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EXOTIC ELEMENTS OF THE RATIONAL HOMOTOPY
GROUPS OF Diff(52")

TADAYUKI WATANABE

ABSTRACT. This paper studies the rational homotopy groups of the group
Diff(S2™) of self-diffeomorphisms of $2" with the C'*°-topology for 2n > 4. We
present a method to prove that there are many ‘exotic’ non-trivial elements in
7+ (Diff (S27)) ® Q parametrized by trivalent graphs. As a corollary of the main
result, the 4-dimensional Smale conjecture is disproved. The proof utilizes
Kontsevich’s characteristic classes for smooth disk bundles and a version of
clasper surgery for families. In fact, our surgery is inspired by clasper theory
for 3-manifolds due to Goussarov and Habiro, and we use a method inspired
by the computation of Kontsevich’s configuration space integrals for homology
3-spheres due to Kuperberg—Thurston and Lescop.

1. Introduction

The homotopy type of Diff(54) is an important object in topology, whereas al-
most nothing was known about its homotopy groups except that they include those
coming from the orthogonal group Oy (e.g., recent surveys in [Hat2, Kup]). Let
Diff(D?, 9) denote the group of self-diffeomorphisms of D? which fix a neighbor-
hood of DY pointwise. This is the ‘non-linear’ part of Diff (S?) in the sense of the
well-known splitting Diff(S¢) ~ O441 x Diff(D4,0) (e.g., [ABK]). For d = 1,2,3,
it is known that Diff (D, d) is contractible. Proof for d = 1 is easy. The case d = 2
is due to Smale ([Sm], see also [EE]), and a proof for the case d = 3 (the Smale
conjecture) has been given by Hatcher ([Hat]), and more recently by Bamler and
Kleiner ([BK1, BK2]) through Ricci flow. On the other hand, for d > 5, it is known
that Diff (D4, d) is not contractible (e.g., [Hat2]). For d = 4, there was a conjecture
which claims that Diff (D*, ) is contractible, or equivalently, Diff(S*4) ~ Os (the
4-dimensional Smale conjecture [Kir, Problem 4.34, 4.126]). The following theorem,
which is the main result of this paper, gives a negative answer to this conjecture.

Theorem 1.1 (Theorem 3.10). Let d be an even integer such that d > 4. For
each k > 1, evaluation of Kontsevich’s characteristic classes on D®-bundles over
SA=3)k gives an epimorphism Zy,: W(d_g)k(BDiﬁ(Dd, 0) @R — V" @R to the
space V" @ R of trivalent graphs (definition in §2.2).

Remark 1.2. Theorem 1.1 gives no information about the mapping class group
mo(Diff (D4, 0)) = 71 (BDiff(D*,9)) because &/¥*® = 0. The first nontrivial ele-
ment is detected in 5V" = Q (Remark 2.1). It should be mentioned that after
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the first version of this paper was submitted to the arXiv, S. Akbulut announced
a proof that mo(Diff(D*,9)) # 0 based on his theory of corks ([Ak]). Also, Bud-
ney and Gabai constructed some elements of 7o (Diff (D*, 9)) explicitly in [BG, §5].
Some structure of the group mo(Diff(D*,d)) has been studied recently by D. Gay
([Ga]), Gay-Hartman ([GH]). An alternative proof of Gay’s result is given by
Krannich and Kupers in [KK].

Remark 1.3. In our previous preprint [Wad], we proved a result slightly different
from Theorem 1.1 in terms of Morse theory. The techniques used in this article to
prove Theorem 1.1 involve differential forms. They are quite different from those
used in [Wad].

Let r: D* — D9 be the reflection r(x1,29,...,24) = (—21,%2,...,24). The
conjugation o gor~! for g € Diff(D%,9) gives an involution on Diff (D%, ) which
is a homomorphism, and hence an involution on 7, ( BDiff (D%, 9)).

Proposition 1.4 ([KRW, Remark 7.16]). Let d be an even integer such that d > 4.
For an element £ of W(d_3)k(BDiﬁ(Dd, 0)) @R, let £ be the element obtained from
& by the reflection involution r. Then we have

Zi(€) = (=1)*Zi(6).
A proof of Proposition 1.4 is given in Subsection 2.5.

Corollary 1.5. Let d be an even integer such that d > 4. The (—1)*-eigenspace of
the reflection involution in (4_s),(BDiff (D?,0)) @R is nontrivial whenever &
s montrivial.

Proof. This follows from Theorem 1.1 and Proposition 1.4. Namely, let 7(4_3),(BDiff (D%, 0))®
R =V(_1)x ® V(_1)k+1 be the eigenspace decomposition with respect to the reflec-
tion involution. If £ € V(_qyk+1, then by Proposition 1.4, we have (—1)FZ(€) =
Zp(€) = (=1)**1Z,(€) and hence Z;,(¢) = 0. This shows that the image of Zj
agrees with Zp(V(_qyx). O

Remark 1.6. For example, the (+1)-eigenspace of ma4_g(BDiff(D4,9)) ® R is at
least one dimensional. This is compatible with a result of Kupers and Randal-
Williams ([KRW, Corollary 7.15]) that there is at least one dimensional nontrivial
subspace in the (+1)-eigenspace of 7;(BDiff(D?, 9)) ® Q for some i in 2d — 9 <
i < 2d — 5 (the fourth band), d > 6 even, as pointed out in [KRW]. As also
pointed out in [KRW, Example 6.9], Corollary 1.5 has a nontrivial consequence for
the group C'(D") = Diff (D™ x I,0D™ x I U D™ x {0}) of pseudo-isotopies. The
following corollary holds since the (+1)-eigenspaces of . (BDiff (D%, d)) ® R inject
into 7.(BC(D? 1)) @ R ([KRW, Example 6.9]).

Corollary 1.7. Let d be an even integer such that d > 4. If k > 2 is even and if
A2V 20, then m(4_s),(BC(DY 1) @R # 0.

1.1. Some consequences of Theorem 1.1 for d = 4. Theorem 1.1 answers some
problems in Kirby’s problem list [Kir].

(1) Diff(§%) % Os. (cf. [Kir, Problem 4.34, 4.126 (D. Randall)])
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(2) There is a bundle over S?, with a 4-manifold as fiber, which is topologically
trivial but not smoothly trivial. (cf. [Kir, Problem 4.122 (K. Fukaya)])

(3) The space Sympl of all standard-at-infinity symplectic structures on R* is
not contractible. (cf. [Kir, Problem 4.141 (Eliashberg)], [El, 7.3])

Here, (2) follows from the contractibility of the topological automorphism (home-
omorphism) group Top(D*,d) with the C°-topology, which can be shown by the
Alexander trick. The result (3) follows from Theorem 1.1 and the remark given in
[Kir, Problem 4.141], which says that the evaluation map Diff(D*,9) — Sympl is
a fibration whose fiber is the group of self-symplectomorphisms of (D*,wy) fixed
at the boundary, where wq is the standard symplectic form. This group is con-
tractible by a deep result of Gromov based on his theory of pseudo-holomorphic
curves ([Gr]).

As in [Hat, Appendix], the 4-dimensional Smale conjecture has several equiva-
lent statements. We denote by PL; the structure group for PL microbundles of
dimension d ([Mil]). By the equivalence Diff(D?,9) ~ Q?*!PL;/O, (|BL], the PL
analogue of Morlet’s equivalence), we have the following.

(4) The inclusion O4 — PL4 is not a homotopy equivalence.

Let Emb(S3,R%)y denote the component of Emb(S®,R*) of the standard inclu-
sion. Let Emb+(D4,R4) denote the space of orientation preserving embeddings
D* — R*. By the fibration sequence Diff(D*,9) — Emb™ (D* R*) — Emb(S3,R?)
of Cerf-Palais ([Cel, Pa]), a parametrized version of the 4-dimensional Schoenflies
conjecture fails:

(5) Emb(S3,R*)g 2 Emb™ (D* R*) (~ SO,).*

By the fibration sequence Diff(D?*! 9) — C(D?) — Diff(D?,9), Hatcher’s

theorem Diff(D3,9) ~ , and Theorem 1.1, we have the following.
(6) C(D3) % *. In particular, 71 C(D?) ® Q # 0.

By moDiff (D%, 0) ~ ©¢ = 0 ([Ce2], [KM]), mDiff(D*, ) ® Q # 0, and the long

exact sequence for the fibration C'(D*) — Diff(D*,d), we have the following.
(7) mC(D*) @ Q # 0.

By considering the Cerf-Palais fibration sequences Diff (S®x D!, 9) — Diff(D*,9) —
Emb(D*, Int D*), Diff(S®x D', 9) x Diff (S®x D', 9) — Diff (S3x D!, 9) — Emb(S?3, S3x
D%), we obtain the following.

(8) Diff(S3 x D, 9) # QO,.
(9) Emb(S3,5% x D')g % SOy, where Emb(S3, .83 x D)y is the component of
the standard inclusion S* — S3 x {0} € % x D!.

In (1), (3), (4), (5), (6), (8), (9), the deficiency of being a homotopy equivalence

can be measured by Diff(D*, ).

1.2. Background. Kontsevich’s characteristic classes, defined in [Kon], are invari-
ants for fiber bundles with fiber a punctured homology sphere. They were defined,

*The 4-dimensional smooth Schoenflies conjecture claims that any smoothly embedded 3-
sphere in R* bounds a smooth 4-disk. This is equivalent to moEmb(S3,R?) = moEmb(D*,R?) (=
m004) by Cerf or Hatcher’s theorem.
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as a higher dimensional analogue of a perturbative invariant for 3-manifolds, by uti-
lizing a graph complex and configuration space integrals, both developed by Kont-
sevich in [Kon]. The method of this paper is essentially the same as [Wa2], where
we studied the rational homotopy groups of Diff(D*~1 9). Namely, we construct
some explicit fiber bundles from trivalent graphs, by giving a higher-dimensional
analogue of graph-clasper surgery, developed by Goussarov and Habiro for knots
and 3-manifolds ([Gou, Hab]). Then we compute the values of the characteristic
numbers for the bundles, by giving a higher-dimensional analogue of Kuperberg—
Thurston’s computation of configuration space integrals for homology 3-spheres
([KuTh, Les2]). Thus, what is new in this paper is to give higher-dimensional ana-
logues of the ideas of Goussarov-Habiro and Kuperberg-Thurston so that they fit
together well and to check that they indeed work.

In fact, the construction needed is not different between d = 4 and d > 4 even.
This is similar to the fact that the cocycles of Emb(S!, R?) given by configuration
space integrals are nontrivial for all d > 4 and d = 4 is not exceptional there
([Kon, CCL]). In earlier versions of this paper, we gave a proof of Theorem 1.1
only for d = 4 to simplify notations. However, we learned that some remarkable
progresses on the topology of Diff(D?, ) for higher even dimensions d > 6 have
appeared recently (e.g., Weiss ([We]), Boavida de Brito-Weiss ([BABW]), Fresse—
Turchin-Willwacher, Fresse-Willwacher ([FTW, FW]), Kupers ([Kup]), Kupers—
Randal-Williams ([KRW])) and we thought it would be worth giving a proof of our
result for arbitrary even integer d > 4. It would be very interesting to compare the
results in this paper and those of [We, BABW, FTW, FW, Kup, KRW].

1.3. Contents of the paper. The aim of this paper is to give a proof of Theo-
rem 1.1 by means of differential forms and to give a foundation of graph surgery
which works for manifolds of arbitrary dimensions > 3. There are roughly three
ingredients in this paper.
(i) Kontsevich’s characteristic classes for framed disk bundles defined by a
graph complex and configuration space integrals. This will be explained in
§2.
(ii) Surgery on “graph claspers”, a higher dimensional analogue of Goussarov—
Habiro’s theory. This will be explained mainly in §3, and technical details
are described in §5.

(iii) That Kontsevich’s configuration space integral invariants can be computed
explicitly for the disk bundles constructed by graph clasper surgeries. The
method for the computation is a higher dimensional analogue of Kuperberg—
Thurston’s computation of configuration space integrals for homology 3-
spheres ([KuTh, Theorem 2]), for which a detailed exposition has been
given by Lescop ([Les2]). This will be explained in §4, §6, §7.

In the appendices, we will explain about the following.

(A) Smooth manifolds with corners.

(B) Blow-up in differentiable manifolds.

(C) Compactification of configuration spaces of a manifold with boundary.
(D) Orientations on manifolds and on their intersections.

(E) Well-definedness of Kontsevich’s characteristic class.
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Homology class of the diagonal.

The readers who do not need to check the technical details for the moment can
read only §2—4.

1.4. Notations and conventions.

(a)

—
o
~

The diagonal {(xz,z) € X x X | z € X} is denoted by Ay. We identify
its normal bundle NAx and tangent bundle TA x with T'X in a canonical
manner, namely, identifying (—v,v) € Nz )Ax, (v,v) € Ty Ax with
v €T, X, as in (E.11).

Let I denote the interval [0, 1].

We abbreviate the vector field as 0x;.

x;
Throughout this paper, we assume that manifolds and maps between man-

ifolds are smooth, unless otherwise stated.

For manifolds with corners, smooth maps between them and their (strata)
transversality, we follow [BTa, Appendix]. See also Appendix A in this
paper.

For a sequence of submanifolds Ay, Ao, ..., A, C W of a smooth Riemann-
ian manifold W, we say that the intersection A1 NAsN---NA, is transversal
if for each point x in the intersection, the subspace N A1 + N Ao +--- +
N, A, C T,W is the direct sum N, A1 ® N, Ay D ---D N, A,, where N, A; is
the orthogonal complement of T, A; in T,,WW with respect to the Riemann-
ian metric. Note that the transversality property does not depend on the
choice of Riemannian metric.

We interpret a normal framing of a submanifold A of a manifold X of
codimension r by a sequence of sections (s1,...,s,) of the normal bundle
N A of A that restricts to an ordered basis of each fiber of N A.

Homology and cohomology are considered over R if the coefficient ring is
not specified.

For a fiber bundle 7: E — B, we denote by T E the (vertical) tangent bun-
dle along the fiber Kerdr C TE. Let STVFE denote the subbundle of T'FE
of unit spheres. Let 0V E denote the fiberwise boundaries: | J, .z d(7'{b}).
We represent an orientation of a manifold M by a nowhere-zero section of
A M T M and use the symbol o( M) for orientation of M. When dim M =
0, we give an orientation of M by a choice of sign +1 at each point, as
usual. Unless otherwise mentioned, we orient the boundary of a manifold
by the outward-normal-first convention. One could instead represent an
orientation by a section of /\dim M 7M. The two interpretations are related
by the duality T,M = T M; v — (v,-) given by a Riemannian metric.
In Appendix D, we describe more orientation conventions adopted in this
paper.

We orient the total space of a fiber bundle over an oriented manifold with
fiber D? or its configuration space by the rule o(base) A offiber).

When M is a submanifold of an oriented Riemannian r-dimensional mani-
fold R, then we define the orientation o (M) of the orthogonal complement
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of TM in TR by the rule
o(M) A oj(M) ~ o(R). (1.1)

05 (M) is called a coorientation of M in R.

(m) For oriented submanifolds A, B of an oriented manifold M, we orient the
submanifold A x B of M x M by the product orientation o(A) A o(B) of
T(A x B) =TA® TB, unless otherwise stated.

(n) In Appendix B, we recall the definition of the blow-up in differentiable
manifolds.

1.5. Acknowledgements. I would like to thank B. Botvinnik, R. Budney, K. Fu-
jiwara, D. Gabai, D. Kosanovi¢, M. Krannich, A. Kupers, F. Laudenbach, A. Lobb,
S. Moriya, K. Ono, M. Powell, O. Randal-Williams, J. Reinhold, K. Sakai, T. Saka-
sai, T. Shimizu, C. Taubes, P. Teichner, M. Weiss who helped and encouraged me
during the preparation and revision of this paper. I am deeply grateful to the refer-
ees for spending much time to read my paper and for giving me numerous important
comments, which helped to improve this paper. I would like to thank the organiz-
ers of “HCM Workshop: Automorphisms of Manifolds (Hausdorff Center, 2019)”
for giving me an important opportunity to present my result. This work was par-
tially supported by JSPS Grant-in-Aid for Scientific Research 21K03225, 20K03594,
17K05252, 15K04880, and by Research Institute for Mathematical Sciences, Kyoto
University.

2. Kontsevich’s characteristic class

The aim of this section is to give a self-contained exposition of Kontsevich’s
characteristic classes for even dimensional disk bundles, which were developed in
[Kon] and play a crucial role in the main result of this paper. There are no new
results in this section. We try to make the exposition as complete as possible since
there seems to be no literature about the detail of that for higher even dimensions,
though necessary ideas are given in [Kon]'. What will be needed in the proof of
our main result from this section are the definition of Kontsevich’s invariant and
the statement of Theorem 2.16 and of its corollary.

2.1. Framed smooth fiber bundles and classifying spaces.

2.1.1. (X, A)-bundle. In this paper, we consider pointed smooth fiber bundles, where
we say that a smooth fiber bundle is pointed if the base space is a pointed space
and if the bundle is equipped with a smooth identification of the fiber over the
basepoint with a standard model of the fiber. Let X be a compact manifold and

TFor 3-dimensional rational homology spheres, there are several expositions about Axelrod—
Singer’s or Kontsevich’s configuration space integral invariants ([Fu, BC, KuTh, Les1, Wa3]) other
than the original papers ([AS, Kon|). Among these, Lescop’s [Lesl] (also [Les4]) gives a thorough
exposition of the definition and well-definedness of the invariant. It was helpful to write this
section.
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A be a submanifold of X. An (X, A)-bundle is a pointed X-bundle E — B over a
pointed space B, equipped with maps of smooth fiber bundles

A—i>-B><A—w>E (2.1)
l Pll l
+—' sB—= <B

where 4 is the inclusion map of the basepoint x, Qs given by the identification
A = {x}x A, py is the projection onto the first factor, and ¢ is a fiberwise embedding
such that <pog agrees with the inclusion A C X into the fiber over *. In other words,
an X-bundle equipped with trivializations on a subbundle with fiber A (given by
¢) and on the fiber over %, which are compatible on their intersection A C 7 1(x).
This can instead be defined as pointed X-bundles with structure group Diff (X, A),
the group of diffeomorphisms X — X each of which fixes a neighborhood of A
pointwise, or equivalently, as X-bundles corresponding to a pointed classifying map
from a pointed space to BDiff (X, A). The main objects in this paper are (D%, dD?)-
bundles, or (D%, d)-bundles for short.

Studying a (D?,d)-bundle is equivalent to studying a (S¢,U,,)-bundle, where
S? = R4 U {oo} and U, is a small d-ball about co, and we will often consider
the latter instead. More explicitly, a (D% d)-bundle over B can be canonically
extended to an S%bundle by attaching a trivial bundle over B with fiber the disk
{r € 8% = R U {0} | |z| > 1}, along the boundaries where the bundles are
trivialized.

2.1.2. Framed (X, A)-bundle. Now suppose that T'X is trivial. We fix a trivializa-
tion 7: TX = RImX » x , which we think as a standard one. For an X-bundle
m: E — B, let T'E := Kerdm, that is, the linear subbundle of TE whose fiber
over z € E is the subspace Ker(dr.: T.E — TyyB) C T.E. Suppose that a
Riemannian metric on TV E is given. A wertical framing on TYE is a trivialization
T'E 5 RImX 5 B For an (X, A)-bundle, we consider a vertical framing that
agrees with the standard one 7 on ¢(B x A)Un~t(x) = (B x A) Um1(x), where
¢ is the map in (2.1). We call such a framed bundle a pointed framed bundle.

2.1.3. Classifying space for framed (X, A)-bundles. Let Fr(X, A;7) be the space of
framings on X that agree with 7 on A, equipped with the topology as the subspace of
the section space of the principal GL4(R)-bundle over X associated to 7'X, which is
also known as the oriented orthonormal frame bundle. Then Fr(X, A; 7) is naturally
a left Diff (X, A)-space by g-o = o (dg)~* for g € Diff(X, A), 0 € Fr(X, 4;7). We
set
BDiff (X, A;7) := EDiff (X, A) xpig(x,a) Fr(X, 4;7).
This is a fiber bundle over BDiff (X, A) with fiber
FI‘(X, Aa T) = Map((Xv A)a (GLd(R)a ld))

This homotopy equivalence depends on the choice of 7. Then EBFE (X, A;7) is the
classifying space for pointed framed (X, A)-bundles in the sense that there is a natu-

ral bijection between [(B, *), (El\)_i?f(X, A; ), *)] with the set of isomorphism classes
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of framed (X, A)-bundle over B. Since there is a (pointed) homotopy equivalence
Fr(D%,0D% 1) ~ Q4S0,, we have a fiber sequence

0150, — BDift(D?, 8;7) — BDiff(D, d). (2.2)

2.2. Graph complex. We recall the notion of Kontsevich’s graph complex given
in [Kon] relevant to even dimensional manifolds.

2.2.1. Space of graphs. By a graph we mean a finite connected graph where the
valence of every vertex is at least 3. For a graph I" with v vertices and e edges, a label
is a choice of bijections v: {vertices of I'} — {1,2,...,v} and u: {edges of '} —
{1,2,...,e}. We identify two labelled graphs related by a label preserving graph
isomorphism. Let Z7°" be the set of all labelled graphs (T, v, 1) with v vertices
and e edges with no multiple edges and no self-loops. An orientation of I" is a choice
of an orientation of the real vector space

R{cdgcs of I'} )

A label i on edges of a graph I' canonically determines an orientation of I'; which
we denote by o(T, ). In this way, we consider a labelled graph also as an oriented
graph. Let V77" be the vector space over Q generated by labelled graphs (I, v, u)
with v vertices and e edges, modulo the relations

i) (T, W) =—(T,v,u) if 4/ and p differ by an odd permutation,
(i) (D,v,u) =0 if ' has a self-loop.

It follows from the relation (i) that (I',v,u) is zero in V7" if it has a pair of
vertices with multiple edges between them. The equivalence class of (I',v,u) in
V™ without self-loop bijectively corresponds to the oriented graph (I, o(T', 1))
considered modulo the relation (I',—o0) = —(T',0). We will omit v, from the
notation of labelled graph, and use the same notation I' for the equivalence class of
(T, v, ), 0(T, ) in V7 to avoid complicated notations .

(2.3)

2.2.2. Graph complex. We set
geven @ Vuc)\écn'

v,e
As in [BNM, Definition 3.6], we impose a bigrading on ¢°¥°" by the “degree”
k=e—v=—x(I')=b (')~ 1, and the “excess” ¢ = 2e — 3v¥. We denote by 785
the subspace of ¥V of excess ¢ and degree k, and by 97" (resp. ¥7y™") the
direct sum @5 G5 (resp. Do Gr5™). We set 4" = 0. The graded vector
space ¥°V*" is made into a chain complex by the differential 4 : gpven — gy e
defined on an element represented by a labelled graph T' = (T', v, ) € ZLyet with

the orientation o = o(T", ) as

4(T,0) := Z (I'/i, ofi]),

i edge
of I'

where I' /i is the labelled graph obtained from I' by contracting the edge i, equipped
with the induced label: if the endpoints of the edge ¢ are jg,j1 with jo < ji, then
the set of vertices of T'/i is labelled by shifting the labels {j; + 1,71 +2,...,v} in

Hn [BNM], ¥°ve™ is denoted by ®¢C, and gﬁ‘,’f“ is denoted by bcC’ﬁ.
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Ficure 1. THX relation. Each term is the equivalence class in
@even of a labelled graph.

{1,...,v} = {j1} by —1, the set of edges of I'/i is labelled by shifting the labels
{i+1,i+2,...,e}in {1,...,e} — {i} by —1. The orientation on I'/i, denoted by
o[i], induced from an orientation o of T" is determined by the rule

iAol =0 (2.4)

as an element of the vector space A\ Riedeesof T}t Eyen if o = o(T, i), the induced
orientation o[i] may be either the orientation o(I'/i) determined by the labels on
T'/i or its reverse —o(I'/i). Tt follows from (o[i])[j] = —(o[j])[{] that § 0 § = 0. The
chain complex (¢°v°" §) is a version of Kontsevich’s graph complex in [Kon]. The
“graph cohomology” is defined by

Ker (§: 95ven — 97v")

Tm (5: Gg° — Ggven)

Note that & preserves the degree and thus HY(9°V°") = @, ., H( ort), and we
set Hf,k(gcvcn) — He(gf,\llccn>'

We will also consider the dual chain complex (4°V°* §*), which is defined by
identifying ¢;v°" with Hom(%;V*", Q) by the canonical basis given by graphs, and
by letting 6* be the dual of 6. The “graph homology”$ is defined by
Ker (0*: &5ve™ — 95V5M)

Tm (5% Gy — Ggvem) |

HZ (geven) _

Hé (geven) —

2.2.3. The 0-th graph (co)homology. Since Y™ = 0, we have
HO (geven) — Ker (5' goeven _> gleven)7 Ho(geven) — goeven/é* (gleven)7
where 45" is the subspace of trivalent graphs. It follows from the definition
of 6* that &*(¥47V") is spanned by the THX relation shown in Figure 1. We set
H&k(geven) = Hg(g:\;fn) and
" = Hop(9") = Y " /THX.
Any class in H°(4°'*") can be obtained in the following way. Let .Z¢¥" = .Z5¥%,

be the set of all labelled trivalent graphs with 2k vertices and with no multiple
edges and no self-loops, and let

Goi= Y. TeTL e adym
reggven
It is obvious that any element v € ¢5%°" can be represented as

y=Weid)g= >  WOr
Fegkeven

§n [Wi], the complex (¢°Ve™ §*) is denoted by GCg4.
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for some linear map W: 4V — Q. Since we have
p 0,k

[d@d)= Y Tel=) §sT'al’ ey,
Fegkeven F/
where the sum of I is over all generating labelled graphs in Tk it follows that
6y = 0 if and only if W (5*(947}™")) = 0, or equivalently, W factors through a linear
map W: & — Q. Hence any class [y] € H**(%°°) can be written uniquely
as

] = (W @ id)([] @ id)Gy
for some linear map W: &2 — Q. We define

~ 1 1

G = (@), =

2R3k - > Merea ™ ogy™, (25)

|
(2k)(3k) Fezsven
which can be considered as the universal class in HOF(@°ven; o7even). The reason
for the coefficients m in the formula of (j is just to avoid a coefficient in the
right hand side of Theorem 3.10(3).

Remark 2.1. It is an easy exercise to see that 7" = 0, and «7/5V*" is 1-dimensional
and generated by the class of the complete graph W, on four vertices with some
labels. That Wy represents a nontrivial class in 2Z5V°" is a special case of [CGP,
Example 2.5]. One may also easily check that &7V*" = 0. The dimensions of .&7Ve"
for 4 < k < 9 are computed in [BNM] as in the following table (** H? in the notation
of [BNM] is H%* (@) so that dim /" = dim *HY).

k 1
dim /" [ 0

2 3 45 6 7 8 9
10 01 00 0 1

A lot more is known about H,(¥4°""), e.g. lower bounds through [Br, Wi] and
the Euler characteristics ([WZ]). More computations can be found in [BW].

2.3. Compactification of configuration spaces. The reader who is familiar
with the real Fulton-MacPherson compactification of the configuration space given
in [AS, Kon, BTa] may skip or read briefly this subsection.

2.3.1. Differential geometric analogue of the Fulton-MacPherson compactification
due to Axelrod—Singer and Kontsevich. Let X be a manifold without boundary.
The configuration space of labelled tuples of n points on X is

Co(X) ={(z1,...,2n) € X" | 2y £z if i # j}.

For a subset A of N = {1,2,...,n}, we consider the blow-up Blx,) (XN, where
A(A) € X? denotes the small diagonal {(x,...,2) € X" | z € X}. Roughly,
the blowing up of X* along A(A) replaces A(A) with its normal sphere bundle
SNA(A). See Appendix B for more information about blow-ups. Let C (X) € X
denote the configuration space of points labelled by A, analogously defined by
replacing N with A in the above definition of C,(X). There is a natural map
Cr(X) — BéA(A)(XA) into the interior of BéA(A)(XA). By precomposing the
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forgetful map Cp,(X) — Ca(X), a map ix: Cp(X) — Blaa)(X*) is defined. The
inclusion C,,(X) — X™ and the maps ia give an embedding

Co(X) = X" x [] Blan(x™). (2.6)
|A>2

Then the space C,,(X) is defined to be the closure of the image of this map. The
following properties are proved in [FM, AS] (see also Theorem 4.4, Propositions 1.4,
6.1 of [Si])L.

Proposition 2.2 (Fulton-MacPherson, Axelrod—Singer). (1) Cn(X) is a man-
ifold with corners.
(2) If X is compact, so is Cp(X).
(3) The forgetful map Cp(X) — Cpn(X) for m > n which forgets the last m—n
factors extends to a smooth map C,,(X) — C,(X). The same is true for
other choices of the m — n factors.

The structure of manifold with corners on C,,(X) can be obtained from X" by
a sequence of blow-ups, as follows.

Lemma 2.3 ([DP, §4], [Li, §4.2], [KuTh], [Lesd, Ch.8)). Letr > 2 and C"(X) be
the closure of the image of the embedding

bt Cu(X) = X"(r) = X" x [[ Bla@ny(X™)

|A[Zr

defined similarly as (2.6). Then 65:_1)()() can be obtained from US)(X) by a
sequence of blow-ups:
=(r=1)

n

C(X) = My & My & My ¢ -+ My =

n (X),
where each My is a manifold with corners and each step My <— M1 is the blow-

up along a submanifold of My of codimension d(r — 2) that is strata-transversal to

the boundary. Thus Cp(X) = 6512) (X) can be obtained from X™ by a sequence of
blow-ups.

We will also use the following important property of C,,(X) given in [Si, Corol-
laries 4.5, 4.9].

Proposition 2.4 (Sinha). (1) The inclusion Cy,(X) — C,(X) to the interior
is a homotopy equivalence.
(2) The diagonal action of Diff(X) on C,,(X) extends to an action on Cp(X).

In [Si], there are also explicit charts near the boundary (and corners) of C,,(X).
The following is a compactification of C,,(R%), given in [BTa].

TMore precisely, Proposition 2.2 (3) was proved in [FM, §3] for nonsingular algebraic varieties
over algebraically closed fields by constructing Cr11(X) — Cp(X) by a sequence of blow-ups. In
[AS, Kon], an analogue of the construction of [FM] was given for differentiable manifolds. That
the construction of [Si] for X = R™ is canonically diffeomorphic to that of [AS] (given via (2.6))
follows by an analogue of [FM, Corollary 4.1a] and since an image in X" x S* for the fiber S* of
the sphere bundle 8B€A(A)(XA) over A(A) with canonical trivialization recovers a unique lift in
X™ x Blaay(XH).
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Definition 2.5. For S¢ = R? U {oc}, we define the space C,, (5% ) to be the
preimage of {co} under the map p"*1: C,,41(S%) — S¢ induced by the projection
(T1,0 0y Tng1) = Ty

Lemma 2.6. The map p"*': C,11(S%) — S9 is a fiber bundle such that the fiber
C, (5% c0) is a manifold with corners.

Proof. The closure C,,41(S%) of Cpy1(S%) in X1 x II BlawEYis

AC{1,2,...,n+1}
[A]>2

the fiberwise closure of the C),(R%) x {co}-bundle C;, 11 (5%) — S That the closure
of the fiber is a manifold with corners is analogous to Lemma 2.3. O

An example of the construction of the compactification C(S%; 00) of Co(R?) is
given in §2.3.4.

2.3.2. Codimension 1 strata. We give a description of the codimension 1 strata
of (5% ), following [AS, Kon, BTa, Si, Les4]. We refer the reader to these
references for details. By the definition of C),(X) given above and by Lemma 2.3,
the codimension 1 strata of C,,(S%; c0) corresponds to the boundaries of the factors
Bla(ny(X*) in (2.6). Thus the set of codimension 1 strata of C, (5% 00) can be
parametrized by subsets A C N U {oo} with |[A| > 2. Now we set X = S9,
X° = 8% — {0} = RY, though the description below is also valid when X is
an almost parallelizable closed d-manifold, i.e. a closed d-manifold such that the
tangent bundle of the complement X° of a point co € X has a trivialization.

