy, : R —

R so that L— P is determined by the conditions fopsor =0, and v1 > 0, ..., v, > 0.
Moreover, L — P is the preimage of 0 x [0,00)™ of the smooth map

h: R—P —=RxR™  h(z) = ((fopsoi)(x),v1(x),...,vm(x)),

for which (0,0) is a regular value, i.e., h is strata transversal to (0,0) € R*~¢ x R™,
by the strata transversality assumptions at the boundaries of P, L, R. The map h
can be naturally extended to smooth maps on R and on Blp(R), for each of which
(0,0) is a regular value. Thus the preimage of (0,0) gives the closure of 7~ 1(L — P),
which is a submanifold of B¢p(R) strata transversal to the boundary. O

Proof of Lemma C.2. We prove this by induction on the pair (m,e). When e = 1,
the only nontrivial case is L; = {0} C R!, where m = 1. In this case, the assertion
is obvious by the property of the blow-up Bl (R). When e > 1 and m = 1, the
conditions (1) and (3) imply that L is the union Lgl) U-- -ULgkl) of ¢;-dimensional
subspaces of R¢ whose intersection is transversal. In this case, Y7 can be identified
with the closure of the image of the embedding

L= (t0y b1y -y thy ) RS — Ly = R x Blyy (LE)4) x - x Blyoy (LF)h),

where 19: R® — L — R® is the inclusion, ¢;: R® — Ly — By (L)1) is induced
by the orthogonal projection to (ng))l. Then the closure Y7 of the image of ¢ is
diffeomorphic to (ML, L) x Blyoy(L{V)4) x -+ x Blyoy (L)1), which is a
smooth manifold with corners.

For a general pair (m,e) such that m > 1, e > 1, we suppose that the assertion
holds for (m/,e’) with ¢/ < e and for (m/,e) with m’ < m. Thus we have a
sequence Y7,Ys,...,Y,,—1 of smooth manifolds with corners, which are obtained
by blowing-ups along some submanifold lifts of Lq,..., L,,—1 as in the statement.



ADDENDUM 93

Now we would like to blow-up Y;,_1 along the lifts of L%), ey L£,’§m), which are ¢,,-

U) of the lift of LY — L, _,

m

dimensional by (1). We first observe that the closure L
in Ym,1
(a) is a smooth submanifold with corners that is
(b) strata-transversal to Y, _1.

Indeed, the sequence of blow-ups of R¢ along L, ..., L,,_1 induces a sequence of
blow-ups of L& along .4,..., 2 4, where & = {LE] ‘N |1 <4 <k}
for i < m. By applying the induction hypothesis for e = £,,, which is less than

the original e by (2), we obtain that the induced blow-ups turn L%) into a smooth

manifold with corners in Y;,_1, and the result can be identified with ffi). Hence
(a) is proved.

To prove (b), it suffices to check that the property that the closure of the lift of
Ly —U;Z_ll (U-Z)) is transversal to the boundary is preserved under each step in the
sequence of the blow-ups of R® along .}, ..., %) ;. When a plane P = ng) S
is included in L%), it follows from Lemma C.3 that L,(%) is transversal to the face
caused by the blowing-up along such P. When a plane P = Ll(-e) €& (i <m)is
not included in L%), Lemma C.3 can be generalized to the case where P may not be
included in L by modifying its proof by replacing S P~! with $¢~P~! x RP~4 for
q =dim PN L. Hence L%) is also transversal to the face added by the blowing-up
along such P. This completes the proof of (b).

Now we see that any subset of {32)7 e ,Zf:m)} intersect transversally in Y, .
Indeed, since {LS), . ,Lﬁ,’im)} is transversal modulo ¢ by the assumption (3)
and lower dimensional intersection planes in % have been resolved by blow-ups
to construct Y,,_1, there are only transversal intersections among the planes in
{LS), e ,Lﬁ,’im)} that haven’t been resolved previously. We show that each step
in the sequence of blow-ups of R® along L,..., L, _1 to construct Y,,,_; does not
destroy transversality modulo . property among L%), cee L£,’§m). As Lemma C.3,
we see that for a plane P = Ll(-e) (i < m) the transversal intersection L%l)ﬁ- . -QL%*)
that may or may not be transversal to P is locally the preimage of a regular value
and is a framed submanifold whose framing extends to the boundary(of)the blow-up
L IX

along P. Thus the transversality of the intersection of L%l), ..., L™ extends to

the boundary of the blow-up along P.

Lgﬁ Lug
Lgyll) - Eill,)

Blp(R")

Then the blow-ups along Zﬁi’, - ,Iﬁf”) yield Y;,,, which is a smooth manifold with

corners. O

Example C.4. Let L1 C Ly C Lz C R? be a sequence of (topological) subspaces
given by Ly = L = {0}, Ly =L U LP v LP u Ly, Ly =LV uLP u L U
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Ly

wONS S

Y

FIGURE 20. Left: £ = {L } Right: The result Y3 of blowing-
ups along L1 and Ls.

LY UL ULY, where
LY = {(21,0,0) | 21 € R}, L§ = {(0,22,0) | 25 € R}, LY = {(0,0,23) | 23 € R},

(
4) = {(21,22,73) € R | 1 = 23 = 23},
LYY = {(0,22,23) | 22,23 € R}, L(2 = {(21,0,23) | 71,23 € R},

3) = {(z1,22,0) | 21,22 € R}, L = {(x1, 20, 23) € R? | 2o = 3},

5) = {(21,22,73) € R® | 11 = a3}, L( = {(21,20,23) €ER? | 21 = 12}
This is a local model of C3(St;00) near (0o, 00, 00) € (S1)*3. It is easy to see that
Z = {L } is transversal modulo . (Figure 20). O

Lemma C.5. For a subset A of n = {1,2,...,n} with |[A| > 2, let
Ay ={(z1,...,2p) € R")*™ |z, =z for alli,j € A},
and let £ = {Ax | A Cn, |A| >2}. Then L is transversal modulo £ .
Proof. We take Ap,,...,Ap, € L for subsets Ay,...,A, C n. We consider the
graph G(S) in the power set 2™ on the vertex set S = {Aq,...,A,} with edges

{Ai, A} fori # j and A;NA; # (). We say that S is connected if G(S) is connected.
When S = {A1,..., A} is connected, then by the definition of A, we have

AAl n---N AAT = AAlu---uAT e Z.

