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Abstract. This paper studies the rational homotopy groups of the group
Diff(S2n) of self-diffeomorphisms of S2n with the C∞-topology for 2n ≥ 4. We
present a method to prove that there are many ‘exotic’ non-trivial elements in
π∗(Diff(S2n))⊗Q parametrized by trivalent graphs. As a corollary of the main
result, the 4-dimensional Smale conjecture is disproved. The proof utilizes
Kontsevich’s characteristic classes for smooth disk bundles and a version of
clasper surgery for families. In fact, our surgery is inspired by clasper theory
for 3-manifolds due to Goussarov and Habiro, and we use a method inspired
by the computation of Kontsevich’s configuration space integrals for homology
3-spheres due to Kuperberg–Thurston and Lescop.

1. Introduction

The homotopy type of Diff(S4) is an important object in topology, whereas al-

most nothing was known about its homotopy groups except that they include those

coming from the orthogonal group O5 (e.g., recent surveys in [Hat2, Kup]). Let

Diff(Dd, ∂) denote the group of self-diffeomorphisms of Dd which fix a neighbor-

hood of ∂Dd pointwise. This is the ‘non-linear’ part of Diff(Sd) in the sense of the

well-known splitting Diff(Sd) ≃ Od+1 × Diff(Dd, ∂) (e.g., [ABK]). For d = 1, 2, 3,

it is known that Diff(Dd, ∂) is contractible. Proof for d = 1 is easy. The case d = 2

is due to Smale ([Sm], see also [EE]), and a proof for the case d = 3 (the Smale

conjecture) has been given by Hatcher ([Hat]), and more recently by Bamler and

Kleiner ([BK1, BK2]) through Ricci flow. On the other hand, for d ≥ 5, it is known

that Diff(Dd, ∂) is not contractible (e.g., [Hat2]). For d = 4, there was a conjecture

which claims that Diff(D4, ∂) is contractible, or equivalently, Diff(S4) ≃ O5 (the

4-dimensional Smale conjecture [Kir, Problem 4.34, 4.126]). The following theorem,

which is the main result of this paper, gives a negative answer to this conjecture.

Theorem 1.1 (Theorem 3.10). Let d be an even integer such that d ≥ 4. For

each k ≥ 1, evaluation of Kontsevich’s characteristic classes on Dd-bundles over

S(d−3)k gives an epimorphism Zk : π(d−3)k(BDiff(Dd, ∂)) ⊗ R → A
even
k ⊗ R to the

space A even
k ⊗ R of trivalent graphs (definition in §2.2).

Remark 1.2. Theorem 1.1 gives no information about the mapping class group

π0(Diff(D4, ∂)) ∼= π1(BDiff(D4, ∂)) because A even
1 = 0. The first nontrivial ele-

ment is detected in A
even
2

∼= Q (Remark 2.1). It should be mentioned that after
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the first version of this paper was submitted to the arXiv, S. Akbulut announced

a proof that π0(Diff(D4, ∂)) 6= 0 based on his theory of corks ([Ak]). Also, Bud-

ney and Gabai constructed some elements of π0(Diff(D4, ∂)) explicitly in [BG, §5].
Some structure of the group π0(Diff(D4, ∂)) has been studied recently by D. Gay

([Ga]), Gay–Hartman ([GH]). An alternative proof of Gay’s result is given by

Krannich and Kupers in [KK].

Remark 1.3. In our previous preprint [Wa4], we proved a result slightly different

from Theorem 1.1 in terms of Morse theory. The techniques used in this article to

prove Theorem 1.1 involve differential forms. They are quite different from those

used in [Wa4].

Let r : Dd → Dd be the reflection r(x1, x2, . . . , xd) = (−x1, x2, . . . , xd). The

conjugation r ◦ g ◦ r−1 for g ∈ Diff(Dd, ∂) gives an involution on Diff(Dd, ∂) which

is a homomorphism, and hence an involution on π∗(BDiff(Dd, ∂)).

Proposition 1.4 ([KRW, Remark 7.16]). Let d be an even integer such that d ≥ 4.

For an element ξ of π(d−3)k(BDiff(Dd, ∂))⊗R, let ξ′ be the element obtained from

ξ by the reflection involution r. Then we have

Zk(ξ
′) = (−1)kZk(ξ).

A proof of Proposition 1.4 is given in Subsection 2.5.

Corollary 1.5. Let d be an even integer such that d ≥ 4. The (−1)k-eigenspace of

the reflection involution in π(d−3)k(BDiff(Dd, ∂))⊗R is nontrivial whenever A even
k

is nontrivial.

Proof. This follows from Theorem 1.1 and Proposition 1.4. Namely, let π(d−3)k(BDiff(Dd, ∂))⊗
R = V(−1)k ⊕ V(−1)k+1 be the eigenspace decomposition with respect to the reflec-

tion involution. If ξ ∈ V(−1)k+1 , then by Proposition 1.4, we have (−1)kZk(ξ) =

Zk(ξ
′) = (−1)k+1Zk(ξ) and hence Zk(ξ) = 0. This shows that the image of Zk

agrees with Zk(V(−1)k). �

Remark 1.6. For example, the (+1)-eigenspace of π2d−6(BDiff(Dd, ∂)) ⊗ R is at

least one dimensional. This is compatible with a result of Kupers and Randal-

Williams ([KRW, Corollary 7.15]) that there is at least one dimensional nontrivial

subspace in the (+1)-eigenspace of πi(BDiff(Dd, ∂)) ⊗ Q for some i in 2d − 9 ≤
i ≤ 2d − 5 (the fourth band), d ≥ 6 even, as pointed out in [KRW]. As also

pointed out in [KRW, Example 6.9], Corollary 1.5 has a nontrivial consequence for

the group C(Dn) = Diff(Dn × I, ∂Dn × I ∪ Dn × {0}) of pseudo-isotopies. The

following corollary holds since the (+1)-eigenspaces of π∗(BDiff(Dd, ∂))⊗R inject

into π∗(BC(Dd−1))⊗ R ([KRW, Example 6.9]).

Corollary 1.7. Let d be an even integer such that d ≥ 4. If k ≥ 2 is even and if

A even
k 6= 0, then π(d−3)k(BC(D

d−1))⊗ R 6= 0.

1.1. Some consequences of Theorem 1.1 for d = 4. Theorem 1.1 answers some

problems in Kirby’s problem list [Kir].

(1) Diff(S4) 6≃ O5. (cf. [Kir, Problem 4.34, 4.126 (D. Randall)])
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(2) There is a bundle over S2, with a 4-manifold as fiber, which is topologically

trivial but not smoothly trivial. (cf. [Kir, Problem 4.122 (K. Fukaya)])

(3) The space Sympl of all standard-at-infinity symplectic structures on R4 is

not contractible. (cf. [Kir, Problem 4.141 (Eliashberg)], [El, 7.3])

Here, (2) follows from the contractibility of the topological automorphism (home-

omorphism) group Top(D4, ∂) with the C0-topology, which can be shown by the

Alexander trick. The result (3) follows from Theorem 1.1 and the remark given in

[Kir, Problem 4.141], which says that the evaluation map Diff(D4, ∂) → Sympl is

a fibration whose fiber is the group of self-symplectomorphisms of (D4, ω0) fixed

at the boundary, where ω0 is the standard symplectic form. This group is con-

tractible by a deep result of Gromov based on his theory of pseudo-holomorphic

curves ([Gr]).

As in [Hat, Appendix], the 4-dimensional Smale conjecture has several equiva-

lent statements. We denote by PLd the structure group for PL microbundles of

dimension d ([Mil]). By the equivalence Diff(Dd, ∂) ≃ Ωd+1PLd/Od ([BL], the PL

analogue of Morlet’s equivalence), we have the following.

(4) The inclusion O4 → PL4 is not a homotopy equivalence.

Let Emb(S3,R4)0 denote the component of Emb(S3,R4) of the standard inclu-

sion. Let Emb+(D4,R4) denote the space of orientation preserving embeddings

D4 → R4. By the fibration sequence Diff(D4, ∂)→ Emb+(D4,R4)→ Emb(S3,R4)

of Cerf–Palais ([Ce1, Pa]), a parametrized version of the 4-dimensional Schoenflies

conjecture fails:

(5) Emb(S3,R4)0 6≃ Emb+(D4,R4) (≃ SO4).
∗

By the fibration sequence Diff(Dd+1, ∂) → C(Dd) → Diff(Dd, ∂), Hatcher’s

theorem Diff(D3, ∂) ≃ ∗, and Theorem 1.1, we have the following.

(6) C(D3) 6≃ ∗. In particular, π1C(D
3)⊗Q 6= 0.

By π0Diff(D5, ∂) ≈ Θ6 = 0 ([Ce2], [KM]), π1Diff(D4, ∂)⊗ Q 6= 0, and the long

exact sequence for the fibration C(D4)→ Diff(D4, ∂), we have the following.

(7) π1C(D
4)⊗Q 6= 0.

By considering the Cerf–Palais fibration sequences Diff(S3×D1, ∂)→ Diff(D4, ∂)→
Emb(D4, IntD4), Diff(S3×D1, ∂)×Diff(S3×D1, ∂)→ Diff(S3×D1, ∂)→ Emb(S3, S3×
D1), we obtain the following.

(8) Diff(S3 ×D1, ∂) 6≃ ΩO4.

(9) Emb(S3, S3 ×D1)0 6≃ SO4, where Emb(S3, S3 ×D1)0 is the component of

the standard inclusion S3 → S3 × {0} ⊂ S3 ×D1.

In (1), (3), (4), (5), (6), (8), (9), the deficiency of being a homotopy equivalence

can be measured by Diff(D4, ∂).

1.2. Background. Kontsevich’s characteristic classes, defined in [Kon], are invari-

ants for fiber bundles with fiber a punctured homology sphere. They were defined,

∗The 4-dimensional smooth Schoenflies conjecture claims that any smoothly embedded 3-

sphere in R4 bounds a smooth 4-disk. This is equivalent to π0Emb(S3,R4) ∼= π0Emb(D4,R4) (=

π0O4) by Cerf or Hatcher’s theorem.
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as a higher dimensional analogue of a perturbative invariant for 3-manifolds, by uti-

lizing a graph complex and configuration space integrals, both developed by Kont-

sevich in [Kon]. The method of this paper is essentially the same as [Wa2], where

we studied the rational homotopy groups of Diff(D4k−1, ∂). Namely, we construct

some explicit fiber bundles from trivalent graphs, by giving a higher-dimensional

analogue of graph-clasper surgery, developed by Goussarov and Habiro for knots

and 3-manifolds ([Gou, Hab]). Then we compute the values of the characteristic

numbers for the bundles, by giving a higher-dimensional analogue of Kuperberg–

Thurston’s computation of configuration space integrals for homology 3-spheres

([KuTh, Les2]). Thus, what is new in this paper is to give higher-dimensional ana-

logues of the ideas of Goussarov–Habiro and Kuperberg–Thurston so that they fit

together well and to check that they indeed work.

In fact, the construction needed is not different between d = 4 and d > 4 even.

This is similar to the fact that the cocycles of Emb(S1,Rd) given by configuration

space integrals are nontrivial for all d ≥ 4 and d = 4 is not exceptional there

([Kon, CCL]). In earlier versions of this paper, we gave a proof of Theorem 1.1

only for d = 4 to simplify notations. However, we learned that some remarkable

progresses on the topology of Diff(Dd, ∂) for higher even dimensions d ≥ 6 have

appeared recently (e.g., Weiss ([We]), Boavida de Brito–Weiss ([BdBW]), Fresse–

Turchin–Willwacher, Fresse–Willwacher ([FTW, FW]), Kupers ([Kup]), Kupers–

Randal-Williams ([KRW])) and we thought it would be worth giving a proof of our

result for arbitrary even integer d ≥ 4. It would be very interesting to compare the

results in this paper and those of [We, BdBW, FTW, FW, Kup, KRW].

1.3. Contents of the paper. The aim of this paper is to give a proof of Theo-

rem 1.1 by means of differential forms and to give a foundation of graph surgery

which works for manifolds of arbitrary dimensions ≥ 3. There are roughly three

ingredients in this paper.

(i) Kontsevich’s characteristic classes for framed disk bundles defined by a

graph complex and configuration space integrals. This will be explained in

§2.
(ii) Surgery on “graph claspers”, a higher dimensional analogue of Goussarov–

Habiro’s theory. This will be explained mainly in §3, and technical details

are described in §5.
(iii) That Kontsevich’s configuration space integral invariants can be computed

explicitly for the disk bundles constructed by graph clasper surgeries. The

method for the computation is a higher dimensional analogue of Kuperberg–

Thurston’s computation of configuration space integrals for homology 3-

spheres ([KuTh, Theorem 2]), for which a detailed exposition has been

given by Lescop ([Les2]). This will be explained in §4, §6, §7.

In the appendices, we will explain about the following.

(A) Smooth manifolds with corners.

(B) Blow-up in differentiable manifolds.

(C) Compactification of configuration spaces of a manifold with boundary.

(D) Orientations on manifolds and on their intersections.

(E) Well-definedness of Kontsevich’s characteristic class.
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(F) Homology class of the diagonal.

The readers who do not need to check the technical details for the moment can

read only §2–4.

1.4. Notations and conventions.

(a) The diagonal {(x, x) ∈ X × X | x ∈ X} is denoted by ∆X . We identify

its normal bundle N∆X and tangent bundle T∆X with TX in a canonical

manner, namely, identifying (−v, v) ∈ N(x,x)∆X , (v, v) ∈ T(x,x)∆X with

v ∈ TxX , as in (E.11).

(b) Let I denote the interval [0, 1].

(c) We abbreviate the vector field
∂

∂xi
as ∂xi.

(d) Throughout this paper, we assume that manifolds and maps between man-

ifolds are smooth, unless otherwise stated.

(e) For manifolds with corners, smooth maps between them and their (strata)

transversality, we follow [BTa, Appendix]. See also Appendix A in this

paper.

(f) For a sequence of submanifolds A1, A2, . . . , Ar ⊂W of a smooth Riemann-

ian manifoldW , we say that the intersection A1∩A2∩· · ·∩Ar is transversal

if for each point x in the intersection, the subspace NxA1 +NxA2 + · · ·+
NxAr ⊂ TxW is the direct sum NxA1⊕NxA2⊕· · ·⊕NxAr, where NxAi is

the orthogonal complement of TxAi in TxW with respect to the Riemann-

ian metric. Note that the transversality property does not depend on the

choice of Riemannian metric.

(g) We interpret a normal framing of a submanifold A of a manifold X of

codimension r by a sequence of sections (s1, . . . , sr) of the normal bundle

NA of A that restricts to an ordered basis of each fiber of NA.

(h) Homology and cohomology are considered over R if the coefficient ring is

not specified.

(i) For a fiber bundle π : E → B, we denote by T vE the (vertical) tangent bun-

dle along the fiber Ker dπ ⊂ TE. Let ST vE denote the subbundle of T vE

of unit spheres. Let ∂vE denote the fiberwise boundaries:
⋃

b∈B ∂(π
−1{b}).

(j) We represent an orientation of a manifold M by a nowhere-zero section of∧dimM
TM and use the symbol o(M) for orientation ofM . When dimM =

0, we give an orientation of M by a choice of sign ±1 at each point, as

usual. Unless otherwise mentioned, we orient the boundary of a manifold

by the outward-normal-first convention. One could instead represent an

orientation by a section of
∧dimM

T ∗M . The two interpretations are related

by the duality TxM ∼= T ∗
xM ; v 7→ 〈v, ·〉 given by a Riemannian metric.

In Appendix D, we describe more orientation conventions adopted in this

paper.

(k) We orient the total space of a fiber bundle over an oriented manifold with

fiber Dd or its configuration space by the rule o(base) ∧ o(fiber).
(l) When M is a submanifold of an oriented Riemannian r-dimensional mani-

fold R, then we define the orientation o∗R(M) of the orthogonal complement
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of TM in TR by the rule

o(M) ∧ o∗R(M) ∼ o(R). (1.1)

o∗R(M) is called a coorientation of M in R.

(m) For oriented submanifolds A,B of an oriented manifold M , we orient the

submanifold A × B of M ×M by the product orientation o(A) ∧ o(B) of

T (A×B) = TA⊕ TB, unless otherwise stated.

(n) In Appendix B, we recall the definition of the blow-up in differentiable

manifolds.

1.5. Acknowledgements. I would like to thank B. Botvinnik, R. Budney, K. Fu-

jiwara, D. Gabai, D. Kosanović, M. Krannich, A. Kupers, F. Laudenbach, A. Lobb,

S. Moriya, K. Ono, M. Powell, O. Randal-Williams, J. Reinhold, K. Sakai, T. Saka-

sai, T. Shimizu, C. Taubes, P. Teichner, M. Weiss who helped and encouraged me

during the preparation and revision of this paper. I am deeply grateful to the refer-

ees for spending much time to read my paper and for giving me numerous important

comments, which helped to improve this paper. I would like to thank the organiz-

ers of “HCM Workshop: Automorphisms of Manifolds (Hausdorff Center, 2019)”

for giving me an important opportunity to present my result. This work was par-

tially supported by JSPS Grant-in-Aid for Scientific Research 21K03225, 20K03594,

17K05252, 15K04880, and by Research Institute for Mathematical Sciences, Kyoto

University.

2. Kontsevich’s characteristic class

The aim of this section is to give a self-contained exposition of Kontsevich’s

characteristic classes for even dimensional disk bundles, which were developed in

[Kon] and play a crucial role in the main result of this paper. There are no new

results in this section. We try to make the exposition as complete as possible since

there seems to be no literature about the detail of that for higher even dimensions,

though necessary ideas are given in [Kon]†. What will be needed in the proof of

our main result from this section are the definition of Kontsevich’s invariant and

the statement of Theorem 2.16 and of its corollary.

2.1. Framed smooth fiber bundles and classifying spaces.

2.1.1. (X,A)-bundle. In this paper, we consider pointed smooth fiber bundles, where

we say that a smooth fiber bundle is pointed if the base space is a pointed space

and if the bundle is equipped with a smooth identification of the fiber over the

basepoint with a standard model of the fiber. Let X be a compact manifold and

†For 3-dimensional rational homology spheres, there are several expositions about Axelrod–

Singer’s or Kontsevich’s configuration space integral invariants ([Fu, BC, KuTh, Les1, Wa3]) other

than the original papers ([AS, Kon]). Among these, Lescop’s [Les1] (also [Les4]) gives a thorough

exposition of the definition and well-definedness of the invariant. It was helpful to write this

section.



EXOTIC ELEMENTS OF THE HOMOTOPY GROUPS OF Diff(S2n) 7

A be a submanifold of X . An (X,A)-bundle is a pointed X-bundle E → B over a

pointed space B, equipped with maps of smooth fiber bundles

A
ĩ //

��

B ×A ϕ //

p1

��

E

��
∗ i // B

= // B

(2.1)

where i is the inclusion map of the basepoint ∗, ĩ is given by the identification

A = {∗}×A, p1 is the projection onto the first factor, and ϕ is a fiberwise embedding

such that ϕ◦ ĩ agrees with the inclusion A ⊂ X into the fiber over ∗. In other words,

an X-bundle equipped with trivializations on a subbundle with fiber A (given by

ϕ) and on the fiber over ∗, which are compatible on their intersection A ⊂ π−1(∗).
This can instead be defined as pointed X-bundles with structure group Diff(X,A),

the group of diffeomorphisms X → X each of which fixes a neighborhood of A

pointwise, or equivalently, as X-bundles corresponding to a pointed classifying map

from a pointed space to BDiff(X,A). The main objects in this paper are (Dd, ∂Dd)-

bundles, or (Dd, ∂)-bundles for short.

Studying a (Dd, ∂)-bundle is equivalent to studying a (Sd, U∞)-bundle, where

Sd = Rd ∪ {∞} and U∞ is a small d-ball about ∞, and we will often consider

the latter instead. More explicitly, a (Dd, ∂)-bundle over B can be canonically

extended to an Sd-bundle by attaching a trivial bundle over B with fiber the disk

{x ∈ Sd = Rd ∪ {∞} | |x| ≥ 1}, along the boundaries where the bundles are

trivialized.

2.1.2. Framed (X,A)-bundle. Now suppose that TX is trivial. We fix a trivializa-

tion τ : TX
∼=→ RdimX × X , which we think as a standard one. For an X-bundle

π : E → B, let T vE := Ker dπ, that is, the linear subbundle of TE whose fiber

over z ∈ E is the subspace Ker(dπz : TzE → Tπ(z)B) ⊂ TzE. Suppose that a

Riemannian metric on T vE is given. A vertical framing on T vE is a trivialization

T vE
∼=→ RdimX × E. For an (X,A)-bundle, we consider a vertical framing that

agrees with the standard one τ on ϕ(B × A) ∪ π−1(∗) = (B × A) ∪ π−1(∗), where
ϕ is the map in (2.1). We call such a framed bundle a pointed framed bundle.

2.1.3. Classifying space for framed (X,A)-bundles. Let Fr(X,A; τ) be the space of

framings onX that agree with τ on A, equipped with the topology as the subspace of

the section space of the principal GLd(R)-bundle overX associated to TX , which is

also known as the oriented orthonormal frame bundle. Then Fr(X,A; τ) is naturally

a left Diff(X,A)-space by g ·σ = σ ◦ (dg)−1 for g ∈ Diff(X,A), σ ∈ Fr(X,A; τ). We

set

B̃Diff(X,A; τ) := EDiff(X,A)×Diff(X,A) Fr(X,A; τ).

This is a fiber bundle over BDiff(X,A) with fiber

Fr(X,A; τ) ≃ Map((X,A), (GLd(R), id)).

This homotopy equivalence depends on the choice of τ . Then B̃Diff(X,A; τ) is the

classifying space for pointed framed (X,A)-bundles in the sense that there is a natu-

ral bijection between [(B, ∗), (B̃Diff(X,A; τ), ∗)] with the set of isomorphism classes
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of framed (X,A)-bundle over B. Since there is a (pointed) homotopy equivalence

Fr(Dd, ∂Dd; τ) ≃ ΩdSOd, we have a fiber sequence

ΩdSOd → B̃Diff(Dd, ∂; τ)→ BDiff(Dd, ∂). (2.2)

2.2. Graph complex. We recall the notion of Kontsevich’s graph complex given

in [Kon] relevant to even dimensional manifolds.

2.2.1. Space of graphs. By a graph we mean a finite connected graph where the

valence of every vertex is at least 3. For a graph Γ with v vertices and e edges, a label

is a choice of bijections ν : {vertices of Γ} → {1, 2, . . . , v} and µ : {edges of Γ} →
{1, 2, . . . , e}. We identify two labelled graphs related by a label preserving graph

isomorphism. Let L even
v,e be the set of all labelled graphs (Γ, ν, µ) with v vertices

and e edges with no multiple edges and no self-loops. An orientation of Γ is a choice

of an orientation of the real vector space

R{edges of Γ}.

A label µ on edges of a graph Γ canonically determines an orientation of Γ, which

we denote by o(Γ, µ). In this way, we consider a labelled graph also as an oriented

graph. Let V even
v,e be the vector space over Q generated by labelled graphs (Γ, ν, µ)

with v vertices and e edges, modulo the relations

(i) (Γ, ν′,µ′) = −(Γ, ν,µ) if µ′ and µ differ by an odd permutation,

(ii) (Γ, ν,µ) = 0 if Γ has a self-loop.
(2.3)

It follows from the relation (i) that (Γ, ν,µ) is zero in V even
v,e if it has a pair of

vertices with multiple edges between them. The equivalence class of (Γ, ν,µ) in

V even
v,e without self-loop bijectively corresponds to the oriented graph (Γ, o(Γ, µ))

considered modulo the relation (Γ,−o) = −(Γ, o). We will omit ν,µ from the

notation of labelled graph, and use the same notation Γ for the equivalence class of

((Γ, ν, µ), o(Γ, µ)) in V even
v,e to avoid complicated notations .

2.2.2. Graph complex. We set

G
even =

⊕

v,e

V even
v,e .

As in [BNM, Definition 3.6], we impose a bigrading on G even by the “degree”

k = e− v = −χ(Γ) = b1(Γ)− 1, and the “excess” ℓ = 2e− 3v‡. We denote by G even
ℓ,k

the subspace of G even of excess ℓ and degree k, and by G even
ℓ (resp. G even

∗,k ) the

direct sum
⊕

k≥0 G even
ℓ,k (resp.

⊕
ℓ≥0 G even

ℓ,k ). We set G even
−1 = 0. The graded vector

space G even is made into a chain complex by the differential δ : G even
ℓ → G even

ℓ+1

defined on an element represented by a labelled graph Γ = (Γ, ν, µ) ∈ L even
v,e with

the orientation o = o(Γ, µ) as

δ(Γ, o) :=
∑

i: edge
of Γ

(Γ/i, o[i]),

where Γ/i is the labelled graph obtained from Γ by contracting the edge i, equipped

with the induced label: if the endpoints of the edge i are j0, j1 with j0 < j1, then

the set of vertices of Γ/i is labelled by shifting the labels {j1 + 1, j1 + 2, . . . , v} in
‡In [BNM], G even is denoted by bcC, and G even

ℓ,k
is denoted by bcCℓ

k
.
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Figure 1. IHX relation. Each term is the equivalence class in

G even of a labelled graph.

{1, . . . , v} − {j1} by −1, the set of edges of Γ/i is labelled by shifting the labels

{i+ 1, i+ 2, . . . , e} in {1, . . . , e} − {i} by −1. The orientation on Γ/i, denoted by

o[i], induced from an orientation o of Γ is determined by the rule

i ∧ o[i] = o (2.4)

as an element of the vector space
∧e R{edges of Γ}. Even if o = o(Γ, µ), the induced

orientation o[i] may be either the orientation o(Γ/i) determined by the labels on

Γ/i or its reverse −o(Γ/i). It follows from (o[i])[j] = −(o[j])[i] that δ ◦ δ = 0. The

chain complex (G even, δ) is a version of Kontsevich’s graph complex in [Kon]. The

“graph cohomology” is defined by

Hℓ(G even) =
Ker (δ : G even

ℓ → G even
ℓ+1 )

Im (δ : G even
ℓ−1 → G even

ℓ )
.

Note that δ preserves the degree and thus Hℓ(G even) =
⊕

k≥0H
ℓ(G even

∗,k ), and we

set Hℓ,k(G even) = Hℓ(G even
∗,k ).

We will also consider the dual chain complex (G even, δ∗), which is defined by

identifying G even
ℓ with Hom(G even

ℓ ,Q) by the canonical basis given by graphs, and

by letting δ∗ be the dual of δ. The “graph homology”§ is defined by

Hℓ(G
even) =

Ker (δ∗ : G
even
ℓ → G

even
ℓ−1 )

Im (δ∗ : G even
ℓ+1 → G even

ℓ )
.

2.2.3. The 0-th graph (co)homology. Since G even
−1 = 0, we have

H0(G even) = Ker (δ : G
even
0 → G

even
1 ), H0(G

even) = G
even
0 /δ∗(G even

1 ),

where G even
0 is the subspace of trivalent graphs. It follows from the definition

of δ∗ that δ∗(G even
1 ) is spanned by the IHX relation shown in Figure 1. We set

Hℓ,k(G
even) = Hℓ(G

even
∗,k ) and

A
even
k := H0,k(G

even) = G
even
0,k /IHX.

Any class in H0(G even) can be obtained in the following way. Let L even
k = L even

2k,3k

be the set of all labelled trivalent graphs with 2k vertices and with no multiple

edges and no self-loops, and let

ζk :=
∑

Γ∈L even
k

Γ⊗ Γ ∈ G
even
0,k ⊗ G

even
0,k .

It is obvious that any element γ ∈ G even
0,k can be represented as

γ = (W ⊗ id)ζk =
∑

Γ∈L even
k

W (Γ)Γ

§In [Wi], the complex (G even, δ∗) is denoted by GCd.
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for some linear map W : G even
0,k → Q. Since we have

(id⊗ δ)ζk =
∑

Γ∈L even
k

Γ⊗ δΓ =
∑

Γ′

δ∗Γ′ ⊗ Γ′ ∈ G
even
0,k ⊗ G

even
1,k ,

where the sum of Γ′ is over all generating labelled graphs in G even
1,k , it follows that

δγ = 0 if and only if W (δ∗(G even
1,k )) = 0, or equivalently, W factors through a linear

map W : A even
k → Q. Hence any class [γ] ∈ H0,k(G even) can be written uniquely

as

[γ] = (W ⊗ id)([·]⊗ id)ζk

for some linear map W : A even
k → Q. We define

ζ̃k :=
1

(2k)!(3k)!
([·]⊗ id)ζk =

1

(2k)!(3k)!

∑

Γ∈L even
k

[Γ]⊗ Γ ∈ A
even
k ⊗ G

even
0,k , (2.5)

which can be considered as the universal class in H0,k(G even;A even
k ). The reason

for the coefficients 1
(2k)!(3k)! in the formula of ζ̃k is just to avoid a coefficient in the

right hand side of Theorem 3.10(3).