Definition 2.7. (1) Let Sx be the codimension 1 stratum of C,,(S%;00) cor-
responding to A.
(2) For a finite dimensional real vector space W and an integer r > 2, let
C* (W) be the quotient of C,.(WW) by the subgroup of affine transformations
in W generated by the diagonal actions of translations and multiplication
by positive real numberl. The space C*(R%) can be identified with the
subspace of C,.(R?) of (y1,...,y.) characterized by

>+ +lyral? =1, yr=0. (2.7)
(3) The compactification C.(R?) is defined as the closure of C(R%) in C,.(R%).

This has the structure of a manifold with corners induced from C,.(R?). The
compactification C; (W) is defined analogously.

(4) Let C*(TX) denote the C?(R%)-bundle over X associated to the oriented
orthonormal frame bundle over X. The C, (R%)-bundle C.(T'X) is defined
by replacing the GLg(R)-space C*(R?) with C.(R?) in the definition of
CHTX).

The strata S and its closures can be described explicitly as follows.
When oo ¢ A, let

Cona(X°) i ={(z1,...,2n) € (X°)" |2 =, (i # j) if and only if ¢, 7 € A}.
There is a diffeomorphism Cj, A (X°) 2 C),_,41(X°), where r = |A]. Then the stra-
tum Sy of C, (5% 00) can be identified with the pullback of the bundle C (T X) —

I1n [Si], Tn(X), Cx(W), Sy are denoted by Cn[X], Crr(W), Cp(X), respectively.
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X by the projection Cy, (X°) — X, which forgets the (n — r)-factors labelled by
N — A and maps the multiple factors for A to X° C X by the natural map.

Sp =lim (Cy A (X°) — X +— CHTX)) (2.8)

A framing on X° induces a trivialization C;f (T X°) = X° x C*(RY) and a diffeo-
morphism

S = OnﬁA(Xo) X O:f(Rd).

The projection Sy — C), A(X°) is compatible near Sy with the bundle projection
Cn(X°) = Cp_ry1(X°), which forgets points with labels in a subset of A with r—1
elements. Then the closure Sy of Sy in C,, (5% 00) is diffeomorphic to

Crri1(5%00) x T (RY). (2.9)

The case co € A is similar. In this case, we consider the pullback by the map
Cn_a(X°) x {0} — {00} instead of left map in the diagram in (2.8), where we
set = |A|, so that |[N — Al =n — |A — {o0}| =n — r + 1. Hence we have

SA = CN,A(XO) X O:f(TOOX),

. . (2.10)

SA = CN_A(S ;OO) X CT(TOOX).
2.3.3. Unusual coordinates on C; (T X). When X = S¢ we will use seemingly
unusual coordinates on C(Too X)) ((2.11) below) in which the origin does not corre-
spond to oo, so that it is consistent with the coordinate system of C,.(X°) = C,.(R?)
with respect to the limit. To fix such a coordinate system, we identify To, X — {0}
with TpX — {0} through the diffeomorphism o: Too X — {0} & S¢ — {0,00} =
ToX — {0} given by the stereographic projections**. This is equivariant with re-
spect to the positive scalar multiplications in the sense that o(ay) = lo(y) for
a > 0. The following lemma is evident.'t

Lemma 2.8. The diffeomorphism o: Too X — {0} — TpX — {0} induces a dif-
feomorphism Cr_1(0): Cr_1(Toc X — {0}) — Cr_1(To X — {0}), equivariant with
respect to the positive scalar multiplications (yi,...,yr—1) — (ay1,...,ay,—1) and
(Y1, Yr—1) = (@ Yy1,...,a Yy,_1). Hence, under the identification C; (T, X) =
Cr_1 (T, X — {0})/dilations via (2.7), it induces a diffeomorphism

Cr(0): CHTwX) = CH(ToX) = CE(RY).

We identify C (T X ) with C (R?) via the diffeomorphism C* (o). Since C*(R?)
can be naturally identified with a subspace of C,.(R?) as in Definition 2.7 (2), we

**See e.g., [Kos, Ch.I-(1.2)]. In the notation of [Kos], o is hy o h_! and by the formula for
h+, it follows that o(y) = # This identification can be visualized by considering S¢ — {0, 00}
as an S%1-family of geodesic arcs between 0 and oo, so that a linear half-ray from the origin in
ToX corresponds to another linear half-ray to the origin in Teo X.

fLemma 2.8 is also valid for almost parallelizable closed d-manifold X with a framing 7xo
on X° such that there is a small ball Use about oo € S% and a diffeomorhism UC’,o — Uso from a
small neighborhood U’ of co € X sending Txo to the restriction of the standard framing on R¢.
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obtain the following explicit coordinates:
(T X)

= {1y yr—1) € RT={ON) " [P+ + |y P =1, ws # w5 i 0 # 5}
(2.11)

The right hand side is identified with C?(R?) by considering the last one y, in
the r points is restrained at the origin (as in (2.7)). Intuitively, C}(ToX) can be
considered as the space of “macroscopic” configurations, and the last point y,. = 0
in C(TwX) = C:(RY) C C.(RY) as a factor in (2.10) plays the role of the limit
point where the non-infinite n — r 4+ 1 points from N — A gather together. This is
the alternative of putting the infinity at the origin. These coordinates will be used
in Lemma 2.10 and in the derivation of (E.8).

Remark 2.9. The coordinates (2.11) obtained via the identification by C*(o) look
unusual but natural when taking relative directions. For example, we fix points
z,7' € R? — {0}, x # 2/, and consider a smooth path a: [1,00) — (59)*3 given by
t — (tx,ta’, 00), which converges to (0o, 00, 00) as t — oo. Taking the unit direction
(21, 22,00) > Ty € S9=1 on the path a gives a map ¢,: [I,00) — S471
which is a constant map in this case. If we consider Cy(R?) x {cc0} as a subset
of C'3(8% 00), the path a can be extended to a path a: [1,00] — Cq(S% 00) such
that a(oo) € Sf1,2,00y = O3 (T X). With the coordinates (2.11), the limit point
a(o0) agrees with (x,2’) up to a scalar multiplication and ¢, can be extended to

[1,00] — S9! by the same formula et

The coordinate description (2.11) of C¥(To. X ) also allows us to consider it as
a subspace of C,.(R%) by mapping (y1,...,%r—1) to (y1,...,%r—1,0) and hence as
a subspace of C.(R%). Then the compactification C,(TsX) can be obtained by
the closure of C}(TxX) in C,.(RY). This is compatible with the compactification
of C*(TxX) obtained by identifying Th X with R? and C (T X ) with C*(R9) C
C(R?) in a usual way.

2.3.4. Example: the case of two points. We describe the structure of a manifold

with corners on C3(S%; c0), following [BTa, Section I1I] and [Lesl, §3]. The com-
pactification C(S%; 00) can be obtained by the closure of the embedding

V' Co(X°) = X2 X Bla({1,2,001) (X7 x {o0})

X Bla({1,00}) (X X {00}) X Bla({2,00) (X % {00}) x Bla({1,21)(X?),
(2.12)

where BKA({LQ&O})(AXQX{OO}) = Bﬁ{(w7oo)}(X2), BéA({Z)OO})(XX{OO}) = BK{OO}(X)
We claim that Cq(S%; 00) is obtained from X? x {oc} by the sequence of blow-ups

along the strata Ay 2 o0} € Af1,001 UA 2,00y UA[12). Indeed, there is a sequence
of embeddings analogous to (2.6):

C2(X°)

X2 = X2(4) X2(3) X2(2)

g3 q2
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FIGURE 3. Points in 005(S% o). A € S{1,00}, B € g{l,oo} N
S(1,2,001s C € 812,00}y D € Sf1,2,00) N S(12), B € Sp19y

where X2(3) = X2 x Bla({1,2,001)(X? x {0c0}) and X?(2) is the right hand side
of (2.12). Let Uér)(Sd;oo) be the closure of the image of ¢.. It is straightfor-
ward that 6&4) (8% 00) = X2 and 6&3)(5‘1; 00) 2 Bl{(co,00)}(X?). The next term
6&2) (8%; 00) = C9(S5%; 00) is obtained by blowing up 623) (8%; 00) along the closures
of the preimages of the strata X° x {oo}, {oo} X X°, Axo under g3 (see Figure 2).
Let S{1,2,00} be qgl(aéf’)(sd; 00)), and let S{1 00y, S{2,00} S{1,23 be the (closed)
codimension 1 strata obtained by the blow-ups along the closures of the preimages
of X° x {oco}, {00} x X°, Axo, respectively. Then the boundary of Cy(S%;00) is
512,000 US{1,00) US(2,00) USt1 23,

where the pieces are glued together along the strata of Co(S%; 00) of codimension
> 2. The product structures (2.9) and (2.10) for this case can be given directly as
follows.
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(1) The stratum Sq12.0p = C3(TxX) is the blow-up of 8653)(851;00) =
S27 = {(y1,42) € (RY)? [ |y1]* + |yo|> = 1} along the codimension d
submanifold D = ({y1 = 0} U {yo2 = 0} U {ys = yo}) NS4~ 1,

(2) The stratum Sy o0} is OBy (Too X ) x C1 (5% 00) = Co(Too X)xC1 (5% 00).

(3) Thestratum Sys o0y is O1(S%; 00)x B0} (Too X) = C1(S%; 00) x Ca (T X ).

(4) The stratum S{LQ} is Aal(sd;oo) XaB[{(OvO)}((T(OvO)Aél(Sd;oo))L) = Aél(sd;oo) X

C,(R%), where we denote by AG, (54.00) the closure of Aga 1y in Bl{(c0,00)} (X?),

by the canonical identification (T(OvO)Aél(Sd;oo))L = ToC1 (8% 00) = R4

Recall the identification NAx = (TAx)* with TX from §1.5 (a).

Lemma 2.10 ([BTa, p.5266-5267], [Lesl, §3.2]). The smooth map ¢: Ca(RY) —
S4=1 defined by
To — X1

¢(CL‘1,£C2) =

R
extends to a smooth map ¢: Co(S%; 00) — S4=1. The extension ¢ on the boundary
of Cy(S%; 00) is explicitly given as follows™:

(1) On the stratum S(1200) = BEo({(y,3e) € RD? |yl + yaf? = 1}),
¢ = ¢'oi, wherei: §{1)27OO} — C3(R?) is the map induced by the embedding
i1 S012,00p = C5 (T X) = C2(RT—{0}) given by (2.11), and ¢': C2(R?) —
S4=1 is the smooth extension of ¢ defined by the coordinates of the blow-up
(Lemma B.2(3)).

(2) On the stratum g{lm}, ¢ is the composition

’

5100} = Ca(To X) x Ty (5% 00) 25 Ts(To X) =25 541, (2.13)

1R

(3) On the stratum g{z)oo}, ¢ is the composition

’

5200} = C1(5% 50) x Ts(To X) 22 Tp(To X) ¢? §e-1, (2.14)
4) On the stratum Sty v, ¢ is the composition
(4) {1,2} P
Si12) = Ag, (s X Ca(RY) 22 Ty(RY) £ 9oL, (2.15)

In each case of (1)—(4), we take a projection to the space of ‘limit configurations’:
Cy(RY), T5(R?) etc., that is a subspace of Co(R?), then take the relative direction
from the first point y; to the second point y2. In (2), y2 (in the limit configuration
of 6; (Tw X)) is assumed to be at the origin, so the relative direction from y; to
y2 = 0 agrees with —¢'. In (3), y; is assumed to be at the origin, so the relative
direction from y; = 0 to y» agrees with ¢’. In (4), the orthogonal projection
TpX X Ty X — Nz Ax — R is the limit of (z1,29) > (B552, 22200 ) oy L2o01
as in (E.11), the relative direction for the limit configuration agrees with ¢'.

2.4. Propagator. We need to fix a certain closed form on the configuration space
called a propagator to define the configuration space integrals.

#One can observe that the signs of +¢’ are correct by drawing a picture for d = 1. Note that
we have chosen unusual coordinates on C}f(Too X) as in §2.3.3.
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2.4.1. de Rham Cohomology of C2(S%; o0). Throughout this subsection, we assume
d > 1. Since ¢: C(S% 00) — S~ is a homotopy equivalence, it follows that
— _ R (x=0,d—-1)
* d, o * d—1\ ~ ) 3
A7 (C(5% 00)) = H™(S >_{ 0 (otherwise).
In particular, H~1(Cy(S%; o0)) is generated by [¢*Volga-1], where

d
1 .
\'/OISUZ*1 = W i:E 1(—1) 1$id$1 AN+ ANdx;_1 A dIfL'Jrl VARERIVAN dId, (216)

and vol(S9~1) is the volume of the unit sphere S~! in R%, so that / Volga-1 =
gd—1
1. By Poincaré-Lefschetz duality,

(@ (qd. 7. (qd. ~ a1y [ R (+=d+1,2d),
H*(C(S% 00),0C5 (8% 00)) = Hag—+(S )_{ 0 (otherwise).

The following lemma is evident from the explicit formula (2.16).
Lemma 2.11. Let 1 S%=1 — S9=1 be the involution 1(x) = —z. Then we have

L*Volsd—l = (—1)d Volsd—l.

o

2.4.2. Propagator in a fiber. Suppose we are given a framing 7: T(S? — {oc}) —

(8% —{o0}) x R? on §¢ — {c0} = R? that agrees with the standard framing 7 of

R? outside a d-ball of finite radius about the origin. Then 7 induces a smooth map
p(1): 005 (8% 00) — S971,

which extends the map obtained by restricting ¢ of Lemma 2.10 to §{1)27OO} U
g{l,oo} U §{2,oo} and agrees on 5{172} with the composition

S(12) — A, (5100 ¥ ST L2 597
where the first map is induced by 7.

Lemma 2.12 (Propagator in fiber). Let 7 be a framing of T(S? — {oc}) that is
standard near co.
(1) The closed (d — 1)-form p(7)*Volga—1 on dC2(S% 00) can be evtended to
a closed form w on Co(S%;00) so that its cohomology class [w] agrees with
[&*Volsdfl].
(2) For a fized framing T, the extension w is unique in the sense that for two
such extensions w and w', there is a (d — 2)-form pu on Ca(S% c) that
vanishes on 0C3(S% o) such that

W' —w=dpu.
We call such an extended form a propagator for 7.

Proof. The proof is an analogue of [Tau, Lemma 2.1, [BC2, p.2], or [Lesl, Lem-
mas 2.3, 2.4]. The assertion (1) follows immediately from the long exact sequence
of the pair

0=H"1(C,00) - HYC) - HY(0C) — HY(C,0C) = 0,
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where we abbreviate as C = Cy(S% 00). Here both [w] and [¢*Volga—1] restrict
to the same generator of the de Rham cohomology of * x S9=1 € SNAga, their
cohomology classes agree. The assertion (2) follows since the difference w’ — w
vanishes on dC and represents 0 of H4~1(C,dC), which is the cohomology of the
subcomplex of the de Rham complex Qg (C) of forms that vanish on 9C. O

2.4.3. Propagator in family. The group Diff(S?, U,,) acts on C,,(S%; 00) C C,11(S%)

by extending the diagonal action g - (z1,...,2,) = (g-71,...,9 - 7,) on C,(R9).
Namely, Diff (S¢, U,.) acts diagonally on the target space of the embedding ¢ of (2.6)
which induces an automorphism of the subspace C, (S%; 00) = Closure (Im ¢| ¢, (ra)x {00} )-
For a (D%,0)-bundle 7: E — B, we consider the associated C,,(S%; 0o)-bundle

C,(m): EC,(7) — B.

Its fiberwise restriction to the boundary of the fiber gives the subbundle

ai(w): 0"EC,(t) — B.

A vertical framing 7: T"F = E x R? induces a smooth map
p(rE): O°ECy(m) — §41
by applying a similar construction as above in each fiber.

Lemma 2.13 (Propagator in family). Suppose that B is a manifold.

(1) The closed (d — 1)-form p(7g)*Volga—1 on 9" ECo(m) can be extended to a
closed form w on EC5 (7).

(2) For a fized framing g, the extension w is unique in the sense that for two
such extensions w and w', there is a (d—2)-form p on ECy(r) that vanishes

on OVECy(m) such that
W' —w=dp.
We call such an extended form a propagator (in family) for 7.

Proof. The Leray—Serre spectral sequence of the relative fibration
(6, 86) — (EUQ(']T), aang(F)) — B,

has Es-term Eg,q = HP(B; {Hq(a;,a@b)}beg), where {H‘I(Ub,aa))}beg is the
local coefficient system on B given by the cohomology of the fiber. Also, we know
that H1(C,0C) = 0 for ¢ < d + 1. Hence we have

H"(ECy(rn),0"EC(m)) =0 for n < d +1,

and the natural map H4 1 (ECy(n)) — HY"1(9* EC; (7)) is an isomorphism. This
implies the assertion (1). The proof of the assertion (2) is the same as Lemma 2.12(2).
U

Corollary 2.14. Suppose that (1: E — B,Tg) is a framed (D?,0)-bundle over a
cobordism B between closed manifolds Ag and Ay. Suppose given propagators wgy
and wy for 7p on Co(m) 1 (Ag) and Ca(m)~1(A1), respectively. Then there exists
a propagator w for 7 on EC(7) that restricts to wy and wy on Ca(m) 1 (Ag) and
Co(m)~1(Ay), respectively.
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Proof. We identify a collar neighborhood of B with Ag x [0,e]UA; x [1—¢,1] and ac-
cordingly identify as Ca (7)1 (Ag x [0,¢]) = Ca(m) "1 (Ag) x [0,¢] and Ca(m) (A x
[1 —e,1]) = Ca(m) 1 (A4g) x [l —¢,1]. Then we may pull back wy and w; to
Co(m) ™ (Ag) x[0,¢] and Co(7) "1 (A1) x [1—¢, 1], respectively. Moreover, we assume
without loss of generality that 7 is compatible with these product structures. Let

B =B~ ((Ag x [0,6)) U (A; x (1—¢,1])).

By Lemma 2.13(1), there exists a propagator w, on ECo () for 75. By Lemma 2.13(2),
there are (d — 2)-forms o and p; on the collar neighborhoods such that they vanish
on 9* EC5(7), and

wo — we = dpg, wi —we = du

where they make sense. We take a smooth function y: ECy(7) — [0,1] that takes
the value 1 on Cy(7)~!(0B) and takes the value 0 on Cy(7)~!(B’). Let u be a
(d — 2)-form on ECy(7) extending pio and 1, which vanish on 9* ECy(7). We set

w = wa +d(xp’),

which is well-defined as a smooth closed (d — 1)-form on EC» (7). As yp/ vanishes
on 9V ECy(7), we have Wlgu G, (r) = Walgy 55, (r) a0d

Wlg, (my-1(ay =wi  fori=0,1.
This completes the proof. O

2.5. Configuration space integrals.

2.5.1. Kontsevich’s integral. Now we assume that d is even and d > 4. Let 7: E —
B be a (D?,0)-bundle over a closed oriented manifold B, equipped with a vertical
framing 75. Let C,(n): EC,(7) — B be the C, (5% 00)-bundle associated to
7. We take a propagator w in family ECy(7) for 7 as in Lemma 2.13. Let
['=(L,v,pu) € ZF" be a labelled graph with v vertices and e edges. We choose
orientations on edges of I', namely, make a choice of the order of the two boundary
vertices of each edge, or equivalently a choice of orientations of R?¢ = R{v+v~} for
each edge e with boundary vertices v, v_. This choice p, which is independent of
the labels (v, i), determines the projection map

Gpit EC, (1) — ECy(m)

defined by forgetting the points other than the two points for the labels of the
boundary vertices of the edge i, which is smooth by Proposition 2.2.

Definition 2.15. Let d be an even integer such that d > 4. We set

wlp) = N\ ¢}we Qg V(ET, (),

1: edge
of I'

w() = %Zw(l",p), (2.17)
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where the sum } _ , is over all possible edge orientations on I, and Cy(m)w: Qé’;l)e (EC, (7)) —
Qfﬁ;l)e*d” (B) denotes the pushforward or integration along the fibers ([BTu, p.61],

[GHV, Ch.VII], see also §E.1). This extends linearly to the linear map
ven d—3)k+¢
e — ol M (B),
where k = e — v, £ = 2e — 3v as in §2.2.2.

Note that the integral along the fibers (2.17) is convergent since the fiber C,, (S%; c0)
is compact. If the propagator w happens to be symmetric with respect to the fiber-
wise swapping map ECo(m) — EC5(n), which exchanges two points in a fiber, then
we have w(T") = w(T, p) for any choice of p.

Theorem 2.16 (Kontsevich [Kon|. Proof in §E). Let d be an even integer such
that d > 4.

(1) I is a chain map up to sign, namely,
dI(F) _ (_1)(d—3)k+f-‘rll(5r)

for T' € Gpye. In particular, if v € G5y is such that 6y = 0, then
dI(y) = 0. If v is such that v = 6, then I(y) = (—=1)@=3kH+1q](p).
Hence I induces a linear map I,: H*F(4°V; Q) — H(4=3)k+{(B:R).

(2) I. does not depend on the choice of propagator w in family for Tg.

(3) L. is invariant under a homotopy of 7.

(4) I. gives characteristic classes of framed (D?,0)-bundles, that is, I, is nat-
ural with respect to bundle morphisms of framed (D?, 0)-bundles, in the
sense that the following diagram for a framed bundle map over f: B — B’
commutes.

Hé,k(geven; Q) I H(d—3)k+€(B;R)

gy

H(d—3)k+f (BI7 R)

Remark 2.17. When d is odd and at least 3, the construction in Definition 2.15 is
also valid if &£V is replaced by another version ¢294, which is defined similarly as
Gpven, except that Riedgesof I} ig replaced by Riedzesof Tt ¢ HH(T; R) and that the
“induced ori” in the definition of § (§2.2.2) is defined suitably, as in [Kon, p.109].
Theorem 2.16 is true also for d odd. The odd case was studied in [Wal, Wa2].

Since the universal class (j € Ho (97" @95 %™ in (2.5) satisfies (id®6)C = 0,
it follows from Theorem 2.16 (1) that it gives a class

e 1 - even
L) = GryEm > I e BB " @ R). (2.18)
' ‘Teggven
Recall that Z7¥°" is the set of all labelled trivalent graphs with 2k vertices with no

multiple edges and no self-loops. When dim B = (d — 3)k, the evaluation of this
class at the fundamental class of B produces an element of &7V @ R.
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Corollary 2.18. Let d be an even integer such that d > 4. The evaluation of
L.([¢k]) for bundles over closed oriented manifold B of dimension (d — 3)k gives
well-defined linear maps

Zio: wa—su(BDHE(D?, 0;70) © R — o™ @ R,
22: Q%0 , (BDIff(D?, 9;70)) @ R — " @ R,

Furthermore, the real homotopy group W(d,g)k(f/ﬁ\)/iff(Dd, 9;70)) @R can be replaced

with (43 (BDiff (D%, 8))®R in the sense that the natural map gﬁ/iff(Dd, ;1) —
BDiff(D?,9) induces an isomorphism in m4—z)(—) ® R.

Proof. We consider a framed (D9, 9)-bundle over an oriented cobordism B between
(d — 3)k-dimensional manifolds Ay and A;. Let iq: A, — B, ¢ = 0,1, be the
inclusion. Since ¢ = I([(x]) gives a closed (d — 3)k-form on B with coefficients in

VM, we have
[ e[ = [ o= [ a0
Ay Ap OB B

by Theorem 2.16 and the Stokes Theorem. This shows the well-definedness of the
map. The linearity follows from the linearity of the integrals.

That W(d,g)k(%(Dd, 9;70)) ®R can be replaced with 7(4_3) (BDiff (D4, 9))®
R follows since in the long exact sequence for the fibration (2.2) the term 7;(29S04)®
R is zero for i = (d—3)k, (d—3)k—1 when d is even, d > 4, and k > 1. Indeed, the
rational homotopy groups of SOy for d even are well-known (e.g. [FHT, p.220]):

T.(S04) ® Q =2 m,(S° x $3) ® Q,
Tx(802,) @Q = 71,(83 x 87 x -+ x §4"P x §2"" 1)@ Q (for n > 3).

In particular, the highest 7 such that m;(SO4) ® Q # 0 for d even is 2d — 5 and we
have {(d — 3)k —1+d} — (2d —5) = (d— 3)(k — 1) +1 > 0. O

Remark 2.19. The connecting homomorphism
F(d,g)k(BDiff(Dd, )R — W(d,g)k,l(QdSOd) QR

is zero when d is even, d > 4, and k > 1. On the other hand, without tensoring
with R, the group m;(Q22S0,) may be nontrivial for many i. Thus, it would be
natural to ask what the homomorphism

m;(BDiff (D%, 9)) = mi_14a(SO0q)

is. Since the elements constructed by graph clasper surgery in §3 admit vertical
framings, they are in the kernel of this map. As in earlier versions of this paper, one
could define configuration space integrals over Z or Z[Mik] for some explicit integer
M, in terms of piecewise smooth chains in the infinitesimal configuration spaces
ng(V) or its quotient by &g associated to a vector bundle V. They might be
related to the above question. Nontriviality of the corresponding homomorphism
for mg(BDiff (D', 9)) is proved in [CSS].

Proof of Proposition 1.4. Let w: E — S@=3F and n': B/ — S(4=3)k he the (D?, 9)-
bundles corresponding to £ and &', respectively. The involution r induces an iso-
morphism r: EC,(7') — EC, (7). For a propagator w on ECj(7), the pullback
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7*w is —1 times a propagator on ECy(7’) since the restriction of r to a single nor-
mal (d — 1)-sphere over a point of the diagonal Ay is orientation reversing. Also,
70(ECo, (1)) = (—1)%)0(ECq(7)). Hence we have

/ () = (—1)% / (), = (—1)2(— 1) / (),
EC,(n") EC,(7) ECq ()
O

3. Surgery on graph claspers

In this section, we construct (D9, d)-bundles by an analogue of Goussarov—
Habiro’s graph-clasper surgery that will be detected by Zj of Corollary 2.14, and
review some fundamental properties of the surgery.

3.1. Hopf link and Borromean link (e.g., [Ma, §3]). Graph-clasper surgery is
constructed by combining Hopf links and Borromean links. If d is a positive integer
and if p,q are integers such that 0 < p,q < d —1 and p + ¢ = d — 1, then the
Hopf link is defined as the two-component link H(p,q)q: SP U S? — R?, whose
components are given by the inclusions of the following submanifolds

{(t,u,v) € RT| [t|2 + |u® = 1, v =0},
{(tu,0) € RY| [t — 1P+ Jof? = 1, uw =0},

where we consider R? = R x RP x R?. A standard (normal) framing for the Hopf
link is given as follows. Let ni,ns be the outward unit normal vector field on the
two components H(p,q)a(S?) C R x R? x {0} and H(p,q)qa(S?) C R x {0} x RY,
respectively, both codimension 1. Then the normal framings on the two components
in R? are given by (n1,dvi,...,0v,), (na,du1,...,0u,), respectively. See §1.4(g)
for the convention of normal framing.

If d is a positive integer and if p, ¢, r are integers such that 0 < p,q,r < d—1,p+
q+ 1 = 2d — 3, then the Borromean link is defined as the three-component link
SP U SYUS” — RY, whose components are given by the inclusions of the following
submanifolds

Ly={(z,y,2) R L 4122 =1, 2 =0},
2

Lo ={(a,y,2) e R | B 4 22 = 1, y = 0}, (3.1)
2

Ly={(z,y,2) e R | EL 1 g2 =1, 2 = 0},

where we consider R = R47P~1 x R4=971 x R4="~1 We denote by B(p,q,r)q this
link. A standard (normal) framing for the Borromean link is given as follows. Let
ni,ng,n3 be the outward unit normal vector field on the three components L; C
{0} x RPFL Ly ¢ REP=Lx {0} x R4~ L3 € R™! x {0}, respectively. Then the
normal framings on the three components in R? are given by (n1, 021, ...,0T4—p—1),
(n2,0y1,...,0¥d—q-1), (n3,0z1,...,024—r_1), respectively. The Borromean links
have the following significant feature, which is well-known, or can be checked easily
from the coordinate description (3.1).
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FIGURE 4. (1) The spanning surface D} of L;. (2) Long Bor-
romean link and the spanning surface Dj.

Lemma 3.1. If one of the three components in a Borromean link is removed, then
the link consisting of the remaining components can be isotoped into an unlink.
Here, the trivializing isotopy can be taken so that it fizes neighborhoods of the points
0x(0,...,0,—-2)x0,0x0x(0,...,0,-2), (0,...,0,—2)x0x0 in RI"P~Ix RI—1-1x
RI=7=1 on the components Ly, Lo, L3, respectively.

Remark 3.2. (1) We will also call a link that is isotopic to H(p,q)q (resp.
B(p,q,7)q) a Hopf link (resp. a Borromean link). We will use the same
symbol H(p,q)q (resp. B(p,q,r)q) for its isotopic alternative, abusing of
notation (like T'(p, ¢), X(p, q,r) in low-dimensional topology). Similar con-
vention applies to B(p,q,r)q etc. in Definition 3.6 below.

(2) For each component L; in the Borromean link, let D; be the standard
spanning disk defined by replacing the ‘=1’ by ‘< 1 in (3.1). The spanning
disks D; have natural coorientations Ox1A---AOxq—p—1, OY1 A+ ANOYd—q—1,
0z1 N -+ N O0zg_r_1, respectively. They determine the orientations of the
components of B(p,q,7)q by the rule (1.1) in §1.4 (1).

The spanning disks D; have triple intersection at the origin and its intersection
number is +1. We consider the indices of Ly, Lo, and Lg are in Zs. We see that
D;NLix1 =0, and D; N L;_; is a sphere, which bounds a disk l~)i_1 in L;,_1. We
replace the normal disk bundle to D; N L;_1 in D; with the normal sphere bundle
to L;_1 restricted to ZN)i,l. This surgery of D; transforms D; to a manifold D]
(Figure 4 (1). See [Tak, §3.3] for a detail). Note that the choice of D;_; may
not be unique, and D} may not be uniquely determined, too. Nevertheless, the
property of D} we use is the following lemma, which is evident from the definition
of the Borromean link by (3.1).

Lemma 3.3. (1) D! is a compact submanifold of R bounded by L;, disjoint
from other two link components, and diffeomorphic to D;#(S™ x Sv) for
some u,v such that v+ v =dim L; + 1. More explicitly,

DY 2 Dy#(S7797 x §4TT) DY 2 Do (SR x 94T,
Dfy =2 Dy#(897P71 x gi-a71y,
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(2) The normal bundle of D} is trivial.
(3) Dy n DLyN Dy = Dy N Dy N Dy and the triple intersection number of
D}, D}, Db, counted with sign, is +1.

Definition 3.4 (Suspension of the Borromean link). The suspension of the Bor-
romean link B(p,q,7)q is the link in R?*! defined by replacing z € R?~"~! in the
equations (3.1) for the three components with 2’ = (z,t) € R4~"~1 x R, which is
B(p+1,q+1,7)441 and its intersection with R? x {0} is B(p,¢,7)4. The normal
framing of B(p,q,r)q extends naturally to B(p + 1,q + 1,7)4+1 by extending the
outward unit normal vector fields. By symmetry of the equations (3.1), suspensions
for other variables x, y are defined similarly.

Also, the explicit conditions in (3.1) suggest that the “desuspension” is possible
whenever two of the p,q,r are at least 2. For example, if p,q > 2, then that
B(p,q,7)q is the suspension of B(p — 1,q — 1,7)4—1 can be seen by restricting
z=(2,t) e R =RE-D=1 x R to (,0).

3.2. Long Borromean link.

Definition 3.5. For 0 < p,q,r < d, let Embf(Ip UI?UI",I?) denote the space of
strata preserving (Appendix A), normally framed embeddings f: [P UI9U " — I¢
such that

(1) f~YoI%) =0o(IPuUI?UI"), and

(2) f is transversal to the boundary.
We allow components and normal framings on them to be non standard near the
boundary, though what we will need later is the subspace of Embf(Ip uriulr, 14
defined by imposing some boundary conditions. We call an affine embedding
f:RP — R or its restriction to f~1(I¢), suitably affine linearly reparametrized
so that the restriction is an embedding from I? = f~1(I%), a standard inclusion.
We call an element of Emb®(I? UT9UI", I a (framed) string link, and call a path
in Emb (1P U I UI", I a (framed) isotopy of framed long embeddings.