When S = {A4,...,A,} is not connected, then there is a partition {Aq,..., A} =
M- 1] M, into connected subcollections such that

ﬂ Apx = Ay ;s
AeM,;

Apy N--NAx = (Aya) NN (AY m,. ),
where Ay, € £ and the intersection on the right hand side is transversal. The

transversality holds since the sum of the orthogonal complements (A y, )t is the
direct sum in (R®)*™. O
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C.3. Configuration space of a manifold with boundary.

Lemma C.6. Let Y be a smooth m-manifold with nonempty boundary that is a
submanifold of a manifold X without boundary. Let B, (Y XY') denote the closure
of pp(Y XY = Ay) in Bla, (X x X). Then Bla, (Y xY) is the image of a smooth
manifold with corners under a smooth map.

Proof. A standard local model of Ay at a corner point in Y x 0Y C Y x Y can
be given by the pair (R™71)2 x [0,00)2, Agm-1 X A[g ), Which is identified with
R™1 x (R x [0,00)2,0 X Afg o). In this model

R™ 1 x (0% Apay), R™x (R™7 % (0,0)), R™ ' x (0x(0,0))

give local models of Ay,9Y x 9Y, Agy, respectively. We consider the sequence
L, C Ly C L3 of subspaces of R™~! x R?, where

Li = {0}, Ly=R™"!x(0,0),
L3=LyU(0x Ag)U(R™ ! xR x 0)U(R™ ! x0xR),

and consider the successive blow-ups R™ ™! x R? = Y) « Y] « Y, « Y3 along
this sequence. This gives a local model of the blow-ups along the sequence Agy C
Y x Y C (0Y x 0Y)UAy U(Y x9Y)U (Y xY). By Lemma C.2, Y3 is a smooth
manifold with corners.

Let Y3++ be the component of Y3 that is projected to R™~1x [0, 00)2. Then there
is a smooth projection Y57 — Bloxa, ., (R™™! x [0,00)%), which is induced by
the smooth projection Y3 — Bloxa, (R™ ™1 x R?). Since R™~1 x Y3 is a smooth
manifold with corners and R™~! x Bloxa, .,(R™ ™" x [0,00)?) is a local model of
Bla, (Y xY) at a corner point in dY x 9Y, the result follows. 0

Definition C.7 (Compactification of C5(Y")). Let Y be as in Lemma C.6. Let
C5(Y;0Y) denote the manifold with corners obtained by the blow-ups of Y x Y
along the sequence

Apy COY x dY C (Y x Y)UAy U(Y x dY)U (Y x V)

of strata as in the proof of Lemma C.6. Let plg,: Ca(Y;0Y) — Bla, (Y x Y)
denote the smooth projection of Lemma C.6.

Remark C.8. (1) C2(Y) = Bla, (Y xY) is not a smooth manifold with corners.
In particular, along the restriction of the normal sphere bundle over Ay to
OAy in OB, (Y xY).

(2) In Definition C.7, the blow-ups along (Y x dY)U(9Y xY) is in fact not nec-
essary since without this yields a diffeomorphic result. This was necessary
in the proof of Lemma C.6 to cut out one piece from R™ x R™.

(3) The blow-up compactification to a manifold with corners in Definition C.7
can be generalized to compactify C,(Y') to a manifold with corners C,,(Y; 9Y))
by considering the stratification of Y™ given by the conditions that some
points agree and that some points are on dY. Such a stratification of Y™
gives a local model satisfying the assumption of Lemma C.2. A detail about
a compactification of C,(Y) is given in [CILW].
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Lemma C.9. Let Y be as in Lemma C.6. Let Co(Y) = Bla, (Y xY). Then the
maps pgy: Co(Y;0Y) — Ca(Y) and incl: C2(V) — C2(Y) are homotopy equiva-
lences. Moreover, the induced map plg,: (C2(Y;0Y),0C(Y;0Y)) — (Ca(Y),0C3(Y))
18 a homotopy equivalence.

Proof. This is evident from the local model in the proof of Lemma C.6, as it is easy
to give explicit deformation retractions. Namely, we observe that Cy(Y;dY) is
embedded as the complement of the lift of a small tubular neighborhood of Agy in
C2(Y) by pressing a small collar neighborhood the boundary of the blow-up along
Y x dY into the interior of C3(Y). Then there is a deformation retract of C(Y))
onto C(Y;3Y), which gives a homotopy inverse. O

C.4. Proof of Lemma 2.5.

Lemma C.10 (Lemma 2.5). The map p"*': Cpy1(S?) — S is a fiber bundle
such that the fiber C,,(S% 00) is a manifold with corners.