Remark 2.1. It is an easy exercise to see that A even
1 = 0, and A even

2 is 1-dimensional

and generated by the class of the complete graph W4 on four vertices with some

labels. That W4 represents a nontrivial class in A
even
2 is a special case of [CGP,

Example 2.5]. One may also easily check that A even
3 = 0. The dimensions of A even

k

for 4 ≤ k ≤ 9 are computed in [BNM] as in the following table (bcH0
k in the notation

of [BNM] is H0,k(G even), so that dim A even
k = dim bcH0

k).

k 1 2 3 4 5 6 7 8 9

dim A even
k 0 1 0 0 1 0 0 0 1

A lot more is known about H∗(G even), e.g. lower bounds through [Br, Wi] and

the Euler characteristics ([WZ]). More computations can be found in [BW].

2.3. Compactification of configuration spaces. The reader who is familiar

with the real Fulton–MacPherson compactification of the configuration space given

in [AS, Kon, BTa] may skip or read briefly this subsection.

2.3.1. Differential geometric analogue of the Fulton–MacPherson compactification

due to Axelrod–Singer and Kontsevich. Let X be a manifold without boundary.

The configuration space of labelled tuples of n points on X is

Cn(X) = {(x1, . . . , xn) ∈ Xn | xi 6= xj if i 6= j}.
For a subset Λ of N = {1, 2, . . . , n}, we consider the blow-up Bℓ∆(Λ)(X

Λ), where

∆(Λ) ⊂ XΛ denotes the small diagonal {(x, . . . , x) ∈ XΛ | x ∈ X}. Roughly,

the blowing up of XΛ along ∆(Λ) replaces ∆(Λ) with its normal sphere bundle

SN∆(Λ). See Appendix B for more information about blow-ups. Let CΛ(X) ⊂ XΛ

denote the configuration space of points labelled by Λ, analogously defined by

replacing N with Λ in the above definition of Cn(X). There is a natural map

CΛ(X) → Bℓ∆(Λ)(X
Λ) into the interior of Bℓ∆(Λ)(X

Λ). By precomposing the
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forgetful map Cn(X)→ CΛ(X), a map iΛ : Cn(X)→ Bℓ∆(Λ)(X
Λ) is defined. The

inclusion Cn(X)→ Xn and the maps iΛ give an embedding

Cn(X)→ Xn ×
∏

|Λ|≥2

Bℓ∆(Λ)(X
Λ). (2.6)

Then the space Cn(X) is defined to be the closure of the image of this map. The

following properties are proved in [FM, AS] (see also Theorem 4.4, Propositions 1.4,

6.1 of [Si])¶.

Proposition 2.2 (Fulton–MacPherson, Axelrod–Singer). (1) Cn(X) is a man-

ifold with corners.

(2) If X is compact, so is Cn(X).

(3) The forgetful map Cm(X)→ Cn(X) for m > n which forgets the last m−n
factors extends to a smooth map Cm(X) → Cn(X). The same is true for

other choices of the m− n factors.

The structure of manifold with corners on Cn(X) can be obtained from Xn by

a sequence of blow-ups, as follows.

Lemma 2.3 ([DP, §4], [Li, §4.2], [KuTh], [Les4, Ch.8]). Let r > 2 and C
(r)

n (X) be

the closure of the image of the embedding

ιr : Cn(X)→ Xn(r) = Xn ×
∏

|Λ|≥r

Bℓ∆(Λ)(X
Λ)

defined similarly as (2.6). Then C
(r−1)

n (X) can be obtained from C
(r)

n (X) by a

sequence of blow-ups:

C
(r)

n (X) =M0 ←M1 ←M2 ← · · · ←MN = C
(r−1)

n (X),

where each Mℓ is a manifold with corners and each step Mℓ ← Mℓ+1 is the blow-

up along a submanifold of Mℓ of codimension d(r − 2) that is strata-transversal to

the boundary. Thus Cn(X) = C
(2)

n (X) can be obtained from Xn by a sequence of

blow-ups.

We will also use the following important property of Cn(X) given in [Si, Corol-

laries 4.5, 4.9].

Proposition 2.4 (Sinha). (1) The inclusion Cn(X)→ Cn(X) to the interior

is a homotopy equivalence.

(2) The diagonal action of Diff(X) on Cn(X) extends to an action on Cn(X).

In [Si], there are also explicit charts near the boundary (and corners) of Cn(X).

The following is a compactification of Cn(Rd), given in [BTa].

¶More precisely, Proposition 2.2 (3) was proved in [FM, §3] for nonsingular algebraic varieties

over algebraically closed fields by constructing Cn+1(X) → Cn(X) by a sequence of blow-ups. In

[AS, Kon], an analogue of the construction of [FM] was given for differentiable manifolds. That

the construction of [Si] for X = Rm is canonically diffeomorphic to that of [AS] (given via (2.6))

follows by an analogue of [FM, Corollary 4.1a] and since an image in Xn × Sk for the fiber Sk of

the sphere bundle ∂Bℓ∆(Λ)(X
Λ) over ∆(Λ) with canonical trivialization recovers a unique lift in

Xn × Bℓ∆(Λ)(X
Λ).
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Definition 2.5. For Sd = Rd ∪ {∞}, we define the space Cn(S
d;∞) to be the

preimage of {∞} under the map ρn+1 : Cn+1(S
d)→ Sd induced by the projection

(x1, . . . , xn+1) 7→ xn+1.

Lemma 2.6. The map ρn+1 : Cn+1(S
d)→ Sd is a fiber bundle such that the fiber

Cn(S
d;∞) is a manifold with corners.

Proof. The closure Cn+1(S
d) of Cn+1(S

d) in Xn+1 ×
∏

Λ⊂{1,2,...,n+1}
|Λ|≥2

Bℓ∆(Λ)(X
Λ) is

the fiberwise closure of the Cn(Rd)×{∞}-bundle Cn+1(S
d)→ Sd. That the closure

of the fiber is a manifold with corners is analogous to Lemma 2.3. �

An example of the construction of the compactification C2(S
d;∞) of C2(Rd) is

given in §2.3.4.

2.3.2. Codimension 1 strata. We give a description of the codimension 1 strata

of Cn(S
d;∞), following [AS, Kon, BTa, Si, Les4]. We refer the reader to these

references for details. By the definition of Cn(X) given above and by Lemma 2.3,

the codimension 1 strata of Cn(S
d;∞) corresponds to the boundaries of the factors

Bℓ∆(Λ)(X
Λ) in (2.6). Thus the set of codimension 1 strata of Cn(S

d;∞) can be

parametrized by subsets Λ ⊂ N ∪ {∞} with |Λ| ≥ 2. Now we set X = Sd,

X◦ = Sd − {∞} = Rd, though the description below is also valid when X is

an almost parallelizable closed d-manifold, i.e. a closed d-manifold such that the

tangent bundle of the complement X◦ of a point ∞ ∈ X has a trivialization.

Definition 2.7. (1) Let SΛ be the codimension 1 stratum of Cn(S
d;∞) cor-

responding to Λ.

(2) For a finite dimensional real vector space W and an integer r ≥ 2, let

C∗
r (W ) be the quotient of Cr(W ) by the subgroup of affine transformations

in W generated by the diagonal actions of translations and multiplication

by positive real number‖. The space C∗
r (R

d) can be identified with the

subspace of Cr(Rd) of (y1, . . . , yr) characterized by

|y1|2 + · · ·+ |yr−1|2 = 1, yr = 0. (2.7)

(3) The compactification C
∗
r(R

d) is defined as the closure of C∗
r (R

d) in Cr(Rd).

This has the structure of a manifold with corners induced from Cr(Rd). The

compactification C∗
r (W ) is defined analogously.

(4) Let C∗
r (TX) denote the C∗

r (R
d)-bundle over X associated to the oriented

orthonormal frame bundle over X . The C
∗
r(R

d)-bundle C
∗
r(TX) is defined

by replacing the GLd(R)-space C∗
r (R

d) with C
∗
r(R

d) in the definition of

C∗
r (TX).

The strata SΛ and its closures can be described explicitly as follows.

When ∞ /∈ Λ, let

Cn,Λ(X
◦) := {(x1, . . . , xn) ∈ (X◦)n | xi = xj (i 6= j) if and only if i, j ∈ Λ}.

There is a diffeomorphism Cn,Λ(X
◦) ∼= Cn−r+1(X

◦), where r = |Λ|. Then the stra-

tum SΛ of Cn(S
d;∞) can be identified with the pullback of the bundle C∗

r (TX)→
‖In [Si], Cn(X), C∗

r (W ), SΛ are denoted by Cn[X], C̃r(W ), CT (X), respectively.
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X by the projection Cn,Λ(X
◦) → X , which forgets the (n− r)-factors labelled by

N − Λ and maps the multiple factors for Λ to X◦ ⊂ X by the natural map.

SΛ = lim (Cn,Λ(X
◦) −→ X ←− C∗

r (TX)) (2.8)

A framing on X◦ induces a trivialization C∗
r (TX

◦)
∼=−→ X◦ ×C∗

r (R
d) and a diffeo-

morphism

SΛ
∼= Cn,Λ(X

◦)× C∗
r (R

d).

The projection SΛ → Cn,Λ(X
◦) is compatible near SΛ with the bundle projection

Cn(X
◦)→ Cn−r+1(X

◦), which forgets points with labels in a subset of Λ with r−1

elements. Then the closure SΛ of SΛ in Cn(S
d;∞) is diffeomorphic to

Cn−r+1(S
d;∞)× C∗

r(R
d). (2.9)

The case ∞ ∈ Λ is similar. In this case, we consider the pullback by the map

CN−Λ(X
◦) × {∞} → {∞} instead of left map in the diagram in (2.8), where we

set r = |Λ|, so that |N − Λ| = n− |Λ− {∞}| = n− r + 1. Hence we have

SΛ = CN−Λ(X
◦)× C∗

r (T∞X),

SΛ = CN−Λ(S
d;∞)× C∗

r(T∞X).
(2.10)

2.3.3. Unusual coordinates on C∗
r (T∞X). When X = Sd, we will use seemingly

unusual coordinates on C∗
r (T∞X) ((2.11) below) in which the origin does not corre-

spond to∞, so that it is consistent with the coordinate system of Cr(X
◦) = Cr(Rd)

with respect to the limit. To fix such a coordinate system, we identify T∞X − {0}
with T0X − {0} through the diffeomorphism σ : T∞X − {0}

∼=← Sd − {0,∞} ∼=→
T0X − {0} given by the stereographic projections∗∗. This is equivariant with re-

spect to the positive scalar multiplications in the sense that σ(ay) = 1
aσ(y) for

a > 0. The following lemma is evident.††

Lemma 2.8. The diffeomorphism σ : T∞X − {0} → T0X − {0} induces a dif-

feomorphism Cr−1(σ) : Cr−1(T∞X − {0}) → Cr−1(T0X − {0}), equivariant with

respect to the positive scalar multiplications (y1, . . . , yr−1) 7→ (ay1, . . . , ayr−1) and

(y1, . . . , yr−1) 7→ (a−1y1, . . . , a
−1yr−1). Hence, under the identification C∗

r (TxX) =

Cr−1(TxX − {0})/dilations via (2.7), it induces a diffeomorphism

C∗
r (σ) : C

∗
r (T∞X)→ C∗

r (T0X) = C∗
r (R

d).

We identify C∗
r (T∞X) with C∗

r (R
d) via the diffeomorphism C∗

r (σ). Since C
∗
r (R

d)

can be naturally identified with a subspace of Cr(Rd) as in Definition 2.7 (2), we

∗∗See e.g., [Kos, Ch.I-(1.2)]. In the notation of [Kos], σ is h+ ◦ h−1
− and by the formula for

h±, it follows that σ(y) = y

|y|2
. This identification can be visualized by considering Sd − {0,∞}

as an Sd−1-family of geodesic arcs between 0 and ∞, so that a linear half-ray from the origin in

T0X corresponds to another linear half-ray to the origin in T∞X.
††Lemma 2.8 is also valid for almost parallelizable closed d-manifold X with a framing τX◦

on X◦ such that there is a small ball U∞ about ∞ ∈ Sd and a diffeomorhism U ′
∞ → U∞ from a

small neighborhood U ′
∞ of ∞ ∈ X sending τX◦ to the restriction of the standard framing on Rd.
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obtain the following explicit coordinates:

C∗
r (T∞X)

= {(y1, . . . , yr−1) ∈ (Rd − {0})r−1 | |y1|2 + · · ·+ |yr−1|2 = 1, yi 6= yj if i 6= j}.
(2.11)

The right hand side is identified with C∗
r (R

d) by considering the last one yr in

the r points is restrained at the origin (as in (2.7)). Intuitively, C∗
r (T∞X) can be

considered as the space of “macroscopic” configurations, and the last point yr = 0

in C∗
r (T∞X) = C∗

r (R
d) ⊂ Cr(Rd) as a factor in (2.10) plays the role of the limit

point where the non-infinite n− r + 1 points from N − Λ gather together. This is

the alternative of putting the infinity at the origin. These coordinates will be used

in Lemma 2.10 and in the derivation of (E.8).

Remark 2.9. The coordinates (2.11) obtained via the identification by C∗
r (σ) look

unusual but natural when taking relative directions. For example, we fix points

x, x′ ∈ Rd − {0}, x 6= x′, and consider a smooth path a : [1,∞)→ (Sd)×3 given by

t 7→ (tx, tx′,∞), which converges to (∞,∞,∞) as t→∞. Taking the unit direction

(x1, x2,∞) 7→ x2−x1

|x2−x1| ∈ Sd−1 on the path a gives a map φa : [1,∞) → Sd−1,

which is a constant map in this case. If we consider C2(Rd) × {∞} as a subset

of C2(S
d;∞), the path a can be extended to a path ā : [1,∞] → C2(S

d;∞) such

that ā(∞) ∈ S{1,2,∞} = C∗
3 (T∞X). With the coordinates (2.11), the limit point

ā(∞) agrees with (x, x′) up to a scalar multiplication and φa can be extended to

[1,∞]→ Sd−1 by the same formula x2−x1

|x2−x1| .

The coordinate description (2.11) of C∗
r (T∞X) also allows us to consider it as

a subspace of Cr(Rd) by mapping (y1, . . . , yr−1) to (y1, . . . , yr−1, 0) and hence as

a subspace of Cr(Rd). Then the compactification C
∗
r(T∞X) can be obtained by

the closure of C∗
r (T∞X) in Cr(Rd). This is compatible with the compactification

of C∗
r (T∞X) obtained by identifying T∞X with Rd and C∗

r (T∞X) with C∗
r (R

d) ⊂
Cr(Rd) in a usual way.

2.3.4. Example: the case of two points. We describe the structure of a manifold

with corners on C2(S
d;∞), following [BTa, Section III] and [Les1, §3]. The com-

pactification C2(S
d;∞) can be obtained by the closure of the embedding

ι′ : C2(X
◦)→ X2 ×Bℓ∆({1,2,∞})(X

2 × {∞})
×Bℓ∆({1,∞})(X × {∞})×Bℓ∆({2,∞})(X × {∞})×Bℓ∆({1,2})(X

2),

(2.12)

whereBℓ∆({1,2,∞})(X
2×{∞}) ∼= Bℓ{(∞,∞)}(X

2), Bℓ∆({i,∞})(X×{∞}) ∼= Bℓ{∞}(X).

We claim that C2(S
d;∞) is obtained from X2 × {∞} by the sequence of blow-ups

along the strata ∆{1,2,∞} ⊂ ∆{1,∞} ∪∆{2,∞} ∪∆{1,2}. Indeed, there is a sequence

of embeddings analogous to (2.6):

C2(X
◦)

ι4

��
ι3 &&▲▲

▲

▲

▲

▲

▲

▲

▲

▲

ι2

**❯❯❯
❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

X2 = X2(4) X2(3)
q3

oo X2(2)
q2

oo
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Figure 2. C
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Figure 3. Points in ∂C2(S
d;∞). A ∈ S{1,∞}, B ∈ S{1,∞} ∩

S{1,2,∞}, C ∈ S{1,2,∞}, D ∈ S{1,2,∞} ∩ S{1,2}, E ∈ S{1,2}

where X2(3) = X2 × Bℓ∆({1,2,∞})(X
2 × {∞}) and X2(2) is the right hand side

of (2.12). Let C
(r)

2 (Sd;∞) be the closure of the image of ιr . It is straightfor-

ward that C
(4)

2 (Sd;∞) = X2 and C
(3)

2 (Sd;∞) ∼= Bℓ{(∞,∞)}(X
2). The next term

C
(2)

2 (Sd;∞) = C2(S
d;∞) is obtained by blowing up C

(3)

2 (Sd;∞) along the closures

of the preimages of the strata X◦×{∞}, {∞}×X◦, ∆X◦ under q3 (see Figure 2).

Let S{1,2,∞} be q
−1
2 (∂C

(3)

2 (Sd;∞)), and let S{1,∞}, S{2,∞}, S{1,2} be the (closed)
codimension 1 strata obtained by the blow-ups along the closures of the preimages

of X◦ × {∞}, {∞} ×X◦, ∆X◦ , respectively. Then the boundary of C2(S
d;∞) is

S{1,2,∞} ∪ S{1,∞} ∪ S{2,∞} ∪ S{1,2},

where the pieces are glued together along the strata of C2(S
d;∞) of codimension

≥ 2. The product structures (2.9) and (2.10) for this case can be given directly as

follows.
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(1) The stratum S{1,2,∞} = C
∗
3(T∞X) is the blow-up of ∂C

(3)

2 (Sd;∞) =

S2d−1 = {(y1, y2) ∈ (Rd)2 | |y1|2 + |y2|2 = 1} along the codimension d

submanifold D = ({y1 = 0} ∪ {y2 = 0} ∪ {y1 = y2}) ∩ S2d−1.

(2) The stratum S{1,∞} is ∂Bℓ{0}(T∞X)×C1(S
d;∞) = C

∗
2(T∞X)×C1(S

d;∞).

(3) The stratum S{2,∞} is C1(S
d;∞)×∂Bℓ{0}(T∞X) = C1(S

d;∞)×C∗
2(T∞X).

(4) The stratum S{1,2} is ∆C1(Sd;∞)×∂Bℓ{(0,0)}((T(0,0)∆C1(Sd;∞))
⊥) = ∆C1(Sd;∞)×

C
∗
2(R

d), where we denote by ∆C1(Sd;∞) the closure of ∆Sd−{∞} in Bℓ{(∞,∞)}(X
2),

by the canonical identification (T(0,0)∆C1(Sd;∞))
⊥ = T0C1(S

d;∞) = Rd.

Recall the identification N∆X = (T∆X)⊥ with TX from §1.5 (a).

Lemma 2.10 ([BTa, p.5266–5267], [Les1, §3.2]). The smooth map φ : C2(Rd) →
Sd−1 defined by

φ(x1, x2) =
x2 − x1
|x2 − x1|

extends to a smooth map φ : C2(S
d;∞)→ Sd−1. The extension φ on the boundary

of C2(S
d;∞) is explicitly given as follows‡‡:

(1) On the stratum S{1,2,∞} = BℓD({(y1, y2) ∈ (Rd)2 | |y1|2 + |y2|2 = 1}),
φ = φ′◦i, where i : S{1,2,∞} → C2(Rd) is the map induced by the embedding

i : S{1,2,∞} = C∗
3 (T∞X)→ C2(Rd−{0}) given by (2.11), and φ′ : C2(Rd)→

Sd−1 is the smooth extension of φ defined by the coordinates of the blow-up

(Lemma B.2(3)).

(2) On the stratum S{1,∞}, φ is the composition

S{1,∞} = C
∗
2(T∞X)× C1(S

d;∞)
p1−→ C

∗
2(T∞X)

−φ′

−−→∼= Sd−1. (2.13)

(3) On the stratum S{2,∞}, φ is the composition

S{2,∞} = C1(S
d;∞)× C∗

2(T∞X)
p2−→ C

∗
2(T∞X)

φ′

−→∼= Sd−1. (2.14)

(4) On the stratum S{1,2}, φ is the composition

S{1,2} = ∆C1(Sd;∞) × C
∗
2(R

d)
p2−→ C

∗
2(R

d)
φ′

−→∼= Sd−1. (2.15)

In each case of (1)–(4), we take a projection to the space of ‘limit configurations’:

C2(Rd), C
∗
2(R

d) etc., that is a subspace of C2(Rd), then take the relative direction

from the first point y1 to the second point y2. In (2), y2 (in the limit configuration

of C
∗
2(T∞X)) is assumed to be at the origin, so the relative direction from y1 to

y2 = 0 agrees with −φ′. In (3), y1 is assumed to be at the origin, so the relative

direction from y1 = 0 to y2 agrees with φ′. In (4), the orthogonal projection

TxX × TxX → N(x,x)∆X → Rd is the limit of (x1, x2) 7→ (x1−x2

2 , x2−x1

2 ) 7→ x2−x1

2

as in (E.11), the relative direction for the limit configuration agrees with φ′.

2.4. Propagator. We need to fix a certain closed form on the configuration space

called a propagator to define the configuration space integrals.

‡‡One can observe that the signs of ±φ′ are correct by drawing a picture for d = 1. Note that

we have chosen unusual coordinates on C∗
r (T∞X) as in §2.3.3.
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2.4.1. de Rham Cohomology of C2(S
d;∞). Throughout this subsection, we assume

d > 1. Since φ : C2(S
d;∞)→ Sd−1 is a homotopy equivalence, it follows that

H∗(C2(S
d;∞)) = H∗(Sd−1) ∼=

{
R (∗ = 0, d− 1),

0 (otherwise).

In particular, Hd−1(C2(S
d;∞)) is generated by [φ̄∗VolSd−1 ], where

VolSd−1 =
1

vol(Sd−1)

d∑

i=1

(−1)i−1xidx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxd, (2.16)

and vol(Sd−1) is the volume of the unit sphere Sd−1 in Rd, so that

∫

Sd−1

VolSd−1 =

1. By Poincaré–Lefschetz duality,

H∗(C2(S
d;∞), ∂C2(S

d;∞)) ∼= H2d−∗(S
d−1) ∼=

{
R (∗ = d+ 1, 2d),

0 (otherwise).

The following lemma is evident from the explicit formula (2.16).

Lemma 2.11. Let ι : Sd−1 → Sd−1 be the involution ι(x) = −x. Then we have

ι∗VolSd−1 = (−1)dVolSd−1 .

2.4.2. Propagator in a fiber. Suppose we are given a framing τ : T (Sd − {∞}) ∼=→
(Sd − {∞})× Rd on Sd − {∞} = Rd that agrees with the standard framing τ0 of

Rd outside a d-ball of finite radius about the origin. Then τ induces a smooth map

p(τ) : ∂C2(S
d;∞)→ Sd−1,

which extends the map obtained by restricting φ̄ of Lemma 2.10 to S{1,2,∞} ∪
S{1,∞} ∪ S{2,∞} and agrees on S{1,2} with the composition

S{1,2}
∼=−→ ∆C1(Sd;∞) × Sd−1 p2−→ Sd−1,

where the first map is induced by τ .

Lemma 2.12 (Propagator in fiber). Let τ be a framing of T (Sd − {∞}) that is

standard near ∞.

(1) The closed (d − 1)-form p(τ)∗VolSd−1 on ∂C2(S
d;∞) can be extended to

a closed form ω on C2(S
d;∞) so that its cohomology class [ω] agrees with

[φ̄∗VolSd−1 ].

(2) For a fixed framing τ , the extension ω is unique in the sense that for two

such extensions ω and ω′, there is a (d − 2)-form µ on C2(S
d;∞) that

vanishes on ∂C2(S
d;∞) such that

ω′ − ω = dµ.

We call such an extended form a propagator for τ .

Proof. The proof is an analogue of [Tau, Lemma 2.1], [BC2, p.2], or [Les1, Lem-

mas 2.3, 2.4]. The assertion (1) follows immediately from the long exact sequence

of the pair

0 = Hd−1(C, ∂C)→ Hd−1(C)→ Hd−1(∂C)→ Hd(C, ∂C) = 0,
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where we abbreviate as C = C2(S
d;∞). Here both [ω] and [φ̄∗VolSd−1 ] restrict

to the same generator of the de Rham cohomology of ∗ × Sd−1 ⊂ SN∆Rd , their

cohomology classes agree. The assertion (2) follows since the difference ω′ − ω

vanishes on ∂C and represents 0 of Hd−1(C, ∂C), which is the cohomology of the

subcomplex of the de Rham complex Ω∗
dR(C) of forms that vanish on ∂C. �

2.4.3. Propagator in family. The group Diff(Sd, U∞) acts on Cn(S
d;∞) ⊂ Cn+1(S

d)

by extending the diagonal action g · (x1, . . . , xn) = (g · x1, . . . , g · xn) on Cn(Rd).

Namely, Diff(Sd, U∞) acts diagonally on the target space of the embedding ι of (2.6)

which induces an automorphism of the subspace Cn(S
d;∞) = Closure (Im ι|Cn(Rd)×{∞}).

For a (Dd, ∂)-bundle π : E → B, we consider the associated Cn(S
d;∞)-bundle

Cn(π) : ECn(π)→ B.

Its fiberwise restriction to the boundary of the fiber gives the subbundle

C
∂

n(π) : ∂
vECn(π)→ B.

A vertical framing τE : T vE
∼=→ E × Rd induces a smooth map

p(τE) : ∂
vEC2(π)→ Sd−1

by applying a similar construction as above in each fiber.

Lemma 2.13 (Propagator in family). Suppose that B is a manifold.

(1) The closed (d − 1)-form p(τE)
∗VolSd−1 on ∂vEC2(π) can be extended to a

closed form ω on EC2(π).

(2) For a fixed framing τE, the extension ω is unique in the sense that for two

such extensions ω and ω′, there is a (d−2)-form µ on EC2(π) that vanishes

on ∂vEC2(π) such that

ω′ − ω = dµ.

We call such an extended form a propagator (in family) for τE .

Proof. The Leray–Serre spectral sequence of the relative fibration

(C, ∂C)→ (EC2(π), ∂
vEC2(π))→ B,

has E2-term Ep,q
2
∼= Hp(B; {Hq(Cb, ∂Cb)}b∈B), where {Hq(Cb, ∂Cb)}b∈B is the

local coefficient system on B given by the cohomology of the fiber. Also, we know

that Hq(C, ∂C) = 0 for q < d+ 1. Hence we have

Hn(EC2(π), ∂
vEC2(π)) = 0 for n < d+ 1,

and the natural map Hd−1(EC2(π))→ Hd−1(∂vEC2(π)) is an isomorphism. This

implies the assertion (1). The proof of the assertion (2) is the same as Lemma 2.12(2).

�

Corollary 2.14. Suppose that (π : E → B, τE) is a framed (Dd, ∂)-bundle over a

cobordism B between closed manifolds A0 and A1. Suppose given propagators ω0

and ω1 for τE on C2(π)
−1(A0) and C2(π)

−1(A1), respectively. Then there exists

a propagator ω for τE on EC2(π) that restricts to ω0 and ω1 on C2(π)
−1(A0) and

C2(π)
−1(A1), respectively.
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Proof. We identify a collar neighborhood of B with A0×[0, ε]∪A1×[1−ε, 1] and ac-

cordingly identify as C2(π)
−1(A0× [0, ε]) = C2(π)

−1(A0)× [0, ε] and C2(π)
−1(A1×

[1 − ε, 1]) = C2(π)
−1(A0) × [1 − ε, 1]. Then we may pull back ω0 and ω1 to

C2(π)
−1(A0)×[0, ε] and C2(π)

−1(A1)×[1−ε, 1], respectively. Moreover, we assume

without loss of generality that τE is compatible with these product structures. Let

B′ = B −
(
(A0 × [0, ε)) ∪ (A1 × (1 − ε, 1])

)
.

By Lemma 2.13(1), there exists a propagator ωa onEC2(π) for τE . By Lemma 2.13(2),

there are (d−2)-forms µ0 and µ1 on the collar neighborhoods such that they vanish

on ∂vEC2(π), and

ω0 − ωa = dµ0, ω1 − ωa = dµ1

where they make sense. We take a smooth function χ : EC2(π)→ [0, 1] that takes

the value 1 on C2(π)
−1(∂B) and takes the value 0 on C2(π)

−1(B′). Let µ′ be a

(d− 2)-form on EC2(π) extending µ0 and µ1, which vanish on ∂vEC2(π). We set

ω = ωa + d(χµ′),

which is well-defined as a smooth closed (d− 1)-form on EC2(π). As χµ
′ vanishes

on ∂vEC2(π), we have ω|∂vEC2(π)
= ωa|∂vEC2(π)

and

ω|C2(π)−1(Ai)
= ωi for i = 0, 1.

This completes the proof. �

2.5. Configuration space integrals.

2.5.1. Kontsevich’s integral. Now we assume that d is even and d ≥ 4. Let π : E →
B be a (Dd, ∂)-bundle over a closed oriented manifold B, equipped with a vertical

framing τE . Let Cn(π) : ECn(π) → B be the Cn(S
d;∞)-bundle associated to

π. We take a propagator ω in family EC2(π) for τE as in Lemma 2.13. Let

Γ = (Γ, ν, µ) ∈ L even
v,e be a labelled graph with v vertices and e edges. We choose

orientations on edges of Γ, namely, make a choice of the order of the two boundary

vertices of each edge, or equivalently a choice of orientations of R∂e = R{v+,v−} for

each edge e with boundary vertices v+, v−. This choice ρ, which is independent of

the labels (ν, µ), determines the projection map

φρ,i : ECv(π)→ EC2(π)

defined by forgetting the points other than the two points for the labels of the

boundary vertices of the edge i, which is smooth by Proposition 2.2.