The subspace of Emb'(I? U I¢ U I", I?) of framed embeddings such that some
framed components are standard near the boundaries, i.e., agree with standard
inclusions near the boundaries, is denoted like Emb’ (fPuriuIT, I d), where the un-
derlined component(s) is (are) standard near the boundary. Here, we fix a standard
inclusion L : IPUT9U I — I° given by

P ST S {p )y x 19N 19 S 14 S {po) x 141 17 S 1071 S {pg) x 1071

for fixed distinct points p1,pa,p3 € (0,1), where the inclusion I? S 191 ete. s
given by (z1,...,2p) — (21,...,Tp, %, e %) etc. We equip the standard inclusion
with the standard normal framing given by the euclidean coordinates. The subspace
of Emb' (IPUIYUI", I?) consisting of framed embeddings that are relatively isotopic

to the standard inclusion is denoted by Emb{ (1P U I U I", I?).

Definition 3.6 (Long Borromean link). Given a link L: R? UR? U R" — R?
consisting of disjoint standard inclusions, and a Borromean link B(p, ¢, )4 that is
disjoint from L, we join the images of RP and SP, R? and S9, R" and S”, by three
mutually disjoint arcs that are also disjoint from components of the links L and of
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the spanning disks D; of B(p,q, )4 except their endpoints. Then replace the arcs
with thin tubes SP~! x I, S9! x I, S"~! x I to construct connected sums. The
result is a long link B(p,q,7)q: RP URY UR" — R? with a natural framing Fp in
the sense of connected sum of framed submanifolds (e.g., [Kos, Ch.IX,2]).

One may also consider partial connected sum, which joins B(p, ¢, 7)4 to the link
L of standard inclusions with less components and denote the resulting embedding
by B(p,q,7)a etc. Long Borromean embeddings [P U 17U " — I? such that the
preimage of 9I¢ is OI? U OI7 U OI" can also be defined similarly and we denote
them by the same symbols as above. A natural analogue of Lemma 3.1 for the
long Borromean link holds. Also a natural analogue of Lemma 3.3 for the long
Borromean link holds: For each component L; in the long Borromean link, let D;

be the standard spanning disk obtained from D; by boundary connect-summing
the half-cubes

(1} x 17 % (0,4 {(3,..., 1)}, {pe} x 17 % [0,3] x {(%,..., 1)},
—

N—_——
d—2—p d—2—q
N (3.2)
{ps} x I" > [0, 5] x {(5.---, )}
N—_——
d—2—r

The intersection of the spanning disk D; of L; with an other component L;, which
is a sphere or empty, can be resolved by a surgery as before. Let D} be the result
of the surgery for D; (Figure 4 (2)).

Lemma 3.7. (1) D! is a compact submanifold of I¢ whose boundary agrees
with that of the i-th half-cube in (3.2), which is disjoint from other two
string link components and is diffeomorphic to Di#(S" x SV) for some u, v
such that u+v=dim L; + 1.
(2) The normal bundle of D} is trivial.
(3) D\ND4YNDY = D1NDoND3 and the triple intersection number of D}, D, Dj

counted with sign is +1.

A suspension of the long string link B(p, ¢,1)q can be defined analogously to that
of B(p,q,7)q- In fact, a suspension can be defined for more general string links.
A precise definition of a suspension L’ of a string link L is given in Definition 5.2
later, which is slightly complicated. What will be important below is the following
lemma, which can be seen from Definition 5.2.

Lemma 3.8. The following procedures yield the same result up to relative isotopy:
Coi;Le,;ted suspension ’
(1) B(p.q.r)a — B(p.q¢;r)a —— {B(p.q¢.r)a} -

) - connected
suspension sum

(2) B(pv%r)d B B(p+17Q+17T)d+l E— B(p+1uq+1uf)d+l-

3.3. Vertex quasi-oriented arrow graph. We impose extra combinatorial struc-
tures on a labelled trivalent graph: an arrow orientation and a vertex quasi-
orientation. They are used to decompose the graph into two types of vertices,
each equipped with an orientation.
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3.3.1. Arrow graph. We orient each edge of a trivalent graph such that each vertex
has both input and output incident edges. That any trivalent graph without self-
loop admits such an orientation follows by induction on the number of edges: there
is an edge e in a trivalent graph without self-loop such that removing e yields a
graph with two bivalent vertices. Then merging the two edges incident to each
bivalent vertex gives a trivalent graph with less edges. We call a trivalent graph
without self-loop equipped with such an orientation an arrow graph. Possible status
of input/output of the three incident edges at a vertex of an arrow graph are as
shown in the following picture:

Type I Type 11

Note that it is possible to include graphs with self-loops in the following construc-
tions though we exclude these for simplicity.

3.3.2. Vertex quasi-orientation. To define vertex quasi-orientation, we decompose
each edge e of an arrow graph T into half-edges H(e) = {e_, et} ordered according
to the arrow orientation of e, namely, so that e_ includes the input vertex and
ey includes the output vertex. We denote by HE(T') the set of all half-edges in
I'. Then we define a vertex quasi-orientation of a vertex v of I' to be a choice of
“linear” ordering® of the three half-edges e+, eq+,e,+ meeting at v. If a vertex
quasi-orientation of v is given by the order e+ < eq+ < e,4, it defines the exte-
rior product ep+ A eq+ A er+. We consider that two vertex quasi-orientations are
equivalent if their associated exterior products agree. For our trivalent vertex of
type I or II, the equivalence class is determined by the relative order of the degree
1 half-edges in the vertex quasi-orientation.

3.3.3. Half-edge orientation. Given a vertex-labelled arrow graph, the following
notions of orientations are canonically equivalent:

(a) An orientation of RF4&es(I) (as in §2.2.2).

(b) An orientation of RHF(T) .= Dicrrm L1 where L{¢+} := Rand Lic-} =
RY=2 (H(e) = {e4,e_}) with the standard orientations, and we represent
an orientation of R¥F(M) by an exterior product of elements in HFE(T),
where we define the degrees of the half-edges in H(e) = {e_,e;} asdegey =
1, dege_ = d — 2 for each edge e.

The correspondence between them is canonically given using the arrow orientation
by

er N---Nesggp < (61+ A\ 61_) AN A (€3k+ A\ egk_) (H(ez) = {ei_, €i+}).

*If we consider the equivalence class, the vertex quasi-orientation introduced here agrees with
the “cyclic” one in [CV] when d = 3.
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3.3.4. Vertex-labelled, vertex-quasi-oriented arrow graph compatible with (a)-orientation.
If a vertex-labelled, vertex-quasi-oriented arrow graph is given, then an orientation
in the sense of (b) above is given by

v1 AU A ANVgk, U = ept N egt N erg,

where epy, €41, €.+ are the half-edges meeting at the i-th vertex (& are determined
by the arrow orientation). When d is even, the term v; determines the equivalence
class of a vertex quasi-orientation of the i-th vertex.

In this section, we fix one choice of vertex quasi-orientation and arrow orienta-
tions for a given labelled trivalent graph so that they give a compatible orientation
in the sense of (b) determined by the edge labels. The choice of vertex quasi-
orientation will be used in §3.6.2 to fix an identification of a vertex surgery (§3.5)
with a standard model.

3.4. Y-link associated to trivalent graph. Let X be a compact d-manifold.
Given a framed embedding f: I' — Int X of a vertex-labelled, vertex-quasi-oriented
arrow graph I' whose restriction to each edge is smooth, we associate a Y-link
G=G U -UGy in X as follows (Figure 5).

(1) For each edge e of T', let P(e) C Int X be a small closed d-ball centered at
the middle point of f(e) such that P(e) is disjoint from vertices and other
edges of f(T'). Further, we assume that P(e)NP(e’) =0 if e # ¢/, and that
P(e) N f(e) is diffeomorphic to a closed interval.

(2) We decompose the closed interval P(e)N f(e) into three subintervals: P(e)N
f(e) = [a,b] U [b,c] U [e,d], so that the image of the input (resp. output)
vertex under f is a (resp. d). Then we remove the middle one [b,c| and
attach a suitably rescaled standard Hopf link S'US?2 — Int P(e) instead,
so that the image of S972 is attached to b € [a,b] and the image of St is
attached to ¢ € [c,d]. (See Figure 5.)

(3) We orient the components of the Hopf link by dus at (1,0,...,0) € H(1,d—
2)a(SY) and by Qv A+ Advg_s at (0,0,...,0) € H(1,d—2)q(5%"2) in the
coordinates of §3.17. These are chosen so that their linking number is 41.
Note that such a choice of orienations of the components is not unique.

Here, the linking number of a two component link aUb: SPUS? — Int P(e) with
p+q=d—1is defined by the formula:

b(y) — a(x)

b(y) — a(z)|’
(3.3)

Lk(a,b) = / ¢*Volga—1, ¢: SP x ST — S ¢(z,y) =
SP xS

where we identify Int P(e) with an open set of R, Volga—1 is the unit volume form
in (2.16), and we orient S? x S by o(SP) A 0(S?) (as in §D.2).

The above procedure gives a disjoint union Gy UG2U- - - UGgg of path-connected
objects with 2k = |V(T")| components. We call each component G; a Y-graph, and
G =G1UG2 U UGy, a Y-link (or a graph clasper). There are two types of

TNote that the latter is opposite to the usual one induced from the standard orientation of the
tv-plane R x {0} x R.
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FIGURE 5. An embedded arrow graph to a Y-link

Y-graph components, according to whether the corresponding vertex is of type I or
IT in the following figure:

& & &

&

Type I Type II

By taking a small smooth closed regular neighborhood V; C Int X for each com-
ponent G;, we obtain a tuple VG = (V4,..., Vo) of mutually disjoint handlebodies
in Int X. Here, by a small closed regular neighborhood of G;, we mean the union
of piecewise small tubular neighborhoods, where we consider GG; consists of three
oriented spheres (consisting of S' and S972), a trivalent vertex, and three edges
connecting them. We take the radii of the tubular neighborhoods of edges to be
less than half the radii of the tubular neighborhoods of the vertex components and
we smooth the corners.

3.5. Surgery along Y-links. The surgery on a Y-graph will be defined by a
parametrized Borromean surgery, which roughly replaces the exterior of a trivial
string link with the exterior of a Borromean string link. We shall construct a
(X,8)-bundle by a family of surgeries along Vg = (V4,..., Vag). We take a smooth
family «;: K — Diff (0V;) of diffeomorphisms parametrized by a compact manifold
K with 0K = (). This defines a bundle automorphism a;: K x 9V; — K x 9V; of
the trivial OV;-bundle over K by &;(t,x) = (¢, a;(t)x). We put

(K x X)Vi% .= (K x (X —IntV;)) Ugs, (K x V;), (3.4)

where the fiberwise boundaries are glued together by @; in a way that (¢,z) €
K x 0V; ¢ K x V; is identified with @;(t,z) € K x 9V; € K x (X — IntV}).
This defines a surgery along V; with respect to «;, which yields a smooth fiber
bundle over K. The product structures on the two parts induce a bundle projection
mla;): (K x X)Vooi 5 K.

Since the handlebodies V; are mutually disjoint, the surgery can be done for
every V; simultaneously. Namely, taking & = (a1, ..., @), a;: K; — Diff (9V;),
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we do surgery at each V; by using «;, and then we obtain a family of surgeries
parametrized by K; X --- X Ky and a bundle projection

Va,d

m(@): (K1 x - X Kop x X) — Ky X -+ X Ko,

More precisely, let
Voo =X —Int (V4 U--- U Vi)

and we define ((H?il K;)x X )VG’& by the parametrized gluing of the two trivial
bundles

2k
(HKi) X Voo and (HK) U Vag)
i=1
along the fiberwise boundary (H?il K;) x (0Vy U---UdVa) by the map

(HK) (OV3 U -+ U Vi) — (HK) (OVA U+ U OVap);

(th o tag ) = (t atQkaai(ti)x) (for z € 9V;).

This defines a surgery along a Y-link with respect to @, and this yields a smooth
fiber bundle over [[, K;.

In the following, we take a; = a1 or agr defined below for each i. We write
V =V, for simplicity.

(1) If V is of type I, we take K = S° = {—1,1}, and we let ar: S° — Diff(9V)
map (—1) to the identity map of V', and «;(1) be a “Borromean twist
associated to B(d — 2, d — 2, 1)4” constructed in §3.7.

(2) If V is of type II, we take K = S9=3 and we let agr: S¢2 — Diff(9V) be
a “parametrized Borromean twist associated to B(d —2,d —2, 1)3” con-
structed in §3.8.

In both cases, we denote V; = (K x X)Vioi,
We now consider the special case X = D% and define the main construction.

Definition 3.9. Let I" be a vertex-quasi-oriented, vertex-labelled arrow graph with
2k vertices without self-loop. Fix a framed embedding f: I' — Int D?. We use the
framing from f and the vertex quasi-orientation of §3.3 to associate the compo-
nents in the Borromean string link B(d —2, d —2, 1)4 to the three handles of a
handlebody V; at each vertex. According to the type of the i-th vertex of I', we put
a; = a1 or agp, and let @ = (a1,...,a9). Then we define a smooth fiber bundle
al': EU' — Br by

7 = 7(a), BF_HKZ, = (Br x D%)Ve

We orient Br by o(K71)A- - -/\O(ng). We also consider the straightforward analogue
of this surgery for (S%, U, )-bundles which is given by replacing D? with S? in the
definition above, to compute invariants in §4.

In a joint work with Botvinnik ([BW, §3]), we give another interpretation of 7'
in terms of surgeries on families of framed links in D¢, which would be simpler,
though Definition 3.9 is suitable for proving the main theorem of this paper.
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Theorem 3.10 (Proof in §3.9 for (1), (2) and in §4 for (3)). Let d be an even
integer such that d > 4. Let T' be as in Definition 3.9.

(1) 7#F': EY — Br is a (D%,0)-bundle and admits a canonical vertical framing
r
Th.
(2) The framed (D%, 0)-bundle bordism class of (7' : E¥ — Br,7") is contained
in the image of the natural map

H: mq_u(BDIE(D,0)) — Q50 (BDIff(D?, 9)).
(3) We have
Z (x5t = [T,
where the sign depends only on k (not on T in 45y ).
Theorem 1.1 follows immediately from Theorem 3.10. Namely, let
U 95" —ImH®Q

be a Q-linear function defined by W, (T) = [r!': E¥ — Br] by fixing labels and
arrows on I' arbitrarily for each class. Recall that 473 is the subspace of ¥°¥"
spanned by trivalent graphs of degree k. Then by Theorem 3.10(3), the composition
i +2;
Oey\];en QR ‘I’ﬂd ImH QR ﬁ-} Ho,k(geVEHQ R) _ keven QR
agrees with the quotient map 453" @ R — Ho (4" R). Hence Z; = Z¥o H is
surjective over R and Theorem 1.1 follows.

Remark 3.11. We have chosen the framed embedding f, the labels, vertex quasi-
orientation, and arrow orientations on graphs to define ¥y as an auxiliary data.
We do not know whether the bordism class of ¥y (T") changes under a change of the
choice of the vertex quasi-orientation and the arrow orientations which preserves
graph orientation. Although it would not be hard to determine the effect of different
choices in the bordism group, it is not necessary for our purpose.

Let X be a compact d-manifold. For a framed embedding f: I' — X of a vertex
quasi-oriented labelled arrow graph I' with 2k vertices, one may also consider the
(X, 0)-bundle 7/ : E/ — Br by surgery on f given by replacing D¢ in Definition 3.9
with X. The following theorem can be proved just by replacing D? with X in the
proof of Theorem 3.10 (1), (2).

Theorem 3.12. Let d be an even integer such that d > 4. The relative bundle bor-
dism class of w/ represents an element of Q(Sdo_3)k(BDiff(X, 0)), which is contained

in the image of the natural map H: m(4_3),(BDiff (X, 0)) — Qqug)k(BDiﬁ(X, d)).

The class of 7/ does not change if f is replaced within the same homotopy class
= isotopy class, which can be described by I' as above with edges decorated by
elements of m1(X), considered modulo certain relations as in [GL, p.566]. Note
that the same remark as Remark 3.11 applies to this case.



EXOTIC ELEMENTS OF THE HOMOTOPY GROUPS OF Diff(S%") 31

Example 3.13 (k =2, ' = W,). Now we consider the complete graph Wy, edge-
oriented as in the following picture:

I

In this case, BW4 = K1 x Ko x K3x Ky, where K1 = K4 = 593 and Ky =Kz = SO,
Hence Byy, is the disjoint union of four components By, 1, = K1 X {(t2,13)} x K4,
ta,t3 = +1, each canonically diffeomorphic to S43 x §9=3. It will follow from
Lemma 3.23 that the restriction of the (D? d)-bundle 7"+: EW+ — By, over
Biy 1y, (t2,t3) # (1,1), is a trivial (D9, d)-bundle. Let us focus on the restriction of
74 to the only component Efvf := (7"4)71(B; 1) that may be nontrivial. This is
constructed by gluing the pieces

Bi1 x Vi, ‘71/ =V x Ky, ‘74/ = Ky x Vi, By x Va(1), By x Va(1)
(recall V; = (K; x V;)Vi-i) along their boundaries

Bi1 x (V1 UdVR UdV3 UV, UODY), Big xdVi, By x Vi,
Bl,l X 8V2, Bl71 X 6‘/3

The identifications are given by using the trivializations OV = Ky x V.

Let us look at the restrictions of 7"+ | pwa to the preimages of the two submanifold
1,1

cycles 41 = S973 x {t} and 2 = {t{} x S973 in By 1, where t} is a basepoint of
K. The restricted bundle over ; does not depend on the parameter t; € v
outside V; x {t9}. The restricted bundle over 72 does not depend on the parameter
ty outside {t9} x V. Again it will turn out that these restricted bundles are both
trivial by Lemma 3.23 and there is a trivialization of the bundle over the (d — 3)-
skeleton v; U2 of By 1. Moreover, it will turn out that this trivialization cannot
be extended to the bundle over By ;. The obstruction can be detected by Z,
(Theorem 3.10).

3.6. Standard coordinates on V;.

3.6.1. Standard model in a cube. As a preliminary to define the Borromean surg-
eries, we fix coordinates on V; using the vertex quasi-orientation fixed as in §3.3. Let
T be a handlebody obtained from a (d— 1)-disk by removing several (d — 3)-handles
and 0O-handles, and we put

V=TxI.

We fix explicit coordinates on T  as follows. We fix three distinct points p1, p2, p3 €
(0,1) and let Ty = I9~', and for n = 1,2, 3 and small € > 0, we define T as follows
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ha R
RiH b L) f2 By

T
It
©
>
=

T

(1) (2)

FIGURE 6. (1) Tin V of type I. (2) T in V of type IL

(Figure 6).
h,ll = {(z1,22) € R? | (21 _pn)2 + (22 — %)2 < €2} x 1473
hy ={(@1,...,za—1) € R (@1 —pn)? + (22— §)2 4+ + (ma1 — 3)? <2},

(1,1,0) (V: typel)

T =Ty — (hi* Uh3> Uhg?), (e1,e2,€3) = { (1,0,0) (V: type II)

Let HS = h{ x 1.
We take standard cycles by, ba, b3 of V' that generates the reduced integral ho-

mology of V. When V is of type I, we let by,be,b3 C T x {1} C 9V be defined
by

by = S2ls(plu %) X {(%77%)}7 by = S2ls(p2a %) X {(%77%)}7

N—— SN——
d—3 d—3
d—2 1 1
b3:S26 (pg,a,...,i).
N——
d—2

Here, we denote by S}(a,b) C R? Sglfz(a, b,c) € R%1 the codimension 1 round
spheres of radius 6, centered at (a,b) € R?, (a,b,c) € R¥™! = R x R¥3 xR
respectively. When V' is of type II, we replace by for type I with

d—2 1 1
b2 = 825 (p27 DR 55)
———
d—2

For each i, we consider b; as a cycle by inducing an orientation from a ball of radius
2¢ in R? or R4~! by the outward-normal-first convention.

3.6.2. Identifying V; with the standard model. Now we use the vertex quasi-orientation
introduced in §3.3.2 to fix the correspondence between handles of V' and compo-
nents of the link. Namely, we rearrange the order of the three half-edges within
its class of vertex quasi-orientation at the i-th vertex so that the first one or two
are of degree 1 (or incoming) and the rest are of degree d — 2 (or outgoing). Then
this order of half-edges determines a correspondence between the half-edges of that
trivalent vertex and the three components hi', hs?, hs®. We choose an identification
Vi =V so that the homology classes of the cycles by, ba, bs correspond to those of
the oriented sphere components from the Hopf links introduced in §3.4. Namely,
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the identifications V; = V are fixed so that the orientations of b}, b4, b} fixed in
§3.6.1 give Lk(b}, b7,) = 1 when the spheres b, in V; and b/, in V; form a Hopf link.

3.7. Borromean surgery of type I.

3.7.1. Twisted handlebody V' of type I. We shall define “Borromean twist” o as
announced before Definition 3.9. According to the coordinates fixed in §3.6, the
handlebody V of type I is the complement in Ty x I = I9~! x I of two open (d — 2)-
handles H{ and H and one 1-handle HY, which are thin. We now define another
handlebody V', which is obtained from V' by changing the thin handles as follows.
We represent the relative isotopy class of the thin handles in I¢ by a framed string
link relative to the attaching region, in the sense that the map

res: Emb(H] U HY U HY, 1) — Emb' (192U 142 U1 1)

induced by restriction is a homotopy equivalence. Since framed string links here
are assumed to be standard near the boundary, a framed string link induces a
trivialization of the sides of the closed handles Fz as sphere bundles over the
cores, which is canonically extended to a parametrization of the boundary of the
complement of the images of the embeddings of the open handles H¢ in I¢. Then
we have a natural map

o mo(Emb(HT U Hy U HY, 1)) — 7 (v, 0V), (3.5)

given by taking the complement, where the right hand side is the set of relative
diffeomorphism classes of the pairs (W,0W) of compact d-manifolds with oW =
O(T xI) such that H,(W;Z) = H.(T xI;Z). The image of the class of the standard
embedding under the map c. gives (V,9V). The image of the framed Borromean
string link B(d — 2, d — 2, 1)4 under ¢, gives another relative diffeomorphism class,
which we denote by (V’,9V’). We identify the boundary dV’, which is the union
of T'x {0, 1} and the sides of the handles, with OV by using the parametrization of
embeddings of the handles.

Remark 3.14. Although the relative diffeomorphism class of (V’, 0V’ = 9V) suffices
to define the surgery of type I in Definition 3.9, we describe below a further property
of the surgery. Namely, that the surgery can be obtained by attaching the standard
handlebody along its boundary by a twisting map.

3.7.2. Mapping cylinder structure on V'. For the type I handlebody V', we will see
that the handlebody V' thus obtained can be realized as the mapping cylinder of
a relative diffeomorphism ¢q: (T,0T) — (T,0T), which is defined by

Clpo) = (T x I) Ug, (T x {0}), (3.6)

where we consider the T' x {0} on the right as a copy of the original one T, and
identify each (z,0) € T x {0} C T'x I on the left term with (po(z),0) € T x {0} on
the right term. Note that the boundary of C'(¢¢) is (T' x {1}) U (0T x I) Upy, (T x
{0}) = (T'x{0,1}) Uidyr 1.1y (OT x I) = OV and we fix the canonical identification
0C (¢o) = IV, whose restriction to T' x {0} from the right term of the sum in (3.6)
is not ¢ but the identity.
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Proposition 3.15 (Proof in §5.2). For a handlebody V of type I, there ewists
a relative diffeomorphism ¢o: (T,0T) — (T,0T) and a relative diffeomorphism
(V',0V) = (C(po),dV) that restricts to id on IV

The relative diffeomorphism ¢q: (T,9T) — (T, 9T of Proposition 3.15 extends
to a self-diffeomorphism ¢y of OV = (T'x {0, 1})U(0T x I) by setting ¢ on T x {0}
and id otherwise.

Definition 3.16 (Type I Borromean twist). We define the map ag: S° — Diff(9V)
by ar(—1) = id, a1 (1) = ¢r1. Let V be the total space of the bundle 7y : V'U(=V) —
S that is the disjoint union of V' — {1} and —V — {—1}.

Remark 3.17. (1) We assume that the corners arose in the construction above
are all smoothed (in the sense of [Wal, Ch.2,2.6] or [Tam, Ch.3,3.3]).
(2) When d = 3, the surgery on Y-graph in [Gou, Hab] is given by surgery for
ap of Definition 3.16.

3.8. Parametrized Borromean surgery of type II.

3.8.1. Family 1% of twisted handlebodies of type II. We define the “parametrized
Borromean twist” agp € Q4-3Diff (9V), announced before Definition 3.9. The han-
dlebody V of type II is diffeomorphic to a handlebody obtained from I¢ by removing
one (d—2)-handle and two 1-handles, which are thin. We now define a (V, 9)-bundle
vV = S59=3_ which is obtained from a trivial V-bundle over S?~3 by changing
the trivial family of thin handles as follows. We construct 1% by taking the image
under the map

ot mg_3(EmbL (1972 U It U I, 1Y) — 74_3(BDIff (V,9)),
which is given by taking the complement, of the class of a certain loop
B e QI Emb) (172Ut Ul 1Y)

corresponding to a framed Borromean link B(d — 2, d — 2, 1)4, based at the stan-
dard inclusion. We will define 3 later in §5.3. Roughly, the loop ( is constructed
by replacing the second component in B(d — 2, d — 2, 1)4 with a (d — 3)-parameter
family of 1-disks with framing, so that the locus of the family of 1-disks recovers
the original (d —2)-disk component after a small change on the boundary. Then the
image of the homotopy class of 3 under ¢, gives a (V, 9)-bundle 7y : V - §4-3,

3.8.2. Mapping cylinder structure on the bundle V. We will show that thus ob-
tained (V, 9)-bundle Visa (d — 3)-parameter family of mapping cylinders for an
element of mg_5(Diff (T, 9T')). For a given smooth family of relative diffeomorphisms
woi: (T,0T) — (T,0T) (t € S473),let ¢: S43xT — S973 X T be the map defined
by @(t,7) = (t,¢0.(x)). Here we say that an S9~3-family of diffeomorphisms ¢ ;
in Diff (T, 9) is smooth if the associated map ¢ is smooth, as usual. Now we set

Cl{po}) = (83 x T x I) Ug (S973 x T x {0}),

where we consider S%72 x T'x {0} on the right as a copy of 473 x T', and identify
each (t,7,0) € ST 3xTx {0} C S43xT x I with (¢(t,z),0) € S43xT x{0}. This
has a natural structure of a (V, d)-bundle over S9~3 whose boundary is S?—2 x V..
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Proposition 3.18 (Proof in §5.4). For a handlebody V' of type II, there exist a
smooth family of relative diffeomorphisms ¢q: (T,0T) — (T,0T) (t € S¥=3) with
©o,« = id for the basepoint x € S9=3 and a relative bundle isomorphism

(V,58973 5 0V) = (C({po.}), 2 x aV)
that restricts to id on the boundary S4=3 x 9V

Definition 3.19 (Type II Borromean twist). We define the map ag: S973 —
Diff(9V') by extending {¢o,.} to a (d — 3)-parameter family of diffeomorphisms of
OV by id on the complement of T x {0} in JV.

There is a natural “graphing” map

W: mg_s(Embh (I U It UL, I9) — mo(Emb (12475 U 1972 U 1972, 1%473)),
which is obtained by representing a (d — 3)-parameter family of framed long embed-
dings in Emb{(1972UI' UI*, I?) by a single map (I972UI'UIY) x 1973 — [4x 143
with the corresponding framing. The following lemma will be used in Lemma 4.2.
Lemma 3.20 (Proof in §5.5). The image of [] € mq_s(Embl(I¢2 U It U L', I9))

under U is the class of B(2d —5, d — 2, d — 2)2q4—3 with the normal framing Fp
gwen in §3.1 and Definition 3.6.

3.9. Framed handlebody replacement. We shall see that the surgery of type
I or IT is compatible with framing and that surgery along a graph clasper gives an
element of the homotopy group of BDiff (D?,0). Let V be the standard model in
§3.6 of the handlebody of type I or II.

Proposition 3.21. Let K = S° or S43, a = ay or arr. Identify OV with K x 0V
via the trivialization given by the mapping cylinder construction of Proposition 3.15
or 3.18.

(1) There is a bundle isomorphism
: VoKXV
that induces a: K x 9V = OV = K x V.
(2) The vertical framing on V induced from the standard framing st on Ty x I C

R? has the property that it can be modified by a homotopy supported in a
small neighborhood of OV into one whose restriction to OV agrees with

(d@) ™ (stlov)-

Proof. The assertion (1) follows from Proposition 3.15 or 3.18. The assertion (2)
follows from [Wa3, Lemma A]. O

That the homotopy of (2) is supported in a small neighborhood of 9V will be
used in the proof of Lemma 7.15. Proposition 3.21 gives a trivialization of the
bundle V as a V-bundle, but not as a (V,9)-bundle. Propositions 3.21 shows that
the surgeries of type I and II are framed ones, in the sense of the following corollary.

Corollary 3.22. If X is framed, then the surgery of X on (V,a: K — Diff(OV))
of type I or II gives a framed bundle w(a): (K x X)V'* = K, K = S° or S%73, on
which the framing agrees with the original framing outside V. In other words, the
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vertical framing on K x (X —Int V') canonically induced from the original one on
X —IntV extends to that on (K x X)Ve.

For £ € {1,2,3}, let V}; denote the handlebody constructed in the same way as
V except we forget the /-th component in Hy' U Hy? U H5®.

Lemma 3.23 ([Wa3, Lemma A and Remark 7]). Let w(a): V — K be the bundle
obtained by twists a: K — Diff(OV') of type I or II. Let m(a)yq: YN/M — K be the
bundle obtained from w(«) by extension by filling a trivial framed family into the
£-th complementary handle. Then 7(«)

(1) admits a vertical framing that extends the standard one on the boundary
induced from the given one on V', and N B
(2) becomes trivial as a framed relative bundle if V is extended to V.

Remark 3.24. Although Lemma 3.23 is the statement for the standard model, it is
also true for any other handlebody V in a framed d-manifold X that is obtained
from the standard model in a small ball by an isotopy of the embedding V' — X
from the inclusion.

Proposition 3.25 (Theorem 3.10 (1),(2)). (1) «T: EY — Br is a (D% 0)-
bundle and admits a vertical framing.

(2) There is a vertical framing 77 on 7¥ such that the framed (D?,0)-bundle
(¥, 7F) is oriented bundle bordant to a framed (D%, 0)-bundle @' : FT' —
S=3)k gyer SUU=3F with some vertical framing o¥. Namely, there ex-
ist a compact oriented (d — 3)k + 1-dimensional cobordism B with 8B =
Br [1(—=S“=3%) and a framed (D%, 0)-bundle 7: E — B such that the re-
striction of T on OB agrees with (77, 77) and (@', o%) (with the opposite
orientation).

Proof. (1) We see that if @ = ag or ar, then the bundle 7¥>: (S% x D%V — g,
a =0 or d— 3, obtained from the trivial (D%, d)-bundle S® x D? by surgery along
V is a trivial (D?,d)-bundle. Indeed, V can be extended to Vig in D? and the
surgery along V' and Vg produce equivalent results, where the surgery along Vi, is
defined by replacing S¢ x V}, with 17[4]. By Lemma 3.23 (2), the result is a trivial
D%bundle. By the definition of the surgery along Vig, the trivialization on the
(Vig, 0)-bundle ‘N/m obtained by Lemma 3.23 (2) can be extended to a trivialization
of a (D4,0)-bundle. Also, by Lemma 3.23 (1), the restriction of the standard
framing on S x D9 to S¢ x (D¢ — Int V) extends over (S x D4)V-e.

By applying the above for type I surgeries, it follows that the restriction of
7' over (S°)¥ C Br has a trivialization as a (D9, 0)-bundle. Now we have a
trivialization of (D%, 9)-bundle at the basepoint of each path-component of Br, the
whole bundle 7' must be a (D%, d)-bundle, by the definition of the type II surgery.
The vertical framing on ET can be obtained by doing the parametrized gluing in
§3.5 with framing.