Proof. The projection map p"*+1: C,,11(S%) — S?is a fiber bundle whose fiber over
o0 is Oy, (R?) x {oo}. Now we have the following commutative diagram:

Cu(®?) x {00} == (X" x foo}) x| Blame(X™)

ApC{1,2,...,n,00}
[Agl=2

incl
incl

Cn_;,_l(Sd) L XnJrl X H BfA(A)(XA)

AC{1,2,...,n4+1}
[A|>2

pn+1
|n

5 d xx [ x

McC{1,2,...,n}+1}
IM|>2, nt1eM

(C.1)

where X = S?, the vertical lines are fiber bundles, and

e Il is the projection defined by forgetting the factors Bl a)(X A) for A such
that n+1 ¢ A, and by juxtaposing X"t — X; (21,...,Zn41) = Tpy1 and
the composition of the projections Blaan(X™) — XM and XM — X;
(Tbyy- ey @b, s Tnt1) > Tpg1 for M ={b1,... by, n+ 1},
e on the top row, BKA({a17,.,)am7OO})(X{a1 7777 @m:>}) denotes the blow-up of
Xlatam} sy £o0} along {(o0, ..., 00,00)},
e ¢ is the embedding (2.6), ¢/ is the embedding induced by ¢,
e 0 is defined by d(z) = (z,[[,, z).
The embedding ¢ is a map of fiber bundles. It follows from the diagram (C.1) that
the closure C,,11(S?) of the image of ¢ induces the closure of the image of ¢/ in the
fiber. Thus we obtain the fiber bundle

C, (8% 00) = Closure (Tm¢/) — C,41(5%) — 59, (C.2)

Now the proof that C,,(5%; c0) is a smooth manifold with corners is analogous to
that of C\,11(S%). O
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C.5. Proof of Lemma 2.9.
Lemma C.11 (Lemma 2.9). The smooth map ¢: C2(R?) — S~ defined by

- To — T
d)(xlaIQ) - |(E2 _xll
extends to a smooth map ¢: Co(S%; 00) — S9=1. The extension ¢ on the boundary
of C2(S% c0) is explicitly given as follows:

(1) On the stratum Sp12.00) = Blo({(yry2) € RD? | 3af? + [l = 1)),
¢ = ¢'oi, where i: Sy19.501 — Co (R?) is the map induced by the embedding
it S012,00p = C5 (T X) = C2(RT—{0}) given by (2.13), and ¢': C2(R?) —
S9=1 s the smooth extension of ¢ defined by the coordinates of the blow-up
(Lemma B.2(3)).

(2) On the stratum g{lm}, ¢ is the composition

’

5100} = Ca(Too X) x C1 (5% 00) 24 Th(To X) —25 591, (C.3)

1R

(3) On the stratum §{2,oo}7 ¢ is the composition

S 200} = O1(8% 00) x Ca(To X) 22 Th(T X) “? g-1, (C.4)
(4) On the stratum g{lﬁg}, ¢ is the composition
S(12) = A7, (s4,00) X C3(RY) 22 THRY) L5 5971, (C.5)

Proof. First, we prove that ¢ extends to a smooth map ¢': Co(R?) — S9-1.
Near Aga, ¢ factors into the orthogonal projection R x R* — A]f@; (x1,22) —
(H5%2, 251, the identification A]f{;d 5 R?; (—y,y) — y, and the normalization
v o ﬁ It follows from the definition of the blow-up, the orthogonal projec-
tion is extended to a projection Ca(R?) = Bln,, (RY x RY) — Bly0,0)}(Aga) =
Bl (R?), which is smooth, and the normalization is extended to a smooth map
Bloy(RY) — S%~! by Lemma B.2(3). Hence the composition of the extended maps
gives a smooth extension ¢'.

From now on, we prove that ¢ has a smooth extension on a collar neighborhood of
each of Sy (A = {1,2,00},{1, 00}, {2,0},{1,2}, Figure 21) in C5(S%; o0) in a way
that the extensions are consistent on the intersection of two collar neighborhoods.

For 5{172100}, we recall that g{lﬁgyoo} is obtained by the following sequence of
blow-ups of X x X:

335{(00700)}()(2) =52 — ago(Rd) — g{1,2,oo}=

where Cy (RY) = BIaA(S?*™1), A = Aga N 521 ¢ R? x R%, and the second
blow-up is done along the preimage of the locus Lo = {(y1,0) € (R?)? | |y1| =
1} U{(0,92) € (RY)? | |y2| = 1} in S?¢~1. According to Lemma B.2 (3), (4),
Bl{(00,00)} (X?) admits a collar neighborhood Bl (o 00)3(X?) % [0,6) = S2471 x
[0, ) such that {v} x [0, ¢) is the preimage of v € S9~1 under the smooth extension

Y1 OBU{(00,00)} (X?) x [0,€) = S%4~1 of the map

(z1,22)

: OBl (oo 0o (X2) X (0,8) — S§241: T1,T9) = .
0 {(00,00)} (X7) x (0,¢) Y(21,22) (or 7o)
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g{'l,‘l_,oo}

g '_
{1,2} S{l,oc}

Fi1GURE 21. Collar neighborhoods of §{172100},g{l)oo},g{gyoo},g{lz}

Since Aga N (OBl{(s0,00)}(X?) X (0,¢)) is the preimage of A C $2¢~! under 1,
the blow-up of dBl{(c0,00)}(X?) % [0,¢) along ¢~ *(A) is a collar neighborhood
Cy (RY) x [0,¢) of Ty (RY) in Bl 12y (0Bl (00,000} (X?) x [0,€)). Moreover, since
the preimage of the locus L = Ly x [0,) in Cy (R?) x [0,¢) is the preimage of
Lo under 1, the blow-up of Cy (R%) x [0,¢) along the preimage of L gives a collar
neighborhood g{lﬁgyoo} x [0, &) of the stratum g{lﬁgyoo}, as in the following picture.

C3(RY) T o

F

Let ¢’ : g{lﬁg)oo} x[0,e) — 6;0 (R9) be the projection, which is smooth, and induces
. Now C, (R%) is a submanifold of Co(R%) and the map ¢ admits a smooth
extension ¢': Co(R?) — S9~1. Hence the composition

(b/ o E/I §{1,2,oo} X [0, 6) — Sd_l

is a smooth extension of @[5, , _,x(0,e)- By definition, the restriction of ¢’ o ' to
S11,2,00) agrees with ¢, as in (1).