Definition 2.15. Let d be an even integer such that d ≥ 4. We set

ω(Γ, ρ) :=
∧

i: edge
of Γ

φ∗ρ,iω ∈ Ω
(d−1)e
dR (ECv(π)),

ω(Γ) :=
1

2e

∑

ρ

ω(Γ, ρ),

I(Γ) := Cv(π)∗ ω(Γ) ∈ Ω
(d−1)e−dv
dR (B),

(2.17)
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where the sum
∑

ρ is over all possible edge orientations on Γ, and Cv(π)∗ : Ω
(d−1)e
dR (ECv(π))→

Ω
(d−1)e−dv
dR (B) denotes the pushforward or integration along the fibers ([BTu, p.61],

[GHV, Ch.VII], see also §E.1). This extends linearly to the linear map

I : G
even
ℓ,k → Ω

(d−3)k+ℓ
dR (B),

where k = e − v, ℓ = 2e− 3v as in §2.2.2.

Note that the integral along the fibers (2.17) is convergent since the fiber Cv(S
d;∞)

is compact. If the propagator ω happens to be symmetric with respect to the fiber-

wise swapping map EC2(π)→ EC2(π), which exchanges two points in a fiber, then

we have ω(Γ) = ω(Γ, ρ) for any choice of ρ.

Theorem 2.16 (Kontsevich [Kon]. Proof in §E). Let d be an even integer such

that d ≥ 4.

(1) I is a chain map up to sign, namely,

dI(Γ) = (−1)(d−3)k+ℓ+1I(δΓ)

for Γ ∈ G even
ℓ,k . In particular, if γ ∈ G even

ℓ,k is such that δγ = 0, then

dI(γ) = 0. If γ is such that γ = δη, then I(γ) = (−1)(d−3)k+ℓ+1dI(η).

Hence I induces a linear map I∗ : Hℓ,k(G even;Q)→ H(d−3)k+ℓ(B;R).
(2) I∗ does not depend on the choice of propagator ω in family for τE .

(3) I∗ is invariant under a homotopy of τE.

(4) I∗ gives characteristic classes of framed (Dd, ∂)-bundles, that is, I∗ is nat-

ural with respect to bundle morphisms of framed (Dd, ∂)-bundles, in the

sense that the following diagram for a framed bundle map over f : B → B′

commutes.

Hℓ,k(G even;Q)
I∗ //

I∗

((❘❘
❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

H(d−3)k+ℓ(B;R)

H(d−3)k+ℓ(B′;R)

f∗

OO

Remark 2.17. When d is odd and at least 3, the construction in Definition 2.15 is

also valid if G even
ℓ is replaced by another version G odd

ℓ , which is defined similarly as

G even
ℓ , except that R{edges of Γ} is replaced by R{edges of Γ} ⊕H1(Γ;R) and that the

“induced ori” in the definition of δ (§2.2.2) is defined suitably, as in [Kon, p.109].

Theorem 2.16 is true also for d odd. The odd case was studied in [Wa1, Wa2].

Since the universal class ζ̃k ∈ H0,k(G
even)⊗G even

0,k in (2.5) satisfies (id⊗δ)ζ̃k = 0,

it follows from Theorem 2.16 (1) that it gives a class

I∗([ζ̃k]) =
1

(2k)!(3k)!

∑

Γ∈L even
k

I(Γ)[Γ] ∈ H(d−3)k(B;A even
k ⊗ R). (2.18)

Recall that L
even
k is the set of all labelled trivalent graphs with 2k vertices with no

multiple edges and no self-loops. When dimB = (d − 3)k, the evaluation of this

class at the fundamental class of B produces an element of A even
k ⊗ R.
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Corollary 2.18. Let d be an even integer such that d ≥ 4. The evaluation of

I∗([ζ̃k]) for bundles over closed oriented manifold B of dimension (d − 3)k gives

well-defined linear maps

Zk : π(d−3)k(B̃Diff(Dd, ∂; τ0))⊗ R→ A
even
k ⊗ R,

ZΩ
k : ΩSO

(d−3)k(B̃Diff(Dd, ∂; τ0))⊗ R→ A
even
k ⊗ R.

Furthermore, the real homotopy group π(d−3)k(B̃Diff(Dd, ∂; τ0))⊗R can be replaced

with π(d−3)k(BDiff(Dd, ∂))⊗R in the sense that the natural map B̃Diff(Dd, ∂; τ0)→
BDiff(Dd, ∂) induces an isomorphism in π(d−3)k(−)⊗ R.

Proof. We consider a framed (Dd, ∂)-bundle over an oriented cobordism B between

(d − 3)k-dimensional manifolds A0 and A1. Let iq : Aq → B, q = 0, 1, be the

inclusion. Since ζ = I([ζ̃k]) gives a closed (d − 3)k-form on B with coefficients in

A even
k , we have ∫

A1

i∗1ζ −
∫

A0

i∗0ζ =

∫

∂B

ζ =

∫

B

dζ = 0

by Theorem 2.16 and the Stokes Theorem. This shows the well-definedness of the

map. The linearity follows from the linearity of the integrals.

That π(d−3)k(B̃Diff(Dd, ∂; τ0))⊗R can be replaced with π(d−3)k(BDiff(Dd, ∂))⊗
R follows since in the long exact sequence for the fibration (2.2) the term πi(Ω

dSOd)⊗
R is zero for i = (d− 3)k, (d− 3)k− 1 when d is even, d ≥ 4, and k ≥ 1. Indeed, the

rational homotopy groups of SOd for d even are well-known (e.g. [FHT, p.220]):

π∗(SO4)⊗Q ∼= π∗(S
3 × S3)⊗Q,

π∗(SO2n)⊗Q ∼= π∗(S
3 × S7 × · · · × S4n−5 × S2n−1)⊗Q (for n ≥ 3).

In particular, the highest i such that πi(SOd)⊗Q 6= 0 for d even is 2d− 5 and we

have {(d− 3)k − 1 + d} − (2d− 5) = (d− 3)(k − 1) + 1 > 0. �

Remark 2.19. The connecting homomorphism

π(d−3)k(BDiff(Dd, ∂))⊗ R→ π(d−3)k−1(Ω
dSOd)⊗ R

is zero when d is even, d ≥ 4, and k ≥ 1. On the other hand, without tensoring

with R, the group πi(Ω
dSOd) may be nontrivial for many i. Thus, it would be

natural to ask what the homomorphism

πi(BDiff(Dd, ∂))→ πi−1+d(SOd)

is. Since the elements constructed by graph clasper surgery in §3 admit vertical

framings, they are in the kernel of this map. As in earlier versions of this paper, one

could define configuration space integrals over Z or Z[ 1
Mk

] for some explicit integer

Mk in terms of piecewise smooth chains in the infinitesimal configuration spaces

C
∗
2k(V ) or its quotient by S2k associated to a vector bundle V . They might be

related to the above question. Nontriviality of the corresponding homomorphism

for π6(BDiff(D11, ∂)) is proved in [CSS].

Proof of Proposition 1.4. Let π : E → S(d−3)k and π′ : E′ → S(d−3)k be the (Dd, ∂)-

bundles corresponding to ξ and ξ′, respectively. The involution r induces an iso-

morphism r : ECn(π
′) → ECn(π). For a propagator ω on EC2(π), the pullback
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r∗ω is −1 times a propagator on EC2(π
′) since the restriction of r to a single nor-

mal (d − 1)-sphere over a point of the diagonal ∆E is orientation reversing. Also,

r∗o(EC2k(π
′)) = (−1)2ko(EC2k(π)). Hence we have

∫

EC2k(π′)

ω(Γ′)π′ = (−1)3k
∫

EC2k(π′)

r∗ω(Γ′)π = (−1)2k(−1)3k
∫

EC2k(π)

ω(Γ′)π .

�

3. Surgery on graph claspers

In this section, we construct (Dd, ∂)-bundles by an analogue of Goussarov–

Habiro’s graph-clasper surgery that will be detected by Zk of Corollary 2.14, and

review some fundamental properties of the surgery.

3.1. Hopf link and Borromean link (e.g., [Ma, §3]). Graph-clasper surgery is

constructed by combining Hopf links and Borromean links. If d is a positive integer

and if p, q are integers such that 0 < p, q < d − 1 and p + q = d − 1, then the

Hopf link is defined as the two-component link H(p, q)d : S
p ∪ Sq → Rd, whose

components are given by the inclusions of the following submanifolds

{(t, u, v) ∈ Rd | |t|2 + |u|2 = 1, v = 0},
{(t, u, v) ∈ Rd | |t− 1|2 + |v|2 = 1, u = 0},

where we consider Rd = R × Rp × Rq. A standard (normal) framing for the Hopf

link is given as follows. Let n1, n2 be the outward unit normal vector field on the

two components H(p, q)d(S
p) ⊂ R × Rp × {0} and H(p, q)d(S

q) ⊂ R × {0} × Rq,

respectively, both codimension 1. Then the normal framings on the two components

in Rd are given by (n1, ∂v1, . . . , ∂vq), (n2, ∂u1, . . . , ∂up), respectively. See §1.4(g)
for the convention of normal framing.

If d is a positive integer and if p, q, r are integers such that 0 < p, q, r < d−1, p+

q + r = 2d − 3, then the Borromean link is defined as the three-component link

Sp ∪ Sq ∪ Sr → Rd, whose components are given by the inclusions of the following

submanifolds

L1 = {(x, y, z) ∈ Rd | |y|
2

4 + |z|2 = 1, x = 0},

L2 = {(x, y, z) ∈ Rd | |z|
2

4 + |x|2 = 1, y = 0},

L3 = {(x, y, z) ∈ Rd | |x|
2

4 + |y|2 = 1, z = 0},

(3.1)

where we consider Rd = Rd−p−1×Rd−q−1×Rd−r−1. We denote by B(p, q, r)d this

link. A standard (normal) framing for the Borromean link is given as follows. Let

n1, n2, n3 be the outward unit normal vector field on the three components L1 ⊂
{0}×Rp+1, L2 ⊂ Rd−p−1×{0}×Rd−r−1, L3 ⊂ Rr+1×{0}, respectively. Then the

normal framings on the three components in Rd are given by (n1, ∂x1, . . . , ∂xd−p−1),

(n2, ∂y1, . . . , ∂yd−q−1), (n3, ∂z1, . . . , ∂zd−r−1), respectively. The Borromean links

have the following significant feature, which is well-known, or can be checked easily

from the coordinate description (3.1).
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(1) (2)

Figure 4. (1) The spanning surface D′
1 of L1. (2) Long Bor-

romean link and the spanning surface D′
1.

Lemma 3.1. If one of the three components in a Borromean link is removed, then

the link consisting of the remaining components can be isotoped into an unlink.

Here, the trivializing isotopy can be taken so that it fixes neighborhoods of the points

0×(0, . . . , 0,−2)×0, 0×0×(0, . . . , 0,−2), (0, . . . , 0,−2)×0×0 in Rd−p−1×Rd−q−1×
Rd−r−1 on the components L1, L2, L3, respectively.

Remark 3.2. (1) We will also call a link that is isotopic to H(p, q)d (resp.

B(p, q, r)d) a Hopf link (resp. a Borromean link). We will use the same

symbol H(p, q)d (resp. B(p, q, r)d) for its isotopic alternative, abusing of

notation (like T (p, q), Σ(p, q, r) in low-dimensional topology). Similar con-

vention applies to B(p, q, r)d etc. in Definition 3.6 below.

(2) For each component Li in the Borromean link, let Di be the standard

spanning disk defined by replacing the ‘= 1’ by ‘≤ 1’ in (3.1). The spanning

disksDi have natural coorientations ∂x1∧· · ·∧∂xd−p−1, ∂y1∧· · ·∧∂yd−q−1,

∂z1 ∧ · · · ∧ ∂zd−r−1, respectively. They determine the orientations of the

components of B(p, q, r)d by the rule (1.1) in §1.4 (l).

The spanning disks Di have triple intersection at the origin and its intersection

number is +1. We consider the indices of L1, L2, and L3 are in Z3. We see that

Di ∩ Li+1 = ∅, and Di ∩ Li−1 is a sphere, which bounds a disk D̃i−1 in Li−1. We

replace the normal disk bundle to Di ∩ Li−1 in Di with the normal sphere bundle

to Li−1 restricted to D̃i−1. This surgery of Di transforms Di to a manifold D′
i

(Figure 4 (1). See [Tak, §3.3] for a detail). Note that the choice of D̃i−1 may

not be unique, and D′
i may not be uniquely determined, too. Nevertheless, the

property of D′
i we use is the following lemma, which is evident from the definition

of the Borromean link by (3.1).

Lemma 3.3. (1) D′
i is a compact submanifold of Rd bounded by Li, disjoint

from other two link components, and diffeomorphic to Di#(Su × Sv) for

some u, v such that u+ v = dimLi + 1. More explicitly,

D′
1
∼= D1#(Sd−q−1 × Sd−r−1), D′

2
∼= D2#(Sd−p−1 × Sd−r−1),

D′
3
∼= D3#(Sd−p−1 × Sd−q−1).
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(2) The normal bundle of D′
i is trivial.

(3) D′
1 ∩ D′

2 ∩ D′
3 = D1 ∩ D2 ∩ D3 and the triple intersection number of

D′
1, D

′
2, D

′
3, counted with sign, is +1.

Definition 3.4 (Suspension of the Borromean link). The suspension of the Bor-

romean link B(p, q, r)d is the link in Rd+1 defined by replacing z ∈ Rd−r−1 in the

equations (3.1) for the three components with z′ = (z, t) ∈ Rd−r−1 × R, which is

B(p + 1, q + 1, r)d+1 and its intersection with Rd × {0} is B(p, q, r)d. The normal

framing of B(p, q, r)d extends naturally to B(p + 1, q + 1, r)d+1 by extending the

outward unit normal vector fields. By symmetry of the equations (3.1), suspensions

for other variables x, y are defined similarly.

Also, the explicit conditions in (3.1) suggest that the “desuspension” is possible

whenever two of the p, q, r are at least 2. For example, if p, q ≥ 2, then that

B(p, q, r)d is the suspension of B(p − 1, q − 1, r)d−1 can be seen by restricting

z = (z′, t) ∈ Rd−r−1 = R(d−1)−r−1 × R to (z′, 0).

3.2. Long Borromean link.

Definition 3.5. For 0 < p, q, r < d, let Embf(Ip ∪ Iq ∪ Ir, Id) denote the space of

strata preserving (Appendix A), normally framed embeddings f : Ip ∪ Iq ∪ Ir → Id

such that

(1) f−1(∂Id) = ∂(Ip ∪ Iq ∪ Ir), and
(2) f is transversal to the boundary.

We allow components and normal framings on them to be non standard near the

boundary, though what we will need later is the subspace of Embf(Ip ∪ Iq ∪ Ir, Id)
defined by imposing some boundary conditions. We call an affine embedding

f : Rp → Rd or its restriction to f−1(Id), suitably affine linearly reparametrized

so that the restriction is an embedding from Ip = f−1(Id), a standard inclusion.

We call an element of Embf(Ip ∪ Iq ∪ Ir, Id) a (framed) string link, and call a path

in Embf(Ip ∪ Iq ∪ Ir, Id) a (framed) isotopy of framed long embeddings.

The subspace of Embf(Ip ∪ Iq ∪ Ir, Id) of framed embeddings such that some

framed components are standard near the boundaries, i.e., agree with standard

inclusions near the boundaries, is denoted like Embf(Ip∪Iq ∪Ir, Id), where the un-
derlined component(s) is (are) standard near the boundary. Here, we fix a standard

inclusion Lst : I
p ∪ Iq ∪ Ir → Id given by

Ip
⊂→ Id−1 =→ {p1} × Id−1, Iq

⊂→ Id−1 =→ {p2} × Id−1, Ir
⊂→ Id−1 =→ {p3} × Id−1

for fixed distinct points p1, p2, p3 ∈ (0, 1), where the inclusion Ip
⊂→ Id−1 etc. is

given by (x1, . . . , xp) 7→ (x1, . . . , xp,
1
2 , . . . ,

1
2 ) etc. We equip the standard inclusion

with the standard normal framing given by the euclidean coordinates. The subspace

of Embf(Ip∪Iq∪Ir, Id) consisting of framed embeddings that are relatively isotopic

to the standard inclusion is denoted by Embf0(I
p ∪ Iq ∪ Ir, Id).

Definition 3.6 (Long Borromean link). Given a link L : Rp ∪ Rq ∪ Rr → Rd

consisting of disjoint standard inclusions, and a Borromean link B(p, q, r)d that is

disjoint from L, we join the images of Rp and Sp, Rq and Sq, Rr and Sr, by three

mutually disjoint arcs that are also disjoint from components of the links L and of
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the spanning disks Di of B(p, q, r)d except their endpoints. Then replace the arcs

with thin tubes Sp−1 × I, Sq−1 × I, Sr−1 × I to construct connected sums. The

result is a long link B(p, q, r)d : Rp ∪ Rq ∪ Rr → Rd with a natural framing FD in

the sense of connected sum of framed submanifolds (e.g., [Kos, Ch.IX,2]).

One may also consider partial connected sum, which joins B(p, q, r)d to the link

L of standard inclusions with less components and denote the resulting embedding

by B(p, q, r)d etc. Long Borromean embeddings Ip ∪ Iq ∪ Ir → Id such that the

preimage of ∂Id is ∂Ip ∪ ∂Iq ∪ ∂Ir can also be defined similarly and we denote

them by the same symbols as above. A natural analogue of Lemma 3.1 for the

long Borromean link holds. Also a natural analogue of Lemma 3.3 for the long

Borromean link holds: For each component Li in the long Borromean link, let Di

be the standard spanning disk obtained from Di by boundary connect-summing

the half-cubes

{p1} × Ip × [0, 12 ]×
{
(12 , . . . ,

1
2︸ ︷︷ ︸

d−2−p

)
}
, {p2} × Iq × [0, 12 ]×

{
(12 , . . . ,

1
2︸ ︷︷ ︸

d−2−q

)
}
,

{p3} × Ir × [0, 12 ]×
{
(12 , . . . ,

1
2︸ ︷︷ ︸

d−2−r

)
}
.

(3.2)

The intersection of the spanning disk Di of Li with an other component Lj, which

is a sphere or empty, can be resolved by a surgery as before. Let D′
i be the result

of the surgery for Di (Figure 4 (2)).

Lemma 3.7. (1) D′
i is a compact submanifold of Id whose boundary agrees

with that of the i-th half-cube in (3.2), which is disjoint from other two

string link components and is diffeomorphic to Di#(Su×Sv) for some u, v

such that u+ v = dimLi + 1.

(2) The normal bundle of D′
i is trivial.

(3) D′
1∩D′

2∩D′
3 = D1∩D2∩D3 and the triple intersection number of D′

1, D
′
2, D

′
3

counted with sign is +1.

A suspension of the long string link B(p, q, r)d can be defined analogously to that

of B(p, q, r)d. In fact, a suspension can be defined for more general string links.

A precise definition of a suspension L′ of a string link L is given in Definition 5.2

later, which is slightly complicated. What will be important below is the following

lemma, which can be seen from Definition 5.2.

Lemma 3.8. The following procedures yield the same result up to relative isotopy:

(1) B(p, q, r)d

connected
sum−−−−→ B(p, q, r)d

suspension

−−−−→
{
B(p, q, r)d

}′
.

(2) B(p, q, r)d
suspension

−−−−→ B(p+ 1, q + 1, r)d+1

connected
sum−−−−→ B(p+ 1, q + 1, r)d+1.

3.3. Vertex quasi-oriented arrow graph. We impose extra combinatorial struc-

tures on a labelled trivalent graph: an arrow orientation and a vertex quasi-

orientation. They are used to decompose the graph into two types of vertices,

each equipped with an orientation.
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3.3.1. Arrow graph. We orient each edge of a trivalent graph such that each vertex

has both input and output incident edges. That any trivalent graph without self-

loop admits such an orientation follows by induction on the number of edges: there

is an edge e in a trivalent graph without self-loop such that removing e yields a

graph with two bivalent vertices. Then merging the two edges incident to each

bivalent vertex gives a trivalent graph with less edges. We call a trivalent graph

without self-loop equipped with such an orientation an arrow graph. Possible status

of input/output of the three incident edges at a vertex of an arrow graph are as

shown in the following picture:

Note that it is possible to include graphs with self-loops in the following construc-

tions though we exclude these for simplicity.

3.3.2. Vertex quasi-orientation. To define vertex quasi-orientation, we decompose

each edge e of an arrow graph Γ into half-edges H(e) = {e−, e+} ordered according

to the arrow orientation of e, namely, so that e− includes the input vertex and

e+ includes the output vertex. We denote by HE(Γ) the set of all half-edges in

Γ. Then we define a vertex quasi-orientation of a vertex v of Γ to be a choice of

“linear” ordering∗ of the three half-edges ep±, eq±, er± meeting at v. If a vertex

quasi-orientation of v is given by the order ep± < eq± < er±, it defines the exte-

rior product ep± ∧ eq± ∧ er±. We consider that two vertex quasi-orientations are

equivalent if their associated exterior products agree. For our trivalent vertex of

type I or II, the equivalence class is determined by the relative order of the degree

1 half-edges in the vertex quasi-orientation.

3.3.3. Half-edge orientation. Given a vertex-labelled arrow graph, the following

notions of orientations are canonically equivalent:

(a) An orientation of REdges(Γ) (as in §2.2.2).
(b) An orientation of RHE(Γ) :=

⊕
i∈HE(Γ) L

{i}, where L{e+} := R and L{e−} :=

Rd−2 (H(e) = {e+, e−}) with the standard orientations, and we represent

an orientation of RHE(Γ) by an exterior product of elements in HE(Γ),

where we define the degrees of the half-edges inH(e) = {e−, e+} as deg e+ =

1, deg e− = d− 2 for each edge e.

The correspondence between them is canonically given using the arrow orientation

by

e1 ∧ · · · ∧ e3k ↔ (e1+ ∧ e1−) ∧ · · · ∧ (e3k+ ∧ e3k−) (H(ei) = {ei−, ei+}).

∗If we consider the equivalence class, the vertex quasi-orientation introduced here agrees with

the “cyclic” one in [CV] when d = 3.
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3.3.4. Vertex-labelled, vertex-quasi-oriented arrow graph compatible with (a)-orientation.

If a vertex-labelled, vertex-quasi-oriented arrow graph is given, then an orientation

in the sense of (b) above is given by

υ1 ∧ υ2 ∧ · · · ∧ υ2k, υi = ep± ∧ eq± ∧ er±,
where ep±, eq±, er± are the half-edges meeting at the i-th vertex (± are determined

by the arrow orientation). When d is even, the term υi determines the equivalence

class of a vertex quasi-orientation of the i-th vertex.

In this section, we fix one choice of vertex quasi-orientation and arrow orienta-

tions for a given labelled trivalent graph so that they give a compatible orientation

in the sense of (b) determined by the edge labels. The choice of vertex quasi-

orientation will be used in §3.6.2 to fix an identification of a vertex surgery (§3.5)
with a standard model.

3.4. Y-link associated to trivalent graph. Let X be a compact d-manifold.

Given a framed embedding f : Γ→ IntX of a vertex-labelled, vertex-quasi-oriented

arrow graph Γ whose restriction to each edge is smooth, we associate a Y-link

G = G1 ∪ · · · ∪G2k in X as follows (Figure 5).

(1) For each edge e of Γ, let P (e) ⊂ IntX be a small closed d-ball centered at

the middle point of f(e) such that P (e) is disjoint from vertices and other

edges of f(Γ). Further, we assume that P (e)∩P (e′) = ∅ if e 6= e′, and that

P (e) ∩ f(e) is diffeomorphic to a closed interval.

(2) We decompose the closed interval P (e)∩f(e) into three subintervals: P (e)∩
f(e) = [a, b] ∪ [b, c] ∪ [c, d], so that the image of the input (resp. output)

vertex under f is a (resp. d). Then we remove the middle one [b, c] and

attach a suitably rescaled standard Hopf link S1∪Sd−2 → IntP (e) instead,

so that the image of Sd−2 is attached to b ∈ [a, b] and the image of S1 is

attached to c ∈ [c, d]. (See Figure 5.)

(3) We orient the components of the Hopf link by ∂u1 at (1, 0, . . . , 0) ∈ H(1, d−
2)d(S

1) and by ∂v1∧· · ·∧∂vd−2 at (0, 0, . . . , 0) ∈ H(1, d− 2)d(S
d−2) in the

coordinates of §3.1†. These are chosen so that their linking number is +1.

Note that such a choice of orienations of the components is not unique.

Here, the linking number of a two component link a∪b : Sp∪Sq → IntP (e) with

p+ q = d− 1 is defined by the formula:

Lk(a, b) =

∫

Sp×Sq

φ∗VolSd−1 , φ : Sp × Sq → Sd−1; φ(x, y) =
b(y)− a(x)
|b(y)− a(x)| ,

(3.3)

where we identify IntP (e) with an open set of Rd, VolSd−1 is the unit volume form

in (2.16), and we orient Sp × Sq by o(Sp) ∧ o(Sq) (as in §D.2).

The above procedure gives a disjoint union G1∪G2∪· · ·∪G2k of path-connected

objects with 2k = |V (Γ)| components. We call each component Gi a Y-graph, and

G = G1 ∪ G2 ∪ · · · ∪ G2k a Y-link (or a graph clasper). There are two types of

†Note that the latter is opposite to the usual one induced from the standard orientation of the

tv-plane R× {0} × Rq.
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Figure 5. An embedded arrow graph to a Y-link

Y-graph components, according to whether the corresponding vertex is of type I or

II in the following figure:
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By taking a small smooth closed regular neighborhood Vi ⊂ IntX for each com-

ponent Gi, we obtain a tuple ~VG = (V1, . . . , V2k) of mutually disjoint handlebodies

in IntX . Here, by a small closed regular neighborhood of Gi, we mean the union

of piecewise small tubular neighborhoods, where we consider Gi consists of three

oriented spheres (consisting of S1 and Sd−2), a trivalent vertex, and three edges

connecting them. We take the radii of the tubular neighborhoods of edges to be

less than half the radii of the tubular neighborhoods of the vertex components and

we smooth the corners.

3.5. Surgery along Y-links. The surgery on a Y-graph will be defined by a

parametrized Borromean surgery, which roughly replaces the exterior of a trivial

string link with the exterior of a Borromean string link. We shall construct a

(X, ∂)-bundle by a family of surgeries along ~VG = (V1, . . . , V2k). We take a smooth

family αi : K → Diff(∂Vi) of diffeomorphisms parametrized by a compact manifold

K with ∂K = ∅. This defines a bundle automorphism ᾱi : K × ∂Vi → K × ∂Vi of
the trivial ∂Vi-bundle over K by ᾱi(t, x) = (t, αi(t)x). We put

(K ×X)Vi,αi := (K × (X − IntVi)) ∪ᾱi
(K × Vi), (3.4)

where the fiberwise boundaries are glued together by ᾱi in a way that (t, x) ∈
K × ∂Vi ⊂ K × Vi is identified with ᾱi(t, x) ∈ K × ∂Vi ⊂ K × (X − IntVi).

This defines a surgery along Vi with respect to αi, which yields a smooth fiber

bundle over K. The product structures on the two parts induce a bundle projection

π(αi) : (K ×X)Vi,αi → K.

Since the handlebodies Vi are mutually disjoint, the surgery can be done for

every Vi simultaneously. Namely, taking ~α = (α1, . . . , α2k), αi : Ki → Diff(∂Vi),
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we do surgery at each Vi by using αi, and then we obtain a family of surgeries

parametrized by K1 × · · · ×K2k and a bundle projection

π(~α) :
(
K1 × · · · ×K2k ×X

)~VG,~α → K1 × · · · ×K2k.

More precisely, let

V∞ = X − Int (V1 ∪ · · · ∪ V2k)
and we define ((

∏2k
i=1Ki) × X)

~VG,~α by the parametrized gluing of the two trivial

bundles

( 2k∏

i=1

Ki

)
× V∞ and

( 2k∏

i=1

Ki

)
× (V1 ∪ · · · ∪ V2k)

along the fiberwise boundary (
∏2k

i=1Ki)× (∂V1 ∪ · · · ∪ ∂V2k) by the map

~α′ :
( 2k∏

i=1

Ki

)
× (∂V1 ∪ · · · ∪ ∂V2k)→

( 2k∏

i=1

Ki

)
× (∂V1 ∪ · · · ∪ ∂V2k);

(t1, . . . , t2k, x) 7→ (t1, . . . , t2k, αi(ti)x) (for x ∈ ∂Vi).
This defines a surgery along a Y-link with respect to ~α, and this yields a smooth

fiber bundle over
∏

iKi.

In the following, we take αi = αI or αII defined below for each i. We write

V = Vi for simplicity.

(1) If V is of type I, we take K = S0 = {−1, 1}, and we let αI : S
0 → Diff(∂V )

map (−1) to the identity map of ∂V , and αI(1) be a “Borromean twist

associated to B(d− 2, d− 2, 1)d” constructed in §3.7.
(2) If V is of type II, we take K = Sd−3 and we let αII : S

d−3 → Diff(∂V ) be

a “parametrized Borromean twist associated to B(d− 2, d− 2, 1)d” con-

structed in §3.8.