(2) The proof is parallel to that of [Wa3, Claim 3] (see also [Wa3, Remark 7]) for
d even and with (S*~1)*2" replaced by a product (S°)** x (§93)** and we do not
repeat that here. We should remark that we used in [Wa3, Lemma B] the claim that
YA — XX splits with cofiber ¥(X/A), where X is a product of spheres and A is the
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maximal skeleton of X of positive codimension for a certain cell decomposition. The
splitting holds even for the products like (S°)** x (S4=3)*™ (including 0-spheres),
by the wedge decomposition of XX given in [Pu, Satz 20]. O

4. Computation of the invariant

The strategy to compute the configuration space integrals here is a higher di-
mensional analogue of that taken in [KuTh, Les2]. Following these references, we
reduce the computation of Zj, to homological (or combinatorial) one, like the linking
number.

4.1. Normal Thom class (n-form). For a topologically closed oriented smooth
submanifold A of an oriented manifold N, we denote by 14 a closed form repre-
sentative of the Thom class of the normal bundle v4 of A. We identify the total
space of v4 with a small tubular neighborhood N4 of A C N and assume that 74
has support in Na. It has the useful property that [n4] is the Poincaré-Lefschetz
dual of [A] € H,(N,0N), when both N and A are compact. For another oriented
submanifold B of N with dim B = codim A, the integral [y na Ans = [5na gives
the intersection pairing A - B in N (see §D.1 for more detail). A basic textbook
reference is [BTu, Ch. I, Section 6].

4.2. Standard cycles on 0V. Recall that V; C X is defined in §3.4 as a handle-
body obtained by thickening a Y-graph G;. In §3.6, we fixed a standard model V'
of V; and we have taken cycles by, bs, bs of OV. Recall from §3.6.1 and §3.6.2 that
the orientations of b%, b}, b} give Lk(b},b%,) = 1 when the spheres b! in V; and b7,
in V; form a Hopf hnk. Now we take more standard cycles a1, as, as of OV, which
are null-homologous in V', as follows. Here we again use the standard coordinates
of V fixed in §3.6.
We define disks a1 yad al C T by al = {pl} x 0,4 — €] x I3, a = {pa} x
0,5 =]l x I97%, af = {ps} x [0,5 —¢] x {(5,---,3)}, and put
H/—’
d—3
ar = (a} x {1}) U (da} x I)U (a} x {0}) C OV
as a subspace. (See Figure 7 (1).) We orient a4 so that
Lk(b, ,ar) = +1,

where b, is a copy of by C T x {1} in T' x {1 — ¢} obtained by shifting, and Lk
is defined by using the Euclidean coordinates of T x I of §3.6 and the formula
(3.3). More explicit descriptions of the orientations of a, and b, can be found in the
proof of Lemma D.1. The collection (a1, b1, as,ba, as,bs) of cycles gives a Z-basis
of Hi(0V;Z) @ Hy_2(0V;Z) such that

Lk(b, ,aj) =075 (when dimby 4+ dima; =d —1), and

[a;] -0 [ae] = [bs] -0 [be] = 0

(when dima; + dimay = d — 1 and dimb; + dimb, = d — 1),

where -5 is the intersection pairing in 0V
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b3 by b:

A ‘ [ 3
Jﬁ‘ W B o
[ 1|02 v 01 -
AR O R

(1) (2)

FiGURE 7. af,a%,al bi,ba,b3 C T, (1) in the top face of V of
type I, (2) in the top face of V of type II. (Not the pictures of the
whole of V.)

When V is of type II, we replace by and al for type I with

bo =S5 2(p2, 5,0 8), ad ={p2} x [0, —e] x {(3,...,
—— ——
d—3

)}

N [=

d—2
We define the submanifolds Gy, by of S~ x 9V by

ap = §4=3 % ag, by = S4=3 % by.

4.3. Normalization of linking pairing of Y-link. First, we consider the sub-
space V; x V; C Co(S%00), i # j, 4,7 # oo, and see that a propagator can be
described explicitly by means of the 5 forms. Let a},b}, £ = 1,2,3, be the gener-
ating cycles of H,(0Vy;Z) for p = 1,d — 2, corresponding to the standard cycles
ag, by in the standard model given in §3.6 and §4.2. The spherical cycle a; bounds
disk S(a)) in Vi, and moreover, by the construction of Vo = (Va,..., Vak), the
spherical cycle b) bounds disk S(b}) in X —Int V), which intersects some other Vy/,
N # A Now we orient S(a;) and S(b}) by those induced from o(a}) and o(b))
by the outward-normal-first convention, and we take coorientations oy, (S (a})) and
oy, (S(b7)) obtained from o(S(a;)) and o(S(b7)) by the rule (1.1). Then we choose
n-forms 7g,xy and 1) so that it is compatible with the coorientations o, (S(a)))
and o}, (S(by)), respectively in terms of the duality of §1.4 (j). We see that H*(Vy)
is spanned by the classes of

L Ms(a2)> M5(ad)> M5(ad)-

By the Kiinneth formula, it follows that HY~1(V; x V;) is spanned by Ms(ai)] ®
[nS(a“Zn)]7 where £, m are such that dima} + dimaj, = d — 1. Thus a propagator
w € QI (Co(S?; 00)) satisfies

vixvy) = D L s(ai)] © (s (as )] (4.1)
l,m

[w

in H4=1(V; x V;) for some Lé{n € R, where the sum is over £, m such that dima} +
dimaj, = d — 1. The definition of Lk (3.3) implies Lk(b,b") = [, ,, w for a link
bITV.
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Lemma 4.1 (Proof in §D.3). We have the following identities.

(1) / NS(ar) = (—1)kd+k+d_1, where k = dim ay.
4
(2) /+ Nswe) = (—1)*F, where k = dim ay.

4

(3) LY = (—1)%'Lk(b, b’

0 Ym

) fori,j,¢,m such that dimb} + dimbJ, = d — 1.

The identities (1) and (2) will be used later in §6.2. The integral of w gives the
linking pairing
Lk: P H,(Vi) @ Hy(V;) = R.
p+g=d—1
The right hand side of (4.1) has the following explicit closed form representative as
a form on V; x Vj.
D L PiNs(a) AP Ns(ai ) (4.2)

lm

where p,,: C2(S%;00) — C1(S%; 00) is the map induced by the n-th projection.

4.4. Spanning submanifolds and their 7-forms in V. The formula (4.2) can
be naturally extended to families of V) x V},. Let m(ay): IN/A — K, be the relative
bundle obtained by the twists ay: Ky — Diff(0V)) of type I or IT in Definition 3.16
or 3.19. Let

52‘ :ZKAX(L?C(‘??)\ZK)\X(?VX

The following lemma, which will be used to make the integrals in the main compu-
tation of the invariant in §4.6 explicit, follows from Lemmas 3.7 and 3.20.

Lemma 4.2. For each { there exists a compact oriented submanifold S(a}) of Vi
with boundary such that

(1) 8S(a)) = a) = S(@)) NV, and the intersection is transversal.

(2) S(@}) Nm(ax) (%) = S(a}) over the basepoint t° € K.

(3) S(a)) is diffeomorphic to the connected sum of Ky x S(a}) with S* x SV
for some u,v such that u+ v = dim S(ay).

(4) The normal bundle of S(a}) is trivial.

(5) S(ay) N S(az) NS(a3) is one point, and the intersection is transversal.

Proof. By Lemma 3.7, the three components in a Borromean string link have span-
ning submanifolds D1, D}, D%. The restrictions of these submanifolds to the family
of I — (H{' U Hg* U H$?) give submanifolds satisfying the conditions (2), (3), (4),
(5). To see that we can moreover assume (1), we need to show that a standard
collar neighborhood of @) agrees with that induced by the spanning disk Dy of the
corresponding component.

By a standard argument relating a normal framing of an embedding and a triv-
ialization of its tubular neighborhood, it suffices to check the compatibility of the
normal framings of the two models: one given in Definition 3.6 and one given by
the parametrization of the family of handles Hy' U Hs* U H5® in I¢. But this is
proved in Lemma 3.20. 0
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Note that S(a;) need not be a subbundle of 7(ay). We coorient S(@)) in Vi
so that its restriction to the fiber over the basepoint t° € K\ is equivalent to
of,A(S(az\)) fixed in §4.3. Then we may choose an 7-form 74y on Vi so that it
is compatible with the coorientation and it extends 7g(,») on the fiber over the
basepoint t° € K.

Remark 4.3. We used several rules to fix (co)orientations: the top horizontal arrows
and the rightmost vertical arrow in the following diagram.

o(a}) <2 o(5(a})) —— o} (S(a}))

A A I
: : compatibility
: : at a fiber
v v
~ ~ * ~

0(@y) == 0(S(ay)) — of (5(a;))

Vi

(We write O for the outward-normal-first rule, and * for the rule (1.1).) In this, once
o(a}) is fixed, other items o(S(a})), o(S(a})), and o(a)) are automatically fixed
by applying the rules. We remark that we do not assume any “natural” rule at
the dotted vertical arrows. Note that the product orientations (o(Ky) Ao(a)) etc.)
with respect to the local trivializations of @) and S(a;) do not make the squares
commutative (two different orientations may be “defined” on a single item). This
example suggests that fixing a “natural” rule to define orientations for general cases
is often tricky.

The product m(c;) X 7(ej): Vi x XN/J — K; x Kj is a bundle whose fiber over the
basepoint is V; x V;. The formula (4.2) is naturally extended over V; x V; by

> L i s NP5 s, ), (4.3)
Lm

where 7g(:) etc. is a closed form on V; etc. Note that the form (4.3) is currently

defined only on the space IN/Z X XN/J and we still have not seen that this is a restriction
of a propagator on the corresponding (D? 9)-bundle over K; x K j, although we
will do so in Proposition 4.6 below.

4.5. Normalization of propagator in family. To state Proposition 4.6, we de-
compose bundles into pieces. Let Uy is a small closed d-ball about oo and let
7l BT — Br be the (8%, U, )-bundle obtained by extending the (D%, 9)-bundle
7. EU — Br by the product bundle Br x Us.

We decompose ET> into subbundles compatible with surgery, as follows. We
extend the vertical framing 7" on ET over the complement of the oo-section Br x
{00} in ET™> by the standard framing 79 on R? = S9 — {co}. This extension is
possible since 7' is standard near the boundary. Let

Voo =S —Int (Vi U--- U Vip,).
For A € {1,2,...,2k}, let

17,\’:K1><~--><K)\,1x‘N/AxKA+1><~-~><K2k.
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This is a bundle over Br, which is canonically isomorphic to the pullback of the
bundle w(ay): Vi — K by the projection By — K. Let
V! = Br x Vs
and we consider the projection IN/O’O — Br as a trivial V-bundle over Br. Then we
have the decomposition
E' =V/U---UVJ, UV,
where the gluing at the boundary is given by the natural trivializations 8\7)( =
Br x 9V, for A € {1,...,2k} (given in §3.7.2 and §3.8.2) and 9V, = Br x (0V, U
U0V, k)-
We also consider a natural decomposition of EC(7") accordingly, as follows.

Notation 4.4. For i,j € {1,...,2k} such that i # j, let
Q{] = ‘/;;/ X Br ‘/j/u

namely, the pullback of the diagram XN/{ — Br + XN/j' , where the map XN/i' — Br etc.
is the projection of the V;-bundle. For i € {1,...,2k, oo}, let

QE = p]_B% (‘71/ X Br ‘71'/)7 ngo = p]_B% (‘71/ X Br ‘70/0)7 Ql(:oz = pE} (‘70/0 X Br ‘71'/),
where pge: ECo(n") — ET>® x g. E' is the fiberwise blow-down map.

The projection €j; — Br is a subbundle of Cy(n"): ECy(n") — Br, whose
fiber over the basepoint (¢),...,t3,) € Br is V; x V; or pg;(Vi x V;). What is

important here is that the ij have pairwise disjoint interiors, which are smooth
open manifolds. We have

177

Eag(ﬂ'r) = U QF
2]

where the sum is over all 7,5 € {1,...,2k,00}. This decomposition is such that the
interiors of the pieces do not overlap. The closed form (4.3) can be defined on most
terms in this decomposition, except those of the forms I, or those involving co.
Over the latter exceptions we will extend by “degenerate” forms.

Notation 4.5. For J C {1,2,...,2k}, let
K ()\ S J),
{t (\¢J),

and let QE(J) — Br(J) be the restriction of the bundle QE — Br on Br(J). More
generally, for a bundle & — Br, we denote by &(J) — Br(J) its restriction on
Br(J).

If we let J;; = ({i}U{j})n{1,...,2k}, we have Br(J;;) = HAEJ”_ K, and there
is a natural bundle map

2%k
Br(J) = H Ky\(J), where Ky(J)= {
A=1

Bij
QL — QL (Ji;)

L

Pij

Bp e BF(JZ']‘)
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over the projection p;;. For example, if 7,5 € {1,...,2k} and ¢ # j, then J;; =
{i,j}, BF(JZ']‘) = K; X Kj, and QZ =V, x ‘/J Ifi e {1,...,2k}, then J;; = {l},
Jioo = {l}, and BF(J”) = Kl = Bp(on) AISO7 Joooo = @ and BF(Joooo) = x,

Proposition 4.6 (Normalization of propagator). Let d be an integer such that d >
4, which may or may not be even. There exists a propagator w € Qg (ECy(n"))
satisfying the following conditions.

(1) Fori,je{l,...,2k o0},
W|Q{j :ﬁjwlﬂfj(Jij)'
(2) Fori,jed{l,...,2k}, i # 4,

wlar () = D L i Ns(@i) NP5 N
,m
where LG = (=1)?1Lk(b%, bJ,) and the sum is over £,m such that dim a}+
dimal, =d — 1.

This is the heart of the computation of the invariant. The statement of Propo-
sition 4.6 looks natural, although its proof given in §6 and §7, mostly following
Lescop’s interpretation [Les2] of Kuperberg-Thurston’s theorem ([KuTh, Theo-
rem 2]), is not short. In fact, as in [Les2] we will prove a statement stronger than
(2), which includes oo. Nevertheless, Proposition 4.6 is sufficient for the main
computation in §4.6 due to Lemma 4.9.

The following lemma is a restatement of Lemma 4.2(5), which will also be used
in the computation of the invariant.

Lemma 4.7 (Integral at a trivalent vertex). Let S(ay),S(a3),S(a3) be the sub-
manifolds of V\ of Lemma 4.2. Then we have

/~ Ns@y) MNs@y Ns@y) = £
Va

The sign depends only on the type (I or II) of V. We let «, 8 be this sign for Vy
of type I, II, respectively for later use.

4.6. Evaluation of the configuration space integrals. From now on we com-
plete the proof of Theorem 3.10, assuming Proposition 4.6, by proving the following
theorem. The idea of the proof is analogous to that of [KuTh, Theorem 2], [Les2,
Theorem 2.4], and [Wa2, Theorem 6.1].

Theorem 4.8 (Theorem 3.10(3)). Let d be an even integer such that d > 4 and
let T' be a vertex-quasi-oriented, vertex-labelled arrow graph with 2k wvertices with-
out self-loop (as in Definition 3.9). If moreover T' has no orientation-reversing
automorphism, we have

ZR (x5 ) = £,

where the sign depends only on k (not on T in Gor)-

More explicitly, the sign 4 in Theorem 4.8 is (—1)%*a* 3",
For iq,49,...,40, € {1,...,2k, 00}, let

i/

r =1 (17 !
Qi1i2“'i2k =Ppy (‘/11 X Br Vi2 XBr " XBr ‘/igk)?
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where ppy: EU%( F) — ETe XBp ** XBp ET* is the canonical projection in-
duced by the Diff (5S¢, Uy, )-equivariant projection Cax(S%; 00) — (S9)*2k. This is
the subspace of ECq () cons1st1ng of configurations (1,2, ...,z;) such that
7l (xy) = -+ = 7l (293) and z, € V for each r. More prec1sely, QF 4.4, is the
image of a bundle over Br with fiber the preimage of some products of manifolds
VP under the blow-down map Cax(S%; 00) — (54)*2F. The integrals may be taken

over the interior of QF ;. . e+ Then we have

__ Iy
ECQk (ﬂ- ) - U Q’Ll’L2 ‘oK 0
01,82, ik

where the sum is taken for all possible choices i1,ia,...,i2; € {1,...,2k,00}. Tt
follows from the formulas (2.18) and (E.3) that

RN ZRE T = > [
Br

/ M)
EC5,(nT)

IVegpven /g geven
/ !/
-> % / W[,
F/E_feve“ 114382, ns Qzl dgerigg

Thus, to prove Theorem 4.8, it suffices to compute the following integral for all

I’ € Zgven.
I - Z L ) (4.4)

i1t ik i1ig-rigy

where }_  is over all edge orientations on I". For a labelled graph I", we denote
its edges by eq,...,es; according to the edge labels. Then the integral (4.4) is
the one over the configurations such that the vertices of I labelled by 1,2,...,2k
are mapped to a fiber of Qf ;. If the image of the ordered pair (j,¢,) of
the (labelled) endpoints of the edge e, of I” under the map {1,2,...,2k} —
{1,2,...,2k};q = iq are (ja, L), namely j, = ij and £, = iy, and if the propaga-
tor w is normalized as in Proposition 4.6, then by Proposition 4.6 (1),

3k
or - /\ (beapjal w'Q J]ag )* (45)

Q149 ig

w(I’, p)

Lemma 4.9. Suppose that the propagator w € Qg;{l (ECy(7")) is normalized as in
Proposition 4.6. Let X € {1,...,2k}. Ifiy,...,d0; € {1,...,2k, 00} — {\}, then

w(I’, p) = 0.
or
i1i2rig)

for any edge orientation p of I'. Hence the integral (4.4) can be nonzero only if

{ir, ... i) = {1,..., 2k}

Proof. We think Br({1,...,2k}—{A}) as a subspace of Br by taking the A-th term
to be the basepoint, and denote it by Br/K,. Let

éo/K)\ —)BF/K)\
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denote the restriction of a bundle & — Br over the subspace Br/Ky. If iy # A for
all ¢ € {1,...,2k}, the bundle map pj, ¢, factors through the bundle map

r r
Qjala Qjala /K)‘

N

Br —>BF/K>\

for each a € {1,...,3k}, since Br(J,,s,) does not have the factor K for all a.
He_nce by (4.5),_w(I",p) is the pullback of w(I", p)|pz,, (xr) K, DY the projection
ECo,(7Y) — ECq,(7Y) /K. If Vy is of type II, then w(I"”, p) is the pullback of a
3k(d —1)-form on a 3k(d — 1) — (d — 3)-dimensional manifold ECq(7")/K, which
is zero. If V), is of type I, then we can integrate w(I", p) over K, = S° first:

/ w(l’, p) = :I:/ / w(T’, p)
ar ar VK Ky

1102 i) 1102 i)
Z:I:{/ w(I",p)—/ w(I",p)}zO.
Q£1i2...i2k/K/\ Q{1i2---i2k/K)\
This completes the proof. O

Lemma 4.10. Let d be an even integer such that d > 4. Suppose that the propagator
w € QIRH(ECy(n")) is normalized as in Proposition 4.6. IfT' has no multiple edges,

y ! ~
/ w(I') = +£1 4T _‘:I:F,
Qr 0 otherwise
12---(2k)

for each T € Zg¥°". Here, we write I'" = T if there exists an isomorphism I'" — T’
of graphs that sends the i-th vertex of T' to the i-th vertex of T'.

we have

More explicitly, the value 1 above is ep/(—1)3*a*B¥, where er is the sign
determined by the relation I'" 2 e T' (the interpretation of the graph orientation in
terms of orderings of half-edges was given in §3.3.3 and §3.3.4), and «, 8 € {—1,1}
are of Lemma 4.7.

Proof. By (4.5) and Proposition 4.6(2), the restriction of w(I", p) to Q{z...(zk) can
be described explicitly as follows.

Wl plar, o= N (E nginpi‘nﬂp}fnig) (4.6)
d(i,jgrl lm

where L = (=1)4=1Lk(b}, b ), ni = Ns(ai), = Ns(a1,) @nd the sum is over £,m
such that dimaj 4+ dima}, = d — 1. Note that there is a symmetry of the linking
number LG = Lfi
result does not depend on the choice the order of (i, j) nor on p. Thus we have

w(I)|gr (4.7)

12---(2k)

, and that one of 1} and 7, is of even degree when d is even, the

= W(Flv p)'QF

12+ (2k) "

The form (4.6) is a linear combination of products of 6k n-forms (§4.1).
Furthermore, if I" does not have multiple edges, we may assume that each term

in the linear combination is the product of 6k different n-forms since there is at
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most one edge of I between each pair (7, j) of vertices with 7 # j, and for a given
pair (i,/) the coefficient L = (—1)?~'Lk(b}, b7 ) is nonzero (and equal to —1) for

0 Ym
at most one pair (j,m). Thus we have

W, == [1( Y L) /\ (p3nf A pymd Apgmd),
(i,3) (£,;m)EP;; =1
where Pij = {(¢,m) € {1,2,3}*?| 1 < £,m < 3, dima}+dimal, = d—1, L+ 0}.
The cardinality of P;; is the number of edges between 7 and j in I', which is 1 or 0
by assumption. Hence the right hand side is nonzero only if |P;;| = 1 for all edges
(7,7) of TV. This condition is equivalent to I" = +I". More precisely, if I' does not
have multiple edges, we have

2k
3k * * * . ~
[ ey =g Y [ Nt nwng nog) itr=r,
Q

r 12.(2k) ¢=1
12l 0 otherwise.
Note that there is a canonical diffeomorphism
D1 X - X Dokt Q{Q...(gk) S Vi X e X Vag,
where py : QI;Q 2k YN/ is the natural projection, which gives the ¢-th point. This

diffeomorphism is orientation-preserving. Namely, 912 (2k) is oriented by

AZE L o(Kg) AN o(Vy) = N2E L (0(Kg) A o(Vy)) = N2E o(Ve),

where o(WW) denotes the orientation of W. Note that o(V}) is of even degree for
each j. Hence in the case IV = £T" and T" does not have multiple edges, we have

2k
/ w(l') = Er/(—l)gk/ )\ Pi(ns@s) A ns@sy Ansas))
Q12 -(2k) Q12 -(2k) g=1

= e (1) H /‘7 Ns@n AMs@g) As@g) = e (—1) ak v,

O

Remark 4.11. When d is even, if I' has no orientation-reversing automorphism,
then I' has no multiple edges, since a permutation within a multiple edge gives an
orientation-reversing automorphism of I'. If T" has an orientation-reversing auto-
morphism, then [I'] = 0 in 7cve".

Lemma 4.12. Let d be an even integer such that d > 4. Suppose that the propagator
w € QIS (EC,(r")) is normalized as in Proposition 4.6. If T' has no orientation-
reversing automorphism and if a permutation o € Goy of vertices of a graph T" €
8V induces an automorphism of I, then we have

I

o(1)o(2)---o(2k)

for each T" € Z2Ve".
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Proof. If TV % +T', the vanishing of the integral on the LHS is the same as
Lemma 4.10. If IV = 4T and if T’ (and I'') does not have an orientation-reversing
automorphism, then we have

w(r/)|ﬂg(1)a(2)...a(2k):EF/ H ( Z I° z)o(])) /\lpU o) (771 7 ,,73)
q

W5 (6,m)EPa iy
edge of I'/ ( m)e (Do)

k
and QY (o(2)-(2k) 1sor1entedby/\q 1 o(K, )/\/\q 10(Vo(q) = Azzl(o(Kq)Ao(Vq))

= /\q 1 0(Vg). We abbreviated n{ A ng A n3 as n{nini for a typesetting purpose.
(Similar abbreviation is used in Example 4.13 below.) Hence if moreover o € Gy
induces an automorphism of I”,

W(FI = Ep/ Sk H/ 7’]5 Q) /\’I]S( )/\’I]S(ag) = /r W(FI).

Q<1:(1)0(2)~~0(2k) 12+ (2k)
(An example of this computation is given below in Example 4.13.) O

Proof of Theorem 4.8. Let w be a propagator normalized as in Proposition 4.6.
Suppose that T' does not have multiple edges. If TV = +T and if T' (and T”)
does not have an orientation-reversing automorphism, then the same value +[I|
(with the same sign) is counted |Aut I'| times, according to Lemma 4.12. Hence by
Lemmas 4.9 and 4.10,
I(T[IM'] = £|Aut T[T

where the sign is (—1)%*a*p* for some o, 3 € {—1,1} (recall that T' was oriented
so that ep = 1).

Hence, the term I(I”)[I'] is nonzero only if TV = +T" and if I does not have
an orientation-reversing automorphism, in which case I(TV)[I”] = +|AutT'|[T'] by
Lemma 4.10. Moreover, the sign in £|AutT|[T] is the same for different choices
of TV such that T" = 4T, since I(—I") = —I(T") and the value I(I"")[I”] does not
depend on the labelling to orient I'V. Now there are (2|I.Z)1!1(t3fl‘€\)! labellings on each
graph I up to graph isomorphism, and hence we have

1 (2k)!1(3
(2k)!1(3k)! |AutT|
The sign + in the second and last term is of the form (—1)3*a*g* for o, 8 € {—1,1}
of Lemma 4.7. This completes the proof. g

22" T) = + ! At Tr) = £[1).

Example 4.13. Let us give an example which confirms the proofs of Lemma 4.10
and Theorem 4.8 for k = 2. Let I and T" be the oriented trivalent graphs for k = 2
given in the left and middle of Figure 8, respectively. We use I" to define surgery.
(Recall the convention of §3.3 for the orientation of T" for the surgery.) According
to Lemmas 4.9 and 4.10, the integral I(I") for (7', 7") may be nonzero only if
IV 2 4T and over QF ;. . with {i1,i2,43,i4} = {1,2,3,4}. By (4.6) and (4.7),

W(F/)|Qlf234 = W12 W23 W31 W14 W42 W43
= piny Apsms A psma Apins A psns Apint A ping Apini Apins Apsni Apins Apsny

= pi(ni e n3) A ps(nf ms m3) A ps(ni 5 m3) A pi(ni 15 m3),
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FIGURE 8. Oriented graphs I' and I for k& = 2. The left T' is
oriented in terms of the convention of §3.3.4. The middle and
right T” are oriented in terms of the convention (a) of §3.3.3.

where wia = pins Apsng, waz = pan3 A p3ns, wa1 = P33 ADinL, wia = Ping A pini,
waz = pina A pan?, waz = pins A pind (odd degree forms are underlined). Hence

/ w(I”) =/~ 00y 13 /~ n 775?7%/~ 3 m3 n3 /~ nimyns = (£1)*(£1)* = 1.
52{234 \%1 Vo Vs Vi

Here, the orientation of Q,,, is given by ez e3 9t A It A v A -2 A o) =
€2 €3 (Ot A GvM) A dv@ A v A (9t® A Gv™), where ¢; = +1 € K; = {—1,1}
(j = 2,3), 9t is the orientation of K; = S92 (i = 1,4), 9v) is the orientation
of the fiber V;.

We consider the permutation o: 1 — 2, 2 — 3, 3 — 1, 4 — 4, which gives rise
to the graph automorphism from the right to the middle one in Figure 8. We have

/ 7 1 / / / / (i) / / / / ! !
w(l )|Qg314 = W3z W3y Wip Wyp Wyg Wiy = Wig Waz W3y Wiy Wyo Wy3

= p3ns ADTIE APInE Apsns A psna Apsni Aping Apini Apina Apini Aping Apsni
= pi(n my n3) A pE(nf 3 m3) A ps(ni 3 m3) A pi (i 13 m3),

where wys = ping Apsn3, why = pans Ap3nt, Wiz = Ping ADIN3, Wia = Pins A PN
Wiz = Pins A psny, wiy = piny A pint (odd degree forms are underlined). Hence

/ w(l“’)=/~n%77%77§/~nfn%n%ﬁnfn%n?ﬁni‘%‘%:l.
Qr Vi Vo Vs Vi

2314

Here, the orientation of Q5,,, is given by e €3 9t A 9t A 9v @) A Gu®) A du M) A
O™ = egez (0t A GvM) A v A dvB) A (0tH A Gv@). The equality of the
integrals of w(I") over 2,5, and Q55 can also be explained by means of the bundle
isomorphism g, : Q155, — QL , induced by the permutation o: Vi x Vo x Va3 x Vy —
Vo x V3 x Vi X V5 (21, 29,23,24) — (z2,23,21,24). The map g, preserves the
orientation of the fiber in the sense that g,.0(Qlys,) = 0(25314). Also, according
to the computations above, we have

gow@)laz,,, = w@)lar,,,-

Hence

Mlog, = [ a5lag,, = [ w@)ag,,,

r
Q1234 1234 2314
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Similarly, the same value is obtained for other permutations of &, since a graph
automorphism of I in Figure 8 always preserves graph orientation and the equality
as in (%) above holds. Therefore, we have

) = w(I’) = 41 = [AutT).

Qr
ceSy o(1)o(2)o(3)o(4)

The plus sign is because the graph orientations of IV and I" are the same. Hence
[[V] = [I'] and

I(T)[I] = [Aut T|[T].

5. Proofs of the properties of the Y-graph surgeries

We shall prove Propositions 3.15, 3.18, and Lemma 3.20, whose proofs are tech-
nical and were postponed. In §5.6, we will give a band model for our parametrized
surgery. It will be used later in Lemma 7.18.

5.1. The idea. The proofs of Propositions 3.15 and 3.18 are instances of the same
principle.

Lemma 5.1. If an element x € m;(Emb' (I? U IP U I?, I?)) lies in the image of the
graphing map

U g (Bmbh (PP Ut U 197Y)) — m(Emb (1P U I U I, TY)),

which is defined by considering an I'T*-family of embeddings IP~* UT9*UI"~! —
1971 as an I'-family of isotopies (IP~Y U I 1 UI™Y) x I — I971 x I, then the
image c«(z) of x under the map c. of (3.5) as a bundle over I' can be realized as the
mapping cylinder C(@) of a bundle isomorphism ¢ of a trivial (d — 1)-dimensional
handlebody bundle over I'.

Proof. We prove this only for (i,p,q,7) = (0,d —2,d —2,1) and (d —3,d —2,1,1),
which correspond to type I and II handlebodies V', respectively, for simplicity.
Recall that V' =T x I. Since the complement of a thickened tangle of Emb(H7" U
H$ UHS, 1Y (= Embh (1P~ U177 U 1", 1971)) is a handlebody diffeomorphic
to T relative to the boundary, we have the following commutative diagram:

i1 (Bmbl (P~ U LT UL 197Y) — S (Bmb! (1P U 17U I, 1Y)

7i41(BDiff(T, 9)) 7 (L. 5wy BDIfE(W, 9))

where the disjoint union is taken for the class in ##(V,0V) (see (3.5)), and the
bottom horizontal map V¥ is given by considering a (T, 9)-bundle over I‘*! as a
mapping cylinder of a bundle isomorphism @ between two (T, d)-bundles over I°.
Now the lemma is obvious from the commutativity of the above diagram. O
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5.2. Proof of Proposition 3.15: mapping cylinder structure on V.

Proof of Proposition 3.15. The following argument is essentially based on the fact
that B(d — 2,d — 2,1)4 is the suspension of B(d — 3,d — 3,1)4-1 (Definition 3.4).
By considering the third component of the framed tangle B(d —3,d —3, 1)4-1
(Figure 10 (1)) as a l-parameter family of points, we obtain an element 7 of
71 (Embf (1973 U 1973 U 19, 1%1)). Then the class of B(d—2, d —2, 1)4 lies in
the image of v under the graphing map
W m (Emb) (I3 U143 U1, 197Y) = mo(Emb (1972 U 1472 U I, 19)).

Then the result follows by Lemma 5.1. O

5.3. Definition of the (d — 3)-parameter family 8. We now construct the fam-
ily 8 € Q¥ 3Emb] (172 U I' UI', I?) of framed string links explicitly to find a
parametrized twist map in 4 steps. The basic idea is to construct § so that the
projection of the second component onto its last coordinate of I? is a submersion.