Next we consider a collar neighborhood of Sy .}, which is given by the blow-up
of a tubular neighborhood of {oo} x C'1(S% 00) in 6&3)(5% 00) (§2.3.4) along the
submanifold {oco} x C;(S%; 00), so that the fiber of the normal sphere bundle in the
blow-up is 0Bl{}(X) = C,(TsoX). Tt can be seen that the restriction of ¢’ o ¢/
t0 S{1,00} N (S{1,2,00} X [0,€)) agrees with the composition (C.3), where the minus
sign of —¢' is because in Cy (T X ) we consider that the second point is restrained
at the origin (see §2.3.3), the point where the non-infinite point gather, so that

(y2 —y1)/ly2 — y1l = =1/ |yl

We take smooth coordinates on a collar neighborhood of Sy o} and a smooth
extension of ¢ over it that agrees with ¢’ o ¢/ on §{1,oo} N (5{172100} x [0,¢€)), as
follows. We take a diffeomorphism

0 X°x X° 5 R4 x X° (z,2) = (2 — z,x),
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under which the diagonal Axe. corresponds to the zero section {0} x X°. With this
transformation, ¢ can be given by the composition

X°x X° — Ayxo = (R — {0}) x X° 25 §d-1,

where pr is the composition of the projection onto the first factor with the normal-
ization y — —Wy‘. The diffeomorphism o of §2.3.3 for the stereographic projection
gives a coordinate transformation

o: T X — {0} =5 ToX — {0}; y #
)
Thus ¢ can be locally described near oo (the origin of TooX) in terms of the
(unusual) coordinates of To, X — {0} as follows: for t > 0 small, v € S9! = ST X,

r e X°,
(o7 xid) oo (o x id)(tv,z) = (a‘l(a(tv) - x),x) = (é_%,w)

Here ¢ should be small enough so that 7 —x # 0, which is satisfied if ¢ < Ii_l
Applying pr to this, we obtain
T =T v —tr

gf)(t’U,{E) = - f; =

gl T Ju—ta|

This shows that the radial half-ray ¢ — tv in X from oo is mapped by ¢ to the
projection of the smooth curve ¢ — —(v — tz), which extends smoothly to 0 < ¢ <
‘71‘. Since (v,t,2) € (STeX X [0,€)) X X° (t < ‘71‘) is a smooth coordinate system
on a collar neighborhood of Sf; ) in Bly)xxo(X x X® — Axo), it follows that
¢ extends smoothly to a map ¢j,: Sf1,00} X [0,€) — S=1. The restriction of ¢
t0 S{1,00} = OBl{ocyxxo (X X X° — Axo) is given by letting ¢ = 0 in the formula
above, which agrees with the formula (C.3).

Extension on a collar neighborhood of g{gyoo} is similar. We consider a collar
neighborhood of the stratum Sy o) given by the blow-up of a tubular neighborhood
of C1(8% ) x {cc} in 6;3)(851;00) along C1(5% 00) x {co} so that the fiber of
the normal sphere bundle in the blow-up is 0Bl (X) = Cy(TsX). Tt can be
seen that the restriction of ¢’ o 1’ to 5{2700} N (5{172700} x [0,¢)) agrees with the
composition (C.4). The rest of the proof is the same as for S; oy-

On a collar neighborhood of S¢j 2y, ¢ is extended by the smooth extension
@' Co(RY) — S971 of ¢. O

APPENDIX D. Orientations on manifolds and on their intersections

D.1. Coorientation. If M is a submanifold of an oriented Riemannian r-dimensional

manifold R, then we may alternatively define o(M) from an orientation o} (M) of
the normal bundle of M by the rule

o(M) A ox(M) ~ o(R). (D.1)

05 (M) is called a coorientation of M in R. We assume that (D.1) is always satisfied
so that giving a coorientation is an alternative way to represent orientation.
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One could instead represent an orientation by a section of A*T*M. The two
interpretations are related by the duality T,M = TxM; v — (v,-) given by a
Riemannian metric.

D.2. Orientation of intersection. Suppose M and N are two cooriented sub-
manifolds of R of dimension m and n that intersect transversally. The transver-
sality implies that at an intersection point z, the product o (M), A 0R(N), is a
non-trivial (2r — m — n)-tensor. We define

05 (M th Ny = 0% (M)y A 0%y (N),. (D.2)

This depends on the order of the product. When M and N are compact and m+n =
r, this convention is the same as the integral interpretation of the intersection

/UM/W?N
R

under the identification T'(A\*T*M) = T'(A\* T M) by the metric duality. See §4.1
for the n-forms representing the Thom classes of the normal bundles. There are
other interpretations of the intersection of submanifolds, such as [,, ny or [y 1.
The relationship between these interpretations is as follows:

(—Um(“m)/ mv:/ 77M/\77N:/ M-
M R N

Indeed, the integral [, nx counts an intersection point by +1 if o(M) ~ o (N),
which is equivalent to 0% (M) A 0%(N) ~ (=1)""=9o(R) by (D.1). The integral
[ mar counts an intersection point by 41 if o(N') ~ o}, (M), which is equivalent to
0R(M) Aok (N) ~ o(R) by (D.1).

number:

D.3. Orientation of direct product. For oriented manifolds M; and Ms of
dimensions my and msy, respectively, we orient the direct product M; x M, as
follows. Considering the natural identification T(M; x My) = TMy x T M, let
qi: T(N™ TM;) — T(A™ T(M; x Mz)) be the map defined by

{ (z1,22) = (v(21),0) € A" T, My @ N* Ty My (i = 1),

v . . .
(1, 22) = (0,7(22)) € N" T, My @ N Ty Mz (1= 2).
Then for the orientations o(M;) € T(A™* T'M;), the product*
q1 0(My) A g2 o( M)
gives an orientation of T'(M; x Msy) = T My x T Ms. To simplify notation, we will
denote this orientation simply by
O(Ml) A O(Mg).