In both cases, we denote Ṽi = (K ×X)Vi,αi .

We now consider the special case X = Dd and define the main construction.

Definition 3.9. Let Γ be a vertex-quasi-oriented, vertex-labelled arrow graph with

2k vertices without self-loop. Fix a framed embedding f : Γ→ IntDd. We use the

framing from f and the vertex quasi-orientation of §3.3 to associate the compo-

nents in the Borromean string link B(d− 2, d− 2, 1)d to the three handles of a

handlebody Vi at each vertex. According to the type of the i-th vertex of Γ, we put

αi = αI or αII, and let ~α = (α1, . . . , α2k). Then we define a smooth fiber bundle

πΓ : EΓ → BΓ by

πΓ = π(~α), BΓ =

2k∏

i=1

Ki, EΓ = (BΓ ×Dd)
~VG,~α.

We orientBΓ by o(K1)∧· · ·∧o(K2k). We also consider the straightforward analogue

of this surgery for (Sd, U∞)-bundles which is given by replacing Dd with Sd in the

definition above, to compute invariants in §4.

In a joint work with Botvinnik ([BW, §3]), we give another interpretation of πΓ

in terms of surgeries on families of framed links in Dd, which would be simpler,

though Definition 3.9 is suitable for proving the main theorem of this paper.
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Theorem 3.10 (Proof in §3.9 for (1), (2) and in §4 for (3)). Let d be an even

integer such that d ≥ 4. Let Γ be as in Definition 3.9.

(1) πΓ : EΓ → BΓ is a (Dd, ∂)-bundle and admits a canonical vertical framing

τΓ.

(2) The framed (Dd, ∂)-bundle bordism class of (πΓ : EΓ → BΓ, τ
Γ) is contained

in the image of the natural map

H : π(d−3)k(B̃Diff(Dd, ∂))→ ΩSO
(d−3)k(B̃Diff(Dd, ∂)).

(3) We have

ZΩ
k (π

Γ; τΓ) = ±[Γ],

where the sign depends only on k (not on Γ in G even
0,k ).

Theorem 1.1 follows immediately from Theorem 3.10. Namely, let

Ψk : G
even
0,k → ImH ⊗Q

be a Q-linear function defined by Ψk(Γ) = [πΓ : EΓ → BΓ] by fixing labels and

arrows on Γ arbitrarily for each class. Recall that G
even
0,k is the subspace of G

even

spanned by trivalent graphs of degree k. Then by Theorem 3.10(3), the composition

G
even
0,k ⊗ R

Ψk⊗id−→ ImH ⊗ R
±ZΩ

k−→ H0,k(G
even;R) = A

even
k ⊗ R

agrees with the quotient map G even
0,k ⊗ R→ H0,k(G

even;R). Hence Zk = ZΩ
k ◦H is

surjective over R and Theorem 1.1 follows.

Remark 3.11. We have chosen the framed embedding f , the labels, vertex quasi-

orientation, and arrow orientations on graphs to define Ψk as an auxiliary data.

We do not know whether the bordism class of Ψk(Γ) changes under a change of the

choice of the vertex quasi-orientation and the arrow orientations which preserves

graph orientation. Although it would not be hard to determine the effect of different

choices in the bordism group, it is not necessary for our purpose.

Let X be a compact d-manifold. For a framed embedding f : Γ→ X of a vertex

quasi-oriented labelled arrow graph Γ with 2k vertices, one may also consider the

(X, ∂)-bundle πf : Ef → BΓ by surgery on f given by replacingDd in Definition 3.9

with X . The following theorem can be proved just by replacing Dd with X in the

proof of Theorem 3.10 (1), (2).

Theorem 3.12. Let d be an even integer such that d ≥ 4. The relative bundle bor-

dism class of πf represents an element of ΩSO
(d−3)k(BDiff(X, ∂)), which is contained

in the image of the natural map H : π(d−3)k(BDiff(X, ∂))→ ΩSO
(d−3)k(BDiff(X, ∂)).

The class of πf does not change if f is replaced within the same homotopy class

= isotopy class, which can be described by Γ as above with edges decorated by

elements of π1(X), considered modulo certain relations as in [GL, p.566]. Note

that the same remark as Remark 3.11 applies to this case.
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Example 3.13 (k = 2, Γ = W4). Now we consider the complete graph W4, edge-

oriented as in the following picture:

In this case, BW4 = K1×K2×K3×K4, whereK1 = K4 = Sd−3 andK2 = K3 = S0.

Hence BW4 is the disjoint union of four components Bt2,t3 = K1 × {(t2, t3)} ×K4,

t2, t3 = ±1, each canonically diffeomorphic to Sd−3 × Sd−3. It will follow from

Lemma 3.23 that the restriction of the (Dd, ∂)-bundle πW4 : EW4 → BW4 over

Bt2,t3 , (t2, t3) 6= (1, 1), is a trivial (Dd, ∂)-bundle. Let us focus on the restriction of

πW4 to the only component EW4

1,1 := (πW4 )−1(B1,1) that may be nontrivial. This is

constructed by gluing the pieces

B1,1 × V∞, Ṽ ′
1 = Ṽ1 ×K4, Ṽ ′

4 = K1 × Ṽ4, B1,1 × V2(1), B1,1 × V3(1)

(recall Ṽi = (Ki × Vi)Vi,αi) along their boundaries

B1,1 × (∂V1 ∪ ∂V2 ∪ ∂V3 ∪ ∂V4 ∪ ∂Dd), B1,1 × ∂V1, B1,1 × ∂V4,
B1,1 × ∂V2, B1,1 × ∂V3.

The identifications are given by using the trivializations ∂Ṽλ = Kλ × ∂Vλ.
Let us look at the restrictions of πW4 |

E
W4
1,1

to the preimages of the two submanifold

cycles γ1 = Sd−3 × {t04} and γ2 = {t01} × Sd−3 in B1,1, where t
0
λ is a basepoint of

Kλ. The restricted bundle over γ1 does not depend on the parameter t1 ∈ γ1
outside Ṽ1×{t04}. The restricted bundle over γ2 does not depend on the parameter

t2 outside {t01} × Ṽ4. Again it will turn out that these restricted bundles are both

trivial by Lemma 3.23 and there is a trivialization of the bundle over the (d − 3)-

skeleton γ1 ∪ γ2 of B1,1. Moreover, it will turn out that this trivialization cannot

be extended to the bundle over B1,1. The obstruction can be detected by Z2

(Theorem 3.10).

3.6. Standard coordinates on Vi.

3.6.1. Standard model in a cube. As a preliminary to define the Borromean surg-

eries, we fix coordinates on Vi using the vertex quasi-orientation fixed as in §3.3. Let
T be a handlebody obtained from a (d−1)-disk by removing several (d−3)-handles

and 0-handles, and we put

V = T × I.

We fix explicit coordinates on T as follows. We fix three distinct points p1, p2, p3 ∈
(0, 1) and let T0 = Id−1, and for n = 1, 2, 3 and small ε > 0, we define T as follows
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(1) (2)

Figure 6. (1) T in V of type I. (2) T in V of type II.

(Figure 6).

h1n = {(x1, x2) ∈ R2 | (x1 − pn)2 + (x2 − 1
2 )

2 < ε2} × Id−3,

h0n = {(x1, . . . , xd−1) ∈ Rd−1 | (x1 − pn)2 + (x2 − 1
2 )

2 + · · ·+ (xd−1 − 1
2 )

2 < ε2},

T = T0 − (he11 ∪ he22 ∪ he33 ), (e1, e2, e3) =

{
(1, 1, 0) (V : type I)

(1, 0, 0) (V : type II)

Let He
n = hen × I.

We take standard cycles b1, b2, b3 of V that generates the reduced integral ho-

mology of V . When V is of type I, we let b1, b2, b3 ⊂ T × {1} ⊂ ∂V be defined

by

b1 = S1
2ε(p1,

1
2 )× {(12 , . . . , 12︸ ︷︷ ︸

d−3

)}, b2 = S1
2ε(p2,

1
2 )× {(12 , . . . , 12︸ ︷︷ ︸

d−3

)},

b3 = Sd−2
2ε (p3,

1
2 , . . . ,

1
2︸ ︷︷ ︸

d−2

).

Here, we denote by S1
δ (a, b) ⊂ R2, Sd−2

δ (a, b, c) ⊂ Rd−1, the codimension 1 round

spheres of radius δ, centered at (a, b) ∈ R2, (a, b, c) ∈ Rd−1 = R × Rd−3 × R
respectively. When V is of type II, we replace b2 for type I with

b2 = Sd−2
2ε (p2,

1
2 , . . . ,

1
2︸ ︷︷ ︸

d−2

).

For each i, we consider bi as a cycle by inducing an orientation from a ball of radius

2ε in R2 or Rd−1 by the outward-normal-first convention.

3.6.2. Identifying Vi with the standard model. Now we use the vertex quasi-orientation

introduced in §3.3.2 to fix the correspondence between handles of V and compo-

nents of the link. Namely, we rearrange the order of the three half-edges within

its class of vertex quasi-orientation at the i-th vertex so that the first one or two

are of degree 1 (or incoming) and the rest are of degree d− 2 (or outgoing). Then

this order of half-edges determines a correspondence between the half-edges of that

trivalent vertex and the three components he11 , h
e2
2 , h

e3
3 . We choose an identification

Vi = V so that the homology classes of the cycles b1, b2, b3 correspond to those of

the oriented sphere components from the Hopf links introduced in §3.4. Namely,
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the identifications Vi = V are fixed so that the orientations of bi1, b
i
2, b

i
3 fixed in

§3.6.1 give Lk(biℓ, b
j
m) = 1 when the spheres biℓ in Vi and b

j
m in Vj form a Hopf link.

3.7. Borromean surgery of type I.

3.7.1. Twisted handlebody V ′ of type I. We shall define “Borromean twist” αI as

announced before Definition 3.9. According to the coordinates fixed in §3.6, the
handlebody V of type I is the complement in T0× I = Id−1× I of two open (d−2)-

handles H1
1 and H1

2 and one 1-handle H0
3 , which are thin. We now define another

handlebody V ′, which is obtained from V by changing the thin handles as follows.

We represent the relative isotopy class of the thin handles in Id by a framed string

link relative to the attaching region, in the sense that the map

res : Emb(H1
1 ∪H1

2 ∪H0
3, I

d)→ Embf(Id−2 ∪ Id−2 ∪ I1, Id)

induced by restriction is a homotopy equivalence. Since framed string links here

are assumed to be standard near the boundary, a framed string link induces a

trivialization of the sides of the closed handles H
e

n as sphere bundles over the

cores, which is canonically extended to a parametrization of the boundary of the

complement of the images of the embeddings of the open handles He
n in Id. Then

we have a natural map

c∗ : π0(Emb(H1
1 ∪H1

2 ∪H0
3, I

d))→ S
H(V, ∂V ), (3.5)

given by taking the complement, where the right hand side is the set of relative

diffeomorphism classes of the pairs (W,∂W ) of compact d-manifolds with ∂W =

∂(T×I) such that H∗(W ;Z) ∼= H∗(T×I;Z). The image of the class of the standard

embedding under the map c∗ gives (V, ∂V ). The image of the framed Borromean

string link B(d− 2, d− 2, 1)d under c∗ gives another relative diffeomorphism class,

which we denote by (V ′, ∂V ′). We identify the boundary ∂V ′, which is the union

of T ×{0, 1} and the sides of the handles, with ∂V by using the parametrization of

embeddings of the handles.

Remark 3.14. Although the relative diffeomorphism class of (V ′, ∂V ′ = ∂V ) suffices

to define the surgery of type I in Definition 3.9, we describe below a further property

of the surgery. Namely, that the surgery can be obtained by attaching the standard

handlebody along its boundary by a twisting map.

3.7.2. Mapping cylinder structure on V ′. For the type I handlebody V , we will see

that the handlebody V ′ thus obtained can be realized as the mapping cylinder of

a relative diffeomorphism ϕ0 : (T, ∂T )→ (T, ∂T ), which is defined by

C(ϕ0) = (T × I) ∪ϕ0 (T × {0}), (3.6)

where we consider the T × {0} on the right as a copy of the original one T , and

identify each (x, 0) ∈ T ×{0} ⊂ T × I on the left term with (ϕ0(x), 0) ∈ T ×{0} on
the right term. Note that the boundary of C(ϕ0) is (T ×{1})∪ (∂T × I)∪∂ϕ0 (T ×
{0}) = (T ×{0, 1})∪id∂T×{0,1}

(∂T ×I) = ∂V and we fix the canonical identification

∂C(ϕ0) = ∂V , whose restriction to T ×{0} from the right term of the sum in (3.6)

is not ϕ0 but the identity.
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Proposition 3.15 (Proof in §5.2). For a handlebody V of type I, there exists

a relative diffeomorphism ϕ0 : (T, ∂T ) → (T, ∂T ) and a relative diffeomorphism

(V ′, ∂V )→ (C(ϕ0), ∂V ) that restricts to id on ∂V .

The relative diffeomorphism ϕ0 : (T, ∂T )→ (T, ∂T ) of Proposition 3.15 extends

to a self-diffeomorphism ϕI of ∂V = (T ×{0, 1})∪(∂T ×I) by setting ϕ0 on T ×{0}
and id otherwise.

Definition 3.16 (Type I Borromean twist). We define the map αI : S
0 → Diff(∂V )

by αI(−1) = id, αI(1) = ϕI. Let Ṽ be the total space of the bundle πV : V ′∪(−V )→
S0 that is the disjoint union of V ′ → {1} and −V → {−1}.

Remark 3.17. (1) We assume that the corners arose in the construction above

are all smoothed (in the sense of [Wal, Ch.2,2.6] or [Tam, Ch.3,3.3]).

(2) When d = 3, the surgery on Y-graph in [Gou, Hab] is given by surgery for

αI of Definition 3.16.

3.8. Parametrized Borromean surgery of type II.

3.8.1. Family Ṽ of twisted handlebodies of type II. We define the “parametrized

Borromean twist” αII ∈ Ωd−3Diff(∂V ), announced before Definition 3.9. The han-

dlebody V of type II is diffeomorphic to a handlebody obtained from Id by removing

one (d−2)-handle and two 1-handles, which are thin. We now define a (V, ∂)-bundle

πV : Ṽ → Sd−3, which is obtained from a trivial V -bundle over Sd−3 by changing

the trivial family of thin handles as follows. We construct Ṽ by taking the image

under the map

c∗ : πd−3(Embf0(I
d−2 ∪ I1 ∪ I1, Id))→ πd−3(BDiff(V, ∂)),

which is given by taking the complement, of the class of a certain loop

β ∈ Ωd−3Embf0(I
d−2 ∪ I1 ∪ I1, Id)

corresponding to a framed Borromean link B(d− 2, d− 2, 1)d, based at the stan-

dard inclusion. We will define β later in §5.3. Roughly, the loop β is constructed

by replacing the second component in B(d− 2, d− 2, 1)d with a (d− 3)-parameter

family of 1-disks with framing, so that the locus of the family of 1-disks recovers

the original (d−2)-disk component after a small change on the boundary. Then the

image of the homotopy class of β under c∗ gives a (V, ∂)-bundle πV : Ṽ → Sd−3.

3.8.2. Mapping cylinder structure on the bundle Ṽ . We will show that thus ob-

tained (V, ∂)-bundle Ṽ is a (d − 3)-parameter family of mapping cylinders for an

element of πd−3(Diff(T, ∂T )). For a given smooth family of relative diffeomorphisms

ϕ0,t : (T, ∂T )→ (T, ∂T ) (t ∈ Sd−3), let ϕ̄ : Sd−3×T → Sd−3×T be the map defined

by ϕ̄(t, x) = (t, ϕ0,t(x)). Here we say that an Sd−3-family of diffeomorphisms ϕ0,t

in Diff(T, ∂) is smooth if the associated map ϕ̄ is smooth, as usual. Now we set

C̃({ϕ0,t}) = (Sd−3 × T × I) ∪ϕ̄ (Sd−3 × T × {0}),
where we consider Sd−3× T ×{0} on the right as a copy of Sd−3× T , and identify

each (t, x, 0) ∈ Sd−3×T×{0} ⊂ Sd−3×T×I with (ϕ̄(t, x), 0) ∈ Sd−3×T×{0}. This
has a natural structure of a (V, ∂)-bundle over Sd−3 whose boundary is Sd−3×∂V .
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Proposition 3.18 (Proof in §5.4). For a handlebody V of type II, there exist a

smooth family of relative diffeomorphisms ϕ0,t : (T, ∂T )→ (T, ∂T ) (t ∈ Sd−3) with

ϕ0,∗ = id for the basepoint ∗ ∈ Sd−3, and a relative bundle isomorphism

(Ṽ , Sd−3 × ∂V )→ (C̃({ϕ0,t}), Sd−3 × ∂V )

that restricts to id on the boundary Sd−3 × ∂V .

Definition 3.19 (Type II Borromean twist). We define the map αII : S
d−3 →

Diff(∂V ) by extending {ϕ0,t} to a (d − 3)-parameter family of diffeomorphisms of

∂V by id on the complement of T × {0} in ∂V .

There is a natural “graphing” map

Ψ: πd−3(Embf0(I
d−2 ∪ I1 ∪ I1, Id))→ π0(Embf(I2d−5 ∪ Id−2 ∪ Id−2, I2d−3)),

which is obtained by representing a (d−3)-parameter family of framed long embed-

dings in Embf0(I
d−2∪I1∪I1, Id) by a single map (Id−2∪I1∪I1)×Id−3 → Id×Id−3

with the corresponding framing. The following lemma will be used in Lemma 4.2.

Lemma 3.20 (Proof in §5.5). The image of [β] ∈ πd−3(Embf0(I
d−2 ∪ I1 ∪ I1, Id))

under Ψ is the class of B(2d− 5, d− 2, d− 2)2d−3 with the normal framing FD

given in §3.1 and Definition 3.6.

3.9. Framed handlebody replacement. We shall see that the surgery of type

I or II is compatible with framing and that surgery along a graph clasper gives an

element of the homotopy group of B̃Diff(Dd, ∂). Let V be the standard model in

§3.6 of the handlebody of type I or II.

Proposition 3.21. Let K = S0 or Sd−3, ᾱ = ᾱI or ᾱII. Identify ∂Ṽ with K × ∂V
via the trivialization given by the mapping cylinder construction of Proposition 3.15

or 3.18.

(1) There is a bundle isomorphism

ϕ̃ : Ṽ → K × V
that induces ᾱ : K × ∂V = ∂Ṽ → K × ∂V .

(2) The vertical framing on Ṽ induced from the standard framing st on T0×I ⊂
Rd has the property that it can be modified by a homotopy supported in a

small neighborhood of ∂V into one whose restriction to ∂Ṽ agrees with

(dϕ̃)−1(st|∂V ).

Proof. The assertion (1) follows from Proposition 3.15 or 3.18. The assertion (2)

follows from [Wa3, Lemma A]. �

That the homotopy of (2) is supported in a small neighborhood of ∂V will be

used in the proof of Lemma 7.15. Proposition 3.21 gives a trivialization of the

bundle Ṽ as a V -bundle, but not as a (V, ∂)-bundle. Propositions 3.21 shows that

the surgeries of type I and II are framed ones, in the sense of the following corollary.

Corollary 3.22. If X is framed, then the surgery of X on (V, α : K → Diff(∂V ))

of type I or II gives a framed bundle π(α) : (K ×X)V,α → K, K = S0 or Sd−3, on

which the framing agrees with the original framing outside V . In other words, the
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vertical framing on K × (X − IntV ) canonically induced from the original one on

X − IntV extends to that on (K ×X)V,α.

For ℓ ∈ {1, 2, 3}, let V[ℓ] denote the handlebody constructed in the same way as

V except we forget the ℓ-th component in He1
1 ∪He2

2 ∪He3
3 .

Lemma 3.23 ([Wa3, Lemma A and Remark 7]). Let π(α) : Ṽ → K be the bundle

obtained by twists α : K → Diff(∂V ) of type I or II. Let π(α)[ℓ] : Ṽ[ℓ] → K be the

bundle obtained from π(α) by extension by filling a trivial framed family into the

ℓ-th complementary handle. Then π(α)

(1) admits a vertical framing that extends the standard one on the boundary

induced from the given one on V , and

(2) becomes trivial as a framed relative bundle if Ṽ is extended to Ṽ[ℓ].

Remark 3.24. Although Lemma 3.23 is the statement for the standard model, it is

also true for any other handlebody V in a framed d-manifold X that is obtained

from the standard model in a small ball by an isotopy of the embedding V → X

from the inclusion.

Proposition 3.25 (Theorem 3.10 (1),(2)). (1) πΓ : EΓ → BΓ is a (Dd, ∂)-

bundle and admits a vertical framing.

(2) There is a vertical framing τΓ on πΓ such that the framed (Dd, ∂)-bundle

(πΓ, τΓ) is oriented bundle bordant to a framed (Dd, ∂)-bundle ̟Γ : FΓ →
S(d−3)k over S(d−3)k with some vertical framing σΓ. Namely, there ex-

ist a compact oriented (d − 3)k + 1-dimensional cobordism B̃ with ∂B̃ =

BΓ

∐
(−S(d−3)k) and a framed (Dd, ∂)-bundle π̃ : Ẽ → B̃ such that the re-

striction of π̃ on ∂B̃ agrees with (πΓ, τΓ) and (̟Γ, σΓ) (with the opposite

orientation).

Proof. (1) We see that if α = αI or αII, then the bundle πV,α : (Sa×Dd)V,α → Sa,

a = 0 or d− 3, obtained from the trivial (Dd, ∂)-bundle Sa ×Dd by surgery along

V is a trivial (Dd, ∂)-bundle. Indeed, V can be extended to V[ℓ] in Dd and the

surgery along V and V[ℓ] produce equivalent results, where the surgery along V[ℓ] is

defined by replacing Sa × V[ℓ] with Ṽ[ℓ]. By Lemma 3.23 (2), the result is a trivial

Dd-bundle. By the definition of the surgery along V[ℓ], the trivialization on the

(V[ℓ], ∂)-bundle Ṽ[ℓ] obtained by Lemma 3.23 (2) can be extended to a trivialization

of a (Dd, ∂)-bundle. Also, by Lemma 3.23 (1), the restriction of the standard

framing on Sa ×Dd to Sa × (Dd − IntV ) extends over (Sa ×Dd)V,α.

By applying the above for type I surgeries, it follows that the restriction of

πΓ over (S0)k ⊂ BΓ has a trivialization as a (Dd, ∂)-bundle. Now we have a

trivialization of (Dd, ∂)-bundle at the basepoint of each path-component of BΓ, the

whole bundle πΓ must be a (Dd, ∂)-bundle, by the definition of the type II surgery.

The vertical framing on EΓ can be obtained by doing the parametrized gluing in

§3.5 with framing.

(2) The proof is parallel to that of [Wa3, Claim 3] (see also [Wa3, Remark 7]) for

d even and with (Sk−1)×2n replaced by a product (S0)×k×(Sd−3)×k, and we do not

repeat that here. We should remark that we used in [Wa3, Lemma B] the claim that

ΣA→ ΣX splits with cofiber Σ(X/A), where X is a product of spheres and A is the
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maximal skeleton ofX of positive codimension for a certain cell decomposition. The

splitting holds even for the products like (S0)×ℓ× (Sd−3)×m (including 0-spheres),

by the wedge decomposition of ΣX given in [Pu, Satz 20]. �

4. Computation of the invariant

The strategy to compute the configuration space integrals here is a higher di-

mensional analogue of that taken in [KuTh, Les2]. Following these references, we

reduce the computation of Zk to homological (or combinatorial) one, like the linking

number.

4.1. Normal Thom class (η-form). For a topologically closed oriented smooth

submanifold A of an oriented manifold N , we denote by ηA a closed form repre-

sentative of the Thom class of the normal bundle νA of A. We identify the total

space of νA with a small tubular neighborhood NA of A ⊂ N and assume that ηA
has support in NA. It has the useful property that [ηA] is the Poincaré–Lefschetz

dual of [A] ∈ H∗(N, ∂N), when both N and A are compact. For another oriented

submanifold B of N with dim B = codimA, the integral
∫
N ηA ∧ ηB =

∫
B ηA gives

the intersection pairing A · B in N (see §D.1 for more detail). A basic textbook

reference is [BTu, Ch. I, Section 6].

4.2. Standard cycles on ∂V . Recall that Vi ⊂ X is defined in §3.4 as a handle-

body obtained by thickening a Y-graph Gi. In §3.6, we fixed a standard model V

of Vi and we have taken cycles b1, b2, b3 of ∂V . Recall from §3.6.1 and §3.6.2 that

the orientations of bi1, b
i
2, b

i
3 give Lk(biℓ, b

j
m) = 1 when the spheres biℓ in Vi and b

j
m

in Vj form a Hopf link. Now we take more standard cycles a1, a2, a3 of ∂V , which

are null-homologous in V , as follows. Here we again use the standard coordinates

of V fixed in §3.6.
We define disks aT1 , a

T
2 , a

T
3 ⊂ T by aT1 = {p1} × [0, 12 − ε] × Id−3, aT2 = {p2} ×

[0, 12 − ε]× Id−3, aT3 = {p3} × [0, 12 − ε]× {(12 , . . . , 12︸ ︷︷ ︸
d−3

)}, and put

aℓ = (aTℓ × {1}) ∪ (∂aTℓ × I) ∪ (aTℓ × {0}) ⊂ ∂V
as a subspace. (See Figure 7 (1).) We orient aℓ so that

Lk(b−ℓ , aℓ) = +1,

where b−ℓ is a copy of bℓ ⊂ T × {1} in T × {1 − ε} obtained by shifting, and Lk

is defined by using the Euclidean coordinates of T0 × I of §3.6 and the formula

(3.3). More explicit descriptions of the orientations of aℓ and bℓ can be found in the

proof of Lemma D.1. The collection (a1, b1, a2, b2, a3, b3) of cycles gives a Z-basis
of H1(∂V ;Z)⊕Hd−2(∂V ;Z) such that

Lk(b−ℓ , aj) = δℓj (when dim bℓ + dim aj = d− 1), and

[aj ] ·∂ [aℓ] = [bj ] ·∂ [bℓ] = 0

(when dim aj + dim aℓ = d− 1 and dim bj + dim bℓ = d− 1),

where ·∂ is the intersection pairing in ∂V .
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(1) (2)

Figure 7. aT1 , a
T
2 , a

T
3 , b1, b2, b3 ⊂ T , (1) in the top face of V of

type I, (2) in the top face of V of type II. (Not the pictures of the

whole of V .)

When V is of type II, we replace b2 and aT2 for type I with

b2 = Sd−2
2ε (p2,

1
2 , . . . ,

1
2︸ ︷︷ ︸

d−2

), aT2 = {p2} × [0, 12 − ε]× {(12 , . . . , 12︸ ︷︷ ︸
d−3

)}.

We define the submanifolds ãℓ, b̃ℓ of S
d−3 × ∂V by

ãℓ = Sd−3 × aℓ, b̃ℓ = Sd−3 × bℓ.

4.3. Normalization of linking pairing of Y-link. First, we consider the sub-

space Vi × Vj ⊂ C2(S
d;∞), i 6= j, i, j 6= ∞, and see that a propagator can be

described explicitly by means of the η forms. Let aλℓ , b
λ
ℓ , ℓ = 1, 2, 3, be the gener-

ating cycles of Hp(∂Vλ;Z) for p = 1, d − 2, corresponding to the standard cycles

aℓ, bℓ in the standard model given in §3.6 and §4.2. The spherical cycle aλℓ bounds

disk S(aλℓ ) in Vλ, and moreover, by the construction of ~VG = (V1, . . . , V2k), the

spherical cycle bλℓ bounds disk S(bλℓ ) in X− IntVλ, which intersects some other Vλ′ ,

λ′ 6= λ. Now we orient S(aλℓ ) and S(bλℓ ) by those induced from o(aλℓ ) and o(bλℓ )

by the outward-normal-first convention, and we take coorientations o∗Vλ
(S(aλℓ )) and

o∗Vλ
(S(bλℓ )) obtained from o(S(aλℓ )) and o(S(b

λ
ℓ )) by the rule (1.1). Then we choose

η-forms ηS(aλ
ℓ
) and ηS(bλ

ℓ
) so that it is compatible with the coorientations o∗Vλ

(S(aλℓ ))

and o∗Vλ
(S(bλℓ )), respectively in terms of the duality of §1.4 (j). We see that H∗(Vλ)

is spanned by the classes of

1, ηS(aλ
1 )
, ηS(aλ

2 )
, ηS(aλ

3 )
.

By the Künneth formula, it follows that Hd−1(Vi × Vj) is spanned by [ηS(ai
ℓ
)] ⊗

[ηS(aj
m)], where ℓ,m are such that dim aiℓ + dim ajm = d − 1. Thus a propagator

ω ∈ Ωd−1
dR (C2(S

d;∞)) satisfies

[ω|Vi×Vj
] =

∑

ℓ,m

Lij
ℓm [ηS(ai

ℓ
)]⊗ [ηS(aj

m)] (4.1)

in Hd−1(Vi × Vj) for some Lij
ℓm ∈ R, where the sum is over ℓ,m such that dim aiℓ +

dim ajm = d − 1. The definition of Lk (3.3) implies Lk(b, b′) =
∫
b×b′ ω for a link

b
∐
b′.
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Lemma 4.1 (Proof in §D.3). We have the following identities.