5.3.1. Step 1: From a Borromean string link B(d —2, d — 2, 1)4 to an I973-family
B" of string links in Embg(ld_2 urturt, I). Let Ty = I?~!. We assume that the
first and second components of B(d — 2, d — 2, 1), are the standard inclusions

Li: 173 x T - TyxI (i=1,2)

given by L;(s,w) = (p;, %, s,w) (p; is fixed in §3.6), which is possible by Lemma 3.1.
A normal framing of L, is given explicitly by (9z1,0z2). We consider Ly as a
(d — 3)-parameter family of string knots I — T x I given by the maps

Los: I = {(p2, )} x I" 3 x I CTyx I (seI¥3);

Ly s(w) = (pe, %, s,w). For each s, the endpoints of Ly s are mapped to Ty x {0,1}
and depend on s. The tuple (9x1,0x2, 0x3,...,0xq—1) gives a normal framing of
Ly 5. Moreover, we assume that the third component Lz of B(d —2,d — 2, 1)4 is
equipped with a normal framing as in Definition 3.6. Thus we obtain a map

B": 1973 5 Embl (1472 urt urt, 1)

defined by mapping each s to the family L; U Ly s U L3 with the normal framings,
where we consider Ly and L3 are independent of s, and by identifying Ty x I with
14,

5.3.2. Step 2: Closing the I9=3-family 5" into a loop B'. We alter the I9~3-family
B" to a loop
B (I973,017%) — (EmbL (192U Tt U I, 1Y), 0)
for some point a as follows. We consider the (d — 3)-cycle 6 in Tj given by
O({p2} x [e, 3] x JE7?)
= ({2, ) % J272) U ({22} < JE2) U ({2} x [, 3] x 02°9),

where 0 < ¢ < 1/100, J273 = [¢,1—¢]?3. Roughly, 6 is a cycle obtained by closing
the (d—3)-disk {(p2, 5)} x J¢~? in Ty within the disk {p2} x I9~? along its boundary.
The part {(p2, 3)} x J473 of 0 is a part of {(p2, 3)} x 1973 = Im Ly N (Tp) x {0}).
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L

(1) Step 1 (2) Step 2 (3) Step 3

FIGURE 9. (1) Family of 1-disks in 3", parametrized by 1973, (2)
in A, parametrized by s € S?~3, endpoints on the top and bottom
not fixed. 1-disks are drawn as vertical lines in the middle compo-
nent. (3) S9=3-family of (vertical) 1-disks in 3,, endpoints fixed.

We emphasize that the (d — 3)-cycle 6 is considered in a (d — 1)-dimensional slice
To x {0} in Ty x I, which corresponds to the bottom horizontal disk in Figure 9 (2).
We fix a loop A: (I973,0I773) — (6, (p2,¢€, 3, .., 3)) of degree one, and define the
map

Ly I—0xICTyxI (sel®?)

by L3 ((w) = (A(s),w). The tuple (0x1,0x2,0x3,...,0x4-1) gives a normal fram-
ing of this family of 1-disks. Now we obtain the map /3’ by mapping each s to
the family L, U L35 , U L3 (Figure 9 (2)) with the normal framings, where we again
consider Ly and L3 are independent of s. Note that Ly U L3 ;U Lg is a link since
the closing disk (0 — {(p2, 3)} x J473) x I lies in a small neighborhood of (0Tp) x I
and does not intersect the components L1 and Ls.

5.3.3. Step 3: Making B’ into a loop B, in Ernbg(fl*2 urturt,14). We make
the family 8’ into that of 1-disks whose boundaries are fixed with respect to s, as
follows. Let p: [0,1] — [0, 1] be a smooth function such that
(i) p(x) =0 on a neighborhood of {0,1}, and p(x) =1 on [¢/,1 — &’] for some
0< e <1/10,

(ii) %p(m)ZOon [0,&'], (z) <0on [1—¢1].

d—P
x
We define the ‘pressing-to-standard’ map p’: ToxI — Tox I by p'(x,w) = (p(w)a:—l—

(1 — p(w))(p2, %, cee %), w) By replacing L3 ; with p' o L3 (, we obtain an gd=3.
family of 1-disks I — Ty x I that are standard near OI (Figure 9 (3)). This
replacement can be obtained by a family of isotopies of the second component
which does not intersect the other components, so that the S¢~3-family of 1-disks
obtained after composing p’ gives a family of embeddings I 2 U ' U I' — I
This is because the locus of {0} or {1} in the family of I — Ty x I for 3’ forms a
(d— 3)-sphere in Ty x {0} or T x {1} which bounds a disk {p2} x [¢, 3] x J&~3 x {i}
(t=00r1)in Ty x {0,1} that is disjoint from other components, and the pressing
map p’ retracts the spanning disk into a point on that disk.
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This family of embeddings of the second component admits a family of normal
framings as follows. The orthogonal projection of the tuple (0x1, Oxa, dxs, ..., 0xq-1)
of sections of T'(Ty)|1m p'or; . € T(To X I)|tm prorz . to the normal bundle N (Im p’ o
L3 ;) gives a normal framirig of p' o L5 . With this family of normal framings, we
obtain a family

Ba: (173,013 = (Embl (172U UI', %), a).

Note that this map does not take 9142 to the basepoint of EmbfJ (1472urturt, 14
since the third component L3 is not standard.

5.3.4. Step 4: Making B, into a loop B based at the basepoint. We choose any path
in EmbfJ (fl*2 UI'uI', I%) from a to the basepoint which isotopes Ly with framing
into the standard one and fixes other components, and use it to extend [, to a
slightly bigger cube I'4~3 by taking the collar I'4~3 —Int [973 = 9I9=3 x I through
the composition of the maps 0143 x I — I and v: I — Embg(ld_2 urt Ull,Id).
We assume 7(t) is the basepoint for 1 —&” < ¢ < 1 for some small &’ > 0. The
extended map takes a neighborhood of 9I'~3 to the basepoint and we obtain
an I'¥=3_family of framed embeddings in EmbfJ (1972 u It U I', 1Y), which after a
rescaling 1’43 — 1973 gives a loop

B e Qi PEmb (192 uIt Ul 19).
Then this gives rise to a (V,d)-bundle V — 5973,

basepoint

1 (all standard)

a

(1st: standard)

" 11

(1st, 2nd: standard)

5.4. Proof of Proposition 3.18: mapping cylinder structure on V.

Proof of Proposition 3.18. We see that the loop 8 € Q43Emb,(I¢ Ut UI', I%)
can also be obtained by considering certain element

Bo € QI 2Emby (143 U0 u I°, 1471

as an [4=3-family of isotopies (1973 U I° U I°) x I — I?~! x I where each isotopy
gives rise to an embedding [772 U I' U I' — I?. Then we have [8] = ¥([f]) and
we can apply Lemma 5.1.

We construct By explicitly. The idea is to modify embeddings I¢-2Ur'urt — 1¢
into isotopies (I 2UT°UI®) x I — I9=1x I (that are height-preserving). Recall that
the open (d—3)-handles and 0-handles in Tj given in §3.7 become (d—2)-handles and
1-handles in Ty x I, whose complement is V. We saw that § is obtained by replacing
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\Ea

(1) (2) (3)

Fieure 10. (1) B(d—=3,d—3, 1)4—1 parametrized by (s,w) €
1973 x 1. (2) B(d—3,d— 3, 1)4_1 parametrized by S?=3 x I. (3)
B": 1973 — Embl (142U UI', I?). Horizontal section is parallel
to the (d — 1)-disk Ty on the top.

the trivial S9~3-family of the (d — 2)- and 1-handles in S92 x (T, x I) by a family
corresponding to the Borromean string link B(d — 2, d — 2, 1)5. We would like to
find parametrizations of the family of string links that behave nicely with respect
to the “height” parameter I in Ty x I, by modifying the family L; U (p"o L3 () U L3
of framed string links in Embg (ld_2 ulturt, I9) in the definition of j3,.

We observe that the first two components L1, p’ oLj , are already nice in the sense
that the natural maps pryoL;: 1972 x I — I and pr; oLj ¢ I — I are submersions,
where pry: Ty x I — I is the second projection. Also, we may assume that the
third (1-dimensional) component Lj is a section of the projection pr;: Tp x I — I,
as B(d—2,d—2, 1), is the suspension of B(d—3,d—3, 1)4—1 for d > 4 (see
§3.2 and §5.5 (Definition 5.2 below) for the suspensions of the Borromean links).
Furthermore, Ls(w) (w € I) can be taken as the lift of a simple closed curve ¢3(w) in
Ty as in Figure 10 (1). Then we obtain a I¢=3 x I-family o, of framed embeddings
in Emb{ (I3 UuI0U 10, 19 1):

x> Li(z,w)U(p o L} ) (w) ULs(w) (z€l¥? sel? wel).

Indeed, this family possesses a natural framing. Namely, since the first 1973-
component agrees with a standard inclusion and does not depend on the parameter,
the basis (0x1, dx2) gives a normal framing of Ly (-, w) in Tp. Since the second and
third components are family of points, the basis (0z1, ..., 0z4—1) gives normal fram-
ings of p’ o L} ,(w) and Lz(w) in Tp. One may see that S, gives the I¢~3-family
B, by considering the 973 x I-family of framed embeddings I3 U I° U I’ — T,
as an 9= 3-family of framed embeddings (192 UT°UT%) x I — Ty x I.

Extending the 973 x I-family o, to a slightly bigger cube by a null-isotopy of
L3 as in the step 4 above, we obtain a map

Bo: (1973 x I,0) = (Emb (142 U 10U 10, 1971, L,).

This is possible since the null-isotopy of L3 can be chosen to be height-preserving.
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Finally, we see that [8] = U([By]) by construction, and the result follows by
Lemma 5.1. O

5.5. Equivalence of the two models: graph of spinning and iterated sus-
pension. We prove Lemma 3.20, which relates the graph of the spinning family
construction g with a Borromean string link obtained by iterated suspension. We
recommend the reader to see Figure 11 before going into Definition 5.2 to grasp
what is done here.

Definition 5.2 (Suspension of string link). Let L = L1 ULosULz: IPUTIUI" — ¢
(0 < p,q,7 < d) be a string link in Emb’ (1P U 19U I", I?) equipped with a framed
isotopy Hy ;U Hay: IPUT? — I (t € [0,1]) of the first two components fixing a
neighborhood of the boundary 0I” U 019, such that H; o U Hz is the standard
inclusions of the first two components and H; ;1 U Hy1 = L; U Ly. Suppose that
L3 agrees with the standard inclusion I — [ d (Lst after Definition 3.5) outside
a d-ball about a = (%,,%) € I" ¢ I with small radius R < % Then the
suspension L' = Ly U Ly U Ly: IPY U 9L U I™ — [+ of L is defined by

Lll(ulvw) = (Hl,x(w)(ul)vw)v L/Q(u2=w) = (HZ,x(w)(u2)uw)u
’ _ [ (Ls(us), 3) (Jus —a| < R),
Ly(us) _{ (P37 © pr o pr(ug))  (luz —al > R),

where uy € I, ug € 19, ug € I", w € I, x: I — [0,1] is a smooth function
supported on a small neighborhood of § such that x(3) =1, pn: [0,1]" — [-1,1]¢
is the embedding defined by pu,(t1,...,tn) = (264 — 1,...,2t, — 1,0,...,0), and
pr: [-1,1]¢ = [=1,1]¢ is the diffeomorphism defined by

pr(T1, . mq) = (1,0, Ty 1, Ty Ty 1,y - -+, Tg—1,T), Where
5.1
z. =z, cos(|z]) — zgsin(|z|), =z, =z, sin(|z]) + z4cos(|z]) (5.1)
(le| = /2% + -+ 23) for a smooth function 1: [0,v/2] — [0, Z] with L (t) > 0,

which takes the value 0 on [0,2R] and the value Z on [R’,/2] for some R’ with

2R < R < ‘/75 (The diffeomorphism p, rotates the sphere S‘Cl;'l of radius |x|
by angle 1 (|x|) along the x,xz4-plane. The rotation p,|ga—1 exchanges the z,-axis
R/

and the z4-axis.) The resulting embedding L’ has a canonical normal framing
induced from the original one since the embedding p, o ;- can be extended to the
diffeomorphism p,. By permuting the coordinates so that the components agree
with Lg near 0I9F!, L' with the induced framing can be considered giving an
element, of Emb' ([P U 1971 U I", 191, (Figure 11 (b).) Suspensions for other
choices of components are defined similarly by symmetry.

The rotation p, is needed since the two components L} and L) have the coor-
dinate w, which will correspond to the parameter for the spinning, and we would
like to let L% have the coordinate w near the boundary, too. The permutation of
the coordinates can be given by moving the d-th factor before the first factor.

Here, we interpret normal framings of some embeddings by the model of the
“embedding modulo immersion”, as in [Wa3, (0.3)]. Namely, let Embg(I” U I? U
1", I%) be the path-component of the point (L, const) in the homotopy fiber of the
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derivative map
Embo (1P UI9U ", 1%) — Bun(T(I? U IP U IP), TI%),
where
e Bun(T(IP UL U L"), TI%) ~ QP(gZPL -) x Q(gp3% S ) x Q7(524) s the
space of bundle monomorphisms T(I p U IMuI) — TI 4 with ﬁxed behavior
on the boundary, and the identification in terms of the orthogonal groups
is induced by the standard framings of the disks,
e const is the constant path at the basepoint of Bun(T'(I? U I?UI"),TI%)
given by the standard inclusion.
A point of Embg(I? UI?UI", I%) can be represented by an element f of Embg (/¥ U
17U 1", I%) with a regular homotopy, which is a path of immersions, from f to the
standard inclusion.
The component EmbfJ (IP U I9 U I", I%) of the standard inclusion Ly with the

standard normal framing can be interpreted as the path-component of the point
(Lgt, const?) in the homotopy fiber of the map

Embo(I? UIUI", I%) — QP(BSO4_,) x Q4(BSOq4_q) x Q" (BSO4_,)

given by taking normal bundles. Then there is a natural map
ind: Embo ([P U9 UI", I%) — Embl(IP UI?UI", 1)

induced by the map Bun(T(I* UI? U I"), TI%) — QP(BSO4—_,) x Q4(BSO4_,) x
Q"(BSO,4-,) given by taking normal bundles. The following diagram is commuta-
tive:

Ta—s(BEmbo(I¢ 2 U I UT", 1)) —L s m(Emb(I24 5 U 1972 U 1472, [24-3))

ind. l lind*

Ta—s(Embh (1972 U1 U T, 1)) —Ls mo(BEmb! (12475 U 1972 U 192, [24-3))
(5.2)
where the horizontal maps are the ones induced by graphing.

Lemma 5.3. Let fg: Embf(lp UI?UI", 1Y) — Emb(IP U9 UI", I%) be the map
given by forgetting framing. Let [8] € mg_3(Emb)(I¢2 UI' U I', 1)) be the class
defined in §5.3.
(1) The class fg,([3]) € ma_s(Emb(I"2 U I' U I' I%) has a canonical lift
8] € mg—3(Bmby (1972 U I' U, I%)) such that ind, ([8]) = [8].
(2) The class [B(2d = 5,d = 2,d — 2)5q4 3] € mo(Emb(I*~°U12UL? 2, [24-3))
has a canonical lift [B (2d 5,d—2,d—2)2q_3] € mo(Emb(I** P U2 U
1972 129-3)) such that U([8]) = [B(2d —5,d — 2,d — 2)24_3].

Proof. (1) This is a straightforward analogue of the proof of (1’) in the proof of
[Wa3, Lemma A] (obtained just by replacing (D* U D¥ U D* Q%+1) with (1472 U
I* U I, I?), and by exchanging the role of the first and second component).

(2) A lift E(Qd —5,d—2,d—2)a4_3 is constructed as a result of iterated sus-
pension of the first and third components in B(d —2,d — 2,1), with the spanning
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(a) graph of spinning (b) suspension
F1GURE 11. The two models for the second component.

disks D; (i = 1,2,3. Lemma 3.7) by extending the suspension of string links to

those with spanning disks in a straightforward manner.
To prove ¥([3]) = [B(2d — 5,d — 2,d — 2)24_3], we compare the two elements of
Emb(72?75U1%2U1%72, 124-3) represented by the following objects (see Figure 11):
(a) The string link (1972 U ' U T) x 1973 — I x 1973 with spanning disks
obtained from 8 € Q4 3Emb (ld_2 uItulrt, I%) by graphing. This gives

(([3)).

(b) The string link obtained from B(d —2,d — 2,1)4 with the spanning disks
D; by the (d — 3)-fold suspension for the first and third components. This

gives [B(2d — 5,d — 2,d — 2)24_3].
The family of spanning disks of (a) is given by a straightforward analogue of those
in the proof of (1’) of [Wa3, Lemma A]. We assume without loss of generality the
following.

For (a), we assume that the first and third components agree with the ones
obtained from the constant 79~3-families of the standard inclusions I 2UQUI! —
I?. This is possible by Lemma 3.1. Moreover, we also assume similar condition
for the second component outside a (d — 2)-ball D about (3,...,4) € I* x [973
with small radius R < % Then the associated graph is of the following form: Let
a= (%, ceey %) € 1973, The associated graph is the connected sum of the following
two objects.

e The graph of the standard spinning model p’ o L ; of §5.3.3 (assumed to

lie in a small (2d — 3)-ball Ug about (p2, %,...,3) x a € [?473 = [¥ x 473
with radius R). We assume that Ug is disjoint from the first and third
components.

e A (d—2)-sphere Ly in 124=3 — (J9-2U U I") x 1773, which is disjoint from

the ball Ur and lies in a small tubular neighborhood of I% x {a} in 1?93,
N 3
of La. We also assume that the band for the connected sum is thin (Figure 11 (a)).

We may further perturb the object (a) within the class W([3]) into one such that
Ly lies in I¢ x {a} and the restriction of the embedding of the second component
to Dg collapses into I x {a} outside Ug.

For (b), we assume that the first and third components are standard as for (a).
Moreover, we may assume that the second component satisfies a similar condition
as above for (a), namely, it is standard outside Dp and is a connected sum of the
standard model for the suspension with Ly C I x {a} (Figure 11 (b)).

The connected sum is performed between the point (pa, %, ..., 3)xa and a basepoint
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Now we prove that the two models in Up are related by an isotopy in Ug that fix a
neighborhood of 9Ug. Note that the first and third components do not intersect Ug,
and hence the intersection of the images of the embeddings of Dr with Ug consist
of a single component. By assuming that the bands for the connected sums with Zg
is sufficiently thin, it suffices to prove that the two models without connected sums
with ZQ are related by an isotopy. Let f1, fo: Dr — Ug be the embeddings of the
two models, respectively. As f; can be isotoped to the restriction of the standard
inclusion, by collapsing the spinning model of §5.3.3 onto a base-line, we need only
to prove that fo can be so too. That fy can be isotoped to the restriction of the
standard inclusion can be seen inductively by using the explicit model given in
Definition 5.2. More precisely, we replace the smooth function ¢: [0,v/2] — [0, 7l
with ¢ = (1 — 2)¢ +5: [0,v/2] = [s,Z] for 0 < s < Z. This yields an isotopy
between f, and the standard inclusion. O

Proof of Lemma 3.20. By the commutativity of (5.2) and Lemma 5.3, we have

Y([8]) = ¥(ind.([p])) = ind.(¥([A])) = ind.([B(2d = 5,d = 2,d — 2)24-3])
[(B(2d = 5,d —2,d = 2)24_3, Fp)],

where Fp was defined in Definition 3.6. This completes the proof. 0

5.6. A band model for type II surgery. Recall that a surgery on a type II
handlebody was defined by using a “family of framed embeddings 142U ur' — 14
obtained by parametrizing the second component in the Borromean string link”.

Lemma 5.4. The pointed loop [ € Qd_3Emb6(ld_2 urtu ll,Id) is homotopic
relative to the basepoint to a pointed loop 7y satisfying the following conditions.

(1) The restriction of v(s) € Embl (197 2UI'UI', I%) (s € S973) to the first and
third component are the constant families of the standard inclusions. Let
L1, L3 denote the image of the inclusions of the first and third component,
respectively.

(2) The restriction of v(s) € Embi(I972UI* UI', I%) (s € S43) to the second
component has the image included in a fized subset L URU Q of I¢, where

o L is the image of the second component of ~(s°) for the basepoint
s9 € 8973, For all s in a ball around s° € S%=3, we have y(s) = v(s°).

e Q is a small tubular neighborhood of a (d — 2)-sphere embedded in
I — (LU L3).

e R is a band diffeomorphic to I x I embedded in Int I? — (Ly U L3) such
that {0} x I is included in L, {1} x I is included in 0Q, and (Int ) x I
1s disjoint from LU Q.

Proof. The condition (1) can be realized by the Brunnian property of the Bor-
romean link. It is easy to find a family of isotopies that realizes the condition (2),
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as in the following picture.

=

Namely, we smoothly collapse the “tube” [0,e] x D9~2 attached to an interval in
L along a sequence [0,¢] x D2 — ... — [0,¢] x D? — [0,¢] x D' of natural
projections. O

6. Normalization of propagator: Proof of Proposition 4.6

In this section, we shall prove that the normalization of propagator as in Propo-
sition 4.6 is possible on all the pieces ij except the diagonal ones QL (i # 00),
mostly following Lescop’s interpretation given in [Les2] of Kuperberg—Thurston’s
sketch proof for 3-manifolds ([KuTh, §6]).

6.1. Preliminaries. In the rest of this section, we put X = (5% c0).

(i) Let at,ab,al,bi,bh, b5 be the cycles in V; defined in §3.6 and §4.2. We
take a basepoint p* of dV; that is disjoint from the cycles b%, a’. If V; is of
type I, two of the cycles b} are circles and one of the cycles b’ is (d — 2)-
dimensional sphere. If V; is of type II, one of the cycles b’ is a circle and
two of the cycles bj» are (d — 2)-dimensional spheres.

(ii) Let S(a}) be a disk in V; that is bounded by a}. Let S(b}) be a disk in
X —IntV; that is bounded by b}. Let 7% be a smoothly embedded path in
Voo from p? to oo € S, which is disjoint from S(bJ,) for all (m,j). The
exsistence of such a ~* follows from the particular construction of V; from
Y-links as in §3.4. Further, we assume that v N ~7 = () for i # j.

(iii) S(b)) may intersect a handle of V; (j # i) transversally. We assume that
the intersection agrees with S(a,) for some unique (m, j) up to orientation.
This is possible according to the special linking property of the handlebodies
in graph surgery.

(iv) For i # oo, we identify a small tubular neighborhood of dV; in X with
[—4,4] x 9V; so that {0} x 9V; = 9V, and {—4} x 9V, C Int V;. For a cycle
x of OV, represented by a manifold, let

xz[h] = {h} x x C [-4,4] x IV;

and let 2 denote a parallel copy of  obtained by slightly shifting 2 along
positive direction in the coordinate [—4,4]. Here, [—4,4] x 9V} is a subset
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of a single fiber X. Also, let

[ ViU(0.B <8V (h>0),
i = o o (2o

o SN (X~ Wt(ViR)) (h > 0),
Sh“’”‘{swﬁ) OO x b))  (h<0),

o S@)U(0.] xal) (h>0),
Sh(‘”)‘{swi) Vil (h<o),
Vo ] = X — Int (Vi [~h] U+ - U Vi [—]),

where, Vo, was defined in §4.5.

/ Su(by) b

=
Sn(ap)
h>0 h<0

(v) The boundary of V; (i # oo) is K; x @V;. The factor K; has nothing to do
with the [—4,4] in the previous item. Let

@:Kixbé and @, = K; x aj.

Let S(@i) be the compact submanifold of V; with dS(a%) = @ given by
Lemma 4.2. We assume without loss of generality that the intersection in
Vi of S(a}) with [—4,4] x 9V; = K; x ([—4,4] x 9V}) agrees with [—4,4] x @,

(vi) Vi[h], Vaolh], V/[R], VL [R], Sh(ai) € EC,(x )({ }) ete. can be defined in
a similar way. QZF] [, h'] is defined by replacing V’ V’ in the definition of
ij with ‘N/i’[h], ‘70/0 [h], respectively.

6.2. Normalization of propagator with respect to one handlebody Vi,
J # 0o, unparametrized case. We put V = V; and abbreviate a] bé,ﬂyﬂ etc. as
a;, by, 7y etc. for simplicity. We identify 90X with S’d 1 and its collar neighborhood
with [0,1] x S9! where {0} x S?~! = 9X. Let ¥ be the closure of the lift of
v — {00} in X = Bl}(S?). Let 7, be a closed (d — 1)-form on X supported
on the union of a tubular neighborhood of v and [0,1] x X C C1(S%;00) whose
restriction to a tubular neighborhood of v in X —[0, 1) x 0X agrees with 7, (defined
on Int X') and whose restriction to {0} x 90X is the SOg4-invariant unit volume form
on 0X = S% 1 which is consistent with the orientation of 9X. Such a form 7, exists
since «y intersects 0X transversally in one point and the n-form for the intersection
point in 0X is cohomologous to the unit volume form.

Proposition 6.1 (Normalization for one handlebody). Let d be an integer such that
d > 4, which may or may not be even. There exists a propagator w on Co(S%;00)
that satisfies the following (x+ = x[h] for some small h > 0).
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w normalized

FIGURE 12. Where w is normalized for one V' (projection in X x X).

(1) w|V><(X7\D/[3]) = Z(_l)(dimai)d_lLk(bha;)pT 775(0.1’) /\pz 7753(b() +p§ ﬁ'y[S];
il
where the sum is over i, such that dimb; + dimay, = d — 1.

(2) Wlx_papwy = 2 (DS OILK(0f be) P s, ) APS s (an) (1) DI Ty
il
where the sum is over i,£ such that dima; +dimby = d — 1.

(3)/ w:O,/ w =0 when dima; = d — 2.
pxSz(a;) Ss(a;i)xp

(4) w=0, w=0 when d =4 and dima; = dimb; = 1.
b; xSs(ai) Sa(ai)xb;

See Figure 12 for the domain where w is normalized. The conditions (1), (2)
imply that w is an extension of (4.2) on V; x V;. The condition (3) and (4) are
technical conditions which will only be needed so that the induction in the proof
of Proposition 6.3 works. More precisely, in the proofs of Lemmas 6.4 and 6.5,
respectively.

Let A = V x (X — V[3]), where V denotes Int V. Each term in the formula
of Proposition 6.1 (1) represents the Poincaré—Lefschetz dual of an element of
Hy11(A,0A), as shown in Lemma 6.2 (3) below. We start with any propagator wg
in C3(S% 00) and check that its restriction to A gives the same class in H9~1(A)
as the formula of Proposition 6.1 (1). Then it follows that by adding some exact
form supported on a neighborhood of A to wy we obtain a propagator satisfying
Proposition 6.1 (1). To do so, we compare the values of the integrals along cycles
that represent a basis of the dual Hy_1(A). Verification of the condition (2) is
similar.

Lemma 6.2. (1) H(X = V) = Hi41(V,0V) fori >0 and Hy(X — V) =R.
Namely, Ho (X = V) = ([#], [a1], [az], [as], [0V]).
(2) Ho(A) = Ha(V) @ (], ], o). [as], [OV])-
(3) Ha—1(A) is generated by [p x OV[3]], [b; X ae[3]] for dimb; + dima, = d — 1.
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(4) Hyi1(A,0A) is generated by the following elements.
[S(ai) x Ss(be)], [V x (3]},
where dima; +dimby, = d — 1.

Proof. In the homology long exact sequence for the pair (X, X — V), we have
H.(X) =0 for * > 0. Also, by excision, we have H; 1 (X, X — V) = H;;11(V,0V).
This gives (1). The rest is obtained by the Kiinneth formula and Poincaré—Lefschetz
duality. O

Proof of Proposition 6.1. This proof is similar to [Les3, Proposition 11.2, 11.6,
11.7]. Let wp be any propagator and w4 be the closed (d — 1)-form on

A=V x (X = V[2])

defined by the natural extension of the one given by the condition (1). This domain
A’ is the sum of A with a collar neighborhood, on which we connect wg and w4
by an exact form. The integrals of wy over the generators b; X a¢[3], p x OV[3] of
Hi_1(A) (Lemma 6.2 (3)) are as follows.

Also, by Lemma 4.1 (1) and (2), we compute
/ P175(ai) /N P2 TS5 (b,)
b: ><a[[3]

_ /lf nS(ai)/ ; NSy (be) = (_1)kd+k+d71(_1)d+k — (_1)kd71,
i ae

where £ = dim a; = dim ay. From the identities

/ PINS(ay) NP3 MSs(by) = (—1)Udimadd=ts 5., / P37, =1,
bi><a[[3] anV[g]

/ DI NS (a,) NP2 M85(b,) = 05 / P37, =0,
pxoVI[3] by xas[3]

it follows that the closed form w4 and the restriction of wy to A’ gives the same
element of H%(A’). Hence there exists a (d—2)-form p on A’ such that wa = wo+du
and du = 0 on V1] x 0X, since wa and wp agree with p3Volga—1 on V[1] x 0X
by assumption. Moreover, we may assume that 4 = 0 on V[1] x 9X by adding to
i a closed form on A’. Namely, since 0X is (d — 2)-connected, the natural map
HY2(V[1] x (X = V[2])) = H*2(V[1] x 8X) is surjective, and there is a closed
extension u' of ply1jxox on A’. Then we replace p with p — i/, which vanishes on
V[1] x 0X.

Let x: C2(S% 00) — [0,1] be a smooth function such that Suppy = A’ and
x=1on A=V x (X —VI[3]). Then let

Wa = wp + d(xp).

This is a closed form on C(S%; 00) that is as required on V x (X — V[3]) (as the
condition (1)) and agrees with wy on 9C5(S%; ) because y = 0 on the diagonal
stratum of 9C(S%; 00) and p = 0 on the infinity stratum.



EXOTIC ELEMENTS OF THE HOMOTOPY GROUPS OF Diff(S%") 61

For the condition (3), let r; = fpxsg(a_)wa for dima; = d — 2. We would like

to cancel this value by adding to w, a form d(xpu.) for some closed form g, on
A’, which vanishes on V[1] x 0X. This is possible because the addition of d(xp.)
changes the integral r; by

/ d(xpe) = / d(xpe) = / e,
pxSz(ay) px([2,3]xa;) pxa;[3]

where the left equality is because Suppx N (p x Ss3(a;)) = p x ([2,3] X a;), and
the right equality is because x = 0 on p x a;[2]. By praj (3] D5 NS, (by) = Oje for
dima; =d — 2, dimb, = 1 from Lemma 4.1 (2), the first half of the condition (3)
will be satisfied if we replace w, with

wh = wa + d(xpe), Where pio=— > 15(p30s,(0,))-

J:
dimb;=1

) Wa for dimb; =

For the condition (4) (only for d = 4), let \;; = fbiXS:),(aj
dima; = 1. For a closed form p, on A’, which vanishes on V[1] x X, we have

/ d(xpe) = / d(xpe) = / e
bi><S3(aj) bi><([2,3]><aj) bi><aj[3]

By fbimj[?)} PINSs(ar) AN P3Ns(b,) = 0ikdje for dimay = dimb, = 2 from Lemma 4.1
(1) and (2), the first half of the condition (4) will be satisfied if we replace w], with

o = wq +d(xp), where u, = — > A (0inssan APNs,))-
dim aiigi:nl bj=1

w

This change does not affect the previous modification since fpxaj (3] PiNSs(ar) N
P3ns,) = 0 for dima; = dimay = dim b, = 2.

A similar modification of w/ on (X — V[3]) x V is possible without touching
the previous modifications and yields another closed (d — 1)-form w that satisfies
the conditions (1)—(4). In this case the coefficients are determined by the following
identities:

/ wo = Lk(a;",bg), / wo = (—l)d,
a;[3]xby OV [3]xp

/ DY N8a(by) A D5 M5 (ap) = (—1) ™ 1650640, / P17y =1,
a;[3]x b 14}

V[3]xp
/ PIMS5(b,) NP3 NS(ay) = 0, / pifn, =0,
OV [3]xp a;[3]xbe

6.3. Normalization of propagator with respect to several handlebodies,
unparametrized case. Let Vi,..., V5, be the disjoint handlebodies in X that
define 7. We normalize the propagator with respect to this set of handlebodies.