We do not always assume this rule to orient products, as this orienatation for
the product M; x M is not always the natural one (e.g., (4.1) and Lemma D.2),
although it depends on the purpose.

Suppose moreover that M is a submanifold of Ry and M, is a submanifold of
R, both oriented. Then M; x Ms is a submanifold of R; X Rs, which we orient

*Under the identification by the duality T M = T M, the map g; is just the pullback p; by
the projection.
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by o(M1) A o(Ms). Suppose that M; has a geometric dual T; of R;, namely, M;
intersects T; transversally in one point (we do not assume the sign of the intersection
is +1). Suppose that T; is coorientable in R;, and let 5y, be an n-form for T; in R;
(84.1). Then Ty x T3 is a geometric dual of My X My in Ry X Ra, and moreover the
following identity holds.

/ PINT A PanT, = / nr, / N, - (D.3)
M1><M2 Ml M2

Indeed, the sign of this integral is determined by the sign of the evaluation
(P A panm, ) (o(Mi) A o(Mz)) = ping, (o(M1)) pyn, (0(Mz)).
D.4. Proof of Lemma 4.1.
Lemma D.1 (Lemma 4.1). We have the following identities.
(1) /7 Ns(ap) = (=1L where k = dim ay.

£

(2) / NS(by) = (—1)d+k, where k = dim ay.
+
% o _ ‘
(3) Ly = (—1)4"'Lk(bi,bl,) for i, j,¢,m such that dimb} + dimb), =d — 1.

m 0 Ym

Proof. We assume without loss of generality that a, and b, intersect orthogonally
at one point, say x, in OV if they intersect. Moreover, we assume that S(ag) is
orthogonal to OV at x. To prove (1), we take a Euclidean local coordinate system
(x1,22,...,24) around z, in which ay agrees with the z; - - - -plane, by agrees with
the x4 - - - x4—1-plane, the outward normal vector at x corresponds to the positive
direction in the x4 coordinate. We let

o(ag)y =adxy A+ NOxg, 0(bp)y = BOTEy1 A+ NOxg_q
for a« = +1, B = £1. Then we see that
o(S(ag))e = (=1)*adzy A--- A dxp A D2y,
0(S(be))e = (—1)¥*B0zpp1 A+ ADxg_1 A Dy
by the outward-normal-first convention for the boundary orientations. This implies
oy (S(ag))y = (—1)d7104 Oxpy1 N+ NOxg_1,
0% (S(be))e = (—1)FE=RIFTA=R 3 g0 A A Dy,

(See §D.1 for the convention of coorientation.) By comparing o(b,), and o3, (S(ar))e,
we get

| stan = (=10 (D.4)
2
Now we recall that o and 3 are related by the condition Lk(b, ,a;) = +1. More
precisely, suppose that the embeddings b, and a, are localy given near x by
by (Xhgrs--rxy_1) =(0,...,0,2%1,...,xy_1,—€) (¢>0),
ag(zy,...,x)) = (zf,...,2},0,...,0,0).

Applying the rule of §D.3, we have
O(b; X a[)(wl)w//) = O(bZ)m/ A 0(0,[)1// = Otﬁ 8$;€+1 VANRIEEAN 8:17;1,1 N 8ZE/1/ VANRIEEAN 8:17%,



102 TADAYUKI WATANABE

where o' = (2}, ,,...,%;_), 2" = (2f,...,2}). To obtain Lk(b, ,ar), we compute
o(by ('), ar(z")) = ar(x") —b, (z') R R T )
o L), Qe = n_ b (2 |(33” 2 o ! E)|7
lag(") = by (2')] 1o T ~Thyrs o ~ g1
and we have that ¢*Volga-1 at (z/,2"”) = (0,0) is a positive multiple of
(~1)eda Ao ANdaf Nd(—zh ) A Ad(—al_y)

= (—1)’“(—1)’“”*1*’“)5 Az} g A+ Adaly_y Az A A da.

Thus we have
1=1Lk(b, ,ar) = / ¢*Volga—1 = (—1)FHkqp.
b, Xag

By (D.4), we obtain (1).
The assertion (2) follows by using the coorientation of S(b¢) and the value of a8
obtained above, as

/Jr NS (be) = (_l)k(dfk)(_l)dfkaﬂ _ (_l)derd(_l)derk _ (_1)d+k.

{4

The assertion (3) follows from [,, ,, w = Lk(bj,b?,), and
Y 'm

0> Ym

/i, o sy Ns(ad,) :/i 775(%)/. s (aty)
¢ Xbm b,”

_ (_1)kd+k+d—1 « (_1)k/d+k +d—1 _ (_ )(k+k’)(d+1) _ (_1)d—1
by (D.3) and (1), where k = dima} and k¥’ = dimal, =d — 1 — k. O

Now we check the compatibility of the coorientations of S(ay), S (gg) in V of type
I1, induced by the orientations o(ay), o(be) fixed in (4.1). Let (t,x) € S8 x OV =
AV be a point on dS(dy) or (’95’(()@) where they intersect as in the local model in the
proof of Lemma D.1. By assumption, the restrictions of S(a) and S(bs) near OV
is canonically identified with those of S473 x S(as) and S?=2 x S(b,), respectively.
According to the outward-normal-first convention for the boundary orientations,
the orientations (4.1) induce

0(5(@0)) (t.2) = 0(S*7%)e A 0(S(ar))a,
0o(S(e)) 4,2y = 0(S*™3)e A o(S(be))a,

which make sense at (¢, z), even if S(d;) etc. may not agree with S92 x S(ay) etc.