(1)

∫

b−
ℓ

ηS(aℓ) = (−1)kd+k+d−1, where k = dim aℓ.

(2)

∫

a+
ℓ

ηS(bℓ) = (−1)d+k, where k = dim aℓ.

(3) Lij
ℓm = (−1)d−1Lk(biℓ, b

j
m) for i, j, ℓ,m such that dim biℓ + dim bjm = d− 1.

The identities (1) and (2) will be used later in §6.2. The integral of ω gives the

linking pairing

Lk:
⊕

p+q=d−1

Hp(Vi)⊗Hq(Vj)→ R.

The right hand side of (4.1) has the following explicit closed form representative as

a form on Vi × Vj . ∑

ℓ,m

Lij
ℓm p∗1 ηS(ai

ℓ
) ∧ p∗2 ηS(aj

m), (4.2)

where pn : C2(S
d;∞)→ C1(S

d;∞) is the map induced by the n-th projection.

4.4. Spanning submanifolds and their η-forms in Ṽλ. The formula (4.2) can

be naturally extended to families of Vλ × Vµ. Let π(αλ) : Ṽλ → Kλ be the relative

bundle obtained by the twists αλ : Kλ → Diff(∂Vλ) of type I or II in Definition 3.16

or 3.19. Let

ãλℓ := Kλ × aλℓ ⊂ ∂Ṽλ = Kλ × ∂Vλ.
The following lemma, which will be used to make the integrals in the main compu-

tation of the invariant in §4.6 explicit, follows from Lemmas 3.7 and 3.20.

Lemma 4.2. For each ℓ there exists a compact oriented submanifold S(ãλℓ ) of Ṽλ
with boundary such that

(1) ∂S(ãλℓ ) = ãλℓ = S(ãλℓ ) ∩ ∂Ṽλ, and the intersection is transversal.

(2) S(ãλℓ ) ∩ π(αλ)
−1(t0) = S(aλℓ ) over the basepoint t0 ∈ Kλ.

(3) S(ãλℓ ) is diffeomorphic to the connected sum of Kλ × S(aλℓ ) with Su × Sv

for some u, v such that u+ v = dimS(ãλℓ ).

(4) The normal bundle of S(ãλℓ ) is trivial.

(5) S(ãλ1 ) ∩ S(ãλ2 ) ∩ S(ãλ3 ) is one point, and the intersection is transversal.

Proof. By Lemma 3.7, the three components in a Borromean string link have span-

ning submanifolds D′
1, D

′
2, D

′
3. The restrictions of these submanifolds to the family

of Id − (He1
1 ∪He2

2 ∪He3
3 ) give submanifolds satisfying the conditions (2), (3), (4),

(5). To see that we can moreover assume (1), we need to show that a standard

collar neighborhood of ãλℓ agrees with that induced by the spanning disk Dℓ of the

corresponding component.

By a standard argument relating a normal framing of an embedding and a triv-

ialization of its tubular neighborhood, it suffices to check the compatibility of the

normal framings of the two models: one given in Definition 3.6 and one given by

the parametrization of the family of handles He1
1 ∪ He2

2 ∪ He3
3 in Id. But this is

proved in Lemma 3.20. �
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Note that S(ãλℓ ) need not be a subbundle of π(αλ). We coorient S(ãλℓ ) in Ṽλ
so that its restriction to the fiber over the basepoint t0 ∈ Kλ is equivalent to

o∗Vλ
(S(aλℓ )) fixed in §4.3. Then we may choose an η-form ηS(ãλ

ℓ
) on Ṽλ so that it

is compatible with the coorientation and it extends ηS(aλ
ℓ
) on the fiber over the

basepoint t0 ∈ Kλ.

Remark 4.3. We used several rules to fix (co)orientations: the top horizontal arrows

and the rightmost vertical arrow in the following diagram.

o(aλℓ )
∂ //

��

o(S(aλℓ ))
oo

��

∗ // o∗Vλ
(S(aλℓ ))

compatibility
at a fiber

��
o(ãλℓ )

∂ //

OO

o(S(ãλℓ ))
oo

OO

∗ // o∗
Ṽλ

(S(ãλℓ ))

OO

(We write ∂ for the outward-normal-first rule, and ∗ for the rule (1.1).) In this, once

o(aλℓ ) is fixed, other items o(S(aλℓ )), o(S(ã
λ
ℓ )), and o(ãλℓ ) are automatically fixed

by applying the rules. We remark that we do not assume any “natural” rule at

the dotted vertical arrows. Note that the product orientations (o(Kλ)∧ o(aλℓ ) etc.)
with respect to the local trivializations of ãλℓ and S(ãλℓ ) do not make the squares

commutative (two different orientations may be “defined” on a single item). This

example suggests that fixing a “natural” rule to define orientations for general cases

is often tricky.

The product π(αi)× π(αj) : Ṽi × Ṽj → Ki ×Kj is a bundle whose fiber over the

basepoint is Vi × Vj . The formula (4.2) is naturally extended over Ṽi × Ṽj by

∑

ℓ,m

Lij
ℓm p∗1 ηS(ãi

ℓ
) ∧ p∗2 ηS(ãj

m), (4.3)

where ηS(ãi
ℓ
) etc. is a closed form on Ṽi etc. Note that the form (4.3) is currently

defined only on the space Ṽi× Ṽj and we still have not seen that this is a restriction

of a propagator on the corresponding (Dd, ∂)-bundle over Ki × Kj , although we

will do so in Proposition 4.6 below.

4.5. Normalization of propagator in family. To state Proposition 4.6, we de-

compose bundles into pieces. Let U∞ is a small closed d-ball about ∞ and let

πΓ∞ : EΓ∞ → BΓ be the (Sd, U∞)-bundle obtained by extending the (Dd, ∂)-bundle

πΓ : EΓ → BΓ by the product bundle BΓ × U∞.

We decompose EΓ∞ into subbundles compatible with surgery, as follows. We

extend the vertical framing τΓ on EΓ over the complement of the ∞-section BΓ ×
{∞} in EΓ∞ by the standard framing τ0 on Rd = Sd − {∞}. This extension is

possible since τΓ is standard near the boundary. Let

V∞ = Sd − Int(V1 ∪ · · · ∪ V2k).

For λ ∈ {1, 2, . . . , 2k}, let

Ṽ ′
λ = K1 × · · · ×Kλ−1 × Ṽλ ×Kλ+1 × · · · ×K2k.
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This is a bundle over BΓ, which is canonically isomorphic to the pullback of the

bundle π(αλ) : Ṽλ → Kλ by the projection BΓ → Kλ. Let

Ṽ ′
∞ = BΓ × V∞

and we consider the projection Ṽ ′
∞ → BΓ as a trivial V∞-bundle over BΓ. Then we

have the decomposition

EΓ∞ = Ṽ ′
1 ∪ · · · ∪ Ṽ ′

2k ∪ Ṽ ′
∞,

where the gluing at the boundary is given by the natural trivializations ∂Ṽ ′
λ =

BΓ × ∂Vλ for λ ∈ {1, . . . , 2k} (given in §3.7.2 and §3.8.2) and ∂Ṽ ′
∞ = BΓ × (∂V1 ∪

· · · ∪ ∂V2k).
We also consider a natural decomposition of EC2(π

Γ) accordingly, as follows.

Notation 4.4. For i, j ∈ {1, . . . , 2k} such that i 6= j, let

ΩΓ
ij = Ṽ ′

i ×BΓ Ṽ
′
j ,

namely, the pullback of the diagram Ṽ ′
i → BΓ ← Ṽ ′

j , where the map Ṽ ′
i → BΓ etc.

is the projection of the Vi-bundle. For i ∈ {1, . . . , 2k,∞}, let
ΩΓ

ii = p−1
Bℓ

(
Ṽ ′
i ×BΓ Ṽ

′
i

)
, ΩΓ

i∞ = p−1
Bℓ

(
Ṽ ′
i ×BΓ Ṽ

′
∞
)
, ΩΓ

∞i = p−1
Bℓ

(
Ṽ ′
∞ ×BΓ Ṽ

′
i

)
,

where pBℓ : EC2(π
Γ)→ EΓ∞ ×BΓ E

Γ∞ is the fiberwise blow-down map.

The projection ΩΓ
ij → BΓ is a subbundle of C2(π

Γ) : EC2(π
Γ) → BΓ, whose

fiber over the basepoint (t01, . . . , t
0
2k) ∈ BΓ is Vi × Vj or p−1

Bℓ(Vi × Vj). What is

important here is that the ΩΓ
ij have pairwise disjoint interiors, which are smooth

open manifolds. We have

EC2(π
Γ) =

⋃

i,j

ΩΓ
ij ,

where the sum is over all i, j ∈ {1, . . . , 2k,∞}. This decomposition is such that the

interiors of the pieces do not overlap. The closed form (4.3) can be defined on most

terms in this decomposition, except those of the forms ΩΓ
ii or those involving ∞.

Over the latter exceptions we will extend by “degenerate” forms.

Notation 4.5. For J ⊂ {1, 2, . . . , 2k}, let

BΓ(J) =
2k∏

λ=1

Kλ(J), where Kλ(J) =

{
Kλ (λ ∈ J),
{t0λ} (λ /∈ J),

and let ΩΓ
ij(J)→ BΓ(J) be the restriction of the bundle ΩΓ

ij → BΓ on BΓ(J). More

generally, for a bundle E → BΓ, we denote by E (J) → BΓ(J) its restriction on

BΓ(J).

If we let Jij = ({i}∪{j})∩{1, . . . , 2k}, we have BΓ(Jij) ∼=
∏

λ∈Jij
Kλ, and there

is a natural bundle map

ΩΓ
ij

p̃ij //

��

ΩΓ
ij(Jij)

��
BΓ

pij // BΓ(Jij)
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over the projection pij . For example, if i, j ∈ {1, . . . , 2k} and i 6= j, then Jij =

{i, j}, BΓ(Jij) ∼= Ki ×Kj , and ΩΓ
ij = Ṽi × Ṽj . If i ∈ {1, . . . , 2k}, then Jii = {i},

Ji∞ = {i}, and BΓ(Jii) ∼= Ki
∼= BΓ(Ji∞). Also, J∞∞ = ∅ and BΓ(J∞∞) ∼= ∗.

Proposition 4.6 (Normalization of propagator). Let d be an integer such that d ≥
4, which may or may not be even. There exists a propagator ω ∈ Ωd−1

dR (EC2(π
Γ))

satisfying the following conditions.

(1) For i, j ∈ {1, . . . , 2k,∞},
ω|ΩΓ

ij
= p̃∗ij ω|ΩΓ

ij(Jij).

(2) For i, j ∈ {1, . . . , 2k}, i 6= j,

ω|ΩΓ
ij(Jij) =

∑

ℓ,m

Lij
ℓm p∗1 ηS(ãi

ℓ
) ∧ p∗2 ηS(ãj

m),

where Lij
ℓm = (−1)d−1Lk(biℓ, b

j
m) and the sum is over ℓ,m such that dim aiℓ+

dim ajm = d− 1.

This is the heart of the computation of the invariant. The statement of Propo-

sition 4.6 looks natural, although its proof given in §6 and §7, mostly following

Lescop’s interpretation [Les2] of Kuperberg–Thurston’s theorem ([KuTh, Theo-

rem 2]), is not short. In fact, as in [Les2] we will prove a statement stronger than

(2), which includes ∞. Nevertheless, Proposition 4.6 is sufficient for the main

computation in §4.6 due to Lemma 4.9.

The following lemma is a restatement of Lemma 4.2(5), which will also be used

in the computation of the invariant.

Lemma 4.7 (Integral at a trivalent vertex). Let S(ãλ1 ), S(ã
λ
2 ), S(ã

λ
3 ) be the sub-

manifolds of Ṽλ of Lemma 4.2. Then we have∫

Ṽλ

ηS(ãλ
1 )
∧ ηS(ãλ

2 )
∧ ηS(ãλ

3 )
= ±1.

The sign depends only on the type (I or II) of Vλ. We let α, β be this sign for Vλ
of type I, II, respectively for later use.

4.6. Evaluation of the configuration space integrals. From now on we com-

plete the proof of Theorem 3.10, assuming Proposition 4.6, by proving the following

theorem. The idea of the proof is analogous to that of [KuTh, Theorem 2], [Les2,

Theorem 2.4], and [Wa2, Theorem 6.1].

Theorem 4.8 (Theorem 3.10(3)). Let d be an even integer such that d ≥ 4 and

let Γ be a vertex-quasi-oriented, vertex-labelled arrow graph with 2k vertices with-

out self-loop (as in Definition 3.9). If moreover Γ has no orientation-reversing

automorphism, we have

ZΩ
k (π

Γ; τΓ) = ±[Γ],
where the sign depends only on k (not on Γ in G

even
0,k ).

More explicitly, the sign ± in Theorem 4.8 is (−1)3kαkβk.

For i1, i2, . . . , i2k ∈ {1, . . . , 2k,∞}, let
ΩΓ

i1i2···i2k = p−1
Bℓ

(
Ṽ ′
i1 ×BΓ Ṽ

′
i2 ×BΓ · · · ×BΓ Ṽ

′
i2k

)
,
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where pBℓ : EC2k(π
Γ) → EΓ∞ ×BΓ · · · ×BΓ E

Γ∞ is the canonical projection in-

duced by the Diff(Sd, U∞)-equivariant projection C2k(S
d;∞) → (Sd)×2k. This is

the subspace of EC2k(π
Γ) consisting of configurations (x1, x2, . . . , x2k) such that

πΓ∞(x1) = · · · = πΓ∞(x2k) and xr ∈ Ṽ ′
ir for each r. More precisely, ΩΓ

i1i2···i2k is the

image of a bundle over BΓ with fiber the preimage of some products of manifolds

V ×p
ℓ under the blow-down map C2k(S

d;∞)→ (Sd)×2k. The integrals may be taken

over the interior of ΩΓ
i1i2···i2k . Then we have

EC2k(π
Γ) =

⋃

i1,i2,...,i2k

ΩΓ
i1i2···i2k ,

where the sum is taken for all possible choices i1, i2, . . . , i2k ∈ {1, . . . , 2k,∞}. It

follows from the formulas (2.18) and (E.3) that

(2k)!(3k)!ZΩ
k (π

Γ; τΓ) =
∑

Γ′∈L even
k

∫

BΓ

I(Γ′)[Γ′] =
∑

Γ′∈L even
k

∫

EC2k(πΓ)

ω(Γ′)[Γ′]

=
∑

Γ′∈L even
k

∑

i1,i2,...,i2k

∫

ΩΓ
i1i2···i2k

ω(Γ′)[Γ′],

Thus, to prove Theorem 4.8, it suffices to compute the following integral for all

Γ′ ∈ L even
k :

∫

ΩΓ
i1i2···i2k

ω(Γ′) =
1

23k

∑

ρ

∫

ΩΓ
i1i2···i2k

ω(Γ′, ρ), (4.4)

where
∑

ρ is over all edge orientations on Γ′. For a labelled graph Γ′, we denote

its edges by e1, . . . , e3k according to the edge labels. Then the integral (4.4) is

the one over the configurations such that the vertices of Γ′ labelled by 1, 2, . . . , 2k

are mapped to a fiber of ΩΓ
i1i2···i2k . If the image of the ordered pair (j′a, ℓ

′
a) of

the (labelled) endpoints of the edge ea of Γ′ under the map {1, 2, . . . , 2k} →
{1, 2, . . . , 2k}; q 7→ iq are (ja, ℓa), namely ja = ij′a and ℓa = iℓ′a , and if the propaga-

tor ω is normalized as in Proposition 4.6, then by Proposition 4.6 (1),

ω(Γ′, ρ)|ΩΓ
i1i2···i2k

=
3k∧

a=1

φ∗ea p̃
∗
jaℓaω|ΩΓ

jaℓa
(Jjaℓa )

. (4.5)

Lemma 4.9. Suppose that the propagator ω ∈ Ωd−1
dR (EC2(π

Γ)) is normalized as in

Proposition 4.6. Let λ ∈ {1, . . . , 2k}. If i1, . . . , i2k ∈ {1, . . . , 2k,∞}− {λ}, then
∫

ΩΓ
i1i2···i2k

ω(Γ′, ρ) = 0.

for any edge orientation ρ of Γ′. Hence the integral (4.4) can be nonzero only if

{i1, . . . , i2k} = {1, . . . , 2k}.

Proof. We think BΓ({1, . . . , 2k}−{λ}) as a subspace of BΓ by taking the λ-th term

to be the basepoint, and denote it by BΓ/Kλ. Let

E /Kλ → BΓ/Kλ
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denote the restriction of a bundle E → BΓ over the subspace BΓ/Kλ. If iq 6= λ for

all q ∈ {1, . . . , 2k}, the bundle map p̃jaℓa factors through the bundle map

ΩΓ
jaℓa

��

// ΩΓ
jaℓa

/Kλ

��
BΓ

// BΓ/Kλ

for each a ∈ {1, . . . , 3k}, since BΓ(Jjaℓa) does not have the factor Kλ for all a.

Hence by (4.5), ω(Γ′, ρ) is the pullback of ω(Γ′, ρ)|EC2k(πΓ)/Kλ
by the projection

EC2k(π
Γ) → EC2k(π

Γ)/Kλ. If Vλ is of type II, then ω(Γ′, ρ) is the pullback of a

3k(d− 1)-form on a 3k(d− 1)− (d− 3)-dimensional manifold EC2k(π
Γ)/Kλ, which

is zero. If Vλ is of type I, then we can integrate ω(Γ′, ρ) over Kλ = S0 first:
∫

ΩΓ
i1i2···i2k

ω(Γ′, ρ) = ±
∫

ΩΓ
i1i2···i2k

/Kλ

∫

Kλ

ω(Γ′, ρ)

= ±
{∫

ΩΓ
i1i2···i2k

/Kλ

ω(Γ′, ρ)−
∫

ΩΓ
i1i2···i2k

/Kλ

ω(Γ′, ρ)

}
= 0.

This completes the proof. �

Lemma 4.10. Let d be an even integer such that d ≥ 4. Suppose that the propagator

ω ∈ Ωd−1
dR (EC2(π

Γ)) is normalized as in Proposition 4.6. If Γ has no multiple edges,

we have ∫

ΩΓ
12···(2k)

ω(Γ′) =

{ ±1 if Γ′ ∼= ±Γ,
0 otherwise

for each Γ′ ∈ L even
k . Here, we write Γ′ ∼= ±Γ if there exists an isomorphism Γ′ → Γ

of graphs that sends the i-th vertex of Γ′ to the i-th vertex of Γ.

More explicitly, the value ±1 above is εΓ′(−1)3kαkβk, where εΓ′ is the sign

determined by the relation Γ′ ∼= εΓ′Γ (the interpretation of the graph orientation in

terms of orderings of half-edges was given in §3.3.3 and §3.3.4), and α, β ∈ {−1, 1}
are of Lemma 4.7.

Proof. By (4.5) and Proposition 4.6(2), the restriction of ω(Γ′, ρ) to ΩΓ
12···(2k) can

be described explicitly as follows.

ω(Γ′, ρ)|ΩΓ
12···(2k)

=
∧

(i,j)

edge of Γ′

(∑

ℓ,m

Lij
ℓm p∗i η

i
ℓ ∧ p∗jηjm

)
, (4.6)

where Lij
ℓm = (−1)d−1Lk(biℓ, b

j
m), ηiℓ = ηS(ãi

ℓ
), η

j
m = ηS(ãj

m) and the sum is over ℓ,m

such that dim aiℓ + dim ajm = d − 1. Note that there is a symmetry of the linking

number Lij
ℓm = Lji

mℓ and that one of ηiℓ and η
j
m is of even degree when d is even, the

result does not depend on the choice the order of (i, j) nor on ρ. Thus we have

ω(Γ′)|ΩΓ
12···(2k)

= ω(Γ′, ρ)|ΩΓ
12···(2k)

. (4.7)

The form (4.6) is a linear combination of products of 6k η-forms (§4.1).
Furthermore, if Γ does not have multiple edges, we may assume that each term

in the linear combination is the product of 6k different η-forms since there is at
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most one edge of Γ between each pair (i, j) of vertices with i 6= j, and for a given

pair (i, ℓ) the coefficient Lij
ℓm= (−1)d−1Lk(biℓ, b

j
m) is nonzero (and equal to −1) for

at most one pair (j,m). Thus we have

ω(Γ′)|ΩΓ
12···(2k)

= εΓ′

∏

(i,j)

( ∑

(ℓ,m)∈Pij

Lij
ℓm

) 2k∧

q=1

(
p∗qη

q
1 ∧ p∗qηq2 ∧ p∗qηq3

)
,

where Pij = {(ℓ,m) ∈ {1, 2, 3}×2 | 1 ≤ ℓ,m ≤ 3, dim aiℓ+dim ajm = d−1, Lij
ℓm 6= 0}.

The cardinality of Pij is the number of edges between i and j in Γ, which is 1 or 0

by assumption. Hence the right hand side is nonzero only if |Pij | = 1 for all edges

(i, j) of Γ′. This condition is equivalent to Γ′ ∼= ±Γ. More precisely, if Γ does not

have multiple edges, we have

∫

ΩΓ
12···(2k)

ω(Γ′) =





εΓ′(−1)3k
∫

ΩΓ
12···(2k)

2k∧

q=1

(
p∗qη

q
1 ∧ p∗qηq2 ∧ p∗qηq3

)
if Γ′ ∼= ±Γ,

0 otherwise.

Note that there is a canonical diffeomorphism

p̂1 × · · · × p̂2k : ΩΓ
12···(2k) → Ṽ1 × · · · × Ṽ2k,

where p̂q : Ω
Γ
12···(2k) → Ṽq is the natural projection, which gives the q-th point. This

diffeomorphism is orientation-preserving. Namely, ΩΓ
12···(2k) is oriented by

∧2k
q=1 o(Kq) ∧

∧2k
q=1 o(Vq) =

∧2k
q=1(o(Kq) ∧ o(Vq)) =

∧2k
q=1 o(Ṽq),

where o(W ) denotes the orientation of W . Note that o(Vj) is of even degree for

each j. Hence in the case Γ′ ∼= ±Γ and Γ does not have multiple edges, we have

∫

ΩΓ
12···(2k)

ω(Γ′) = εΓ′(−1)3k
∫

ΩΓ
12···(2k)

2k∧

q=1

p̂∗q(ηS(ãq
1)
∧ ηS(ãq

2)
∧ ηS(ãq

3)
)

= εΓ′(−1)3k
2k∏

q=1

∫

Ṽq

ηS(ãq
1)
∧ ηS(ãq

2)
∧ ηS(ãq

3)
= εΓ′(−1)3kαkβk.

�

Remark 4.11. When d is even, if Γ has no orientation-reversing automorphism,

then Γ has no multiple edges, since a permutation within a multiple edge gives an

orientation-reversing automorphism of Γ. If Γ has an orientation-reversing auto-

morphism, then [Γ] = 0 in A even
k .

Lemma 4.12. Let d be an even integer such that d ≥ 4. Suppose that the propagator

ω ∈ Ωd−1
dR (EC2(π

Γ)) is normalized as in Proposition 4.6. If Γ has no orientation-

reversing automorphism and if a permutation σ ∈ S2k of vertices of a graph Γ′ ∈
L even

k induces an automorphism of Γ′, then we have
∫

ΩΓ
σ(1)σ(2)···σ(2k)

ω(Γ′) =

∫

ΩΓ
12···(2k)

ω(Γ′)

for each Γ′ ∈ L even
k .
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Proof. If Γ′ 6∼= ±Γ, the vanishing of the integral on the LHS is the same as

Lemma 4.10. If Γ′ ∼= ±Γ and if Γ (and Γ′) does not have an orientation-reversing

automorphism, then we have

ω(Γ′)|ΩΓ
σ(1)σ(2)···σ(2k)

=εΓ′

∏

(i,j)

edge of Γ′

( ∑

(ℓ,m)∈Pσ(i)σ(j)

L
σ(i)σ(j)
ℓm

) 2k∧

q=1

p∗σ−1(q)

(
ηq1 η

q
2 η

q
3

)
,

and ΩΓ
σ(1)σ(2)···σ(2k) is oriented by

∧2k
q=1 o(Kq) ∧

∧2k
q=1 o(Vσ(q)) =

∧2k
q=1(o(Kq) ∧ o(Vq))

=
∧2k

q=1 o(Ṽq). We abbreviated ηq1 ∧ ηq2 ∧ ηq3 as ηq1 η
q
2 η

q
3 for a typesetting purpose.

(Similar abbreviation is used in Example 4.13 below.) Hence if moreover σ ∈ S2k

induces an automorphism of Γ′,

∫

ΩΓ
σ(1)σ(2)···σ(2k)

ω(Γ′)= εΓ′(−1)3k
2k∏

q=1

∫

Ṽq

ηS(ãq
1)
∧ ηS(ãq

2)
∧ ηS(ãq

3)
=

∫

ΩΓ
12···(2k)

ω(Γ′).

(An example of this computation is given below in Example 4.13.) �

Proof of Theorem 4.8. Let ω be a propagator normalized as in Proposition 4.6.

Suppose that Γ does not have multiple edges. If Γ′ ∼= ±Γ and if Γ (and Γ′)
does not have an orientation-reversing automorphism, then the same value ±[Γ]
(with the same sign) is counted |Aut Γ| times, according to Lemma 4.12. Hence by

Lemmas 4.9 and 4.10,

I(Γ′)[Γ′] = ±|AutΓ|[Γ]
where the sign is (−1)3kαkβk for some α, β ∈ {−1, 1} (recall that Γ was oriented

so that εΓ = 1).

Hence, the term I(Γ′)[Γ′] is nonzero only if Γ′ ∼= ±Γ and if Γ′ does not have

an orientation-reversing automorphism, in which case I(Γ′)[Γ′] = ±|Aut Γ|[Γ] by
Lemma 4.10. Moreover, the sign in ±|AutΓ|[Γ] is the same for different choices

of Γ′ such that Γ′ ∼= ±Γ, since I(−Γ′) = −I(Γ′) and the value I(Γ′)[Γ′] does not

depend on the labelling to orient Γ′. Now there are (2k)!(3k)!
|AutΓ| labellings on each

graph Γ up to graph isomorphism, and hence we have

ZΩ
k (π

Γ; τΓ) = ± 1

(2k)!(3k)!

(2k)!(3k)!

|Aut Γ| |Aut Γ|[Γ] = ±[Γ].

The sign ± in the second and last term is of the form (−1)3kαkβk for α, β ∈ {−1, 1}
of Lemma 4.7. This completes the proof. �

Example 4.13. Let us give an example which confirms the proofs of Lemma 4.10

and Theorem 4.8 for k = 2. Let Γ and Γ′ be the oriented trivalent graphs for k = 2

given in the left and middle of Figure 8, respectively. We use Γ to define surgery.

(Recall the convention of §3.3 for the orientation of Γ for the surgery.) According

to Lemmas 4.9 and 4.10, the integral I(Γ′) for (πΓ, τΓ) may be nonzero only if

Γ′ ∼= ±Γ and over ΩΓ
i1i2i3i4

with {i1, i2, i3, i4} = {1, 2, 3, 4}. By (4.6) and (4.7),

ω(Γ′)|ΩΓ
1234

= ω12 ω23 ω31 ω14 ω42 ω43

= p∗1η
1
2 ∧ p∗2η22 ∧ p∗2η23 ∧ p∗3η32 ∧ p∗3η33 ∧ p∗1η11 ∧ p∗1η13 ∧ p∗4η41 ∧ p∗4η42 ∧ p∗2η21 ∧ p∗4η43 ∧ p∗3η31

= p∗1(η
1
1 η

1
2 η

1
3) ∧ p∗2(η21 η22 η23) ∧ p∗3(η31 η32 η33) ∧ p∗4(η41 η42 η43),
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Figure 8. Oriented graphs Γ and Γ′ for k = 2. The left Γ is

oriented in terms of the convention of §3.3.4. The middle and

right Γ′ are oriented in terms of the convention (a) of §3.3.3.

where ω12 = p∗1η
1
2 ∧ p∗2η22 , ω23 = p∗2η

2
3 ∧ p∗3η32 , ω31 = p∗3η

3
3 ∧ p∗1η11 , ω14 = p∗1η

1
3 ∧ p∗4η41 ,

ω42 = p∗4η
4
2 ∧ p∗2η21 , ω43 = p∗4η

4
3 ∧ p∗3η31 (odd degree forms are underlined). Hence

∫

ΩΓ
1234

ω(Γ′) =

∫

Ṽ1

η11 η
1
2 η

1
3

∫

Ṽ2

η21 η
2
2 η

2
3

∫

Ṽ3

η31 η
3
2 η

3
3

∫

Ṽ4

η41 η
4
2 η

4
3 = (±1)2(±1)2 = 1.