Proposition 6.3 (Normalization for several handlebodies). Let d be an integer
such that d > 4, which may or may not be even. There exists a propagator w on
C9(S% 00) that satisfies the following conditions.
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(1) For each j=1,2,...,m,

ima?)d— j j * * * —
Wy (x—1m) = Z(_l)(d DIIL(b] ap ) p Ns(a?y NP2 Nsy i) + P2 Tlyi3)
i

where the sum is over i,{ such that dim b{ + dim az =d—1.

(2) For each j=1,2,...,m,

ima?)d— j j * * * —
W|(X_\“/j[3])xvj = Z(_l)(d ) 1Lk(a§+,bé)pl Nssv7) NP2 M5 (ad) T (—1)%p} i3]
il

where the sum is over i,{ such that dim az + dim bZ =d—1.

(3)/ Vw:O,/  w=0(=12,...,m, dimal =d—2).
pIxS3(al) Ss(a})xp?
4) / _w:O,/  w =0 =12,...,m) when d = 4 and
b“Z><Sg(ai) ) Sg(ai)xbz
dimb] = dimaj, = 1.

Proof. The following proof is an analogue of [Les2, Proposition 5.1]. We prove
Proposition 6.3 by induction on m. The case m = 1 is Proposition 6.1. For m > 1,
we take a propagator wg that satisfies the conditions of Proposition 6.3 for all j < m,
and w,, that satisfies the conditions of Proposition 6.3 for a single m, with V,, and
X — V,,[3] replaced by larger subspaces V;,[1] and X — V;,[2], respectively, so that
wo and wy, agree on V;,[1] x V;. By Lemma 2.12, there exists a (d — 2)-form p on
62(5‘1; o0) such that wy,, = wp + du. We may assume that w,, agrees with wp on
0C05(S%; 00) and moreover that p = 0 there since H4~2(0C5(5%; 00)) = 0 by the
exact sequence:

0= H¥2(Cy(8% 00)) = HI2(0C5(5%; 00)) — HYH(C1(5%; 00),0C5(5%; 0)),

and H41(C5(8% 00),0C3(8% 00)) = Hyy1(C2(S% 0)) = 0 by Poincaré-Lefschetz
duality. Then we set
wa = wo + d(xp),

where x: C2(8% 00) — [0, 1] is a smooth function with Supp x = Vi [1]% (X —V,,,[2])
that takes the value 1 on Vj,, x (X — V;,[3]). Then w, is a closed (d — 1)-form on
C5(S9%; 00), which is as desired on

m o m—1 o o

Cs(8%00) U (J(V; x (X = VB U (J (X = (V3] U Vi [1])) % V).

j=1 j=1
(Figure 13.) We need to check that it can be normalized further on V/;,[1] x U;n;ll V;
since the addition of d(xu) may change the previous normalization where the func-
tion x is non-constant.

The assumptions on wy and w,, imply that p is closed on V,,[1] X V; (j < m)
and vanishes on V,,[1] x 9X. Moreover, by Lemmas 6.4 and 6.5 below, we see that
w is exact on Vp,[1] X V; (j < m). Hence we may assume that p = 0 on that part.
Thus it remains to prove that we may assume moreover the conditions (3) and (4).

Now we shall prove that there is a linear combination u. of p3 NS5 (b7 (for
dim b}* = 1) and a linear combination i/, of PI7s5 (ag) NP3 (b7 (for dim b)* = d—2)
that vanish on V,,[1] x V; for j < m such that the new form w) = wq + d(xpc) +
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Vi3] V[

5. (qm normalized
B P X S3(ai) (by induction hypothesis)
Vin[3] Vn[
Ay —
Vi
Vil3]

FIGURE 13. Where w/, is normalized (projected on X x X).

d(x ) satisfies the following identities, which correspond to the former parts of the
conditions (3) and (4), respectively.

/ w, =0 (for dima}* =d —2), (6.1)

meS;g(aZ")

/ w, =0 (for d =4, dimb}" = dima}’ = 1). (6.2)
b};nXSQ,(azn)

We prove the existence of such p. and p, by modifying the proof of the conditions
(3) and (4) of Proposition 6.1 in a way that the induction works. Namely, let
re = prxsg(a;n) we and Ay = fb;gxsg(a’;) wa. As in the proof of Proposition 6.1,
there exist unique linear combinations p. of p3 NS, (b) and pl, of D175 (ap) Ap;nS(b;”)
(when d = 4) such that r, = fp7”><azn[3] pe for all £ with dima)* = d — 2 (&
degng, @y = d —2), and A\gr = fb;"XGZ"[B‘] wl for all k, ¢ with dim b = dima}* =1
(when d = 4). Then the form

Wl = wq + d(xpe) + d(xpu..), where

pe ==Y rePinsupy)s He=— Y Mee(PiNss(ap) A PINs(br))
¢ ket

satisfies (6.1) and (6.2). In order that this modification does not affect the previous
normalization, it suffices to prove that r, # 0 implies Sy (b}*)NV; = 0 for j < m, and
ke # 0 implies Sp(b)*) NV, = 0 for j < m. This is the consequence of Lemma 6.6
below.

The normalization on the symmetric part (X — V,,,[3]) x V;, can be done similarly
and disjointly from the previous normalization, again by using the straightforward
analogues of Lemmas 6.4 and 6.5 for V; x V;,,[1] (j < m). O
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Lemma 6.4. Let i be the (d—2)-form on C(S%; 00) in the proof of Proposition 6.3
such that ;1 = 0 on dC5(S%00). For j < m and for £,¢ such that dimb}* =

dimb), = d — 2, we have
/ =0, / p=0.
by xpd pm Xbi,

Proof. For the first identity, let vJ, € X be the endpoint of 7 other than p.
Since p = 0 on 9C>(S%; 00), we have fmeUj 1 =0, and by the Stokes theorem,
7 x vl

/ = (—U‘H/ = (—1)“/ (wm — wo)-
by x pJ (b x77) by xv7

by x vl S (b x v

w,, normalized — ) X Y- wq normalized

Here, it follows from )" x 7 C V,,, x (X — Vin[3]) and the explicit formula for wy,
there (condition (1) of Proposition 6.3) that [,,. i Wm = 0, since 77 is disjoint
4

from S(b}}) for all ¢, as assumed in §6.1-(ii). Also,

/ Wozﬂ:/ wOZi/ w0¥/ w0=¥/ wo,
by <7 S(by)x o7 S(by) x vl S(by)xpi S(by)xpi

where £ = (—1)¢ and the first equality holds by 9(S(b)*) x F9) = b x 7 +
(=1)?=1S(b) x 957 and dwp = 0, and the third equality holds by the explicit form
of wp on S(b*) x v, C OC5(S% 00). Then it suffices to prove that the last integral
vanishes.

If S(b]*) N'V; = 0, the last integral vanishes by the explicit formula of wy on
(X — VJ[3]) x V;. If S(b*) NV, # 0, the intersection of S(b}") with V(3] is :th(a;,)
for some ¢’ by the assumption §6.1-(iii), as in the following picture.

S(b) Safap)

Vi ’ Vi

Then we have

/ wo = :|:/ _ wo +/ ) ) wo,
S xpd Sa(a?, ) xpd (S()—$3(ad, ) xpd
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where S(b}") — Sy (ag,) is considered as a chain given by the submanifold S(b}") —
gg(ai,) with orientation induced from S(b}"), and the integral over Sg(az,) X pJ
vanishes by the condition (3) of Proposition 6.3. The integral over the remaining
piece (S(b)")— S’g(ai,)) x p’ vanishes by the explicit formula of wg on (X — VJ [3]) xV;
and the assumption S(b}*) N ~J = (). This completes the proof of the first identity.

The second identity can be verified similarly, except the roles of wy and w,, are
exchanged. Since p =0 on 9C5 (5% 00), we have [, =0 and

m s bI
o8 Xby,

/ ,u=—/ ) u=—/ (Wm — wo)-
mebZ/ 8(7m><bé,) VmXbZl

Here, ™ x b}, C (X — V;[3]) x V; and the explicit formula for wy there imply

; wo = 0, since 7 is disjoint from S(b},) for all £”, as assumed in §6.1-(ii).

3™ Xby,

Also,

/ _wm:/ ,wm:/ _wm_/ _wm:_/ .
Fmxb, o7 xS (b)) v xS (b)) P xS(bd,) P xS (b))

Again, we need only to consider the case .S (bg,) NV, # (0, in which case the integral
on the right hand side vanishes by the condition (3) of Proposition 6.3 and by the
explicit formula of w,, on V;,, x (X — V,,[3]). O

Lemma 6.5. Let d = 4 and p be the 2-form on Co(S%; 00) in the proof of Propo-
sition 6.5 such that = 0 on 0C5(S8% 0). For j < m and for £,¢' such that
dim b)* = dimb), = 1, we have
/ u=0.
by xb?,

Proof. The idea of the proof is similar to Lemma 6.4. We use the identity

/ _u=—/ , u=—/  (wm —wo)
by xb?, a(by xS (b7,)) by xS(b,)

given by the Stokes theorem. We have

/ ) wo = :l:/ ) wo,
by xS (b?,) S(byr)xb?,

by A(S(b;) x S(b),)) = b* x S(b),) + S(b*) x b, and duwo = 0. If S NV, =0,

o

the last integral vanishes by the explicit formula of wy on (X — V;[3]) x V;. If
S(by")NV; # 0, the intersection of S(b}") with V;[3] is £S3(aj,,) for some " by the
assumption §6.1-(iii). Then we have

/ _wozi/ _ Vw0+/ o - wo,
S(bEn)sz/ S3(az//)><bz/ (S(bzn)_SS(az//))XbZ/

where sz(az//)Xbi, wo = 0 by the condition (4) of Proposition 6.3. The integral

over the remaining piece (S(b}") — Sy (aj,)) x bj, vanishes by the explicit formula
of wo on (X — V;[3]) x V; and the assumption S(b7) N S(b),) = 0. Thus we have

fb;ﬂxs(b;,) wo = 0.
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If S(b), )NV, = 0, then we have b* x S(b),) € Vi x (X =V;,[3]) and Jo 50,y Wm =
. E/
0 by the explicit formula of w,, in Proposition 6.1 (1). If S(b},) NV, # 0, then the
intersection of S(b},) with V;,,[3] is £S3(a}") for some k by the assumption §6.1-(iii).
Thus we have

/ wm:j:/ wm—f—/ ) . wm:ﬂ:/ Wi,
by xS(by,) by xSz (ai) byt < (S(by,)—Ss(ai)) by x Sz (aj)

(2

where the second equality holds by by x (S(b,) — 50’3(%”)) C Vi X (X = V;n[3]) and

by the explicit formula of w,, there. Moreover, the last integral vanishes by the

condition (4) of Proposition 6.1, and we have fbmxs(bj ) Wi = 0. This completes
4 o

the proof. O

Lemma 6.6. Letr; and Ak be as in the proof of Proposition 6.5. If So(b]*)NV; # 0,
then rg =0 (when dima}* =d —2) and A\ =0 (when d =4 and dima}* =1).

Proof. Suppose aj is such that Sy(b7*) N'V; # 0. By the assumption §6.1-(iii),
Ss(ay*) € S(b]) for some i. When dima}* = d — 2, we have

T‘gZ/ wa::I:/ _wa—/ , ) Wa-
p™ X Ss(ay") pmxS(b7) X (S(0])N(X =V [3]))

We prove that both of the two terms on the right hand side vanish.

&—— (), normalized

m

For the first term, let v} € 0X be the other endpoint of 7™ than p™. By (7™ x
S(b]) = v x S(b]) —p™ x S(b!) — 5™ x bl, we have

/ Vwa:/ ‘wa_/ o,
pmxS(b]) vz xS (b)) 7™ xb]

Since v x S(b)) € dC4(S%00) and 7" x b! C (X — VJ[3]) x V;, the integrals
on the right hand side are both zero by the explicit formula of w, on 9C5(S%; 00)
and (X — VJ[3]) x Vj. For the second term, since p™ x (S(b)) N (X — Vim[3])) C
Vi X (X =V;n[3]) and S(b7) is disjoint from Wm: we have [, (s(7)n(x— Vinf3))) Yo = 0
by the explicit formula of w, on V;;, x (X — V;,[3]). Hence we have r, = 0.

When d = 4 and dimay® = 1, we have

)\kg:/ wa::I:/ wa—/ Wa.-
b x Sg(ay*) b x S(bY) b x (S(b))N(X = Vi [3]))
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The second term in the right hand side vanishes by b x (S(b7) N (X = V;,[3])) €
Vi % (X = V,u[3]) and by the explicit formula of w, there. For the first term, we

use the identity
/ Wq = :I:/ Wq,
b x S(b) S(b)xb]

given by the Stokes theorem and dw, = 0. If S(b7*) N V; = ), then S(b}") x b} C
(X — VJ[3]) x V; and the integral vanishes by the explicit formula of w, there. If

S(br)NV; # 0, then the intersection of S(b)") with V;[3] is £S3(al,) for some ¢’ by
the assumption §6.1-(iii). Then we have

/ We = :I:/ Wa +/ Wa-
S(by)xb? Ss(al,)xb! (S(b)—Ss(al,))xb]

The second term in the right hand side vanishes by (S(b;") — Ss(a?,)) x b7 c (X —
1/3[3]) x V; and by the explicit formula of w, there. The first term vanishes too
by the condition (4) of Proposition 6.3. Hence we have fngs(bg)wa = 0. This
completes the proof. 0

6.4. Normalization of propagator in parametrized pieces. The normaliza-
tion conditions of Proposition 6.3 for a single fiber allows us to extend the normal-
ized propagator to most pieces QZF] in ECy(7"). We shall do this and complete the
proof of Proposition 4.6 in five steps.

6.4.1. Step 1: Normalization in a single fiber. In the following, let w; be the nor-
malized propagator on C(S%; 00) with respect to Vi U --- U Vo C Int X, as in
Proposition 6.3. We consider w; as a normalized propagator on the fiber over the
basepoint of Br.

6.4.2. Step 2: The most “degenerate” entry QL___. There is a bundle map

O = B, (Vs o0)

.

which can be slightly enlarged to a map f){fo]oo: QL . 12,2] = Ca(Va[2]; 00), where
QL o[h W) = ppy (VL [h] x B VL[R']). (See §6.1(vi) for the definition of Qi;[h, ).
We set

wr = (Po) w1 € Qg (Uono[2,2D)- (6.3)

Pooo

6.4.3. Step 3: Eaplicit form in “generic” entry Q;, i # j, {i,j} N {oc} = 0. There
is a bundle map

P = =
r . ’
of =V, x

|,

BF&KiXKj
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We define
Wi = Z Lem 21 s (ai) A ps Ms(al,) (6.4)

which is a form on Q;({4,j}) = Vi x V. It is immediate from the explicit formula
that w;; agrees with wy on

{(Ki x Kj) x (Vio[2] X Vo [2)} N (Vi x V)

= (K; x K;) x {([-2,0] x 0V;) x ([-2,0] x 8V})},

where the identification is given by the partial trivialization of XN/,\ over the subbundle
with fiber [—2,0] x V). Hence @;; can be glued to o.)g Namely, the two forms
([9{1]]) wi; and wy agrees on Q; N QL [2,2], where P, pw Q5[2,2] = Vil2] x V;[2] is
the fiberwise extension of p;;, and they are glued together to give a new form on
Q{J UL [2,2], by just extending the domain. Doing similar gluings for all (i, j)
such that i # j, {i,7} N {oco} = 0, we obtain a form ws defined on

ul el

(4,5)

Then the following identity holds.
w3|sz{j = p;;Wij = ﬁjw3|sz§j({i,j})~ (6.5)

6.4.4. Step 4: Extension over Qb UQL . i # co. There are bundle maps

00t !

(AL VAV VA o v <V (6.6)
BF Pico Kl BF Pooi Kl

Let Q(Fl.)oo and QI;O (i) be the subspaces P (Vix (Voo [2)N(X =V4[3]))) and p 2} (Vao [2]N
(X —V;[3])) x V;) of QL _ and QF

0017

respectively. We define the closed forms

WGico = Z(—l)(dim @Ik (bE, af ") p} Ns@i) NP2 sy (bp) T P2 i [3)
7,4
(for j, ¢ such that dimb) + dimaj =d — 1),

Doci = (= 1) ™ NL(af", b)) pf s, 00) A P Tsas) + (= 1) D5 ey
7,0
(for j, ¢ such that dim aé +dimb, =d — 1)

on V; x (Vao[2] N (X — V;[3])) and (Vao[2] N (X — V4[3])) x V;, respectively. These
formulas are consistent with the formulas of Proposition 6.3 on the fiber over the
basepoint of K;. It follows from the explicit formulas that on the overlap of these
domains with Ds({i}), which is the restriction of the bundle D3 — Br on Br({i})
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as in Notation 4.5, the values of the overlapping forms agree. Hence p;  ws|p,{i1)
and p}_,ws|p,(fi}) can be extended by p; Wico and pi;Weei to a closed form w4 on

iF#£00

Then we have the following identities.

e o~
w4|in)m = PiccWico —pioow4|9(§.)oo({i})a
(6.7)
w|r :A‘*-&}‘:F‘W|F ; ’
4 Qm(i) 00%* 001 ocoiW4 Szoo(i)({l}),

where Q(Fl)oo({z}) and ng(i)({z}) are the restrictions of the bundles Q{i)oo — Br
and QL ({i}) — Br on Br({i}), respectively, as in Notation 4.5.

oo(1)

6.4.5. Step 5: Extension over QL.[4,4], i # oo. There is a bundle map

K22

L[4, 4] —Po B0, (r(an))[4, 4]

| |

Pii
Br é[{i

where ECa(m(0))[4,4] = Bla, , (Vil4] %k, Vi [4]) = QL [4,4)({i}). Let ST A,y =

Phe (A, [4]) denote the diagonal stratum in EC5(7m(;))[4,4]. By Lemma 3.23, the
standard vertical framing on K; x V extends over Vi. Hence by pulling back the
symmetric unit volume form on S%! by the framing as in Lemma 2.13, we obtain
a closed (d — 1)-form extension wj ; of wy over ST"Ag, 1y We will see in the next
section (in Lemma 7.1) that wj ; on

(Da({i}) N ECa(m(ei))[4,4]) U ST Ag,

can be extended to a closed (d — 1)-form on ECq(m(c;))[4,4]. We postpone the

proof of this fact and assume this now. By pulling back this extension to },[4, 4]

kX3
by pii, we obtain a closed form ws; on QL [4,4]. By doing similar extensions on
QL [4,4] for all i # oo, we obtain a closed form ws defined on EC» (") that extends
wy, which satisfies the boundary condition for a propagator. By definition, we have

the following identity.

ws|Qr [4,4) = Piiws|or [4,4)({i})- (6.8)

Proof of Proposition 4.6. Now the closed form ws on ECy(n") is as desired in
Proposition 4.6. Namely, the condition (1) of Proposition 4.6 follows by (6.3),
(6.5), (6.7), (6.8). Note that (6.7) can be extended to the identity for QL U QL .
by using (6.8), both hold in subspaces of the same bundle ECo(7")({i}) over K;.
The condition (2) of Proposition 4.6 follows from (6.4). O
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7. Extension over the final piece QL, i #

To simplify notation, we set V = V;[4], V = V;[4], and EC,(V) = QL [4,4]({i}).
We shall prove the following lemma, whose proof was postponed.
Lemma 7.1. The closed form w}; on P = (D4({i}) N E@(f/)) USTYAy can be
extended to a closed (d — 1)-form on ECa(V).

The problem is to show that the class of w}, in the cohomology H !(P) is
mapped to zero by the connecting homomorphism

HYY(P) = HYEC,(V), P).

It is easy to see that P deformation retracts onto (’“)E@g(‘N/) by shrinking the collar
neighborhoods. Thus the problem is equivalent to the analogous one for the pair

(ECy(V),0EC(V)),

and we consider the latter. In this section, we will prove the above cohomological
property of wj ; by evaluating on some explicit (d—1)-cycle in OEC,(V) by a higher
dimensional analogue of Lescop’s proof of [Les3, Lemma 11.11].

7.1. On the homology of C5(V). In this section, a chain is a piecewise smooth
singular chain, namely, a linear combination of smooth maps from simplices. Since
a manifold with corners admits a smooth triangulation, a linear combination of
smooth maps from compact oriented manifolds with corners can be considered as
a chain.

Lemma 7.2. Let d be an integer such that d > 4. Let A, = ([b; x b, | dimb; +
dimb, =n).

. oy ([bjx*],[*xbj]|dimbj:2>EBA2 if d =4,
() Ha-2(V7) = { (s x #], [# x by | dimb; = d—2) ifd> 4,

Hy 1(V?) = A4,
Ay ifd—=4
2\ )
Ha(V7) = { 0  otherwise,
Ao ifd=5,
0 otherwise.

(i) Ha-1(C2(V)) = Ha1(V?) © ([ST(x)]),
Hy(C(V)) = Ho(V?) & ([ST(by)] | dimb; = 1),
Hgd_3(02(v ) = <[ST(bl)] | dim bi =d-— 2>,
H;(Cy(V)) = Hy(V?) ifi #d—1,d,2d — 3, where ST (o) for a submanifold
cycle o CV denotes ST(V)|e = SN(Avy)|a, (see §1.4 (a)).

Proof. We replace for simplicity V and Cq(V) with V and Cg(f/), respectively,
without changing their homotopy types (especially for the excision argument be-
low). The assertion (i) follows immediately from the Kiinneth formula. In the
homology exact sequence for the pair

= Hyr(V?) = Hy 1 (V2 V2= Ay) — Hy(Co(V)) —

we see that the map H,11(V?) — Hpy1(V2, V2 — Ay) is zero since the explicit
basis {[+], [b1], [b2], [b3]} 2 of H,(V2) can be given by cycles in V2 — Ay,. Hence we
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have the isomorphism
Hy(Co(V)) = Hyy (VA V2 = Ap) @ Hy(V?).

By excision, we have H;(V?2, V2 — Ay) = Ha(D*,0D%) @ H;—a(Ay) = Hi_q(V),
and

Hd+r(‘727‘72 - AV) = {
The assertion (ii) follows from this. O

Let a be a;[4] C OV that is (d — 2)-dimensional. Let ¥ = S4(a;). Suppose that
V' is of type I. We assume the following for X.

Assumption 7.3. (1) If V is the fiber over the non-basepoint 1 € K;, we
assume Y is given by a normally framed embedding from S! x §9=2 —
(open disk). This is possible since ¥ is a Seifert surface of one compo-
nent in the Borromean rings that is disjoint from other components, as in
Lemma 4.2.
(2) If V is the fiber over the basepoint —1 € K, we assume that ¥ is either
D=1 or St x §472 — (open disk), the connect sum of a small S x S92 to
a (d — 1)-disk.

In any case, ¥ = DI71#(St x §9-2)#9 for g = 0,1. Let c1,co,...,co4 be the
cycles of X that form a basis of the reduced homology of ¥ over Z. Let c7,c3, ..., c3,
be the cycles of ¥ that represent the basis of H,(X;Z) dual to ¢y, co, . .. , Cag With
respect to the intersection form on X, so that ¢; - ¢j = d;;. Let c:r, C;Jr be the cycles
in V obtained by slightly shifting ¢;, ¢} along positive normal vectors on . The

following lemma will be used in Lemma 7.7 to study a part of the homology class
of the diagonal in ¥ x X7,

Lemma 7.4. (a) The (d —1)-cycle Y, ¢, x ¢, is homologous to

Z /\jvé bj x by in V? for some /\}/z eR,
4.0
where the sum is over j,{ such that dimb; 4+ dimb, = d — 1.
(b) The (d —1)-cycle 3", cx x cit is homologous to

D Aby X b+ 6(8)ST (%) in Co(V)

7.4
for some constant §(X) depending on the submanifold ¥ C V', where the
sum is over j,{ such that dimb; +dimb, =d — 1.

Proof. The assertion (a) follows from Lemma 7.2(i). For (b), one can show by using
the computation of Hy_1(C2(V)) in Lemma 7.2(ii) that the coefficient of b; x by in
the homology class of >, cx x ¢;T agrees with that of (a). The coefficient §(%) of
ST (%) is >, Lk(ck, i F). O

Remark 7.5. If we choose ¥ to be a (d—1)-disk, then the coefficient §(3) of ST'(x) of
Lemma 7.4(b) is zero. In [Les3, Lemma 11.12], an explicit formula for the coefficient
/\}/z is given. Lemma 7.4 is sufficient for our purpose.
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7.2. Extension over type I handlebody. We consider an analogue of Lescop’s
chain F%(a) of [Les3, Lemma 11.13]. We fix some notations to define the analogous
chain. Recall that we have put V' = V;[4], V[h] = V;[h] and chosen a C OV that is
(d — 2)-dimensional in §7.1.
(1) We identify a small tubular neighborhood of @ in 9V with a x [—1,1] so
that a x {0} = a.
(2) Let ©F = (SN V[-1)) U {(5t — 1,a(v),t) | v € S92t € [0,1]}, where
(5t — 1,a(v),t) € [-4,4] x (a x [-1,1]). We will also write X}y = ¥F or
¥y = X to emphasize that ¥T or ¥ is considered in a particular V when V
is a single fiber in a family of handlebodies. Recall that we assumed that
YN ([—4,4] x 0V[0]) = [—4,4] x a]0] (§6.1(iv)).

p(a)

(3) By S92 = ([0,1] x S9=3)/({0,1} x S9=3U]0, 1] x {oc}) (reduced suspension
of S973), we equip a with coordinates from [0, 1] x S~3. Let p(a) be the
basepoint of a that corresponds to oo € S92, the basepoint for the reduced
suspension. Let p(a)™ = (p(a),1) € a x [-1,1] C V.

(4) Let diag(v)X be the chain given by the section of ST(V)|s by the unit
normal vector field v on ¥ compatible with the coorientation of the codi-
mension 1 submanifold ¥ of V. The restriction vy, := v|g: X — STV gives
a submanifold chain diag(v)X of STAy C dC5(V). We will also write
diag(vs )X to emphasize the choice of X.

(5) Let T(a): S92 x T — (a x {0}) x (a x {1}) be the (d — 1)-chain defined
for (v/;y,2) € ST73 x T, where T = {(y,2) € [0,1)? | y > 2z}, by

T(a)(vl; y,z) = ((a(y, Ul)v 0)7 (a(z, U/)v 1))

To make this into a chain, we orient 7'(a) by dy A 9z A o(S?~3), where
oy A o(S473) = o(a).

(6) Let A(a) be the closure of {((a(v),0), (a(v),t)) | t € (0,1], v € [0,1] x S94=3}
in C5(X). Then A(a) is a compact (d — 1)-submanifold with boundary and
is diffeomorphic to S92 x [0,1]. We orient A(a) by o((0,1]) A o(a).

We assume the following without loss of generality.

Assumption 7.6. (1) The unit normal vector field v on ¥ is such that its
restriction to [—1,4] x a is included in T(OV).
(2) Let 7y be the framing on V as in Corollary 3.22 and let p(ry): ST(V)|s —
541 be the composition ST(V)|x —% % x §4-1 25 §d-1 We assume
that the restriction of p(7y) ov to [—1,4] X a is a constant map.

Thanks to Assumption 7.6 (2), the mapping degree deg (p(1v) o v) of p(Tv) o v
makes sense.
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Lemma 7.7 (Type I). The (d — 1)-chain
Fa(a) =diag(v)Sy — pla) x X — Sy x pla)™ + T(a) + A(a)
- {Z AV by x by + 6(Sy) ST(*)}

4,
in 0C5(V) is a cycle and is null-homologous in Co(V).

Let C - (%,%") denote the first line of the formula of F&~(a). This can be
obtained from an analogue of the chain C, > (X, 37) of ¥x X% in [Les3, Lemma 8.11]
by homotopy. Namely, we let

ax.sat={(a(,y),al,2)T) v €83 y,z € [-1,1], y > 2},
diag(X x ) = {(z,2") | z € ¥},

where X7 is defined in §7.2 (2), and the superscript + denotes the parallel copy in
Yt and orient a X, > a™ by Oy A 0z A o(Aga-s3).

Lemma 7.8. (a) The following chain of ¥ x X7 is a (d — 1)-cycle.
Co>(E, 2T =diag(E x 21 —x x BT =S x+T +ax.>a’
(b) The following holds in Hy—1(X x X7 7).

[Con(Z,50)] = Tfex x o]
3
Proof. The claim (a) follows since
P +xxat +axxT, (7.1)
d(diag(X x 1) —x x BT = ¥ x «1) =diag(a x a™) —x x a™ —a x T, (7.2)

d(a x> a") = —diag(a x a

where diag(a x a™) = diag(X x 1) N (a x a™). The check of the signs of the right
hand side of (7.1) is left to the reader. The claim (b) can be proved by considering
the closed manifold S obtained from ¥ by gluing a (d — 1)-disk D along their
boundary. It can be shown that

[diag(S x ST)] =[S x *T] + [+ x ST] + Z[Ck x c;t]
k

holds in Hyq—1(SxS™;Z) (Proposition F.1). We may define the cycle C, > (—D,—D™)
analogously to C, > (X, X1) by replacing ¥ with — D in the definition of C, > (X, X7).
Then we have

[Ce2(E, 5] + [Coz (=D, =DF)] = Y [ex x ;7]
k

in Hy—1(S x ST;Z), and that [Cy>(—D,—D1)] =0in Hy_1(D x DT;Z)=0. O

Proof of Lemma 7.7. Now ¥ x ¥F can be considered as embedded in C(V) by
considering the points on X% in diag(3[—1] x ¥ [—1]) as lying on v(X) in SN (Ay).
In this way, we may identify C 5 (¥, ¥") with C\ > (3, 1) up to boundaries, where
diag(X x £1) 4+ a x, > at corresponds to diag(v)X + T'(a) + A(a). Note that
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the boundaries of the three chains diag(v)X,T(a), A(a) cancel at their common
boundaries since

0T (a) = —diag(a x a¥) +p(a) x a* +a x p(a)™,
0A(a) = diag(a x a™) — diag(v)a,
ddiag(v)X = diag(v)a,
where diag(v)a is defined by replacing ¥ by a in the definition of diag(v)X. Lemma 7.8

(b) also holds for C) - (X,5%) in H.(C2(V);Z). Then the result follows from
Lemma 7.4. O

When V is of type I, we write V= V'U(=V). By Lemma 7.7, there exist d-chains
G%.1(ar), G (az) of Ca(V') with coefficients in Z such that 9G{., (a;) = F *(a;)
(i=1,2).

Lemma 7.9 (Type I). Hy(Co(V"),005(V")) has the following basis.
e

{[GV(a1)], [Gy(az)], [Sa(as) x Sa(as)T]}  (if d =4),
{[GV ()], [G V/(aQ)]} (if d > 4),

where Sy(a3)™ is a parallel copy of Sy(as).

(
Proof. By Lemma 7.2 (ii), Hy(C2(V’)) has the following basis:

)
{[ST(0a[4])], [ST (ba[4])], [bs x b5]}  (if d = 4),
{[ST (b1 [4])], [ST (ba[4])]} (if d > 4).

Then the result follows by Poincaré—Lefschetz duality (see Lemma C.4) and the
following intersections:

(G5 (ai)] - [ST(b0;[4)] = [Fy7 " (a:)] -0 [ST (b;[4])]

= [diag(v)Sa(a:)] o [ST(b;[4])] = £6;; (1 <i,5 < 2),
[GYr(ai)] - [bs x bF] = [F{/7 H(ai)] o [bs x b ] =0 (if d = 4),
[Sa(as) x Si(as)™] - [ST(b;[4)] =0 (ifd=4,1<j<2),

[Su(as) x Sa(as)¥] - [bs x b3] = +1 (if d = 4),

where - (resp. -5) is the intersection pairing in Co(V’) (resp. 9C2(V')) between
homologies. O

Lemma 7.10 (Type I). For the propagator wﬁl)i of Lemma 7.1, the closed form
Wy = wﬁl,i|662(v’)

on OC3(V') extends to a closed form on Ca(V").

Proof. We consider the following exact sequence.