(D.5)

Lemma D.2. Suppose that the type II family V is oriented so that 0(17)(,5)1) =
0(S43), Ao(V), at (t,z) € V. Then the coorientations 05 (5(ae)) 1,2y (resp.
05(5(be)) (t,2)) and o0y, (S(ar))e (resp. 0y, (S(be))a) are compatible. Namely, the
restriction of the tensor 0% (S(ae))(t,x) (resp. 05 (S(be))(t,2)) to a fiber {t} x OV
agrees with o}, (S(ar))z (resp. 0y (S(be))z ).
Ja =

Proof. By (D.5), o(S(ae))z Aoy, (S(ae))x = o(V)az, 0(S(be))a Aoy (S(be))a = o(V)e,
and o(V)(¢,2) = 0(S?73); A o(V)4, we have

0% (S(@)) (t.0) = 0V (S(ae))zs  0%(S(0))(t.0) = 0% (S(be))e-
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This completes the proof. O

APPENDIX E. Well-definedness of Kontsevich’s characteristic class
E.1. Integral along the fiber (e.g., [BTu, §6], [GHV, Ch.VII}).

Proposition E.1 (Generalized Stokes theorem, e.g., [GHV, Ch.VII]). For a p-
form «a on the total space of a fiber bundle m: E — B with compact oriented n-
dimensional fiber with n < p, the following identity holds.

dr.o = modo + (—1)307"77*804,
where 72 : Y E — B is the restriction of T to the fiberwise boundary'.

The following identities for the pushforward, which are direct consequences of
the definition of 7., will be frequently used.
T (T B A ) = B AT (E.1)

for forms a on E and g on B. If 7: E — B is an orientation preserving diffeomor-
phism between oriented manifolds, then (E.1) gives

(7" 8) = B. (E.2)

/ e = / «, (E.3)
B E
by the definition of ..

We need to consider pushforward in a fiber bundle with fiber a manifold with
corners. In general, the map C,(X) — C4(X) induced by the forgetful map
Cr(X) — Cs(X) may not be a submersion and pushforwards may produce non-
smooth forms. We need only to consider pushforwards of submersions for our

When deg o = dim E, we have

purpose, in which case we have smooth forms as in the following lemma, whose
proof is standard.

Lemma E.2. Suppose that w: E — B is a fiber bundle with fiber a compact oriented
n-manifold with corners. Then pushforward of a smooth form on E gives a smooth
form on B.

E.2. Family of codimension 1 strata. According to the description of the codi-
mension 1 strata of 9C,(S¢; 00), the codimension 1 strata of EC,(r) in 9*EC, ()
are parametrized by subsets A C {1,2,...,v,00} such that |A| > 2. Let

7a: ESp(7) — B (E.4)

denote the Sj-bundle associated to the given bundle 7: £ — B.
If 0o ¢ A, the stratum ES,(7) can be written as

ES)(n) 2 EC, A (m) x CL(RY). (E.5)
Here, r = |A], the identification is induced by the vertical framing 75 at the multiple

point, and EC, A () is the total space of the C, A(S%; co)-bundle associated to 7.

TThe sign convention is different from that of [Wa2], where the boundary was oriented by the
inward-normal-first convention.
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Recall that C, A (S%00) 22 Cy_rr1(S%00). Under the identification (E.5), the
restriction of w(I") can be written as

(D)5, () = 2L w(T/A) A psw(Ta), (E6)

where T’y is the subgraph of T' spanned by the vertices labelled by A, T'/A is the
graph obtained from T" by contracting I'y, w(I'/A) and w(T's) are defined similarly
as (2.19), where ¢; may be replaced with ¢}: C,.(R%) — Cy(R%) = §9-1 to pull-
back Volga-1 if 4 is an edge of I'y. The sign is determined by the permutation
{1,2,...,e} = {edges of I'/A} U {edges of T }.

If oo € A, then we have

ESA() = ECn_a(r) x C.(RY), (E.7)

where r = |A|, ECy_a(n) is the Cn_a(S% 0co0)-bundle associated to m. Recall
that Cn_a (5% 00) = Cy_rp1(5% 00) and we identify C. (T X) with C,.(R%) as in
§2.3.3. Under the identification (E.7), the restriction of w(I") can be written as

(D) p5a () = 197 w(Tac) Ap3w(T'/A%), (ES)

where A = N — A, and w(T'xc), w(['/A€) are defined similarly as the previous case.
The sign is also similar to the previous case.

E.3. Proof of Theorem 2.15. By the generalized Stokes theorem (Proposition E.1),
we have

dI(T) = (=) (M) w(T) = () Ny w(D).

ACA{1,..., v,00}
[A]>2

Moreover, by Lemmas E.3, E.4 and E.5 below, we have
dI(I\) _ (_1)(d—3)/€+f Z A W(F) _ (_1)(d—3)k+f+1 I((Sl—‘),

AC{1,...,v,00}
|A|=2

where 7, is the bundle projection (E.4). This completes the proof of (1) (that I is
a chain map).

For (2) (independence of w), we consider the cylinder C\,(I x 7): I x EC,(7) —
I x B, which is a C,(S% co)-bundle obtained by direct product with 7. We extend
the vertical framing 75 on I X E naturally by the product structure. Now we take
two propagators wy and w; on the ends {0,1} x ECy(w). Then by Corollary 2.13,
there exists a propagator w on I x ECy () for the extended framing that extends
both wy and w; on the ends. Then the form w(T") on I x EC,(7) is defined by (2.19)
by using the extended propagator w. Let C,(7)! = poC,(I x7): I x EC,(7) — B,
where p: I x B — B is the projection. Then by the generalized Stokes theorem for
this I x C,(5%; 0o)-bundle, we have

d@v(ﬂ')iw(F) =¢eC, (w)iaw(F)
= [T (m)n (D) — Ty lm).can (D) - / T, (m)2(n) ).

where € = (—1)(¢=3)k+6=1 " This is the identity between (d — 3)k + (-forms on B
and |, ; 1s the pushforward along I. The linear combination of this identity for a
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d-cocycle v = > W(I')I" of P,4;v" gives rise to

A1) = e {T0)w1) = T0)w0) + [ 169)()}
= e {1()(@1) = 1) (w0) }

by a similar argument as in the proof of (1) and by dv = 0. This implies (2).