Here, the orientation of ΩΓ
1234 is given by ǫ2 ǫ3 ∂t

(1) ∧ ∂t(4) ∧ ∂v(1) ∧ · · · ∧ ∂v(4) =
ǫ2 ǫ3 (∂t

(1) ∧ ∂v(1)) ∧ ∂v(2) ∧ ∂v(3) ∧ (∂t(4) ∧ ∂v(4)), where ǫj = ±1 ∈ Kj = {−1, 1}
(j = 2, 3), ∂t(i) is the orientation of Ki = Sd−3 (i = 1, 4), ∂v(i) is the orientation

of the fiber Vi.

We consider the permutation σ : 1 7→ 2, 2 7→ 3, 3 7→ 1, 4 7→ 4, which gives rise

to the graph automorphism from the right to the middle one in Figure 8. We have

ω(Γ′)|ΩΓ
2314

= ω′
23 ω

′
31 ω

′
12 ω

′
42 ω

′
43 ω

′
14

(∗)
= ω′

12 ω
′
23 ω

′
31 ω

′
14 ω

′
42 ω

′
43

= p∗3η
1
2 ∧ p∗1η22 ∧ p∗1η23 ∧ p∗2η32 ∧ p∗2η33 ∧ p∗3η11 ∧ p∗3η13 ∧ p∗4η41 ∧ p∗4η42 ∧ p∗1η21 ∧ p∗4η43 ∧ p∗2η31

= p∗3(η
1
1 η

1
2 η

1
3) ∧ p∗1(η21 η22 η23) ∧ p∗2(η31 η32 η33) ∧ p∗4(η41 η42 η43),

where ω′
23 = p∗1η

2
3 ∧ p∗2η32 , ω′

31 = p∗2η
3
3 ∧ p∗3η11 , ω′

12 = p∗3η
1
2 ∧ p∗1η22 , ω′

42 = p∗4η
4
2 ∧ p∗1η21 ,

ω′
43 = p∗4η

4
3 ∧ p∗2η31 , ω′

14 = p∗3η
1
3 ∧ p∗4η41 (odd degree forms are underlined). Hence

∫

ΩΓ
2314

ω(Γ′) =

∫

Ṽ1

η11 η
1
2 η

1
3

∫

Ṽ2

η21 η
2
2 η

2
3

∫

Ṽ3

η31 η
3
2 η

3
3

∫

Ṽ4

η41 η
4
2 η

4
3 = 1.

Here, the orientation of ΩΓ
2314 is given by ǫ2 ǫ3 ∂t

(1) ∧ ∂t(4) ∧ ∂v(2) ∧ ∂v(3) ∧ ∂v(1) ∧
∂v(4) = ǫ2 ǫ3 (∂t

(1) ∧ ∂v(1)) ∧ ∂v(2) ∧ ∂v(3) ∧ (∂t(4) ∧ ∂v(4)). The equality of the

integrals of ω(Γ′) over ΩΓ
1234 and ΩΓ

2314 can also be explained by means of the bundle

isomorphism gσ : Ω
Γ
1234 → ΩΓ

2314 induced by the permutation σ : V1×V2×V3×V4 →
V2 × V3 × V1 × V4; (x1, x2, x3, x4) 7→ (x2, x3, x1, x4). The map gσ preserves the

orientation of the fiber in the sense that gσ∗o(ΩΓ
1234) = o(ΩΓ

2314). Also, according

to the computations above, we have

g∗σω(Γ
′)|ΩΓ

2314
= ω(Γ′)|ΩΓ

1234
.

Hence ∫

ΩΓ
1234

ω(Γ′)|ΩΓ
1234

=

∫

ΩΓ
1234

g∗σω(Γ
′)|ΩΓ

2314
=

∫

ΩΓ
2314

ω(Γ′)|ΩΓ
2314

.
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Similarly, the same value is obtained for other permutations of S4 since a graph

automorphism of Γ′ in Figure 8 always preserves graph orientation and the equality

as in (∗) above holds. Therefore, we have

I(Γ′) =
∑

σ∈S4

∫

ΩΓ
σ(1)σ(2)σ(3)σ(4)

ω(Γ′) = 4! = |AutΓ|.

The plus sign is because the graph orientations of Γ′ and Γ are the same. Hence

[Γ′] = [Γ] and

I(Γ′)[Γ′] = |AutΓ|[Γ].

5. Proofs of the properties of the Y-graph surgeries

We shall prove Propositions 3.15, 3.18, and Lemma 3.20, whose proofs are tech-

nical and were postponed. In §5.6, we will give a band model for our parametrized

surgery. It will be used later in Lemma 7.18.

5.1. The idea. The proofs of Propositions 3.15 and 3.18 are instances of the same

principle.

Lemma 5.1. If an element x ∈ πi(Embf(Ip ∪ Ip ∪ Ip, Id)) lies in the image of the

graphing map

Ψ: πi+1(Embf0(I
p−1 ∪ Iq−1 ∪ Ir−1, Id−1))→ πi(Embf(Ip ∪ Iq ∪ Ir, Id)),

which is defined by considering an Ii+1-family of embeddings Ip−1 ∪ Iq−1 ∪ Ir−1 →
Id−1 as an Ii-family of isotopies (Ip−1 ∪ Iq−1 ∪ Ir−1) × I → Id−1 × I, then the

image c∗(x) of x under the map c∗ of (3.5) as a bundle over Ii can be realized as the

mapping cylinder C(ϕ̃) of a bundle isomorphism ϕ of a trivial (d− 1)-dimensional

handlebody bundle over Ii.

Proof. We prove this only for (i, p, q, r) = (0, d− 2, d− 2, 1) and (d− 3, d− 2, 1, 1),

which correspond to type I and II handlebodies V , respectively, for simplicity.

Recall that V = T × I. Since the complement of a thickened tangle of Emb(He1
1 ∪

He2
2 ∪He3

3 , I
d) (

res≃ Embf0(I
p−1 ∪ Iq−1 ∪ Ir−1, Id−1)) is a handlebody diffeomorphic

to T relative to the boundary, we have the following commutative diagram:

πi+1(Embf0(I
p−1 ∪ Iq−1 ∪ Ir−1, Id−1))

Ψ //

c∗

��

πi(Embf(Ip ∪ Iq ∪ Ir, Id))

c∗

��
πi+1(BDiff(T, ∂))

Ψ // πi(
∐

[W,∂W ]BDiff(W,∂))

where the disjoint union is taken for the class in S H(V, ∂V ) (see (3.5)), and the

bottom horizontal map Ψ is given by considering a (T, ∂)-bundle over Ii+1 as a

mapping cylinder of a bundle isomorphism ϕ̃ between two (T, ∂)-bundles over Ii.

Now the lemma is obvious from the commutativity of the above diagram. �
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5.2. Proof of Proposition 3.15: mapping cylinder structure on V ′.

Proof of Proposition 3.15. The following argument is essentially based on the fact

that B(d − 2, d − 2, 1)d is the suspension of B(d − 3, d − 3, 1)d−1 (Definition 3.4).

By considering the third component of the framed tangle B(d− 3, d− 3, 1)d−1

(Figure 10 (1)) as a 1-parameter family of points, we obtain an element γ of

π1(Embf0(I
d−3 ∪ Id−3 ∪ I0, Id−1)). Then the class of B(d− 2, d− 2, 1)d lies in

the image of γ under the graphing map

Ψ: π1(Embf0(I
d−3 ∪ Id−3 ∪ I0, Id−1))→ π0(Embf(Id−2 ∪ Id−2 ∪ I1, Id)).

Then the result follows by Lemma 5.1. �

5.3. Definition of the (d− 3)-parameter family β. We now construct the fam-

ily β ∈ Ωd−3Embf0(I
d−2 ∪ I1 ∪ I1, Id) of framed string links explicitly to find a

parametrized twist map in 4 steps. The basic idea is to construct β so that the

projection of the second component onto its last coordinate of Id is a submersion.

5.3.1. Step 1: From a Borromean string link B(d− 2, d− 2, 1)d to an Id−3-family

β′′ of string links in Embf0(I
d−2 ∪ I1 ∪ I1, Id). Let T0 = Id−1. We assume that the

first and second components of B(d− 2, d− 2, 1)d are the standard inclusions

Li : I
d−3 × I → T0 × I (i = 1, 2)

given by Li(s, w) = (pi,
1
2 , s, w) (pi is fixed in §3.6), which is possible by Lemma 3.1.

A normal framing of L1 is given explicitly by (∂x1, ∂x2). We consider L2 as a

(d− 3)-parameter family of string knots I → T0 × I given by the maps

L2,s : I → {(p2, 12 )} × Id−3 × I ⊂ T0 × I (s ∈ Id−3);

L2,s(w) = (p2,
1
2 , s, w). For each s, the endpoints of L2,s are mapped to T0 ×{0, 1}

and depend on s. The tuple (∂x1, ∂x2, ∂x3, . . . , ∂xd−1) gives a normal framing of

L2,s. Moreover, we assume that the third component L3 of B(d− 2, d− 2, 1)d is

equipped with a normal framing as in Definition 3.6. Thus we obtain a map

β′′ : Id−3 → Embf0(I
d−2 ∪ I1 ∪ I1, Id)

defined by mapping each s to the family L1 ∪ L2,s ∪ L3 with the normal framings,

where we consider L1 and L3 are independent of s, and by identifying T0 × I with

Id.

5.3.2. Step 2: Closing the Id−3-family β′′ into a loop β′. We alter the Id−3-family

β′′ to a loop

β′ : (Id−3, ∂Id−3)→ (Embf0(I
d−2 ∪ I1 ∪ I1, Id), a)

for some point a as follows. We consider the (d− 3)-cycle θ in T0 given by

∂({p2} × [ε, 12 ]× Jd−3
ε )

=
(
{(p2, 12 )} × Jd−3

ε

)
∪
(
{(p2, ε)} × Jd−3

ε

)
∪
(
{p2} × [ε, 12 ]× ∂Jd−3

ε

)
,

where 0 < ε < 1/100, Jd−3
ε = [ε, 1−ε]d−3. Roughly, θ is a cycle obtained by closing

the (d−3)-disk {(p2, 12 )}×Jd−3
ε in T0 within the disk {p2}×Id−2 along its boundary.

The part {(p2, 12 )} × Jd−3
ε of θ is a part of {(p2, 12 )} × Id−3 = ImL2 ∩ (T0 × {0}).
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(1) Step 1 (2) Step 2 (3) Step 3

Figure 9. (1) Family of 1-disks in β′′, parametrized by Id−3, (2)

in β′, parametrized by s ∈ Sd−3, endpoints on the top and bottom

not fixed. 1-disks are drawn as vertical lines in the middle compo-

nent. (3) Sd−3-family of (vertical) 1-disks in βa, endpoints fixed.

We emphasize that the (d − 3)-cycle θ is considered in a (d − 1)-dimensional slice

T0×{0} in T0× I, which corresponds to the bottom horizontal disk in Figure 9 (2).

We fix a loop λ : (Id−3, ∂Id−3)→ (θ, (p2, ε,
1
2 , . . . ,

1
2 )) of degree one, and define the

map

L∗
2,s : I → θ × I ⊂ T0 × I (s ∈ Id−3)

by L∗
2,s(w) = (λ(s), w). The tuple (∂x1, ∂x2, ∂x3, . . . , ∂xd−1) gives a normal fram-

ing of this family of 1-disks. Now we obtain the map β′ by mapping each s to

the family L1 ∪L∗
2,s ∪L3 (Figure 9 (2)) with the normal framings, where we again

consider L1 and L3 are independent of s. Note that L1 ∪ L∗
2,s ∪ L3 is a link since

the closing disk (θ−{(p2, 12 )}× Jd−3
ε )× I lies in a small neighborhood of (∂T0)× I

and does not intersect the components L1 and L3.

5.3.3. Step 3: Making β′ into a loop βa in Embf0(I
d−2 ∪ I1 ∪ I1, Id). We make

the family β′ into that of 1-disks whose boundaries are fixed with respect to s, as

follows. Let ρ : [0, 1]→ [0, 1] be a smooth function such that

(i) ρ(x) = 0 on a neighborhood of {0, 1}, and ρ(x) = 1 on [ε′, 1− ε′] for some

0 < ε′ < 1/10,

(ii)
d

dx
ρ(x) ≥ 0 on [0, ε′],

d

dx
ρ(x) ≤ 0 on [1− ε′, 1].

We define the ‘pressing-to-standard’ map ρ′ : T0×I → T0×I by ρ′(x,w) =
(
ρ(w)x+

(1 − ρ(w))(p2, 12 , . . . , 12 ), w
)
. By replacing L∗

2,s with ρ′ ◦ L∗
2,s, we obtain an Sd−3-

family of 1-disks I → T0 × I that are standard near ∂I (Figure 9 (3)). This

replacement can be obtained by a family of isotopies of the second component

which does not intersect the other components, so that the Sd−3-family of 1-disks

obtained after composing ρ′ gives a family of embeddings Id−2 ∪ I1 ∪ I1 → Id.

This is because the locus of {0} or {1} in the family of I → T0 × I for β′ forms a

(d−3)-sphere in T0×{0} or T0×{1} which bounds a disk {p2}× [ε, 12 ]×Jd−3
ε ×{i}

(i = 0 or 1) in T0 × {0, 1} that is disjoint from other components, and the pressing

map ρ′ retracts the spanning disk into a point on that disk.
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This family of embeddings of the second component admits a family of normal

framings as follows. The orthogonal projection of the tuple (∂x1, ∂x2, ∂x3, . . . , ∂xd−1)

of sections of T (T0)|Im ρ′◦L∗
2,s
⊂ T (T0× I)|Im ρ′◦L∗

2,s
to the normal bundle N(Im ρ′ ◦

L∗
2,s) gives a normal framing of ρ′ ◦ L∗

2,s. With this family of normal framings, we

obtain a family

βa : (I
d−3, ∂Id−3)→ (Embf0(I

d−2 ∪ I1 ∪ I1, Id), a).
Note that this map does not take ∂Id−3 to the basepoint of Embf0(I

d−2∪I1∪I1, Id)
since the third component L3 is not standard.

5.3.4. Step 4: Making βa into a loop β based at the basepoint. We choose any path γ

in Embf0(I
d−2∪I1∪I1, Id) from a to the basepoint which isotopes L3 with framing

into the standard one and fixes other components, and use it to extend βa to a

slightly bigger cube I ′d−3 by taking the collar I ′d−3− Int Id−3 ∼= ∂Id−3× I through

the composition of the maps ∂Id−3 × I → I and γ : I → Embf0(I
d−2 ∪ I1 ∪ I1, Id).

We assume γ(t) is the basepoint for 1 − ε′′ ≤ t ≤ 1 for some small ε′′ > 0. The

extended map takes a neighborhood of ∂I ′d−3 to the basepoint and we obtain

an I ′d−3-family of framed embeddings in Embf0(I
d−2 ∪ I1 ∪ I1, Id), which after a

rescaling I ′d−3 → Id−3 gives a loop

β ∈ Ωd−3Embf0(I
d−2 ∪ I1 ∪ I1, Id).

Then this gives rise to a (V, ∂)-bundle Ṽ → Sd−3.

5.4. Proof of Proposition 3.18: mapping cylinder structure on Ṽ .

Proof of Proposition 3.18. We see that the loop β ∈ Ωd−3Embf0(I
d−2 ∪ I1 ∪ I1, Id)

can also be obtained by considering certain element

β0 ∈ Ωd−2Embf0(I
d−3 ∪ I0 ∪ I0, Id−1)

as an Id−3-family of isotopies (Id−3 ∪ I0 ∪ I0)× I → Id−1 × I where each isotopy

gives rise to an embedding Id−2 ∪ I1 ∪ I1 → Id. Then we have [β] = Ψ([β0]) and

we can apply Lemma 5.1.

We construct β0 explicitly. The idea is to modify embeddings Id−2∪I1∪I1 → Id

into isotopies (Id−3∪I0∪I0)×I → Id−1×I (that are height-preserving). Recall that
the open (d−3)-handles and 0-handles in T0 given in §3.7 become (d−2)-handles and
1-handles in T0×I, whose complement is V . We saw that β is obtained by replacing
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(1) (2) (3)

Figure 10. (1) B(d− 3, d− 3, 1)d−1 parametrized by (s, w) ∈
Id−3× I. (2) B(d− 3, d− 3, 1)d−1 parametrized by Sd−3 × I. (3)
β′′ : Id−3 → Embf0(I

d−2∪I1∪I1, Id). Horizontal section is parallel

to the (d− 1)-disk T0 on the top.

the trivial Sd−3-family of the (d− 2)- and 1-handles in Sd−3× (T0× I) by a family

corresponding to the Borromean string link B(d− 2, d− 2, 1)d. We would like to

find parametrizations of the family of string links that behave nicely with respect

to the “height” parameter I in T0× I, by modifying the family L1 ∪ (ρ′ ◦L∗
2,s)∪L3

of framed string links in Embf0(I
d−2 ∪ I1 ∪ I1, Id) in the definition of βa.

We observe that the first two components L1, ρ
′◦L∗

2,s are already nice in the sense

that the natural maps prI ◦L1 : I
d−3×I → I and prI ◦L∗

2,s : I → I are submersions,

where prI : T0 × I → I is the second projection. Also, we may assume that the

third (1-dimensional) component L3 is a section of the projection prI : T0× I → I,

as B(d− 2, d− 2, 1)d is the suspension of B(d− 3, d− 3, 1)d−1 for d ≥ 4 (see

§3.2 and §5.5 (Definition 5.2 below) for the suspensions of the Borromean links).

Furthermore, L3(w) (w ∈ I) can be taken as the lift of a simple closed curve ℓ3(w) in

T0 as in Figure 10 (1). Then we obtain a Id−3× I-family β0a of framed embeddings

in Embf0(I
d−3 ∪ I0 ∪ I0, Id−1):

x 7→ L1(x,w) ∪ (ρ′ ◦ L∗
2,s)(w) ∪ L3(w) (x ∈ Id−3, s ∈ Id−3, w ∈ I).

Indeed, this family possesses a natural framing. Namely, since the first Id−3-

component agrees with a standard inclusion and does not depend on the parameter,

the basis (∂x1, ∂x2) gives a normal framing of L1(·, w) in T0. Since the second and

third components are family of points, the basis (∂x1, . . . , ∂xd−1) gives normal fram-

ings of ρ′ ◦ L∗
2,s(w) and L3(w) in T0. One may see that β0a gives the Id−3-family

βa by considering the Id−3 × I-family of framed embeddings Id−3 ∪ I0 ∪ I0 → T0
as an Id−3-family of framed embeddings (Id−3 ∪ I0 ∪ I0)× I → T0 × I.

Extending the Id−3 × I-family β0a to a slightly bigger cube by a null-isotopy of

L3 as in the step 4 above, we obtain a map

β0 : (I
d−3 × I, ∂)→ (Embf0(I

d−3 ∪ I0 ∪ I0, Id−1), Lst).

This is possible since the null-isotopy of L3 can be chosen to be height-preserving.
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Finally, we see that [β] = Ψ([β0]) by construction, and the result follows by

Lemma 5.1. �

5.5. Equivalence of the two models: graph of spinning and iterated sus-

pension. We prove Lemma 3.20, which relates the graph of the spinning family

construction β with a Borromean string link obtained by iterated suspension. We

recommend the reader to see Figure 11 before going into Definition 5.2 to grasp

what is done here.

Definition 5.2 (Suspension of string link). Let L = L1∪L2∪L3 : I
p∪Iq∪Ir → Id

(0 < p, q, r < d) be a string link in Embf(Ip ∪ Iq ∪ Ir, Id) equipped with a framed

isotopy H1,t ∪ H2,t : I
p ∪ Iq → Id (t ∈ [0, 1]) of the first two components fixing a

neighborhood of the boundary ∂Ip ∪ ∂Iq, such that H1,0 ∪ H2,0 is the standard

inclusions of the first two components and H1,1 ∪ H2,1 = L1 ∪ L2. Suppose that

L3 agrees with the standard inclusion Ir → Id (Lst after Definition 3.5) outside

a d-ball about a = (12 , . . . ,
1
2 ) ∈ Ir ⊂ Id with small radius R ≪ 1

2 . Then the

suspension L′ = L′
1 ∪ L′

2 ∪ L′
3 : I

p+1 ∪ Iq+1 ∪ Ir → Id+1 of L is defined by

L′
1(u1, w) = (H1,χ(w)(u1), w), L′

2(u2, w) = (H2,χ(w)(u2), w),

L′
3(u3) =

{
(L3(u3),

1
2 ) (|u3 − a| ≤ R),

(p3, µ
−1
d ◦ ρr ◦ µr(u3)) (|u3 − a| ≥ R),

where u1 ∈ Ip, u2 ∈ Iq, u3 ∈ Ir, w ∈ I, χ : I → [0, 1] is a smooth function

supported on a small neighborhood of 1
2 such that χ(12 ) = 1, µn : [0, 1]

n → [−1, 1]d
is the embedding defined by µn(t1, . . . , tn) = (2t1 − 1, . . . , 2tn − 1, 0, . . . , 0), and

ρr : [−1, 1]d → [−1, 1]d is the diffeomorphism defined by

ρr(x1, . . . , xd) = (x1, . . . , xr−1, x
′
r, xr+1, . . . , xd−1, x

′
d), where

x′r = xr cosψ(|x|)− xd sinψ(|x|), x′d = xr sinψ(|x|) + xd cosψ(|x|)
(5.1)

(|x| =
√
x21 + · · ·+ x2d) for a smooth function ψ : [0,

√
2] → [0, π2 ] with

d
dtψ(t) ≥ 0,

which takes the value 0 on [0, 2R] and the value π
2 on [R′,

√
2] for some R′ with

2R < R′ <
√
2
2 . (The diffeomorphism ρr rotates the sphere Sd−1

|x| of radius |x|
by angle ψ(|x|) along the xrxd-plane. The rotation ρr|Sd−1

R′
exchanges the xr-axis

and the xd-axis.) The resulting embedding L′ has a canonical normal framing

induced from the original one since the embedding ρr ◦ µr can be extended to the

diffeomorphism ρr. By permuting the coordinates so that the components agree

with Lst near ∂Id+1, L′ with the induced framing can be considered giving an

element of Embf(Ip+1 ∪ Iq+1 ∪ Ir, Id+1). (Figure 11 (b).) Suspensions for other

choices of components are defined similarly by symmetry.

The rotation ρr is needed since the two components L′
1 and L′

2 have the coor-

dinate w, which will correspond to the parameter for the spinning, and we would

like to let L′
3 have the coordinate w near the boundary, too. The permutation of

the coordinates can be given by moving the d-th factor before the first factor.

Here, we interpret normal framings of some embeddings by the model of the

“embedding modulo immersion”, as in [Wa3, (0.3)]. Namely, let Emb0(I
p ∪ Iq ∪

Ir, Id) be the path-component of the point (Lst, const) in the homotopy fiber of the
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derivative map

Emb0(I
p ∪ Iq ∪ Ir, Id)→ Bun(T (Ip ∪ Ip ∪ Ip), T Id),

where

• Bun(T (Ip ∪ Iq ∪ Ir), T Id) ≃ Ωp( SOd

SOd−p
) × Ωq( SOd

SOd−q
) × Ωr( SOd

SOd−r
) is the

space of bundle monomorphisms T (Ip∪Iq ∪Ir)→ TId with fixed behavior

on the boundary, and the identification in terms of the orthogonal groups

is induced by the standard framings of the disks,

• const is the constant path at the basepoint of Bun(T (Ip ∪ Iq ∪ Ir), T Id)
given by the standard inclusion.

A point of Emb0(I
p ∪ Iq ∪ Ir, Id) can be represented by an element f of Emb0(I

p ∪
Iq ∪ Ir, Id) with a regular homotopy, which is a path of immersions, from f to the

standard inclusion.

The component Embf0(I
p ∪ Iq ∪ Ir, Id) of the standard inclusion Lst with the

standard normal framing can be interpreted as the path-component of the point

(Lst, const
3) in the homotopy fiber of the map

Emb0(I
p ∪ Iq ∪ Ir, Id)→ Ωp(BSOd−p)× Ωq(BSOd−q)× Ωr(BSOd−r)

given by taking normal bundles. Then there is a natural map

ind: Emb0(I
p ∪ Iq ∪ Ir, Id)→ Embf0(I

p ∪ Iq ∪ Ir, Id)
induced by the map Bun(T (Ip ∪ Iq ∪ Ir), T Id) → Ωp(BSOd−p) × Ωq(BSOd−q) ×
Ωr(BSOd−r) given by taking normal bundles. The following diagram is commuta-

tive:

πd−3(Emb0(I
d−2 ∪ I1 ∪ I1, Id)) Ψ̃ //

ind∗

��

π0(Emb(I2d−5 ∪ Id−2 ∪ Id−2, I2d−3))

ind∗

��
πd−3(Embf0(I

d−2 ∪ I1 ∪ I1, Id)) Ψ // π0(Embf(I2d−5 ∪ Id−2 ∪ Id−2, I2d−3))

(5.2)

where the horizontal maps are the ones induced by graphing.

Lemma 5.3. Let fg : Embf(Ip ∪ Iq ∪ Ir, Id) → Emb(Ip ∪ Iq ∪ Ir, Id) be the map

given by forgetting framing. Let [β] ∈ πd−3(Embf0(I
d−2 ∪ I1 ∪ I1, Id)) be the class

defined in §5.3.

(1) The class fg∗([β]) ∈ πd−3(Emb(Id−2 ∪ I1 ∪ I1, Id)) has a canonical lift

[β̃] ∈ πd−3(Emb0(I
d−2 ∪ I1 ∪ I1, Id)) such that ind∗([β̃]) = [β].

(2) The class [B(2d− 5, d− 2, d− 2)2d−3] ∈ π0(Emb(I2d−5∪Id−2∪Id−2, I2d−3))

has a canonical lift [B̃(2d− 5, d− 2, d− 2)2d−3] ∈ π0(Emb(I2d−5 ∪ Id−2 ∪
Id−2, I2d−3)) such that Ψ̃([β̃]) = [B̃(2d− 5, d− 2, d− 2)2d−3].

Proof. (1) This is a straightforward analogue of the proof of (1’) in the proof of

[Wa3, Lemma A] (obtained just by replacing (Dk ∪Dk ∪Dk, Q2k+1) with (Id−2 ∪
I1 ∪ I1, Id), and by exchanging the role of the first and second component).

(2) A lift B̃(2d− 5, d− 2, d− 2)2d−3 is constructed as a result of iterated sus-

pension of the first and third components in B(d− 2, d− 2, 1)d with the spanning
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(a) graph of spinning (b) suspension

Figure 11. The two models for the second component.

disks Di (i = 1, 2, 3. Lemma 3.7) by extending the suspension of string links to

those with spanning disks in a straightforward manner.

To prove Ψ̃([β̃]) = [B̃(2d− 5, d− 2, d− 2)2d−3], we compare the two elements of

Emb(I2d−5∪Id−2∪Id−2, I2d−3) represented by the following objects (see Figure 11):

(a) The string link (Id−2 ∪ I1 ∪ I1) × Id−3 → Id × Id−3 with spanning disks

obtained from β̃ ∈ Ωd−3Emb0(I
d−2 ∪ I1 ∪ I1, Id) by graphing. This gives

Ψ̃([β̃]).

(b) The string link obtained from B(d− 2, d− 2, 1)d with the spanning disks

Di by the (d− 3)-fold suspension for the first and third components. This

gives [B̃(2d− 5, d− 2, d− 2)2d−3].

The family of spanning disks of (a) is given by a straightforward analogue of those

in the proof of (1’) of [Wa3, Lemma A]. We assume without loss of generality the

following.

For (a), we assume that the first and third components agree with the ones

obtained from the constant Id−3-families of the standard inclusions Id−2∪∅∪I1 →
Id. This is possible by Lemma 3.1. Moreover, we also assume similar condition

for the second component outside a (d − 2)-ball DR about (12 , . . . ,
1
2 ) ∈ I1 × Id−3

with small radius R ≪ 1
2 . Then the associated graph is of the following form: Let

a = (12 , . . . ,
1
2 ) ∈ Id−3. The associated graph is the connected sum of the following

two objects.

• The graph of the standard spinning model ρ′ ◦ L∗
2,s of §5.3.3 (assumed to

lie in a small (2d− 3)-ball UR about (p2,
1
2 , . . . ,

1
2 )× a ∈ I2d−3 = Id × Id−3

with radius R). We assume that UR is disjoint from the first and third

components.

• A (d− 2)-sphere L̃2 in I2d−3− (Id−2∪∅∪ I1)× Id−3, which is disjoint from

the ball UR and lies in a small tubular neighborhood of Id × {a} in I2d−3.

The connected sum is performed between the point (p2,
1
2 , . . . ,

1
2 )×a and a basepoint

of L̃2. We also assume that the band for the connected sum is thin (Figure 11 (a)).

We may further perturb the object (a) within the class Ψ̃([β̃]) into one such that

L̃2 lies in Id × {a} and the restriction of the embedding of the second component

to DR collapses into Id × {a} outside UR.

For (b), we assume that the first and third components are standard as for (a).