HN(Co(V!) 5 HEHOT(V)) S HYTH(V!), 0C(V')) S HACH(V'))

To prove that [wp] is in the image of the restriction induced map r, we prove

§([ws]) = 0. Here, the natural map Hy(Co(V'),0C2(V'))* — Ha(Ca(V'))* is

zero since by Lemma 7.2, we have Hy(Co(V')) = Ha(V'?) @ ([ST(b;)]), where

Hd(V’Q) is Ay or 0 and dimb; = 1, and all the generators are mapped to zero in
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Ha(Cy(V'"),0C5(V")). To prove 6(Jws]) = 0, it suffices to show the vanishing of the
evaluation of §([ws]) at the basis of Hy(C2(V'),0C3(V")) in Lemma 7.9.

The class d[ws] can be represented by dwg, where Wy is an extension of wy over
Co(V) as a smooth (d — 1)-form. Since

/ d(:}a = ‘/di1 (V] (z = 1,2),
Gg//(ai) FV/ (ai)

/ d@@Z/ wo (ifd=4)
5’4((13)><S4(113)Jr 8(S4((13)><S4(113)+)

by the Stokes theorem, it suffices to check that the right hand sides vanish. By
Lemma 7.16 below, we have

/ wa:/ Wi (i=1,2)
Fy,t(ai) Py~ (ai)

\2

(7.3)

/ o=,
(Sa(as)xSa(as)t) 9(S4a(az)xSs(az)t)

where wy is a form as in Proposition 6.3. The right hand sides of (7.3) vanish since
Fd™(a;) and 9(S4(a3) x Si(az)t) are null-homologous in Co(V) by Lemma 7.7
and w; is defined there. Hence the left hand side of (7.3) vanishes, too. O

We give some lemmas to prove Lemma 7.16.

Lemma 7.11. Let (V,X) be as above, let wy be a propagator normalized as in
Proposition 6.3, and let wy be the form of Lemma 7.10. Then we have

/ waz/ w1 and/ waz/ w1.
p(a)xx¥, p(a)xTy Sy xpla)t Sy xp(a)t

Proof. We see that

wy = w; =0 (7.4)
/p<a)x2$/[—1] /p<a)x2¢[—1]

since p(a) x X, [~1] € (X =V'[3])x V'[0] and By [~1] x p(a)t € V'[0] x (X —V'[3]),
and we have explicit formula for wp there. Note that we are assuming V' = V/[4]
and a = {4} x a}, but we consider V'[3], £{,[—1] etc. denotes V/[3], S(a’[-1])*
etc. By the same reason, the second integral of (7.4) vanishes. We have similar
identities for the integrals over Xy [—1] X p(a)™ and Xy [—1] X p(a)T.

Also, we have

w1

e[
/p<a>x<z¢,z¢,[11> p(a)x (2 —5F [-1])

since the domains are both included in the common subspace py, (([—1,4] x0V’)?) =
pp(([=1,4] x 9V)?), where the two forms wp and w; agree. We have similar
identities for the integrals over (Sy — Xy [—1]) x p(a)t and (Zy — Xy [—1]) x p(a)*.
This completes the proof. O
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Lemma 7.12. Let (V,X) be as above, let w1 be a propagator normalized as in
Proposition 6.3, and let wy is the form of Lemma 7.10. Then we have

/ wa :/ wi.
T(a)+A(a) T(a)+A(a)

Proof. The identity holds since the domains are both included in the common
subspace ppy(([—1,4] x 9V")?) = ppy(([—1,4] x 9V)?), where the two forms wy and
w agree. g

Lemma 7.13. Let (V,X) be as above and let wy be a propagator normalized as in
Proposition 6.3. Then we have

/ o1 = 5(%).
diag(v)X

Proof. First we prove that

/ w1 = / Wi — 5(2)
diag(v)X—06(X)ST (*) diag(v)X

does not, change if ¥ is replaced with the spanning disk ¥ = (a] x I)[4] bounded
by a = a;[4]. Namely, by the analogues of Lemmas 7.11 and 7.12 obtained by
replacing (V'/,3y/) and wp with (V,X) and wy, respectively, we have

/ wl—/ w1=/ wl—/ w1.
cl_(2,21) ! (20,20) diag(v)S diag(v)Zo

On the other hand, it follows from Lemma 7.4 (b) that

/ o= [ wi = 8(),
Secexcrt S50 AVpby xbe+6() ST (x)
where the right equality holds since Lk(b,, b,) = 0 for p # ¢. Since
[Cl 5 (2,5 = [CL 5 (80, 53)] = Y _lew x ;7]
%

in Co(V), it follows that

/ w1 — 6(2) = / w1 — 5(20)
diag(v)X diag(v)Xo

It is easy to see that the right hand side of this identity is zero. O

Lemma 7.14. Let Ty be the framing on' V' as in Corollary 3.22 and let p(tv): ST(V)|s —
S9=1 pe the composition ST(V)|y — £ x $9=1 25 §4=1 Let v be the unit normal
vector field on X in V. Then we have

/ w1 =deg (p(Tv) ov).
diag(v)X
Similarly, we have

/ way = deg (p(rv/)ovs,, ).
diag(vs:,, )Ty

Proof. This follows since w1|sn(ay,) = p(7v)*Volga—1 and its integral is the map-
ping degree. The latter identity holds since wg is defined on SN (Ay). O
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Lemma 7.15. Let Ty and Ty+ be the framings on V and V', respectively, as in
Corollary 3.22. Let ¥y be the component of S(a;) of Lemma 4.2 included in V.
There is a submanifold Ly bounded by a = a;[4] in V such that

(1) Xy and Xy agree on their intersections with [—4,4]x 9V} and [-4,4] x 9V},
respectively, if we identify [—4,4] x OV] and [-4,4] x 9V}.

(2) There is a diffeomorphism Yy = Yy relative to their intersections with
[—4,4] x 9V

(3) deg(p(rv/) ovs,,) = deg (p(1v) o vs, ).

(4) 6(Sv) = 6(S).

Proof. Recall from [Wa3, Proof of (a)] that 7y, was obtained from the standard
framing st on the string link complement model (§3.7.1 (3.5)) in the Euclidean space
by perturbing st in a neighborhood of the link components to realize the boundary
behavior. We show that the pair (Xy,7y) has an interpretation similar to this.
Namely, we choose the representative Ly U Ly U L3 in Definition 3.6 of the long
Borromean link B(d — 2,d — 2,1)4. Let Lg 1, Lgt,2, Lst,3 denote the components of
the standard inclusion Ly : 19720197 2Ul! — I?. Then L, = Li#Lg,; (i=1,2,3),
where L; is the i-th component of the standard Borromean link B(d —2,d —2,1)4.
We consider the string link L[j] = L[j]1 U L[jl2 U L[j]s: 420 I 20Tt — 14
defined by
. | Li=Lj#Ly; ifi=j,
Llj]; = { Lim it £ j.

As L, has the spanning disk D; and the spanning submanifold D;- as before, and
the restrictions of the framings 7y and 7y to D} agree, we obtain Xy for L[j] that
satisfies (1) and (2), and we have p(ry-) o 1/27 = p(7v) o vy, for this particular
model, proving (3). For (4), it follows from the proof of Lemma 7.13 that
wy

5(2{/) :/ w1 and 5(2{//) :/
(CkerxeyN)(Sv) (Crerxey ) (Sy)

for any propagator w} on C3(V’) that does not detect Hy_1(V'?) (see Lemma 7.2).
The right hand sides of these identities are the sum of the linking numbers that
can be computed via the same submanifold D} with the same normal vector field.
Thus the two integrals agree. o O

Lemma 7.16. Let wy and wy be as in the proof of Lemma 7.10. We have

/ wy = / wy fori=1,2,3, (7.5)
D; (V") D;(V)

where for U=V' orV,
(1) Di(U) = —p(a) x 3y = Xu x pla)t + A(a) + T(a),
(2) Do(U) = diag(v)2v -3, , MY, by X by — 6(Su) ST (),

(3) D3(U) = 8(Sa(as)u x Si(as){;) (only for d=4).
The superscript + denotes the parallel copy in XT.

Proof. (1) The identity (7.5) for ¢ = 1 holds by Lemmas 7.11 and 7.12.
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(2) We prove the identity (7.5) for ¢ = 2, which is equivalent to the following:

/ wo — (S(EV/) = / w1 — 6(2‘/), (76)
diag(uzvl )y diag(vsy, )2v

as in the proof of Lemma 7.13. By Lemma 7.13, the right hand side of this identity
does not depend on the choice of ¥y. Thus we may choose ¥y as in Lemma 7.15.
For such a ¥y, we have deg (p(ry+)ovs,,,) = deg (p(1v)ovs, ) and 0(Xy) = 6(Ev),
which imply (7.6) by Lemma 7.14.

(3) For d = 4, we prove (7.5) for i = 3 as follows. The proof is similar to that of
Dy (U). Namely, for U = V', we have

8(S4(a3) X S4(a3)+) = CL3[4] X S4(CL3)+ + S4(a3) X CL3[4]+
= a3[4] X S_l(a3)+ + S_l(a3) X a3[4]+
+ asld] x (Sa(az)™ N ([~1,4] x OU)) + (Sa(as) N ([—1,4] x OU)) x as[4]".

Here, as[4] x S_1(as)t C (X —V'[3]) x V'[0] and S_1(as) x as[4]t C V'[0] x (X —
V’[3]), and the integral vanishes by the explicit formula of wy there. The same is
true for the integral of wy. The part as[4] x (S4(as)™ N ([—1,4] x OU)) + (Sa(as) N
([-1,4] x 9U)) x az[4]* is included in pp; (([—1,4] x 9V")?) = pp,(([—1,4] x 9V)?),
where the two forms wy and w; agree, and the integrals are equal. O

7.3. Extension over family of type II handlebodies. Now we consider V of
type II. Recall that we have set V = V;[4] before Lemma 7.1. Let V = 7 !(sq) be
the fiber of the bundle 7y : V' — S%=3 over the basepoint sy € S93.

(1) We assume i = 2 or 3 in the model of §4.2. Let @ be @; = S43 x a;[4] C OV
that is of dimension (d—3)+1 = d—2. Let ax[-1,1] = S 3x (ax[-1,1]) C
543 % 9V = OV be a parametrization of a S¢~3-family of small embedded
annuli in OV such that @ x {0} = a.

(2) Let p(a) = S4% x p(a), p@)* = S92 x p(a)™.

(3) Let ¥ be the submanifold S(@) of V of Lemma 4.2 (such that 85(a) = a),
and let ©F = (S(@) N V[=1])) U{(5t — 1,a(s,v),t) | (s,v) € S4 3 x S! t €
[0,1]}, where (5¢ — 1, a(s,v),t) € [—4,4] x (ax [-1,1]). We will also denote
¥ and =t by if, and i‘i;, respectively, to emphasize that 3 and St is in
V.

(4) Let diag(?)% be the chain given by a section ¥ of S’T”(‘N/)E C OEC,(V)
obtained by the normalization of a vector field on 3.

(5) Let A(a) = S92 x A(a), T(a) = S¥2 x T(a), where T'(a) and A(a) are
defined analogously for 1-cycle a as in §7.2 (5), (6). We orient T'(a) by
Oy A 0z A o(S973), where 9y A 0(S?73) = (=1)730(S973) A Oy = o(a).
Also, we orient A(a) by o((0,1]) A o(a). We consider A(a) and T'(a) as
chains in EC, (V) = §9473 x §Cy(V).

(6) Let p(a) X ga-s i‘i; be the pullback of the diagram p(a) — S?=3 «+ i‘i; of
the maps induced from the bundle projection 7y : V — §d-3, Similarly, let
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Xy
p(@) xsa-s BF = {(s,p(a),2) | s € S, x e m (s) N LY,

S5 xgas p@)t = {(z,s,p(a)) | s € S3 x eyl (s) N}

x ga—sp(@)* be defined by the diagram S — S4% < p(@)*. Explicitly,

We equip them with orientations that are naturally induced by that of f]:g
and if,, respectively.

(7) Let V' be a type I handlebody included in the type II handlebody, corre-
sponding to the inclusion of the i-th S! leaf of the type I Y-graph into the
i-th S92 leaf of the type II Y-graph.

We assume the following without loss of generality.

Assumption 7.17. (1) The unit vertical vector field 7 on % is such that its
restriction to [—1,4] x @ is included in the subspace TV ({u} x a x [-1,1]) C
TV ({u} x OV) of T”‘~/|[_1)4]Xa and is orthogonal to [—1,4] x a.
(2) Let 7 be the vertical framing on V as in Corollary 3.22 and let p(7y): ST (V) ls —
S9=1 be the composition ST”(‘N/)E IV 5 x §4-1 B gd-1 We assume
that the restriction of p(y;) o v to [~1,4] x @ is a constant map.

The following lemma is an analogue of Lemma 7.7 for the family V of type II
handlebodies.

Lemma 7.18 (Type II). For some choice of v, the (d — 1)-cycle
F& (@) = diag(9)Sy — p(@) xga-s TF = Sy Xga-a p(@) " + A@) + T(@)

’ 7.7
— {30 by x b+ 6(Sv)ST() } (7.7)
4,
in OECy(V) is null-homologous in ECo(V), where )\jVZ, bj x be, 6(Xy/) are the
same as that of Lemma 7.7 for V'.

Remark 7.19. Let us first explain how non-subtle Lemma 7.18 is, after having
Lemma 7.7. The first line of the RHS of (7.7) is a natural analogue of that of
F&(a) in Lemma 7.7. That ngl(&') is a cycle is immediate from

d(diag(?)Ey) = S97° x diag(v)a,
O(p(a) x sa-s ) = 8972 x (p(a) x a™), A(Ey xga-s p(@) ") = $47% x (a x p(a) ™),
DA(@) = S° x DA(a), AT (@) = S?73 x 8T (a),

where v is the restriction of v to the fiber Xy = Vﬂiv of my |§‘7, and diag(v)a is the
chain given by the section v of ST(V)|s,, C dC2(V') obtained by the normalization
of the vector field on Xy . By the Leray—Hirsch theorem and by Lemma 7.2, it can
be shown that Hy_;(EC(V)) is spanned by the cycles
e ST(x), b; x by with dimb; + dimb, = d — 1 that generate Ho(S93) ®
Ha—1(C2(V)), B
e the cycles that generate Hy 3(S?3)®@ Hy(Ca(V)) = Hy_3(S973)@ Hy(V?).
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Note that the Leray-Hirsch theorem can be applied here since b; and b, in b; X b,
both lie in a small neighborhood of OV, over which the restriction of the bundle
V has a trivialization, and S93 x (bj x be) makes sense as cycles in EC (V) (see
also Lemma 7.22 for a similar computation). It is easy to see that the restriction
of Fg_l(&') to the fiber over the basepoint is null-homologous (see §7.3.5). Hence

the first line of the RHS of (7.7) is homologous in EC5(V) to a linear
combination of the cycles ST'(x), b; X by with dim b;+dimb, = d—1,

and the nontriviality of the family V is reflected to the coefficients. This implies
that the first line of the RHS of (7.7) can be made null-homologous by subtracting a
certain linear combination of ST'(x) and b; x be. Thus, what is done in Lemma 7.18
is to determine the coefficients in the second line. But the value of the coefficient
/\jVZ is not important later, as in the previous case of type I handlebody (see Proof
of Lemma 7.13).

The terms in F 571(5) on which the nontriviality of the family V' is reflected are

the first three terms involving if/, which agrees with ¥y~ outside a neighborhood
of the boundary a = 8§‘7. We need only to make sure that ig can be obtained by
“suspension” as in §5.5 from Xy of the previous case to determine the coefficients
(see §7.3.2 and §7.3.3 for how Xy is included in 53‘7) The possibility of such an
interpretation is essentially due to the fact that the S?3-family of embeddings
192y L U T' = I? to define V is obtained by iterated supension of the first
and third components from the Borromean string link B(d — 2,d — 2,1)4 (Proof of
Lemma 5.3 (b)).

The proof of Lemma 7.18 looks lengthy, compared to the simplicity of the idea,
mostly because of the explicit description of how to “connect-sum” ¥y to the collar
of 8§‘7 in the suspension model as in §5.5 (see Figure 15). No ingenuity is needed
in the description because Xy (from D) in Lemma 3.7) could be replaced with a
(d — 1)-disk (from D; in Lemma 3.7) for the purpose of only giving the collar.

7.3.1.  Pushing most of Y into a single fiber. We first assume that @ is the second
component S%~3 x ay[4], which corresponds to the second component in the spinning
construction in §3.8 and §5.3. To prove Lemma 7.18, we decompose ¥ into two
parts Yo and f]l, and F g_l(ﬁ) accordingly, and prove the nullity of the two parts
separately.

We make an assumption on the string link in the construction of V in §5. Recall
that the S?~3-family of embeddings 14 2UI*UI' — I¢ that defines V can be taken
so that the first and third components are constant families, and the locus of the
second component with the (unparametrized) first and third components forms a
Borromean string link B(d — 2, d — 2, 1)4 (§3.8 and §5.3). We now assume that the
family of the second component is constructed according to the model described in
Lemma 5.4. By precomposing with an isotopy of the parameter space S?3 of the
family of framed embeddings, we may assume that the second component agrees
with the standard inclusion outside a small neighborhood U, of a single parameter
s € 893,
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+— fiber

FIGURE 14. ¥ = io Us f]l, where f]l is included in a small neigh-
borhood of a single fiber.

7.3.2. Decomposition of Y. After perturbing 5 suitably, it can be decomposed as
the sum of the submanifolds with corners 3y and ¥4 satisfying the following con-
ditions (as in Figure 14).
(1) So NSy = 8% N A% and this is a (d — 2)-disk § such that 84 is included
in OV.
(2) % is diffeomorphic to S' x $92 — (open disk) and included in 77, (Uy),
where 7y : V — §973 is the bundle projection (§3.8.1).
(3) %o is diffeomorphic to S x I2. The bundle structure of V induces a
product structure $773 x I2 (i.e. trivial I2-bundle over $773) of %.
(4) Let agy = %o and agy = d%1. Then we have agy = 547 x S and
@) = 5972, As a chain, @) + @(1) = @ up to taking subdivisions.
Let us look more closely at S near the intersection disk 6. According to the band
model described in §5.6, the intersection a() N a(y forms a (d — 3)-disk family
of singular intervals in @y (or @) that restricts to a family of points over the
boundary of the (d — 3)-disk, and to a family of nondegenerate intervals over the
interior, which is a “lens” (Figure 17, right).

7.3.3. Fizing the vector field v. The nonsingular vector field v € I‘(S’T”Wi) on %
can be chosen so that

e it is orthogonal to S near 8%,
e it is orthogonal to both io and il on d, and
e the degree of the composition p(7y) o V: PO ST”(‘~/)|§ — 891 (relative
to OX) agrees with the degree of p(7y) o vy, in Lemma 7.14,
and we choose such.

Such a 7 can be constructed as follows. Let (t1,...,%s—3) be local coordinates for
the parameter space S?~3 about a point in Us. Let (z1,...,24) be local coordinates
of the (d-dimensional) fiber about a point of 9%0. Suppose that a fiber of Yo =
S4=3 x I? agrees (in this local model) with a 2-disk in the z;zs-plane. We put
Yy in a fiber of V so that it is disjoint from io, and a small neighborhood of
0Xy: in ¥y is included in the codimension 1 plane x4 = 0. We may connect a
(d — 2)-disk in %y~ and a (d — 2)-disk in 9%, by rotating the axes of s, . .., z4_1
until they agree with those of t1,...,t4_3 over a path in the z;-axis. This defines a
boundary connect-sum Yo§Sy/. We may perturb a(ithv/) by a small isotopy to
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T3y, Td—1

t1,...,ta—3

T1, T2

EV/

FIGURE 15. Extension from Xy to f)l

make WV|8(§ohEv/) : O(SohSyr) — 5973 a submersion. We assume that ¥ = $oUY,
is the sum of ioha and the collar obtained by the locus of the small isotopy of
8(20h2}vl) (Figure 15).

Since ZohEvl is included in the codimension one plane orthogonal to Td’ the
vector field 57— defines a normal vector field on Eo and on a neighborhood of 9%y
in Xy. And thls vector field can be extended by the normal vector field of 3y~
in a (d-dimensional) fiber. We then extend this normal vector field on 34y~ to
a vector field in F(ST”‘N/E) that is transversal to 3, where the transversality can
be assumed because the isotopy of 8(§0h2‘//) can be arbitrarily small. Finally, we
perturb the resulting vector field further to that orthogonal to % along d%. The
resulting vector field on Eo U El is our .

7.3.4. The decomposition of F~7 (a). By pushing a slightly in a direction of v, we

obtain parallel copies EEB)

and 7 are defined by decomposing $[—1] into two pieces Sg[—1] = §973 x I2[—1]
and 1 [—1] (Figure 16) so that ¥+ = S + 37 as chains up to taking subdivisions.
To give them explicitly, we consider the local coordinates [—4,4] x (a() x [-1,1])

and a(l) of aqy and a(y), respectively. The chains EJF

determined by ¥ and the collar of 8% in %o, as in the item (1) in the beginning of
§7.3. Then the chains Yo[—1] and 2§ are defined as in the item (3) in the beginning
of §7.3. The chains $1[=1] and X7 are defined so that $[—1] = Sg[—1] + £1[—1]
and T = Z+ + E as chains modulo subdivisions. Note that 3;[—1] is not a
subspace of Y. Then the chains ngl(ﬁ(o)), ngl(”d(l)) are defined similarly as
above:

F‘i (@ (o)) = diag(V)Z0 — plao)) X ga-s Xg — o xga-s p(a)) " + Alay) + (@),
F‘i 1( ag )) dlag( )21 ( (1)) X gd—3 iii_ — il X ga—3 p(a(l))Jr + A(?i(l)) + T(?i(l))

- {Z Y by x by + 5(EV/)ST(*)},
7.

where we choose the loci of the basepoints p(a(p)) and p(a()) so that they agree
with p(@) outside my;' (Us) and they are compatibly chosen (i.e. p(N(O)) = p(ag))
over 8. Note that these are cycles of EC5(V) but not of dEC(V).

Lemma 7.20. [ngl(ﬁ)] = [ngl(ﬁ(o))]—l—[Fg (a(1y)] for the choice of U in §7.5.3.
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J

| ]

FIGURE 16. X1, ¢, and £} near 6. &+ = &F + 57

Proof. To see this, we need only to prove the additivity of the term 7T'(a) = S9=3 x
T'(a) when the loci p(a;) and p(ag;))* are chosen compatibly, as this is the only
term in Fg_l(a) for which the additivity is not obvious. Recall that T'(a) was
defined by taking coordinates on the sphere a by the reduced suspension of a lower
dimensional sphere. Here we consider the pair (a(,a() of (d — 3)-parameter
families of singular 1-spheres over a (d—3)-disk in U such that a;y C Ty (Us). We
modify the definition of T'(a) at some fibers a of a (g or a(;) over Uj slightly in a such
way that we consider a 1-sphere as unreduced suspension of S°, which is suspended
between the points +o0o, instead of the reduced suspension (Figure 17, left). Thus we
consider a 1-sphere as the quotient of S x [—1, 1], where S° x {—1} is identified with
—oo and SY x {1} is identified with co. Then T'(a): S x T — (a x {0}) x (a x {1}),
where T' = {(y,z) € [-1,1]? | y > 2}, is redefined with these coordinates by the
same formula:

T(@) (s, 2) = ((a(t,9),0), (a(v,2), 1)) ((W/59,2) € S° x T).
The following holds, similarly as (7.1).
T (a) = —diag(a x a™) + 0o x a™ +a x (—o0)*.

We need to modify accordingly the definitions of p(a) and p(a)™ over Uy into those
given by the loci of +00 and —oo in @, respectively, so that Fg_l(&') is still a
cycle. We take the locus of basepoints +o0c to be the locus of the maximal points
of the intervals in the “lens” § (Figure 17, right). Also, we take the locus of
—00 to be the locus of the minimal points of the intervals. Then we take p(a))
and p(a(1)) to be the locus of co, and take p(d())™ and p(ag))* to be the locus
of —oo. Then one can choose coordinates on T'(a(y) and T'(ay)) so that they
are consistent on 6 = a(g) M a(). With this choice of coordinates, the additivity
T'(a) = T'(a(o))+T(a()) is obvious, and the boundaries of both sides are compatible
with those of the chains p(a) X ga—s i% and if, X ga—s p(a)t etc.

Note that the introduction of the two basepoints and the corresponding mod-
ification of F‘il/fl(ii) does not change its homology class. More precisely, what

may be changed under the modification of F’ gil(ﬁ) are the chains p(a) x ga-3 i‘i;,

if, X ga—3p(a)™, and T'(a@). The changes of the first two chains are induced by homo-
topies of p(a). If we consider that the single point oo (for reduced suspension outside
7 (Us)) is the special case of the double basepoint +oo (for unreduced suspension)
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E()
o

FIGURE 17. Left: Introducing a pair of basepoints +oco to modify
T(a). Right: Appearance of 4.

where the two basepoints agree, then the change of T'(a) is given by a homotopy
that is consistent with the homotopies for p(a) x ga—s i; and f];/ X ga-3p(a)™ above.
Note that considering a single basepoint as a special case of double basepoint over
8§43 — U, does not change the chain T'(@). The invariances of [Fg_l(ﬁ(o))] and

[Fg_l(ﬁ(l))] under the homotopy of p(a(g)) etc. are similar. O

We may further impose the following assumption on 7, which will be used later
in the proof of Lemma 7.27(2).

Assumption 7.21. Let 7 be the vertical framing on V as in Corollary 3.22 and
Assumption 7.17(2). Let p(r3): ST”(‘N/)E — 8971 be the composition ST (YN/)|§ v,
S x 891 L gd=1 We assume that the restriction of p(1y)ov to SoU([—1,4] Xa(1))
is a constant map.

This assumption is possible since 3o U ([—1,4] x a(1)) deformation retracts onto

the union of a collar neighborhood of @ in X3 and ¥y = V N i‘;, over which we
have imposed Assumption 7.17(2).

7.3.5. Homological triviality of Fg_l(ﬁ) . Proof of Lemma 7.18 for the second com-

ponent. Once the additivity Lemma 7.20 has been proved, the terms | g_l(ﬁ(o))]

and [F 571 (@(1y)] can be separately altered by homotopies or addition of boundaries
since the two terms are both represented by cycles. We have | 571(5(0))] = 0 since
C.>(I?,(I?)") as in the proof of Lemma 7.7 is null-homologous.

For | 571(5(1))], if the radius of U, is sufficiently small, then ¥, is close to a part
of S(a’) for a (d — 2)-cycle a’ of the boundary of a type I handlebody V' included

in a single fiber of V,

Type I Type 11
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and there is a homotopy of ¥ in 7y (Us) which shrinks the part near ¢ and then
make the whole coincide with S(a’) that lies in a single fiber.

homotopy

almost included in fiber included in fiber

This deformation is similar to the one considered in the proof of Lemma 5.3 (2).
It does not matter if the boundary of ¥; becomes disjoint from the boundary of
V' during the homotopy, as long as it does not go out of V. Hence Fg_l(ﬁ(l)) is

homologous to Fi%, '(a’) in EC, (V). By Lemma 7.7 for the single fiber, we have
[F‘il/fl(ﬁ(l))] = [Fd7'(a')] = 0. Hence we have [ngl(ﬁ)] =0. O

7.3.6. Proof of Lemma 7.18 for the third component. We show that the famlily
(8] € ma_z(Embl(I972 U I U I, I%)) has a symmetry with respect to the last two
components. According to Proposition 4.12 and Theorem 4.14 of [KoTei], there is
an isomorphism

Dax: mg_o(Imm(I' U I, X), Emb(I' U I, X)) — Z[m(X) x C),

where X = % — [972 and C = {ty,t9,t12} is the set of three elements. The
generators are given explicitly in [KoTei, Theorem 4.21]. In particular, the image
of Dax™ ' (tk,) for k € m1(X) = Z in 74_3(Emb(I' U I', X)) is given by replacing a
small arc p in the first I'-component of I' U I' C X with an S?3-family of arcs
BiUA; =21 in X, where By is the side I x 91 of a band I x I attached to u along
{0} x I, and A; is a smaller arc such that A, is attached to dB; along {1} x OI.
The family of arcs By U A; is given by assuming that

e it is constant (i.e. independent of the parameter) on By,
e the core I x {%} of the band I x I goes around the generating loop for
m1(X) k times (thus B consists of parallel copies of the core), and
e the S93-family of A; swings around the meridian of the second I'-component
of the original embedding ' U I' — X.
See [KoTei, Theorem 4.21] for detail. Tt follows from the ribbon presentation of
B(d—2,d—2,1) in [Wa5, Fig. 6 (move 18)] that our [8] € my_3(Emb (I Ul U
I',1%)) is given by the image from Dax *(%(tY, — t1,)). By the symmetry (up to
sign) of the image from Dax™*(t¥,) with respect to the two components, we have
that [f] is symmetric up to sign with respect to the last two components. This
implies that exchanging the last two components in the construction of g results in
the same element of 7g_s(Embf (1972 UI' UI', I?)) up to sign. Hence the proof of
Lemma 7.18 for the second component of [3] works for the third component. [

7.3.7. Homology of E@(f/).
Lemma 7.22 (Type II). Hoy_s(EC3(V)) =A® A, where
A= (ST (b)), (ST (b)), A" = (ST (b0)]) ® Haa—s(V x5a-3 V),
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and Hoq_3(V Xga—s V) is nonzero only if d = 4, in which case Hs(V x g1 V) has
the following basis.

{[S" x (b x b})] | dimb; = dim b} = 2},
where by is a parallel copy of by in OV.

Proof. The proof is an analogue of Lemma 7.2(ii). Put V° = Int V and K = §¢-3.
We consider the homology exact sequence for the pair

— Hp+1(‘70 XK ‘70) —l> Hp+1(‘70 XK ‘70,‘70 XK ‘70 — A“;O) — Hp(ECQ(‘f}O)) —

The bundle isomorphism ¢ of Proposition 3.21 induces trivializations of the bun-
dles V° xx V° and ECy(V°) over K, which are natural with respect to the
exact sequence above. Hence the long exact sequence splits into tensor prod-
uct of that of the fiber and the homology of K. It follows from triviality of
H, (V%) — H,(V2, V2 — Ay ) shown in the proof of Lemma 7.2 that the map ¢
is zero, and we have the isomorphism

Hp(ECQ(VO)) = Hp+1(‘70 XK ‘70, ‘70 X K ‘70 — Af/o) &) Hp(i}o X K ‘70).
By excision, we have

(D%, 0D%Y) @ H.(V) (r>0),

Hyyr (Vo x5 VO, VO X VO_A‘%)_{ 0 (r<0)

where the image of ([D%, D)@ H,.(V) in Hyyr—1(EC5(V°)) is spanned by ST*(«)
for r-cycles a of V' generating H,.(V'). The generators a can be given explicitly. We
have the following commutative diagram

OV —= K x 0V

where §II is a bundle isomorphism by Proposition 3.21. It follows from this that
H, 5(V) is generated by the classes of the following cycles in K x V.

*XbQ, *ng, ElzKXbl.

Namely, the image of Hd+(d_2)(\~/° Xk V°,V° XK‘N/O—A‘;O) (x> 0) in Hag_3(EC5(V°))
is generated by ST?(by), STV (bs) and ST (by).
Since by Proposition 3.21 the bundle V° x x V° over K is a trivial V2-bundle,
we have
Hoy 3(V° xg V°) 2 Hyy 3(K x V?).
It follows from Lemma 7.2(i) and the Kiinneth formula that
Haq—3(K x V?) = Hy_3(K) @ Hg(V?)

(S x (b x b)] | dimb; = dimby = 2)  (d = 4),
N { 0 (otherwise).
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The expression S x (b; x by) also makes sense in Ve xx V° since it is a cycle in
OV Xk dV = K x (OV x 9V), where the identification is given by the trivialization
0V = K x dV. This completes the proof. ]
By Lemma 7.18, there exist d-chains G%(Eg),G%(Eg) of ECy(V) such that
d (7 — pd—1/=\ (; _
GG (ai) = b4 (@) (i=2,3).
Lemma 7.23. Hy(ECy(V),0ECy(V)) has the following basis.
{[Gil/(al)]a [G%(Zi2)]7 [G%(aﬁ)]}
U {[S(a;) x S(ag)*] | dima; = dima, =1} (d=4),
0 (d>4).