We remark that the same proof as in the previous paragraph shows a stronger
statement that I, is invariant even if w(I') were defined by A, .4, #;wi for propaga-
tors (w1, . ..,we), which may consist of different forms for different edges, since the
proof of (1) does not require that the propagators are the same on the complement
of the boundary of ECy (7).

The assertion (3) (independence of edge orientation) follows since a propagator
has a symmetry on the boundary by Lemma 2.10 and the assertion (2). A change
of the order of the two boundary vertices of an edge gives rise to a diffeomorphism
ECy (1) — ECy(r), the pullback of a propagator under which gives another prop-
agator. Then the result follows by applying the remark in the previous paragraph.

The assertion (4) (invariance under homotopy of 7x) can be proved similarly by
extending the vertical framing over I x E by the given homotopy, and by Corol-
lary 2.13 again.

The assertion (5) (naturality under bundle map) follows since the bundle map
over f can be used to pullback propagator. Since the integral along the fiber
commutes with the pullback by bundle map: C, (7). f* = f*Cy(7")+, the result
follows. 0

Lemma E.3. When |A| > 3,
A W(F) =0.
Proof. When oo ¢ A, let T'p be as defined in §E.2. When oo € A, let I's be the

I'/A€ in §E.2. There are two cases to be considered.

(1) Every vertex of T'y is at least trivalent.
(2) T'p has a vertex with valence 2, 1 or 0.

Case (1): Suppose that I's has v’ vertices and e’ edges. The condition (1) implies
the inequality

2¢’ — 3v' > 0. (E.9)

The product structure (E.5) or (E.7) and the decomposition (E.6) or (E.8) allows
us to integrate w(I's) first along the fiber C,.(R%), where r = |A| = v/. The integral
of w(T'y) is non-trivial only if degw(I'y) = dim C.(R%), that is,

(d—1)e' =dv' —d—1, (E.10)

since if degw(T's) < dim O, (R%) the integral over C.(R?) vanishes, and if degw(I's) >
dim C-(R?) the result of the integral of w(I'y) along C;(R%) is a form of positive
degree that is the pullback of some form on one point, which vanishes. Now (E.9)
and (E.10) imply (d — 3)v" + 2d + 2 < 0, which is a contradiction when d > 3.
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Th+ Te —Tq

FIGURE 22. The automorphism ¢4 .

Case (2): In this case, we follow [Lesl, Lemma 2.20], which also uses a symmetry

due to Kontsevich ([Kon, Lemma 2.1]), and [Lesl, Lemma 2.18]* If Ty has a
bivalent vertex, say a, then there are two edges of I'y incident to a, say with the
boundary vertices {a, b} and {a, ¢}, respectively. Here, we may assume that b # ¢, as
we may assume I' does not have multiple edges, since otherwise w(T") = 0 if d is even.
Let C be the subset of C,.(R?%) consisting of configurations & = (..., Z4, Zp, Tc, - - .)
such that xp +x.—x, = z. for some e # a, where we assume the points are labelled
by A. Then C is a disjoint union of codimension d submanifolds, which has measure
0. We consider C}(R?) as the subspace of C,.(R?) by letting

CrRY) = {(y1,-- - yr) € RY" [y + -+ |yl = 1, 95 # g if i # j, yo = 0}
We consider the automorphism ¢4 : C*(R?) — C' — C*(RY) — C, which
takes x4 to x}, := xp + x. — x, and fixes other points.
See Figure 22. Note that C N C}(R?) is codimension d in C(R?), too. Then
hw(Ta) = —w(I'y) because
(D50 APy v) = v A g v = v A g = =gl u A ¢
(v = Volga-1) and ¢} acts trivially on other edge forms. Here the relations ¢} ¢/*v =
7 v etc. follow from the commutativity of the following diagram and Lemma 2.10.

b,

Cr(RY) ——= 541 (o) Ta, Tpy Ty v o) —> —|§Z:£Z|
LAL ‘/L 1 I
emdy _ % cd—1 / oy

CT‘(R )—>S ('"axa’xb’ajc"")'H |wz—$b|

Moreover, the automorphism ¢, preserves the orientation of C}(R?) — C'. Since the
integral of w(I'y) on the noncompact manifold C*(R?%) — C' is absolutely convergent
and C has measure zero, we have that the integral over C*(R?) can be replaced
with that over C(R%) — C, and

/ w(lTp) = / w(lp) = / Hw(Ta) = —/ w(Tp).
C:(RY)—C LA (C(RY)—C) Cx(RY)—C Cx (R)—C

iThere are other approaches to prove this lemma ([LV, KT]), which work with
compactifications.

*
r
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Note that the integral depends on the orientation of the domain of integral. Hence
the integral mp.w(I") vanishes.

If 'y has a univalent vertex, say a, then there is an edge i of I'j incident to a,
say with the boundary vertices {a,b}. Let C;_, ;(RY) = C;_(R*™1) x S471. We
consider the map ¢: C*(R?) — C*_, ;(R?) given by

r—1,1
q(Ila cee aIT) = ([L.Il, cee 7//1:'%0,7 <oy Hp, (Ia - $b)/|$a - iEb|)

(the factor px, deleted), where p = 1/4/1 — |24|%. Then the form w(I"y) restricted

to C*(RY) is basic with respect to ¢, namely, it is the pullback of some (d — 1)e’-

form on the manifold C;_, ;(R) of one less dimension since r = [A| > 3. It follows

that the integral of w(I's) over C*(R?) is zero. The case where I'y has a zerovalent
vertex is similar to this case. 0

Lemma E.4. When |A| =2 and oo € A,
A CU(F) =0.