Moreover, we may assume that the second component satisfies a similar condition

as above for (a), namely, it is standard outside DR and is a connected sum of the

standard model for the suspension with L̃2 ⊂ Id × {a} (Figure 11 (b)).
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Now we prove that the two models in UR are related by an isotopy in UR that fix a

neighborhood of ∂UR. Note that the first and third components do not intersect UR,

and hence the intersection of the images of the embeddings of DR with UR consist

of a single component. By assuming that the bands for the connected sums with L̃2

is sufficiently thin, it suffices to prove that the two models without connected sums

with L̃2 are related by an isotopy. Let f1, f2 : DR → UR be the embeddings of the

two models, respectively. As f1 can be isotoped to the restriction of the standard

inclusion, by collapsing the spinning model of §5.3.3 onto a base-line, we need only

to prove that f2 can be so too. That f2 can be isotoped to the restriction of the

standard inclusion can be seen inductively by using the explicit model given in

Definition 5.2. More precisely, we replace the smooth function ψ : [0,
√
2] → [0, π2 ]

with ψs = (1 − 2s
π )ψ + s : [0,

√
2] → [s, π2 ] for 0 ≤ s ≤ π

2 . This yields an isotopy

between f2 and the standard inclusion. �

Proof of Lemma 3.20. By the commutativity of (5.2) and Lemma 5.3, we have

Ψ([β]) = Ψ(ind∗([β̃])) = ind∗(Ψ̃([β̃])) = ind∗([B̃(2d− 5, d− 2, d− 2)2d−3])

= [(B(2d− 5, d− 2, d− 2)2d−3, FD)],

where FD was defined in Definition 3.6. This completes the proof. �

5.6. A band model for type II surgery. Recall that a surgery on a type II

handlebody was defined by using a “family of framed embeddings Id−2∪I1∪I1 → Id

obtained by parametrizing the second component in the Borromean string link”.

Lemma 5.4. The pointed loop β ∈ Ωd−3Embf0(I
d−2 ∪ I1 ∪ I1, Id) is homotopic

relative to the basepoint to a pointed loop γ satisfying the following conditions.

(1) The restriction of γ(s) ∈ Embf0(I
d−2∪I1∪I1, Id) (s ∈ Sd−3) to the first and

third component are the constant families of the standard inclusions. Let

L1, L3 denote the image of the inclusions of the first and third component,

respectively.

(2) The restriction of γ(s) ∈ Embf0(I
d−2∪ I1 ∪ I1, Id) (s ∈ Sd−3) to the second

component has the image included in a fixed subset L∪R ∪Q of Id, where

• L is the image of the second component of γ(s0) for the basepoint

s0 ∈ Sd−3. For all s in a ball around s0 ∈ Sd−3, we have γ(s) = γ(s0).

• Q is a small tubular neighborhood of a (d − 2)-sphere embedded in

Id − (L1 ∪ L3).

• R is a band diffeomorphic to I× I embedded in Int Id− (L1 ∪L3) such

that {0}× I is included in L, {1}× I is included in ∂Q, and (Int I)× I
is disjoint from L ∪Q.

Proof. The condition (1) can be realized by the Brunnian property of the Bor-

romean link. It is easy to find a family of isotopies that realizes the condition (2),
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as in the following picture.
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Namely, we smoothly collapse the “tube” [0, ε] × Dd−2 attached to an interval in

L along a sequence [0, ε] × Dd−2 → · · · → [0, ε] × D2 → [0, ε] × D1 of natural

projections. �

6. Normalization of propagator: Proof of Proposition 4.6

In this section, we shall prove that the normalization of propagator as in Propo-

sition 4.6 is possible on all the pieces ΩΓ
ij except the diagonal ones ΩΓ

ii (i 6= ∞),

mostly following Lescop’s interpretation given in [Les2] of Kuperberg–Thurston’s

sketch proof for 3-manifolds ([KuTh, §6]).

6.1. Preliminaries. In the rest of this section, we put X = C1(S
d;∞).

(i) Let ai1, a
i
2, a

i
3, b

i
1, b

i
2, b

i
3 be the cycles in ∂Vi defined in §3.6 and §4.2. We

take a basepoint pi of ∂Vi that is disjoint from the cycles bij, a
i
j . If Vi is of

type I, two of the cycles bij are circles and one of the cycles bij is (d − 2)-

dimensional sphere. If Vi is of type II, one of the cycles bij is a circle and

two of the cycles bij are (d− 2)-dimensional spheres.

(ii) Let S(aiℓ) be a disk in Vi that is bounded by aiℓ. Let S(biℓ) be a disk in

X − IntVi that is bounded by biℓ. Let γ
i be a smoothly embedded path in

V∞ from pi to ∞ ∈ Sd, which is disjoint from S(bjm) for all (m, j). The

exsistence of such a γi follows from the particular construction of Vi from

Y-links as in §3.4. Further, we assume that γi ∩ γj = ∅ for i 6= j.

(iii) S(biℓ) may intersect a handle of Vj (j 6= i) transversally. We assume that

the intersection agrees with S(ajm) for some unique (m, j) up to orientation.

This is possible according to the special linking property of the handlebodies

in graph surgery.

(iv) For i 6= ∞, we identify a small tubular neighborhood of ∂Vi in X with

[−4, 4]× ∂Vi so that {0}× ∂Vi = ∂Vi and {−4}× ∂Vi ⊂ IntVi. For a cycle

x of ∂Vi represented by a manifold, let

x[h] = {h} × x ⊂ [−4, 4]× ∂Vi

and let x+ denote a parallel copy of x obtained by slightly shifting x along

positive direction in the coordinate [−4, 4]. Here, [−4, 4]× ∂Vi is a subset
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of a single fiber X . Also, let

Vi[h] =

{
Vi ∪ ([0, h]× ∂Vi) (h ≥ 0),

Vi − ((h, 0]× ∂Vi) (h < 0),

Sh(b
i
ℓ) =

{
S(biℓ) ∩ (X − Int(Vi[h])) (h ≥ 0),

S(biℓ) ∪ ([h, 0]× biℓ) (h < 0),

Sh(a
i
ℓ) =

{
S(aiℓ) ∪ ([0, h]× aiℓ) (h > 0),

S(aiℓ) ∩ Vi[h] (h ≤ 0),

V∞[h] = X − Int (V1[−h] ∪ · · · ∪ V2k[−h]),
where, V∞ was defined in §4.5.
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(v) The boundary of Ṽi (i 6=∞) is Ki × ∂Vi. The factor Ki has nothing to do

with the [−4, 4] in the previous item. Let

b̃iℓ = Ki × biℓ and ãiℓ = Ki × aiℓ.
Let S(ãiℓ) be the compact submanifold of Ṽi with ∂S(ãiℓ) = ãiℓ given by

Lemma 4.2. We assume without loss of generality that the intersection in

Ṽi of S(ã
i
ℓ) with [−4, 4]×∂Ṽi = Ki× ([−4, 4]×∂Vi) agrees with [−4, 4]× ãiℓ.

(vi) Ṽi[h], Ṽ∞[h], Ṽ ′
i [h], Ṽ

′
∞[h], Sh(ã

i
ℓ) ⊂ EC1(π

Γ)({i}) etc. can be defined in

a similar way. ΩΓ
ij [h, h

′] is defined by replacing Ṽ ′
i , Ṽ

′
∞ in the definition of

ΩΓ
ij with Ṽ ′

i [h], Ṽ
′
∞[h], respectively.

6.2. Normalization of propagator with respect to one handlebody Vj,

j 6= ∞, unparametrized case. We put V = Vj and abbreviate aji , b
j
ℓ , γ

j etc. as

ai, bℓ, γ etc. for simplicity. We identify ∂X with Sd−1, and its collar neighborhood

with [0, 1] × Sd−1, where {0} × Sd−1 = ∂X . Let γ be the closure of the lift of

γ − {∞} in X = Bℓ{∞}(S
d). Let ηγ be a closed (d − 1)-form on X supported

on the union of a tubular neighborhood of γ and [0, 1] × ∂X ⊂ C1(S
d;∞) whose

restriction to a tubular neighborhood of γ in X− [0, 1)×∂X agrees with ηγ (defined

on IntX) and whose restriction to {0}×∂X is the SOd-invariant unit volume form

on ∂X = Sd−1 which is consistent with the orientation of ∂X . Such a form ηγ exists

since γ intersects ∂X transversally in one point and the η-form for the intersection

point in ∂X is cohomologous to the unit volume form.

Proposition 6.1 (Normalization for one handlebody). Let d be an integer such that

d ≥ 4, which may or may not be even. There exists a propagator ω on C2(S
d;∞)

that satisfies the following (x+ = x[h] for some small h > 0).
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Figure 12. Where ω is normalized for one V (projection in X ×X).

(1) ω|V×(X−V̊ [3]) =
∑

i,ℓ

(−1)(dimai)d−1Lk(bi, a
+
ℓ ) p

∗
1 ηS(ai) ∧ p∗2 ηS3(bℓ) + p∗2 ηγ[3],

where the sum is over i, ℓ such that dim bi + dim aℓ = d− 1.

(2) ω|(X−V̊ [3])×V =
∑

i,ℓ

(−1)(dimai)d−1Lk(a+i , bℓ) p
∗
1 ηS3(bi)∧p∗2 ηS(aℓ)+(−1)dp∗1 ηγ[3],

where the sum is over i, ℓ such that dim ai + dim bℓ = d− 1.

(3)

∫

p×S3(ai)

ω = 0,

∫

S3(ai)×p

ω = 0 when dim ai = d− 2.

(4)

∫

bj×S3(ai)

ω = 0,

∫

S3(ai)×bj

ω = 0 when d = 4 and dim ai = dim bj = 1.

See Figure 12 for the domain where ω is normalized. The conditions (1), (2)

imply that ω is an extension of (4.2) on Vi × Vj . The condition (3) and (4) are

technical conditions which will only be needed so that the induction in the proof

of Proposition 6.3 works. More precisely, in the proofs of Lemmas 6.4 and 6.5,

respectively.

Let A = V × (X − V̊ [3]), where V̊ denotes IntV . Each term in the formula

of Proposition 6.1 (1) represents the Poincaré–Lefschetz dual of an element of

Hd+1(A, ∂A), as shown in Lemma 6.2 (3) below. We start with any propagator ω0

in C2(S
d;∞) and check that its restriction to A gives the same class in Hd−1(A)

as the formula of Proposition 6.1 (1). Then it follows that by adding some exact

form supported on a neighborhood of A to ω0 we obtain a propagator satisfying

Proposition 6.1 (1). To do so, we compare the values of the integrals along cycles

that represent a basis of the dual Hd−1(A). Verification of the condition (2) is

similar.

Lemma 6.2. (1) Hi(X − V ) = Hi+1(V, ∂V ) for i > 0 and H0(X − V ) = R.
Namely, H∗(X − V ) = 〈[∗], [a1], [a2], [a3], [∂V ]〉.

(2) H∗(A) = H∗(V )⊗ 〈[∗], [a1], [a2], [a3], [∂V ]〉.
(3) Hd−1(A) is generated by [p×∂V [3]], [bi×aℓ[3]] for dim bi+dim aℓ = d− 1.
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(4) Hd+1(A, ∂A) is generated by the following elements.

[S(ai)× S3(bℓ)], [V × γ[3]],
where dim ai + dim bℓ = d− 1.

Proof. In the homology long exact sequence for the pair (X,X − V ), we have

H∗(X) = 0 for ∗ > 0. Also, by excision, we have Hi+1(X,X − V ) = Hi+1(V, ∂V ).

This gives (1). The rest is obtained by the Künneth formula and Poincaré–Lefschetz

duality. �

Proof of Proposition 6.1. This proof is similar to [Les3, Proposition 11.2, 11.6,

11.7]. Let ω0 be any propagator and ωA be the closed (d− 1)-form on

A′ := V [1]× (X − V̊ [2])

defined by the natural extension of the one given by the condition (1). This domain

A′ is the sum of A with a collar neighborhood, on which we connect ω0 and ωA

by an exact form. The integrals of ω0 over the generators bi × aℓ[3], p × ∂V [3] of

Hd−1(A) (Lemma 6.2 (3)) are as follows.
∫

bi×aℓ[3]

ω0 = Lk(bi, a
+
ℓ ),

∫

p×∂V [3]

ω0 = 1.

Also, by Lemma 4.1 (1) and (2), we compute
∫

b−i ×aℓ[3]

p∗1 ηS(ai) ∧ p∗2 ηS3(bℓ)

=

∫

b−i

ηS(ai)

∫

aℓ[3]

ηS3(bℓ) = (−1)kd+k+d−1(−1)d+k = (−1)kd−1,

where k = dim ai = dim aℓ. From the identities∫

bi×aℓ[3]

p∗1 ηS(ai′ )
∧ p∗2 ηS3(bℓ′)

= (−1)(dimai)d−1δii′δℓℓ′ ,

∫

p×∂V [3]

p∗2 ηγ = 1,

∫

p×∂V [3]

p∗1 ηS(ai′ )
∧ p∗2 ηS3(bℓ′ )

= 0,

∫

bi×aℓ[3]

p∗2 ηγ = 0,

it follows that the closed form ωA and the restriction of ω0 to A′ gives the same

element ofHd(A′). Hence there exists a (d−2)-form µ on A′ such that ωA = ω0+dµ

and dµ = 0 on V [1] × ∂X , since ωA and ω0 agree with p∗2VolSd−1 on V [1] × ∂X
by assumption. Moreover, we may assume that µ = 0 on V [1] × ∂X by adding to

µ a closed form on A′. Namely, since ∂X is (d − 2)-connected, the natural map

Hd−2(V [1] × (X − V̊ [2])) → Hd−2(V [1] × ∂X) is surjective, and there is a closed

extension µ′ of µ|V [1]×∂X on A′. Then we replace µ with µ− µ′, which vanishes on

V [1]× ∂X .

Let χ : C2(S
d;∞) → [0, 1] be a smooth function such that Suppχ = A′ and

χ = 1 on A = V × (X − V̊ [3]). Then let

ωa := ω0 + d(χµ).

This is a closed form on C2(S
d;∞) that is as required on V × (X − V̊ [3]) (as the

condition (1)) and agrees with ω0 on ∂C2(S
d;∞) because χ = 0 on the diagonal

stratum of ∂C2(S
d;∞) and µ = 0 on the infinity stratum.
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For the condition (3), let rj =
∫
p×S3(aj)

ωa for dim aj = d − 2. We would like

to cancel this value by adding to ωa a form d(χµc) for some closed form µc on

A′, which vanishes on V [1]× ∂X . This is possible because the addition of d(χµc)

changes the integral rj by
∫

p×S3(aj)

d(χµc) =

∫

p×([2,3]×aj)

d(χµc) =

∫

p×aj [3]

µc,

where the left equality is because Suppχ ∩ (p × S3(aj)) = p × ([2, 3] × aj), and
the right equality is because χ = 0 on p × aj [2]. By

∫
p×aj [3]

p∗2 ηS2(bℓ) = δjℓ for

dim aj = d − 2, dim bℓ = 1 from Lemma 4.1 (2), the first half of the condition (3)

will be satisfied if we replace ωa with

ω′
a = ωa + d(χµc), where µc = −

∑

j:
dim bj=1

rj(p
∗
2 ηS2(bj)).

For the condition (4) (only for d = 4), let λij =
∫
bi×S3(aj)

ωa for dim bi =

dim aj = 1. For a closed form µ′
c on A′, which vanishes on V [1]× ∂X , we have

∫

bi×S3(aj)

d(χµ′
c) =

∫

bi×([2,3]×aj)

d(χµ′
c) =

∫

bi×aj [3]

µ′
c.

By
∫
bi×aj [3]

p∗1ηS3(ak) ∧ p∗2ηS(bℓ) = δikδjℓ for dim ak = dim bℓ = 2 from Lemma 4.1

(1) and (2), the first half of the condition (4) will be satisfied if we replace ω′
a with

ω′′
a = ω′

a + d(χµ′
c), where µ

′
c = −

∑

i,j:
dimai=dim bj=1

λij(p
∗
1ηS3(ai) ∧ p∗2ηS(bj)).

This change does not affect the previous modification since
∫
p×aj [3]

p∗1ηS3(ak) ∧
p∗2ηS(bℓ) = 0 for dim aj = dim ak = dim bℓ = 2.

A similar modification of ω′′
a on (X − V̊ [3]) × V is possible without touching

the previous modifications and yields another closed (d − 1)-form ω that satisfies

the conditions (1)–(4). In this case the coefficients are determined by the following

identities:∫

ai[3]×bℓ

ω0 = Lk(a+i , bℓ),

∫

∂V [3]×p

ω0 = (−1)d,
∫

ai[3]×bℓ

p∗1 ηS3(bi′ )
∧ p∗2 ηS(aℓ′)

= (−1)(dimai)d−1δii′δℓℓ′ ,

∫

∂V [3]×p

p∗1 ηγ = 1,

∫

∂V [3]×p

p∗1 ηS3(bi′ )
∧ p∗2 ηS(aℓ′ )

= 0,

∫

ai[3]×bℓ

p∗1 ηγ = 0,

�

6.3. Normalization of propagator with respect to several handlebodies,

unparametrized case. Let V1, . . . , V2k be the disjoint handlebodies in X that

define πΓ. We normalize the propagator with respect to this set of handlebodies.

Proposition 6.3 (Normalization for several handlebodies). Let d be an integer

such that d ≥ 4, which may or may not be even. There exists a propagator ω on

C2(S
d;∞) that satisfies the following conditions.
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(1) For each j = 1, 2, . . . ,m,

ω|Vj×(X−V̊j [3])
=

∑

i,ℓ

(−1)(dimaj
i )d−1Lk(bji , a

j+
ℓ ) p∗1 ηS(aj

i )
∧ p∗2 ηS3(b

j

ℓ
) + p∗2 ηγj[3],

where the sum is over i, ℓ such that dim bji + dim ajℓ = d− 1.

(2) For each j = 1, 2, . . . ,m,

ω|(X−V̊j [3])×Vj
=

∑

i,ℓ

(−1)(dimaj
i )d−1Lk(aj+i , bjℓ) p

∗
1 ηS3(b

j
i )
∧p∗2 ηS(aj

ℓ
)+(−1)dp∗1 ηγj [3],

where the sum is over i, ℓ such that dim aji + dim bjℓ = d− 1.

(3)

∫

pj×S3(a
j
i )

ω = 0,

∫

S3(a
j
i )×pj

ω = 0 (j = 1, 2, . . . ,m, dim aji = d− 2).

(4)

∫

bji×S3(a
j

k
)

ω = 0,

∫

S3(a
j

k
)×bji

ω = 0 (j = 1, 2, . . . ,m) when d = 4 and

dim bji = dim ajk = 1.

Proof. The following proof is an analogue of [Les2, Proposition 5.1]. We prove

Proposition 6.3 by induction on m. The case m = 1 is Proposition 6.1. For m > 1,

we take a propagator ω0 that satisfies the conditions of Proposition 6.3 for all j < m,

and ωm that satisfies the conditions of Proposition 6.3 for a single m, with Vm and

X − V̊m[3] replaced by larger subspaces Vm[1] and X − V̊m[2], respectively, so that

ω0 and ωm agree on Vm[1]× Vj . By Lemma 2.12, there exists a (d− 2)-form µ on

C2(S
d;∞) such that ωm = ω0 + dµ. We may assume that ωm agrees with ω0 on

∂C2(S
d;∞) and moreover that µ = 0 there since Hd−2(∂C2(S

d;∞)) = 0 by the

exact sequence:

0 = Hd−2(C2(S
d;∞))→ Hd−2(∂C2(S

d;∞))→ Hd−1(C2(S
d;∞), ∂C2(S

d;∞)),

and Hd−1(C2(S
d;∞), ∂C2(S

d;∞)) ∼= Hd+1(C2(S
d;∞)) = 0 by Poincaré–Lefschetz

duality. Then we set

ωa = ω0 + d(χµ),

where χ : C2(S
d;∞)→ [0, 1] is a smooth function with Suppχ = Vm[1]×(X−V̊m[2])

that takes the value 1 on Vm × (X − V̊m[3]). Then ωa is a closed (d − 1)-form on

C2(S
d;∞), which is as desired on

∂C2(S
d;∞) ∪

m⋃

j=1

(Vj × (X − V̊j [3])) ∪
m−1⋃

j=1

((X − (V̊j [3] ∪ V̊m[1]))× Vj).

(Figure 13.) We need to check that it can be normalized further on Vm[1]×⋃m−1
j=1 Vj ,

since the addition of d(χµ) may change the previous normalization where the func-

tion χ is non-constant.

The assumptions on ω0 and ωm imply that µ is closed on Vm[1] × Vj (j < m)

and vanishes on Vm[1]× ∂X . Moreover, by Lemmas 6.4 and 6.5 below, we see that

µ is exact on Vm[1]× Vj (j < m). Hence we may assume that µ = 0 on that part.

Thus it remains to prove that we may assume moreover the conditions (3) and (4).

Now we shall prove that there is a linear combination µc of p∗2 ηS2(bmℓ ) (for

dim bmℓ = 1) and a linear combination µ′
c of p

∗
1ηS3(am

k
)∧p∗2ηS(bm

ℓ
) (for dim bmℓ = d−2)

that vanish on Vm[1] × Vj for j < m such that the new form ω′
a = ωa + d(χµc) +
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Figure 13. Where ω′
a is normalized (projected on X ×X).

d(χµ′
c) satisfies the following identities, which correspond to the former parts of the

conditions (3) and (4), respectively.
∫

pm×S3(am
ℓ
)

ω′
a = 0 (for dim amℓ = d− 2), (6.1)

∫

bm
k
×S3(am

ℓ
)

ω′
a = 0 (for d = 4, dim bmk = dim amℓ = 1). (6.2)

We prove the existence of such µc and µ′
c by modifying the proof of the conditions

(3) and (4) of Proposition 6.1 in a way that the induction works. Namely, let

rℓ :=
∫
pm×S3(am

ℓ
)
ωa and λkℓ :=

∫
bm
k
×S3(am

ℓ
)
ωa. As in the proof of Proposition 6.1,

there exist unique linear combinations µc of p
∗
2 ηS2(bmℓ ) and µ

′
c of p

∗
1ηS3(am

k
)∧p∗2ηS(bm

ℓ
)

(when d = 4) such that rℓ =
∫
pm×am

ℓ
[3] µc for all ℓ with dim amℓ = d − 2 (⇔

deg ηS2(bmℓ ) = d− 2), and λkℓ =
∫
bm
k
×am

ℓ
[3] µ

′
c for all k, ℓ with dim bmk = dim amℓ = 1

(when d = 4). Then the form

ω′
a = ωa + d(χµc) + d(χµ′

c), where

µc = −
∑

ℓ

rℓ(p
∗
2ηS2(bmℓ )), µ′

c = −
∑

k,ℓ

λkℓ(p
∗
1ηS3(am

k
) ∧ p∗2ηS(bm

ℓ
))

satisfies (6.1) and (6.2). In order that this modification does not affect the previous

normalization, it suffices to prove that rℓ 6= 0 implies S2(b
m
ℓ )∩Vj = ∅ for j < m, and

λkℓ 6= 0 implies S2(b
m
ℓ ) ∩ Vj = ∅ for j < m. This is the consequence of Lemma 6.6

below.

The normalization on the symmetric part (X− V̊m[3])×Vm can be done similarly

and disjointly from the previous normalization, again by using the straightforward

analogues of Lemmas 6.4 and 6.5 for Vj × Vm[1] (j < m). �
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Lemma 6.4. Let µ be the (d−2)-form on C2(S
d;∞) in the proof of Proposition 6.3

such that µ = 0 on ∂C2(S
d;∞). For j < m and for ℓ, ℓ′ such that dim bmℓ =

dim bjℓ′ = d− 2, we have
∫

bm
ℓ
×pj

µ = 0,

∫

pm×bj
ℓ′

µ = 0.

Proof. For the first identity, let vj∞ ∈ ∂X be the endpoint of γj other than pj .

Since µ = 0 on ∂C2(S
d;∞), we have

∫
bm
ℓ
×vj

∞
µ = 0, and by the Stokes theorem,

∫

bm
ℓ
×pj

µ = (−1)d−1

∫

∂(bm
ℓ
×γj)

µ = (−1)d−1

∫

bm
ℓ
×γj

(ωm − ω0).
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Here, it follows from bmℓ × γj ⊂ Vm × (X − V̊m[3]) and the explicit formula for ωm

there (condition (1) of Proposition 6.3) that
∫
bm
ℓ
×γj ωm = 0, since γj is disjoint

from S(bmℓ′ ) for all ℓ
′, as assumed in §6.1-(ii). Also,

∫

bm
ℓ
×γj

ω0 = ±
∫

S(bm
ℓ
)×∂γj

ω0 = ±
∫

S(bm
ℓ
)×vj

∞

ω0 ∓
∫

S(bm
ℓ
)×pj

ω0 = ∓
∫

S(bm
ℓ
)×pj

ω0,

where ± = (−1)d and the first equality holds by ∂(S(bmℓ ) × γj) = bmℓ × γj +

(−1)d−1S(bmℓ )×∂γj and dω0 = 0, and the third equality holds by the explicit form

of ω0 on S(bmℓ )× vj∞ ⊂ ∂C2(S
d;∞). Then it suffices to prove that the last integral

vanishes.

If S(bmℓ ) ∩ Vj = ∅, the last integral vanishes by the explicit formula of ω0 on

(X− V̊j [3])×Vj . If S(bmℓ )∩Vj 6= ∅, the intersection of S(bmℓ ) with Vj [3] is ±S3(a
j
ℓ′)

for some ℓ′ by the assumption §6.1-(iii), as in the following picture.
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Then we have∫

S(bm
ℓ
)×pj

ω0 = ±
∫

S3(a
j

ℓ′
)×pj

ω0 +

∫

(S(bm
ℓ
)−S̊3(a

j

ℓ′
))×pj

ω0,
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where S(bmℓ ) − S̊3(a
j
ℓ′) is considered as a chain given by the submanifold S(bmℓ ) −

S̊3(a
j
ℓ′) with orientation induced from S(bmℓ ), and the integral over S3(a

j
ℓ′) × pj

vanishes by the condition (3) of Proposition 6.3. The integral over the remaining

piece (S(bmℓ )−S̊3(a
j
ℓ′))×pj vanishes by the explicit formula of ω0 on (X−V̊j[3])×Vj

and the assumption S(bmℓ ) ∩ γj = ∅. This completes the proof of the first identity.

The second identity can be verified similarly, except the roles of ω0 and ωm are

exchanged. Since µ = 0 on ∂C2(S
d;∞), we have

∫
vm
∞×bj

ℓ′
µ = 0 and

∫

pm×bj
ℓ′

µ = −
∫

∂(γm×bj
ℓ′
)

µ = −
∫

γm×bj
ℓ′

(ωm − ω0).

Here, γm × bjℓ′ ⊂ (X − V̊j [3]) × Vj and the explicit formula for ω0 there imply∫
γm×bj

ℓ′
ω0 = 0, since γm is disjoint from S(bjℓ′′) for all ℓ

′′, as assumed in §6.1-(ii).

Also,
∫

γm×bj
ℓ′

ωm =

∫

∂γm×S(bj
ℓ′
)

ωm =

∫

vm
∞×S(bj

ℓ′
)

ωm −
∫

pm×S(bj
ℓ′
)

ωm = −
∫

pm×S(bj
ℓ′
)

ωm.

Again, we need only to consider the case S(bjℓ′)∩Vm 6= ∅, in which case the integral

on the right hand side vanishes by the condition (3) of Proposition 6.3 and by the

explicit formula of ωm on Vm × (X − V̊m[3]). �

Lemma 6.5. Let d = 4 and µ be the 2-form on C2(S
d;∞) in the proof of Propo-

sition 6.3 such that µ = 0 on ∂C2(S
d;∞). For j < m and for ℓ, ℓ′ such that

dim bmℓ = dim bjℓ′ = 1, we have
∫

bm
ℓ
×bj

ℓ′

µ = 0.

Proof. The idea of the proof is similar to Lemma 6.4. We use the identity
∫

bm
ℓ
×bj

ℓ′

µ = −
∫

∂(bm
ℓ
×S(bj

ℓ′
))

µ = −
∫

bm
ℓ
×S(bj

ℓ′
)

(ωm − ω0)

given by the Stokes theorem. We have
∫

bm
ℓ
×S(bj

ℓ′
)

ω0 = ±
∫

S(bm
ℓ
)×bj

ℓ′

ω0,

by ∂(S(bmℓ )× S(bjℓ′)) = bmℓ × S(bjℓ′)± S(bmℓ )× bjℓ′ and dω0 = 0. If S(bmℓ ) ∩ Vj = ∅,
the last integral vanishes by the explicit formula of ω0 on (X − V̊j [3]) × Vj . If

S(bmℓ )∩Vj 6= ∅, the intersection of S(bmℓ ) with Vj [3] is ±S3(a
j
ℓ′′) for some ℓ′′ by the

assumption §6.1-(iii). Then we have
∫

S(bm
ℓ
)×bj

ℓ′

ω0 = ±
∫

S3(a
j

ℓ′′
)×bj

ℓ′

ω0 +

∫

(S(bm
ℓ
)−S̊3(a

j

ℓ′′
))×bj

ℓ′

ω0,

where
∫
S3(a

j

ℓ′′
)×bj

ℓ′
ω0 = 0 by the condition (4) of Proposition 6.3. The integral

over the remaining piece (S(bmℓ ) − S̊3(a
j
ℓ′′)) × b

j
ℓ′ vanishes by the explicit formula

of ω0 on (X − V̊j [3]) × Vj and the assumption S(bmℓ ) ∩ S(bjℓ′) = ∅. Thus we have∫
bm
ℓ
×S(bj

ℓ′
) ω0 = 0.
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If S(bjℓ′)∩Vm = ∅, then we have bmℓ ×S(bjℓ′) ⊂ Vm×(X−V̊m[3]) and
∫
bm
ℓ
×S(bj

ℓ′
)
ωm =

0 by the explicit formula of ωm in Proposition 6.1 (1). If S(bjℓ′) ∩ Vm 6= ∅, then the

intersection of S(bjℓ′) with Vm[3] is ±S3(a
m
k ) for some k by the assumption §6.1-(iii).