Proof. As in the proof of Lemma 7.9, the dimension of Hy(EC(V),0EC,(V))
is determined by Lemma 7.2 and by Poincaré-Lefschetz duality, the linear inde-
pendence of the generating d-chains can be checked by computing the intersection
numbers with the basis of Lemma 7.22. 0

7.3.8. Eaxtension of w) ;.

Lemma 7.24 (Type II). For the propagator wj ; of Lemma 7.1, the closed form
wo = Wi ilopz, W)

on OEC,(V) extends to a closed form on ECo(V).

Proof. We consider the map §: HY(QECy(V)) — HY(EC,(V),0ECy(V)). We

would like to prove that §(Jws]) = 0. As in the proof of Lemma 7.10, it suffices

to show that the evaluation of §(Jws]) with a basis of Hy(EC2(V),0EC(V)) of

Lemma 7.23 vanishes.

Moreover, by an argument similar to the type I case, we need only to check that
the following integrals are zero.

/ wa, / ws (1=2,3), and
Fyt(aa) F& (@)

/ wyg (ifd=4and dima; = dima, =1).
9(S8(a;)xS(ar)™)

The computations of these integrals are similar to the proof of Lemma 7.10. Namely,
by Lemma 7.27 below, we have

/ wyp =0 and / wy = 0.
Féil(?ii) 9(S(a;)xS(ae)t)

This completes the proof. O

The idea to prove Lemma 7.27 is similar to that of Lemma 7.16. We give some
lemmas to prove Lemma 7.27.

Lemma 7.25. Let (V,X) be as above and let wy is the form of Lemma 7.24. Then

we have
/  wy = /~ wy = 0.
P(E)Xsd—32:~; Yy X ga-3p(@)t
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Proof. We see that

/ . w=0 (7.8)
(@)X ga—3y [—1]F

since p(a@) X ga—s X [~1]* € (BEY —Int V[3]) X ga—s V[0] and Sg[~1] x ga—s p(@)* C
V0] xga—s (EY — Int V[3]), and we have explicit formula for wy there. We have
similar identities for the integrals over f]f/[—l] X ga-s p(a)*.
Also, we have
/ wy =0
P(@)% ga—3 (S -t TE[-1))

since the domain is included in the subbundle S4=3 x py;(([~1,4] x 9V)?), where
wp is the pullback of w; in a single fiber pgy(([—1,4] x 9V)?) and the integral
vanishes by a dimensional reason. We have a similar vanishing of the integral over
(ig —Int ig[—l]) X ga-s p(a). This completes the proof. O

Lemma 7.26. Let (XN/, i) be as above and let wp is the form of Lemma 7.24. Then

we have
/ Wy = 0.
T(a)+A(a)

Proof. The identity holds since T'(a@) = S92 x T'(a) and A(a) = S%~3 x A(a) are
included in the subbundle S4=3 x py;(([—1,4] x 9V)?), where wy is the pullback of
wi in a single fiber p;(([—1,4] x 9V)?) and the integral vanishes by a dimensional
reason. O

Lemma 7.27. Let wy be as in the proof of Lemma 7.24. We have
/ Wy =0 (i=1,2,3), (7.9)
Di(V)

where
(1) Di(V) = —p(@) X ga-s B* — 5 xga-a p(@)* + A@) + T(@),

(2) Da(V) = diag(#)S — 32, Aby bp X by — 6(Sy1)ST(x),
(3) D3(V) = 9(Sa(a;)v: x Sa(ae){,) (dima; = dima, = 1, only for d = 4).
The superscript + denotes the parallel copy in XT.
Proof. (1) The identity (7.9) for ¢ = 1 holds by Lemmas 7.25 and 7.26.
(2) To prove the identity (7.9) for ¢ = 2, we prove the identity

/ Wy = 5(21//).
diag(7)Z

Let 73 be the vertical framing on V as in Corollary 3.22 and let (1) ST”(YN/)E —
S=1 be the composition ST”(‘N/)E 1Yy 5 x §d-1 L gd=1 We use the decompo-
sition X = Xy U X; given before Lemma 7.20. By Assumption 7.17 for the vertical
framing 7 and v near 9V, we see that

/ _ Wo = 0.
diag(7)Xo
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Moreover, as we assume p(7;) is constant near § = 30N, and near 9V (Assump-
tion 7.21), we may assume by a small perturbation of 3, in V that the result i’l of
the perturbation is included in a single fiber w‘jl(s), without changing the relative
homotopy class of p(7y;) o Vg (31,0%1) — (8971, %). Thus we have

/ _ wa :/ _ wa:/ walr-1(gy = 0(Zv1),
diag(v)21 diag(7)%] diag(vzv,)EV/

/ ~wa=/ ~W0+/ ~W0—6(EV/):O.
D3y (V) diag(v)Xo diag(7)X1

(3) The identity (7.9) for ¢ = 3 is for the integral in a single fiber and the same
as Lemma 7.16 (3). O

APPENDIX A. Smooth manifolds with corners

We follow the convention in [BTa, Appendix| for manifolds with corners, smooth
maps between them and their (strata) transversality. We quote some necessary
terminology from [BTa]. We refer the reader to [Jo] for more detail.

Definition A.1. (1) A manifold with corners of dimension k > 0 is a topolog-
ical manifold X such that every point in X has a neighborhood which is
homeomorphic to [0, 00)™ x R*=™ for some integer 0 < m < k. A smooth
manifold with corners is defined by requiring that the transition function
between two such coordinate charts is smooth, as in the next item.

(2) A map between manifolds with corners is smooth if it has a local extension,
at any point of the domain, to a smooth map from a manifold without
boundary, as usual.

(3) A manifold with corners X has the structure of a natural stratification as
follows. Let k = dim X and let X™ (0 < m < k) denote the submanifold of
X consisting of points having a neighborhood homeomorphic to [0, 00)™ x
RF=™_ Then X is the disjoint union X = (J,,~, X™ and we call each X™
or its component a (codimension m) stratum of X.

(4) Let Y, Z be smooth manifolds with corners, and let f: Y — Z be a bijective
smooth map. This map is a diffeomorphism if both f and f~! are smooth.

(5) Let Y, Z be smooth manifolds with corners, and let f: ¥ — Z be a smooth
map. This map is strata preserving if the inverse image by f of a connected
component S of a stratum of Z of codimension 4 is a union of connected
components of strata of Y of codimension 1.

(6) Let X,Y be smooth manifolds with corners and Z be a smooth manifold
without boundary. Let f: X — Z and g: Y — Z be smooth maps. Say
that f and g are (strata) transversal when the following is true: Let U
and V be connected components in strata of X and Y respectively. Then
f:U—= Z and g: V — Z are transversal.
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APPENDIX B. Blow-up in differentiable manifold

B.1. Blow-up of R’ at the origin. Let 7*(R?) denote the total space of the tauto-
logical oriented half-line ([0, 00)) bundle over the oriented Grassmannian G1(R?) =
Si=1. Namely, ¥'(RY) = {(z,y) € S"! x R, 3t € [0,00),y = tx}. Then the
tautological bundle is trivial and 7! (R?) is diffeomorphic to S*~! x [0, o0).
Definition B.1. Let

Bl (R") =7 (R)
and call Bl{oy(R?) the blow-up of R" at 0.

Let 7: Blyoy(RY) = 3'(R") — R’ be the map defined by 7 = ps o ¢ in the

following commutative diagram:

Blioy(R) = 71 (R) —— 5! x R —> §i~1 (B.1)
\ lpz
Ri

where ¢: Y1 (R?) — S~ xR’ is the embedding which maps a pair (z,y) € S~ ! xR?
with y = tz to (z,y). If y # 0, then ¢(x,y) = (%,y) We call 7 the blow-down
map of the blow-up. Here, the (i — 1)-sphere 77 1(0) = 971 (R?) is the image of the
zero section of the tautological bundle p; o ¢: 1 (R?) — Si~1.

Lemma B.2. (1) The restriction of w to the complement of 7=1(0) = 07 (R?)
is a diffeomorphism onto R* — {0}.

(2) The closure of o(F*(RY) —7=1(0)) in S~ x R? agrees with the whole image
of ¢ from T-(R).

(3) The map ¢: R* — {0} — St defined by y — IZ_I extends to a smooth map
@' =p1oy: Bl (R?) — Si=1, in the sense that the composition

R — {0} 5 Int Blyoy (R) -2 71 x RE 24, g1~
agrees with @.

(4) Blyoy(R") admits a collar neighborhood dBlgy (R")x [0, ) such that {(0,z)} x
[0,€) is the preimage of the half-ray {z} x {tx | t > 0} under ¢, which agrees
with ¢'~1(x).

B.2. Blow-up along a submanifold.

Definition B.3. When d > i > 0, we put Blg: (R?) = R’ x ¥'(R?~%) (the blow-up
of R? along R?) and define the projection pp,: Blg:(R?) — R? by idg: x 7.

This can be straightforwardly extended to the blow-up Blx(Y") of a manifold Y
along a submanifold X, by working on one chart at a time thanks to the naturality
properties of the blow-up with respect to linear isomorphisms ([ArK, Corollary 2.6]).

Lemma B.4. LetY be a smooth k-manifold with corners and let X be a submani-
fold of Y that is strata transversal to OY. Then Blx(Y') is a smooth manifold with
corners.
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Proof. By strata transversality, a standard local model of X at a corner point
x € X NAY can be given by the subspace [0, 00)™ x RY C [0,00)™ x R¥~™ for some
£, m such that 0 < /¢ < k —m. Hence the blow-up along X can be locally given by

[0,00)™ x Blge(RF=™),

which is a manifold with corners. ]

AprpPENDIX C. Compactification of configuration spaces of a manifold
with boundary

Lemma C.1. Let Y be a smooth m-manifold with nonempty boundary that is a
submanifold of a manifold X without boundary. Let C3(Y) denote the closure of
P (Y XY —Ay) in C2(X) = Bla, (X x X). Then C2(Y) is the image of a smooth
manifold with corners under a smooth map.

Proof. A standard local model of Ay at a corner point in Y x Y C Y X Y can
be given by the pair (R™71)2 x [0,00)2, Agm-1 X A[g ), Which is identified with
R™=1 x (R™™1 % [0,00)2,0 X Afg o). In this model

R™ 1 x (0% Apay), R™x (R™F % (0,0)), R™ ' x (0x(0,0))

give local models of Ay,dY x 9Y, Agy, respectively. We consider the sequence
L, C Ly C L3 of subspaces of R™ ™! x R?, where

Ly ={0}, Ly=R™!x(0,0),
L3=LyU(0x Ag)U(R™ xR x0)U(R™ ! x0xR),

and consider the successive blow-ups R™ ™! x R? = Yy « Y] + Y, « Y3 along
this sequence. This gives a local model of the blow-ups along the sequence Agy C
Y x Y C (Y x 0Y)UAy U (Y x 9Y)U (0Y x Y). One can see that Y3 is a
smooth manifold with corners.

Let Y3++ be the component of Y3 that is projected to R™~1x [0, 00)2. Then there
is a smooth projection Y57 — Bloxay, ., (R™™! x [0,00)%), which is induced by
the smooth projection Y3 — Blyxa, (R™71 x R?). Since R™ ™1 x Y, is a smooth
manifold with corners and R™~! x Bloxa, ., (R™ ™" x [0,00)?) is a local model of
C5(Y) at a corner point in Y x dY', the result follows. O

Definition C.2 (Compactification of C5(Y")). Let Y be as in Lemma C.1. Let
C5(Y;0Y) denote the manifold with corners obtained by the blow-ups of Y x Y
along the sequence

Agy CIY x Y C (Y x Y)UAy U (Y x dY)U (9Y xY)

of strata as in the proof of Lemma C.1. Let pg,: Ca(Y;0Y) — Bla, (Y x Y)
denote the smooth projection of Lemma C.1.

Remark C.3. (1) C3(Y) is not a smooth manifold with corners. In particu-
lar, along the restriction of the normal sphere bundle over Ay to Ay in

0C5(Y) = Co(Y) — Ca(Y).
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(2) In Definition C.2, the blow-ups along (Y x 0Y)U(9Y xY) is in fact not nec-
essary since without this we get a diffeomorphic result. This was necessary
in the proof of Lemma C.1 to cut out one piece from R™ x R™.

(3) A detail about a compactification of C,,(Y) is given in [CILW].

Lemma C.4. LetY and C2(Y) be as in Lemma C.1. Then the maps plg,: C2(Y;0Y) —
Co(Y) and incl: Co(V) — Co(Y) are homotopy equivalences. Moreover, the in-
duced map plg,: (C2(Y;0Y),005(Y;0Y)) — (C2(Y),0C5(Y)) is a homotopy equiv-

alence.

Proof. This is evident from the local model in the proof of Lemma C.1, as it is easy
to give explicit deformation retractions. Namely, we observe that Cy(Y;dY) is
embedded as the complement of the lift of a small tubular neighborhood of Ay in
C5(Y) by pressing a small collar neighborhood the boundary of the blow-up along
Y x dY into the interior of C3(Y). Then there is a deformation retract of Ca(Y))
onto Co(Y;3Y), which gives a homotopy inverse. O

APPENDIX D. Orientations on manifolds and on their intersections

D.1. Orientation of intersection. Suppose M and N are two cooriented sub-
manifolds of R of dimension m and n that intersect transversally. The transver-
sality implies that at an intersection point z, the product o},(M), A 0R(N)z is a
non-trivial (2r — m — n)-tensor. We define

05 (M th Ny = 0% (M)y A 0y (N),. (D.1)

This depends on the order of the product. When M and N are compact and m+n =
r, this convention is the same as the integral interpretation of the intersection

/77M/\77N
R

under the identification T'(A\*T*M) = T'(A\* T M) by the metric duality. See §4.1
for the n-forms representing the Thom classes of the normal bundles. There are
other interpretations of the intersection of submanifolds, such as [,, ny or [y nar.
The relationship between these interpretations is as follows:

(—1)m(r_m)/ 77N=/ 77M/\77N=/ M-
M R N

Indeed, the integral [,, nn counts an intersection point by +1 if o(M) ~ of(N),
which is equivalent to 0% (M) A 0%(N) ~ (=1)™"=™)o(R) by (1.1). The integral
S mar counts an intersection point by 41 if o(N') ~ 0}, (M), which is equivalent to
05 (M) N oR(N) ~ o(R) by (1.1).

number:

D.2. Integration over direct product. Suppose that M; is a submanifold of R
and M> is a submanifold of Rs, both oriented. Then M; x M, is a submanifold of
R1 X Ry, which we orient by o(M7) Ao(Ms). Suppose that M; has a geometric dual
T; of R;, namely, M; intersects T; transversally in one point (we do not assume the
sign of the intersection is +1). Suppose that T; is coorientable in R;, and let np,
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be an n-form for T; in R; (§4.1). Then T7 x T3 is a geometric dual of M7 X My in
R; X Rs, and moreover the following identity holds.

/ PINT, A DP3NT, =/ nTl/ nT, - (D.2)
M1><M2 Ml M2

Indeed, the sign of this integral is determined by the sign of the evaluation
(P, A panm, )(0(Mi) A o(Mz)) = ping, (o(M1)) pan, (0(Mz)).

D.3. Proof of Lemma 4.1.

Lemma D.1 (Lemma 4.1). We have the following identities.

(1) / NS (ap) = (—=1)kdTrtd=1 “phere k = dim ay.

£

(2) / NS(by) = (—1)d+k, where k = dim ay.
+
ay

(3) LY = (—1)%'Lk(b},bl,) fori,j,¢,m such that dimbj + dim b}, = d — 1.

Proof. We assume without loss of generality that a, and by intersect orthogonally at
one point, say z, in V. Moreover, we assume that S(a,) is orthogonal to OV at z.
To prove (1), we take a Euclidean local coordinate system (1, 22, ..., 24) around z,
in which ay agrees with the x; - - - xy-plane, by agrees with the xg41 - - xg_1-plane,
the outward normal vector at x corresponds to the positive direction in the x4
coordinate. We let

o(ag)y = adxy A+ Nz, 0(bp)e = LOxTp1 N+ ANOxg_1
for « = &1, 8 = £1. Then we see that
o(S(ar))s = (1) a8y A -+ A Dy A D24,
o(S(be))e = (=) BOxp 1 A AOzg_1 ADxyg
by the outward-normal-first convention for the boundary orientations. This implies
0% (S(ae))e = (1) tadzpgr A -+ A Oxg_1,
0% (S(be))e = (—1)FE=RIFTA=k 3500 A A Dy,

(See §1.4 (1) for the convention of coorientation.) By comparing o(bs), and o3, (S(ar))s,
we get

/If Nsap) = (=) 'ap. (D.3)

(2

Now we recall that o and 3 are related by the condition Lk(b, ,as) = +1. More
precisely, suppose that the embeddings b, and a, are locally given near = by

bé_(x;€+1,...,:zrfi_l) = (O,...,O,I;€+1,...,:1::i_1,—5) (e >0),

ag(zy,...,x)) = (zf,...,2},0,...,0,0).
Applying the rule of §D.2, we have

O(b; X a[)(wl)w//) = O(bZ)m/ A 0(0,[)1// = Otﬁ 8$;€+1 VANRIEEAN 8I&,1 A 8ZE/1/ VANRIEEAN 8IZ,



94 TADAYUKI WATANABE

where o' = (2} ,,...,2;_), 2" = (2f,...,2})). To obtain Lk(b, ,ar), we compute
(7 (27, an(z")) = ag(z") — b, (2') _ (@Y, @Y =Ty — T, E)
e lao(z") — by ()] (@], 2, 2y, =2 )]

and we have that ¢*Volga—1 at (z/,2”) = (0,0) is a positive multiple of

(—1)eda{ Ao ANdaf Nd(=2h ) A Ad(—al_y)

= (=D)F(=D)MERedyl A Adal_y Ada] A A da.
Since (2/,2"”) = (0,0) is the only point in the preimage of the regular value
(0,...,0,1) € S9! of ¢, the sign at (2/,2") = (0,0) gives

1 =Lk(b, ,a) :/ ¢*Volga—r = (—1)kTkqap,
b; Xayg

By (D.3), we obtain (1).

The assertion (2) follows by using the coorientation of S(b;) and the value of a3
obtained above, as

/Jr NS (be) = (_l)k(dfk)(_l)dfkaﬂ _ (_l)derd(_l)derk _ (_1)d+k.

@y
The assertion (3) follows from [, ., w = Lk(bj,b/,), and
o X bl

 Ns(ai) NMg(ad Z/ﬁai/_naf
‘/bszzm S( 2) S( m) bi, S( 2) pi— S( 771)

1 m

_ (_1)kd+k+d—1 % (_1)k/d+k’+d—1 _ (_1)(k+k’)(d+1) _ (_1)d—1

by (D.2) and (1), where k = dima} and k¥’ = dimaj, =d — 1 — k. O

APPENDIX E. Well-definedness of Kontsevich’s characteristic class

E.1. Integral along the fiber (e.g., [BTu, §6], [GHV, Ch.VII]). We follow [BTu,
p.61-p.62] or [GHV, Ch.IL,§5] for the definition of integral along the fiber.

Proposition E.1 (Generalized Stokes theorem, e.g., [GHV, Ch.VII]). For a p-
form « on the total space of a fiber bundle w: E — B with compact oriented n-
dimensional fiber with n < p, the following identity holds.

dreo = meda + (—1)P "1,
where ©0: OYE — B is the restriction of ™ to the fiberwise boundary*.

The following identities for the pushforward, which are direct consequences of
the definition of m,, will be frequently used:
T (T B A ) = AT (E.1)

for forms a on E and g on B. If 7: E — B is an orientation preserving diffeomor-
phism between oriented manifolds, then (E.1) gives

m.(n*6) = B. (E2)

*The sign convention is different from that of [Wa2], where the boundary was oriented by the
inward-normal-first convention.
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/ TR = / a, (E.3)
B E
by the definition of m,.

We need to consider pushforward in a fiber bundle with fiber a manifold with
corners. In general, the map C,(X) — C,(X) induced by the forgetful map
Cr(X) — Cs(X) may not be a submersion and pushforwards may produce non-

When deg o = dim E, we have

smooth forms. We need only to consider pushforwards of submersions for our
purpose, in which case we have smooth forms as in the following lemma, whose
proof is standard.

Lemma E.2. Suppose that w: E — B is a fiber bundle with fiber a compact oriented
n-manifold with corners. Then pushforward of a smooth form on E gives a smooth
form on B.

E.2. Family of codimension 1 strata. According to the description of the codi-
mension 1 strata of 9C,(S¢; 00), the codimension 1 strata of EC, () in 9*EC,(7)
are parametrized by subsets A C {1,2,...,v,00} such that |A| > 2. Let

7a: ESp(7) — B (E.4)

denote the S-bundle associated to the given bundle 7: E — B.
If 0o ¢ A, the stratum ESy(7) can be written as

ES)(n) 2 EC, A (m) x C(RY). (E.5)

Here, r = |AJ, the identification is induced by the vertical framing 7x at the multiple
point, and EC, A(7) is the total space of the C, 4 (S% co)-bundle associated to
7. Recall from Definition 2.5 that C, (5% ) = C,_,11(S%00). Under the
identification (E.5), the restriction of w(I") can be written as

W)l gz, (x) = EP1w(I'/A) Apyw(Ta), (E.6)

where T’y is the subgraph of I' spanned by the vertices labelled by A, T'/A is the
graph obtained from T" by contracting I'y, w(I'/A) and w(T's) are defined similarly
as (2.17), where ¢,; may be replaced with ¢}: C,(R?) — Cy(R%) = S to
pullback Volga-1 if 7 is an edge of I'y. The sign is determined by the permutation
{1,2,...,e} = {edges of T'/A} U {edges of T }.

If oo € A, then we have

ESA() = ECn_a(r) x Co.(RY), (E.7)

where 7 = |A|, ECy_a(n) is the Cn_a(S% 00)-bundle associated to 7. Recall
that Cn_2 (5% 00) 2 Cy_pp1(5% 00) and we identify O, (Too X ) with C.(R%) as in
§2.3.3. Under the identification (E.7), the restriction of w(T") can be written as

w(D)lgg,(m) = P71 w(ac) APy w(T'/A%), (E.8)

where A = N — A, and w(T'c), w(['/A€) are defined similarly as the previous case.
The sign is also similar to the previous case.
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E.3. Proof of Theorem 2.16. By the generalized Stokes theorem (Proposition E.1),
we have

AI(T) = (—1) 4T (M W) = ()@ (D).

AC{1,...,v,00}
[A]=2

Moreover, by Lemmas E.3, E.4 and E.5 below, we have
dI(I\) _ (_1)(d—3)/€+f Z A W(F) _ (_1)(d—3)k+f+1 I((Sl—‘),

AC{1,...,v,00}
|A|=2

where 75 is the bundle projection (E.4). This completes the proof of (1) (that I is
a chain map).

For (2) (independence of w), we consider the cylinder C',(I x 7): I x EC,(7) —
I x B, which is a C,(S%; co)-bundle obtained by direct product with I. We extend
the vertical framing 7 on I x E naturally by the product structure. Now we take
two propagators wp and w; on the ends {0,1} x ECy(). Then by Corollary 2.14,
there exists a propagator w on I x ECy(7) for the extended framing that extends
both wy and w; on the ends. Then the form w(T") on I x EC,(7) is defined by (2.17)
by using the extended propagator w. Let C,(7)! = poC,(I x7): I x EC,(7) — B,
where p: I X B — B is the projection. Then by the generalized Stokes theorem for
this I x C,(S%; 0o)-bundle, we have

d@v(ﬂ')iw(F) =cC, (w)iaw(F)
= {Tu(m)n (D) ~ Ty lm).an (D) - / T, (m)2(n) ).

where ¢ = (—1)(@=3)%+6=1 This is the identity between (d — 3)k + (-forms on B
and [ ; is the pushforward along I. The linear combination of this identity for a
d-cocycle v = > W(I')T' of 477" gives rise to

A1) = e {T) 1) = 1)) + [ 169)()}
= e {1()(w1) = () (o) |

by a similar argument as in the proof of (1) and by dv = 0. This implies (2).

The assertion (3) (invariance under homotopy of 7z) can be proved similarly by
extending the vertical framing over I x E by the given homotopy, and by Corol-
lary 2.14 again.

The assertion (4) (naturality under bundle map) follows since the bundle map
over f can be used to pullback the propagator. Since the integral along the fiber
commutes with the pullback by a bundle map: C. (). f* = f*C, (7)., the result
follows. O

Lemma E.3. When |A| > 3,
A W(F) =0.
Proof. When oo ¢ A, let Ty be as defined in §E.2. When oo € A, let Ty be the

I'/A€ in §E.2. There are two cases to be considered.

(1) Every vertex of T'y is at least trivalent.
(2) T'a has a vertex with valence 2, 1 or 0.
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Th+ Te—Tq

FiGURE 18. The automorphism ¢4 .

Case (1): Suppose that T's has v’ vertices and e’ edges. The condition (1) implies
the inequality
2¢’ — 30" > 0. (E.9)
The product structure (E.5) or (E.7) and the decomposition (E.6) or (E.8) allows
us to integrate w(I'y) first along the fiber C.(R%), where = |A| = v/. The integral
of w(I's) is non-trivial only if degw(I'y) = dim C.(R%), that is,

(d—1)e =dv' —d—1. (E.10)

This is because if degw(I'y) < dimC,.(R%) the integral of w(I'/A) vanishes. If
degw(T'y) > dim C,.(R?) the result of the integral of w(I's) along C*(R%) is a form
of positive degree that is the pullback of some form on one point, which vanishes.
Now (E.9) and (E.10) imply (d — 3)v’" + 2d + 2 < 0, which is a contradiction when
d> 3.

Case (2): In this case, we follow [Les1, Lemma 2.20], which also uses a symmetry
due to Kontsevich ([Kon, Lemma 2.1]), and [Lesl, Lemma 2.18]T. If T'y has a
bivalent vertex, say a, then there are two edges of I'y incident to a, say with the
boundary vertices {a, b} and {a, c}, respectively. Here, we may assume that b # ¢, as
we may assume I' does not have multiple edges, since otherwise w(T") = 0 if d is even.
Let C be the subset of C,.(R?) consisting of configurations & = (..., Z4, Zp, Te, - - .)
such that x, +x.—x, = x. for some e # a, where we assume the points are labelled
by A. Then C is a disjoint union of codimension d submanifolds, which has measure
0. We consider C(R?) as the subspace of C,.(R?) by letting

CrRY = {1, yr) € RY | nP + -+ el =1, w3 # g if i # j, yr = 0}
Let ¢: C,_1(R?) x {0} — C?(R?) denote the projection 1 (x,0) = x/|z|.
We consider the automorphism ¢ : C. (RY) — C — C(RY) — C, which
takes x, to z, := xp + . — x, and fixes other points.

See Figure 18. Let 15 : Cf(RY) — C — C}(R?) — C denote the induced map v o/,
which is an automorphism. Note that C'NC}(R?) is codimension d in C*(R%), too.
Then tjw(lC's) = —w(T'a) because

A (G0 A GTU) = ATV A LR GTY = Qv A ¢ = =g v A v

TThere are other approaches to prove this lemma ([LV, KuTh]), which work with
compactifications.
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(v = Volga-1) and ¢} acts trivially on other edge forms. Here the relations ¢} ¢;*v =
@ v ete. follow from the commutativity of the following diagram and Lemma 2.11.

@ _
CrRY) o 1 (L @y, ) e e
LA\L LL 1 I
emdy % cd—1 / @~y
C*R%) ——= S (...,xa,xb,xc,...)l—>W;xb'

Moreover, the automorphism ¢ preserves the orientation of C} (R?) — C'. Since the
integral of w(I'y) on the noncompact manifold C;(R%) — C' is absolutely convergent
and C has measure zero, we have that the integral of w(I'y) over C(RY) can be
replaced with that over C*(R?) — C, and

/ w(y) = / w(y) = / Hw(ly) = —/ w(Ty).
Cx(R4)—C 1A (Cx(R)—C) Cx(RY)—C Cx(RY)—C

Note that the integral depends on the orientation of the domain of integral. Hence
the integral ma,w(I") vanishes.

If 'y has a univalent vertex, say a, then there is an edge i of I'j incident to a,
say with the boundary vertices {a,b}. Let C;_; ;(R?) = C;_(R¥™1) x S9471. We
consider the map ¢: C*(R?) — C*_, ,(R?) given by

r—1,1

*
P

q(x1,. .y xr) = (UT1, oo Gy e ooy Py, (T — Tp) /| T — Tb])
(the factor pz, deleted), where = 1/4/1 — |24|?. Then the form w(T'y) restricted
to C*(RY) is basic with respect to ¢, namely, it is the pullback of some (d — 1)e’-
form on the manifold C;;_; ;(R?) of one less dimension since r = [A| > 3. It follows
that the integral of w(T'y) over C*(R?) is zero. The case where I'y has a zerovalent
vertex is similar to this case. 0

Lemma E.4. When |A| =2 and 0o € A,
A CU(F) =0.

Proof. Tf A = {j,00} for some j # oo, and if j has valence ¢ in T, then the
form w(I'/A®) on Cq(R%) in (E.8) is (Volga-1)! for the volume form Volga—: on
C5(R?) = 5§91, which vanishes. O

Lemma E.5. When |A| =2 and co ¢ A,
max w(IT) = —I(T'/A, induced ori).

Proof. Let A = {a,b} C N. We first describe the orientation on the stratum Sy
induced from that of C,(S% 00). The stratum S, is the face produced by the
blow-up along the locus {z, = z3}. A neighborhood of a generic point of S5 can
be canonically identified with that of a generic point of dBla_, (R x R?) x (R%)"~2
in Bla_, (R x R?) x (R*)"~2. Here, the order of the factors R* is not important
since d is even and their permutation does not affect the orientation. Coordinates
on R? x RY with respect to the decomposition Aga x A]ﬁd are given by the map

t+t t+t t—t t —t
e B (G- A= N L))
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We fix the following identifications
@ RY S Ape; w(t) = (t,1),
@RS Aga; @H(t) = (=t,1).

The pushforwards of the orientation 0t = 9t; A --- A Otq of RY, where Ot; = 6‘2_,

(E.11)

gives
@, (0t) Nt (Ot) = (Ot + Ot)) A -+ A (Dtg + ) A (Dt — dt1) A--- A (Ot — Ota)
=240t A O,

which agrees with the orientation of R x R?. Thus ., (9t) and ;- (dt) give natural
orientations on the subspaces Aga and A]f{gd.

Since Bla_, (RY x RY) = Aga x Blyoy(Ag.), it suffices to determine the orienta-
tion induced on Aga x 0Bloy(Agz,) from @, (dt) Awy (dt) by the outward-normal-
first convention. Further, as w,(0t) is of even degree, we need only to determine
the induced orientation of dBlg(R?) from Ot. Since the outward normal vector
at a point u of 9Bl (R?) = S9=1 is the preimage of —u under the blow-down
map, the induced orientation on 9B/ g, (R%) is —Volga—1. Thus we have obtained
the following formula of the orientation of dBla_, (R? x R?) x (R%)"~2

—wy (Volga-1) A (0t ) A\ ot (E.12)
Jj#ab
where we identified 6B€{0}(Rd) with the unit sphere S%~' C R? via the isotopy in
Bloy (R?) generated by the preimages of the radial rays from the origin.
Next, we need to determine the sign caused by the permutation of propagators
in w(T'). Namely, as in (E.6), one may transform as

w(D)|gs, (m) = FPow(Ta) Apiw('/A) = pyw(T'a) A (£p1w(T'/A)). (E.13)

The term £pjw(I'/A) corresponds to the induced orientation o(T'/i) in (2.4). Hence
it turns out that the £ is in fact +. By (E.12) and (E.13), the integral along the
fiber gives

maw(T) = —=I(T'/A, induced ori).

ApPPENDIX F. Homology class of the diagonal

Proposition F.1. Let S be a closed oriented manifold. Suppose that H,(S;Z)
is free and has finite Z-bases {e;} and {e}}, which are represented by oriented
submanifold cycles {~;} and {~;}, respectively, and are dual to each other, namely,
YitV; = 0ij (the algebraic intersection number, a- 8 =0 if dim a+dim § # dim S ).
Then we have

Asl=Yewe

3

in H (S x S;7Z).

This can be deduced from the cohomology version in [MS, Theorem 11.11], except
for a sign. We leave the reader to check the sign.
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