Proof. It A = {j,00} for some j # oo, and if j has valence ¢ in T, then the
form w(I'/A®) on Cy(R%) in (E.8) is (Volga-1)! for the volume form Volga—1 on
C4(R?) = 5§91 which vanishes. O

Lemma E.5. When |A| =2 and co ¢ A,
ax w(T) = —I(T/A, induced ori).

Proof. Let A = {a,b} C N. We first describe the orientation on the stratum Sy
induced from that of C,(S% 00). The stratum S is the face produced by the
blow-up along the locus {z, = z3}. A neighborhood of a generic point of S5 can
be canonically identified with that of a generic point of dBla_, (R x R%) x (R%)"~2
in Bla_, (R x R?) x (R*)"~2. Here, the order of the factors R* is not important
since d is even and their permutation does not affect the orientation. Coordinates
on R? x RY with respect to the decomposition Aga x A]ﬁd are given by the map

t+t t+t t—t t'—t
RO RS Mg x A (00) - ((LEL 20 (28 L2y,

We fix the following identifications
w:RdiAd; w(t) = (t,1),
e (t) = (t,1) (EB.11)
wt: RIS Ags; @H(t) = (=t,1).

The pushforwards of the orientation 0t = 9t; A - - A Otq of R?, where 0t; = 8‘2_,

gives
@, (Ot) At (9t) = (Dty + Ot)) A - A (Dtq + Ot)) A (Dt — dty) A--- A (Bt — Dtg)
=270t Ao,
which agrees with the orientation of R x R?. Thus w.,(9t) and ;- (dt) give natural
orientations on the subspaces Aga and Aﬁd.
Since Bla_, (RY x RY) = Aga x Blyoy(Ag.), it suffices to determine the orienta-

tion induced on Aga x B0} (Ag.) from @, (9t) Aw;-(t) by the outward-normal-
first convention. Further, as w,(0t) is of even degree, we need only to determine
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the induced orientation of dBlg(R?) from dt. Since the outward normal vector
at a point u of 8B€{0}(Rd) = S9! is the preimage of —u under the blow-down
map, the induced orientation on 8B€{0}(Rd) is —Volga—1. Thus we have obtained
the following formula of the orientation of 9B/ _, (R4 x R?) x (R%)"—2:

—wy (Volga-1) A (0t ) A\ 0t (E.12)
J#ab
where we identified 0B/, (R%) with the unit sphere S~ C R? via the isotopy in
Blyoy (R9) generated by the preimages of the radial rays from the origin.
Next, we need to determine the sign caused by the permutation of propagators
in w(T'). Namely, as in (E.8), one may transform as

WD)l g5, (m) = FP2w(Ta) Apiw(T'/A) = pow(T'a) A (£p1w(T'/A)). (E.13)
The term £pjw(I'/A) corresponds to the induced orientation o(I'/4) in (2.4). Hence
it turns out that the + is in fact +. By (E.12) and (E.13), the integral along the
fiber gives
maw(T) = —I(T'/A, induced ori).

AprpPENDIX F. Homology class of the diagonal

Proposition F.1. Let S be a closed oriented manifold. Suppose that H,(S;Z)
is free and has finite Z-bases {e;} and {e}}, which are represented by oriented
submanifold cycles {~;} and {v}}, respectively, and are dual to each other, namely,
Vit Vj = 0ij (the algebraic intersection number, a- 5 =0 if dima+dim 8 # dim S ).

Then we have
[As] =) ei@e;

2

in Ho (S x S;Z).

This can be deduced from the cohomology version in [MS, Theorem 11.11], except
for a sign.

Proof. By assumption, there are n-forms n;, n; for some submanifolds 75, T} of S

such that
/ nj = dij, / n; = dij. (F.1)
Vi Vi

By the duality of the bases {e;} and {e}}, we have
T, T = +1.

We assume without loss of generality that the intersection of 7; and 77 is transversal
for each 4, j. By the Kiinneth formula, [Ag] can be written as

[As] = cijly x ;]
2]
for some integers c;;. First, we have

/ PIMK A\ PaTly :/ 77k/ Ny = 0ikdje.
YiX; i v

J
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Hence we have
/ RUINCED Y cw/ Pini Ap3n; = cij
As [ Vi XV

and that ¢;; = d;;. Indeed, pim; A p3n; has support on a small neighborhood of
Asg (T x TF). If (z,2) € AgN (T; x T}), then x is an intersection point of T; and
T;7. Thus the integral counts the intersection 7; N T with signs and the integral is
nonzero only if i = j. When ¢ = j and x € T; N1}, let z1,...,x) be coordinates of
TQE(TZ-)L and let xgy1,..., 2z, be coordinates of Ty, (TJ?*)L. In these coordinates, the
orientation of Ag induced from the given one of S is given by

/\ (O, + 0l), (F.2)
a=1
where (2, ..., are the coordinates of a copy of T, M corresponding to (21, ..., 2Zy).
It follows from the assumption (F.1) that
1 (0x1,...,0zE) > 0, n;f(axkﬂ, oo, 0zp) > 0.
Hence the form pin; A p57; is of the form
fdzy A Ndzp Adxjq A+ Adal,

for some positive function f supported on a neighborhood of (z, ). The evaluation
of the volume pin; A p3nj for (F.2) at (z,z) is

k n
f@,2) [[ dwa(0za +02)) ] daly(0za + 02) = f(z,2) > 0.
i=a a=k+1
The result follows. |
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