Thus we have∫

bm
ℓ
×S(bj

ℓ′
)

ωm = ±
∫

bm
ℓ
×S3(am

k
)

ωm +

∫

bm
ℓ
×(S(bj

ℓ′
)−S̊3(am

k
))

ωm = ±
∫

bm
ℓ
×S3(am

k
)

ωm,

where the second equality holds by bmℓ × (S(bjℓ′)− S̊3(a
m
k )) ⊂ Vm× (X− V̊m[3]) and

by the explicit formula of ωm there. Moreover, the last integral vanishes by the

condition (4) of Proposition 6.1, and we have
∫
bm
ℓ
×S(bj

ℓ′
)
ωm = 0. This completes

the proof. �

Lemma 6.6. Let rℓ and λkℓ be as in the proof of Proposition 6.3. If S2(b
m
ℓ )∩Vj 6= ∅,

then rℓ = 0 (when dim amℓ = d− 2) and λkℓ = 0 (when d = 4 and dim amℓ = 1).

Proof. Suppose amℓ is such that S2(b
m
ℓ ) ∩ Vj 6= ∅. By the assumption §6.1-(iii),

S3(a
m
ℓ ) ⊂ S(bji ) for some i. When dim amℓ = d− 2, we have

rℓ =

∫

pm×S3(am
ℓ
)

ωa = ±
∫

pm×S(bji )

ωa −
∫

pm×(S(bji )∩(X−V̊m[3]))

ωa.

We prove that both of the two terms on the right hand side vanish.
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For the first term, let vm∞ ∈ ∂X be the other endpoint of γm than pm. By ∂(γm ×
S(bji )) = vm∞ × S(bji )− pm × S(bji )− γm × bji , we have

∫

pm×S(bji )

ωa =

∫

vm
∞×S(bji )

ωa −
∫

γm×bji

ωa.

Since vm∞ × S(bji ) ⊂ ∂C2(S
d;∞) and γm × bji ⊂ (X − V̊j [3]) × Vj , the integrals

on the right hand side are both zero by the explicit formula of ωa on ∂C2(S
d;∞)

and (X − V̊j [3]) × Vj . For the second term, since pm × (S(bji ) ∩ (X − V̊m[3])) ⊂
Vm×(X−V̊m[3]) and S(bji ) is disjoint from γm, we have

∫
pm×(S(bji )∩(X−V̊m[3]))

ωa = 0

by the explicit formula of ωa on Vm × (X − V̊m[3]). Hence we have rℓ = 0.

When d = 4 and dim amℓ = 1, we have

λkℓ =

∫

bm
k
×S3(am

ℓ
)

ωa = ±
∫

bm
k
×S(bji )

ωa −
∫

bm
k
×(S(bji )∩(X−V̊m[3]))

ωa.
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The second term in the right hand side vanishes by bmk × (S(bji ) ∩ (X − V̊m[3])) ⊂
Vm × (X − V̊m[3]) and by the explicit formula of ωa there. For the first term, we

use the identity ∫

bm
k
×S(bji )

ωa = ±
∫

S(bm
k
)×bji

ωa

given by the Stokes theorem and dωa = 0. If S(bmk ) ∩ Vj = ∅, then S(bmk ) × bji ⊂
(X − V̊j [3]) × Vj and the integral vanishes by the explicit formula of ωa there. If

S(bmk )∩Vj 6= ∅, then the intersection of S(bmk ) with Vj [3] is ±S3(a
j
i′) for some i′ by

the assumption §6.1-(iii). Then we have
∫

S(bm
k
)×bji

ωa = ±
∫

S3(a
j

i′
)×bji

ωa +

∫

(S(bm
k
)−S̊3(a

j

i′
))×bji

ωa.

The second term in the right hand side vanishes by (S(bmk )− S̊3(a
j
i′ ))× bji ⊂ (X −

V̊j [3]) × Vj and by the explicit formula of ωa there. The first term vanishes too

by the condition (4) of Proposition 6.3. Hence we have
∫
bm
k
×S(bji )

ωa = 0. This

completes the proof. �

6.4. Normalization of propagator in parametrized pieces. The normaliza-

tion conditions of Proposition 6.3 for a single fiber allows us to extend the normal-

ized propagator to most pieces ΩΓ
ij in EC2(π

Γ). We shall do this and complete the

proof of Proposition 4.6 in five steps.

6.4.1. Step 1: Normalization in a single fiber. In the following, let ω1 be the nor-

malized propagator on C2(S
d;∞) with respect to V1 ∪ · · · ∪ V2k ⊂ IntX , as in

Proposition 6.3. We consider ω1 as a normalized propagator on the fiber over the

basepoint of BΓ.

6.4.2. Step 2: The most “degenerate” entry ΩΓ
∞∞. There is a bundle map

ΩΓ
∞∞

p̃∞∞ //

��

C2(V∞;∞)

��
BΓ

p∞∞ // ∗

which can be slightly enlarged to a map p̃
[2]
∞∞ : ΩΓ

∞∞[2, 2] → C2(V∞[2];∞), where

ΩΓ
∞∞[h, h′] = p−1

Bℓ(Ṽ
′
∞[h]×BΓ Ṽ

′
∞[h′]). (See §6.1(vi) for the definition of ΩΓ

ij [h, h
′].)

We set

ω2 = (p̃[2]∞∞)∗ω1 ∈ Ωd−1
dR (ΩΓ

∞∞[2, 2]). (6.3)

6.4.3. Step 3: Explicit form in “generic” entry ΩΓ
ij , i 6= j, {i, j}∩ {∞} = ∅. There

is a bundle map

ΩΓ
ij

p̃ij //

��

Ṽi × Ṽj

��
BΓ

pij // Ki ×Kj
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We define

ω̃ij =
∑

ℓ,m

Lij
ℓm p∗1 ηS(ãi

ℓ
) ∧ p∗2 ηS(ãj

m), (6.4)

which is a form on ΩΓ
ij({i, j}) = Ṽi × Ṽj . It is immediate from the explicit formula

that ω̃ij agrees with ω2 on

{
(Ki ×Kj)× (V∞[2]× V∞[2])

}
∩ (Ṽi × Ṽj)

= (Ki ×Kj)×
{
([−2, 0]× ∂Vi)× ([−2, 0]× ∂Vj)

}
,

where the identification is given by the partial trivialization of Ṽλ over the subbundle

with fiber [−2, 0] × ∂Vλ. Hence ω̃ij can be glued to ω2. Namely, the two forms

(p̃
[2]
ij )

∗ω̃ij and ω2 agrees on ΩΓ
ij ∩ ΩΓ

∞∞[2, 2], where p̃
[2]
ij : ΩΓ

ij [2, 2]→ Ṽi[2]× Ṽj [2] is
the fiberwise extension of p̃ij , and they are glued together to give a new form on

ΩΓ
ij ∪ ΩΓ

∞∞[2, 2], by just extending the domain. Doing similar gluings for all (i, j)

such that i 6= j, {i, j} ∩ {∞} = ∅, we obtain a form ω3 defined on

D3 = ΩΓ
∞∞[2, 2] ∪

⋃

(i,j)

ΩΓ
ij .

Then the following identity holds.

ω3|ΩΓ
ij
= p̃∗ij ω̃ij = p̃∗ijω3|ΩΓ

ij({i,j}). (6.5)

6.4.4. Step 4: Extension over ΩΓ
i∞ ∪ ΩΓ

∞i, i 6=∞. There are bundle maps

ΩΓ
i∞

p̃i∞ //

��

Ṽi × V∞

��

ΩΓ
∞i

p̃∞i //

��

V∞ × Ṽi

��
BΓ

pi∞ // Ki BΓ
p∞i // Ki

(6.6)

Let ΩΓ
(i)∞ and ΩΓ

∞(i) be the subspaces p̃
−1
i∞ (Ṽi×(V∞[2]∩(X−V̊i[3]))) and p̃−1

∞i ((V∞[2]∩
(X − V̊i[3]))× Ṽi) of ΩΓ

i∞ and ΩΓ
∞i, respectively. We define the closed forms

ω̃i∞ =
∑

j,ℓ

(−1)(dimai
j)d−1Lk(bij , a

i+
ℓ ) p∗1 ηS(ãi

j)
∧ p∗2 ηS3(biℓ)

+ p∗2 ηγi[3]

(for j, ℓ such that dim bij + dim aiℓ = d− 1),

ω̃∞i =
∑

j,ℓ

(−1)(dimai
j)d−1Lk(ai+j , biℓ) p

∗
1 ηS3(bij)

∧ p∗2 ηS(ãi
ℓ
) + (−1)dp∗1 ηγi[3]

(for j, ℓ such that dim aij + dim biℓ = d− 1)

on Ṽi × (V∞[2] ∩ (X − V̊i[3])) and (V∞[2] ∩ (X − V̊i[3])) × Ṽi, respectively. These

formulas are consistent with the formulas of Proposition 6.3 on the fiber over the

basepoint of Ki. It follows from the explicit formulas that on the overlap of these

domains with D3({i}), which is the restriction of the bundle D3 → BΓ on BΓ({i})
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as in Notation 4.5, the values of the overlapping forms agree. Hence p̃∗i∞ω3|D3({i})
and p̃∗∞iω3|D3({i}) can be extended by p̃∗i∞ω̃i∞ and p̃∗∞iω̃∞i to a closed form ω4 on

D4 := D3 ∪
⋃

i6=∞

(
ΩΓ

(i)∞ ∪ ΩΓ
∞(i)

)
.

Then we have the following identities.

ω4|ΩΓ
(i)∞

= p̃∗i∞ω̃i∞ = p̃∗i∞ω4|ΩΓ
(i)∞

({i}),

ω4|ΩΓ
∞(i)

= p̃∗∞iω̃∞i = p̃∗∞iω4|ΩΓ
∞(i)

({i}),
(6.7)

where ΩΓ
(i)∞({i}) and ΩΓ

∞(i)({i}) are the restrictions of the bundles ΩΓ
(i)∞ → BΓ

and ΩΓ
∞(i)({i})→ BΓ on BΓ({i}), respectively, as in Notation 4.5.

6.4.5. Step 5: Extension over ΩΓ
ii[4, 4], i 6=∞. There is a bundle map

ΩΓ
ii[4, 4]

p̃ii //

��

EC2(π(αi))[4, 4]

��
BΓ

pii // Ki

where EC2(π(αi))[4, 4] = Bℓ∆
Ṽi[4]

(Ṽi[4]×Ki
Ṽi[4]) = ΩΓ

ii[4, 4]({i}). Let ST v∆Ṽi[4]
=

p−1
Bℓ(∆Ṽi[4]

) denote the diagonal stratum in EC2(π(αi))[4, 4]. By Lemma 3.23, the

standard vertical framing on Ki × V∞ extends over Ṽi. Hence by pulling back the

symmetric unit volume form on Sd−1 by the framing as in Lemma 2.13, we obtain

a closed (d − 1)-form extension ω′
4,i of ω4 over ST v∆Ṽi[4]

. We will see in the next

section (in Lemma 7.1) that ω′
4,i on

(
D4({i}) ∩ EC2(π(αi))[4, 4]

)
∪ ST v∆Ṽi[4]

can be extended to a closed (d − 1)-form on EC2(π(αi))[4, 4]. We postpone the

proof of this fact and assume this now. By pulling back this extension to ΩΓ
ii[4, 4]

by p̃ii, we obtain a closed form ω5,i on ΩΓ
ii[4, 4]. By doing similar extensions on

ΩΓ
ii[4, 4] for all i 6=∞, we obtain a closed form ω5 defined on EC2(π

Γ) that extends

ω4, which satisfies the boundary condition for a propagator. By definition, we have

the following identity.

ω5|ΩΓ
ii[4,4]

= p̃∗iiω5|ΩΓ
ii[4,4]({i}). (6.8)

Proof of Proposition 4.6. Now the closed form ω5 on EC2(π
Γ) is as desired in

Proposition 4.6. Namely, the condition (1) of Proposition 4.6 follows by (6.3),

(6.5), (6.7), (6.8). Note that (6.7) can be extended to the identity for ΩΓ
i∞ ∪ ΩΓ

∞i

by using (6.8), both hold in subspaces of the same bundle EC2(π
Γ)({i}) over Ki.

The condition (2) of Proposition 4.6 follows from (6.4). �
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7. Extension over the final piece ΩΓ
ii, i 6=∞

To simplify notation, we set V = Vi[4], Ṽ = Ṽi[4], and EC2(Ṽ ) = ΩΓ
ii[4, 4]({i}).

We shall prove the following lemma, whose proof was postponed.

Lemma 7.1. The closed form ω′
4,i on P =

(
D4({i}) ∩ EC2(Ṽ )

)
∪ ST v∆Ṽ can be

extended to a closed (d− 1)-form on EC2(Ṽ ).

The problem is to show that the class of ω′
4,i in the cohomology Hd−1(P ) is

mapped to zero by the connecting homomorphism

Hd−1(P )→ Hd(EC2(Ṽ ), P ).

It is easy to see that P deformation retracts onto ∂EC2(Ṽ ) by shrinking the collar

neighborhoods. Thus the problem is equivalent to the analogous one for the pair

(EC2(Ṽ ), ∂EC2(Ṽ )),

and we consider the latter. In this section, we will prove the above cohomological

property of ω′
4,i by evaluating on some explicit (d−1)-cycle in ∂EC2(Ṽ ) by a higher

dimensional analogue of Lescop’s proof of [Les3, Lemma 11.11].

7.1. On the homology of C2(V ). In this section, a chain is a piecewise smooth

singular chain, namely, a linear combination of smooth maps from simplices. Since

a manifold with corners admits a smooth triangulation, a linear combination of

smooth maps from compact oriented manifolds with corners can be considered as

a chain.

Lemma 7.2. Let d be an integer such that d ≥ 4. Let Λn = 〈[bj × bℓ] | dim bj +

dim bℓ = n〉.

(i) Hd−2(V
2) =

{ 〈[bj × ∗], [∗ × bj ] | dim bj = 2〉 ⊕ Λ2 if d = 4,

〈[bj × ∗], [∗ × bj ] | dim bj = d− 2〉 if d > 4,

Hd−1(V
2) = Λd−1,

Hd(V
2) =

{
Λ4 if d = 4,

0 otherwise,

Hd+1(V
2) =

{
Λ6 if d = 5,

0 otherwise.

(ii) Hd−1(C2(V )) = Hd−1(V
2)⊕ 〈[ST (∗)]〉,

Hd(C2(V )) = Hd(V
2)⊕ 〈[ST (bi)] | dim bi = 1〉,

H2d−3(C2(V )) = 〈[ST (bi)] | dim bi = d− 2〉,
Hi(C2(V )) = Hi(V

2) if i 6= d− 1, d, 2d− 3, where ST (σ) for a submanifold

cycle σ ⊂ V denotes ST (V )|σ = SN(∆V )|∆σ
(see §1.4 (a)).

Proof. We replace for simplicity V and C2(V ) with V̊ and C2(V̊ ), respectively,

without changing their homotopy types (especially for the excision argument be-

low). The assertion (i) follows immediately from the Künneth formula. In the

homology exact sequence for the pair

→ Hp+1(V̊
2)→ Hp+1(V̊

2, V̊ 2 −∆V̊ )→ Hp(C2(V̊ ))→
we see that the map Hp+1(V̊

2) → Hp+1(V̊
2, V̊ 2 − ∆V̊ ) is zero since the explicit

basis {[∗], [b1], [b2], [b3]}⊗2 of H∗(V 2) can be given by cycles in V̊ 2−∆V̊ . Hence we
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have the isomorphism

Hp(C2(V̊ )) ∼= Hp+1(V̊
2, V̊ 2 −∆V̊ )⊕Hp(V̊

2).

By excision, we have Hi(V̊
2, V̊ 2 −∆V̊ ) = Hd(D

d, ∂Dd) ⊗ Hi−d(∆V̊ )
∼= Hi−d(V̊ ),

and

Hd+r(V̊
2, V̊ 2 −∆V̊ ) =

{
Hr(V ) (r ≥ 0),

0 (r < 0).

The assertion (ii) follows from this. �

Let a be aj [4] ⊂ ∂V that is (d − 2)-dimensional. Let Σ = S4(aj). Suppose that

V is of type I. We assume the following for Σ.

Assumption 7.3. (1) If V is the fiber over the non-basepoint 1 ∈ Ki, we

assume Σ is given by a normally framed embedding from S1 × Sd−2 −
(open disk). This is possible since Σ is a Seifert surface of one compo-

nent in the Borromean rings that is disjoint from other components, as in

Lemma 4.2.

(2) If V is the fiber over the basepoint −1 ∈ Ki, we assume that Σ is either

Dd−1 or S1×Sd−2− (open disk), the connect sum of a small S1× Sd−2 to

a (d− 1)-disk.

In any case, Σ = Dd−1#(S1 × Sd−2)#g for g = 0, 1. Let c1, c2, . . . , c2g be the

cycles of Σ that form a basis of the reduced homology of Σ over Z. Let c∗1, c
∗
2, . . . , c

∗
2g

be the cycles of Σ that represent the basis of H̃∗(Σ;Z) dual to c1, c2, . . . , c2g with

respect to the intersection form on Σ, so that ci · c∗j = δij . Let c
+
i , c

∗+
j be the cycles

in V obtained by slightly shifting ci, c
∗
j along positive normal vectors on Σ. The

following lemma will be used in Lemma 7.7 to study a part of the homology class

of the diagonal in Σ× Σ+.

Lemma 7.4. (a) The (d− 1)-cycle
∑

k ck × c∗k is homologous to
∑

j,ℓ

λVjℓ bj × bℓ in V 2 for some λVjℓ ∈ R,

where the sum is over j, ℓ such that dim bj + dim bℓ = d− 1.

(b) The (d− 1)-cycle
∑

k ck × c∗+k is homologous to

∑

j,ℓ

λVjℓ bj × bℓ + δ(Σ)ST (∗) in C2(V )

for some constant δ(Σ) depending on the submanifold Σ ⊂ V , where the

sum is over j, ℓ such that dim bj + dim bℓ = d− 1.

Proof. The assertion (a) follows from Lemma 7.2(i). For (b), one can show by using

the computation of Hd−1(C2(V )) in Lemma 7.2(ii) that the coefficient of bj × bℓ in
the homology class of

∑
k ck × c∗+k agrees with that of (a). The coefficient δ(Σ) of

ST (∗) is ∑k Lk(ck, c
∗+
k ). �

Remark 7.5. If we choose Σ to be a (d−1)-disk, then the coefficient δ(Σ) of ST (∗) of
Lemma 7.4(b) is zero. In [Les3, Lemma 11.12], an explicit formula for the coefficient

λVjℓ is given. Lemma 7.4 is sufficient for our purpose.
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7.2. Extension over type I handlebody. We consider an analogue of Lescop’s

chain F 2(a) of [Les3, Lemma 11.13]. We fix some notations to define the analogous

chain. Recall that we have put V = Vi[4], V [h] = Vj [h] and chosen a ⊂ ∂V that is

(d− 2)-dimensional in §7.1.

(1) We identify a small tubular neighborhood of a in ∂V with a × [−1, 1] so
that a× {0} = a.

(2) Let Σ+ = (Σ ∩ V [−1]) ∪ {(5t − 1, a(v), t) | v ∈ Sd−2, t ∈ [0, 1]}, where
(5t − 1, a(v), t) ∈ [−4, 4] × (a × [−1, 1]). We will also write Σ+

V = Σ+ or

ΣV = Σ to emphasize that Σ+ or Σ is considered in a particular V when V

is a single fiber in a family of handlebodies. Recall that we assumed that

Σ ∩ ([−4, 4]× ∂V [0]) = [−4, 4]× a[0] (§6.1(iv)).
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(3) By Sd−2 = ([0, 1]×Sd−3)/({0, 1}×Sd−3∪ [0, 1]×{∞}) (reduced suspension

of Sd−3), we equip a with coordinates from [0, 1]× Sd−3. Let p(a) be the

basepoint of a that corresponds to∞ ∈ Sd−2, the basepoint for the reduced

suspension. Let p(a)+ = (p(a), 1) ∈ a× [−1, 1] ⊂ ∂V .

(4) Let diag(ν)Σ be the chain given by the section of ST (V )|Σ by the unit

normal vector field ν on Σ compatible with the coorientation of the codi-

mension 1 submanifold Σ of V . The restriction νΣ := ν|Σ : Σ→ STV gives

a submanifold chain diag(ν)Σ of ST∆V ⊂ ∂C2(V ). We will also write

diag(νΣ)Σ to emphasize the choice of Σ.

(5) Let T (a) : Sd−3 × T → (a × {0})× (a × {1}) be the (d − 1)-chain defined

for (v′; y, z) ∈ Sd−3 × T , where T = {(y, z) ∈ [0, 1]2 | y ≥ z}, by

T (a)(v′; y, z) = ((a(y, v′), 0), (a(z, v′), 1)).

To make this into a chain, we orient T (a) by ∂y ∧ ∂z ∧ o(Sd−3), where

∂y ∧ o(Sd−3) = o(a).

(6) Let A(a) be the closure of {((a(v), 0), (a(v), t)) | t ∈ (0, 1], v ∈ [0, 1]×Sd−3}
in C2(X). Then A(a) is a compact (d− 1)-submanifold with boundary and

is diffeomorphic to Sd−2 × [0, 1]. We orient A(a) by o((0, 1]) ∧ o(a).
We assume the following without loss of generality.

Assumption 7.6. (1) The unit normal vector field ν on Σ is such that its

restriction to [−1, 4]× a is included in T (∂V ).

(2) Let τV be the framing on V as in Corollary 3.22 and let p(τV ) : ST (V )|Σ →
Sd−1 be the composition ST (V )|Σ τV−→ Σ × Sd−1 pr−→ Sd−1. We assume

that the restriction of p(τV ) ◦ ν to [−1, 4]× a is a constant map.

Thanks to Assumption 7.6 (2), the mapping degree deg (p(τV ) ◦ ν) of p(τV ) ◦ ν
makes sense.
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Lemma 7.7 (Type I). The (d− 1)-chain

F d−1
V (a) =diag(ν)ΣV − p(a)× Σ+

V − ΣV × p(a)+ + T (a) +A(a)

−
{∑

j,ℓ

λVjℓ bj × bℓ + δ(ΣV )ST (∗)
}

in ∂C2(V ) is a cycle and is null-homologous in C2(V ).

Let C′
∗,≥(Σ,Σ

+) denote the first line of the formula of F d−1
V (a). This can be

obtained from an analogue of the chain C∗,≥(Σ,Σ+) of Σ×Σ+ in [Les3, Lemma 8.11]

by homotopy. Namely, we let

a×∗,≥ a
+ = {(a(v′, y), a(v′, z)+) | v′ ∈ Sd−3, y, z ∈ [−1, 1], y ≥ z},

diag(Σ× Σ+) = {(x, x+) | x ∈ Σ},

where Σ+ is defined in §7.2 (2), and the superscript + denotes the parallel copy in

Σ+, and orient a×∗,≥ a+ by ∂y ∧ ∂z ∧ o(∆Sd−3).

Lemma 7.8. (a) The following chain of Σ× Σ+ is a (d− 1)-cycle.

C∗,≥(Σ,Σ
+) = diag(Σ× Σ+)− ∗ × Σ+ − Σ× ∗+ + a×∗,≥ a

+

(b) The following holds in Hd−1(Σ× Σ+;Z).

[C∗,≥(Σ,Σ
+)] =

∑

k

[ck × c∗+k ]

Proof. The claim (a) follows since

∂(a×∗,≥ a
+) = −diag(a× a+) + ∗ × a+ + a× ∗+, (7.1)

∂
(
diag(Σ× Σ+)− ∗ × Σ+ − Σ× ∗+

)
= diag(a× a+)− ∗ × a+ − a× ∗+, (7.2)

where diag(a× a+) = diag(Σ×Σ+) ∩ (a× a+). The check of the signs of the right

hand side of (7.1) is left to the reader. The claim (b) can be proved by considering

the closed manifold S obtained from Σ by gluing a (d − 1)-disk D along their

boundary. It can be shown that

[diag(S × S+)] = [S × ∗+] + [∗ × S+] +
∑

k

[ck × c∗+k ]

holds inHd−1(S×S+;Z) (Proposition F.1). We may define the cycle C∗,≥(−D,−D+)

analogously to C∗,≥(Σ,Σ+) by replacing Σ with−D in the definition ofC∗,≥(Σ,Σ+).

Then we have

[C∗,≥(Σ,Σ
+)] + [C∗,≥(−D,−D+)] =

∑

k

[ck × c∗+k ]

in Hd−1(S × S+;Z), and that [C∗,≥(−D,−D+)] = 0 in Hd−1(D×D+;Z) = 0. �

Proof of Lemma 7.7. Now Σ × Σ+ can be considered as embedded in C2(V ) by

considering the points on Σ+ in diag(Σ[−1]×Σ+[−1]) as lying on ν(Σ) in SN(∆V ).

In this way, we may identify C′
∗,≥(Σ,Σ

+) with C∗,≥(Σ,Σ+) up to boundaries, where

diag(Σ × Σ+) + a ×∗,≥ a+ corresponds to diag(ν)Σ + T (a) + A(a). Note that
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the boundaries of the three chains diag(ν)Σ, T (a), A(a) cancel at their common

boundaries since

∂T (a) = −diag(a× a+) + p(a)× a+ + a× p(a)+,
∂A(a) = diag(a× a+)− diag(ν)a,

∂diag(ν)Σ = diag(ν)a,

where diag(ν)a is defined by replacing Σ by a in the definition of diag(ν)Σ. Lemma 7.8

(b) also holds for C′
∗,≥(Σ,Σ

+) in H∗(C2(V );Z). Then the result follows from

Lemma 7.4. �

When Ṽ is of type I, we write Ṽ = V ′∪(−V ). By Lemma 7.7, there exist d-chains

Gd
V ′(a1), G

d
V ′(a2) of C2(V

′) with coefficients in Z such that ∂Gd
V ′(ai) = F d−1

V ′ (ai)

(i = 1, 2).

Lemma 7.9 (Type I). Hd(C2(V
′), ∂C2(V

′)) has the following basis.

{[G4
V ′(a1)], [G

4
V ′(a2)], [S4(a3)× S4(a3)

+]} (if d = 4),

{[Gd
V ′(a1)], [G

d
V ′(a2)]} (if d > 4),

where S4(a3)
+ is a parallel copy of S4(a3).

Proof. By Lemma 7.2 (ii), Hd(C2(V
′)) has the following basis:

{[ST (b1[4])], [ST (b2[4])], [b3 × b+3 ]} (if d = 4),

{[ST (b1[4])], [ST (b2[4])]} (if d > 4).

Then the result follows by Poincaré–Lefschetz duality (see Lemma C.4) and the

following intersections:

[Gd
V ′(ai)] · [ST (bj[4])] = [F d−1

V ′ (ai)] ·∂ [ST (bj[4])]

= [diag(ν)S4(ai)] ·∂ [ST (bj[4])] = ±δij (1 ≤ i, j ≤ 2),

[Gd
V ′(ai)] · [b3 × b+3 ] = [F d−1

V ′ (ai)] ·∂ [b3 × b+3 ] = 0 (if d = 4),

[S4(a3)× S4(a3)
+] · [ST (bj[4])] = 0 (if d = 4, 1 ≤ j ≤ 2),

[S4(a3)× S4(a3)
+] · [b3 × b+3 ] = ±1 (if d = 4),

where · (resp. ·∂) is the intersection pairing in C2(V
′) (resp. ∂C2(V

′)) between

homologies. �

Lemma 7.10 (Type I). For the propagator ω′
4,i of Lemma 7.1, the closed form

ω∂ = ω′
4,i|∂C2(V ′)

on ∂C2(V
′) extends to a closed form on C2(V

′).

Proof. We consider the following exact sequence.

Hd−1(C2(V
′))

r→ Hd−1(∂C2(V
′))

δ→ Hd(C2(V
′), ∂C2(V

′))
0→ Hd(C2(V

′))

To prove that [ω∂ ] is in the image of the restriction induced map r, we prove

δ([ω∂ ]) = 0. Here, the natural map Hd(C2(V
′), ∂C2(V

′))∗ → Hd(C2(V
′))∗ is

zero since by Lemma 7.2, we have Hd(C2(V
′)) = Hd(V

′2) ⊕ 〈[ST (bi)]〉, where

Hd(V
′2) is Λ4 or 0 and dim bi = 1, and all the generators are mapped to zero in
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Hd(C2(V
′), ∂C2(V

′)). To prove δ([ω∂ ]) = 0, it suffices to show the vanishing of the

evaluation of δ([ω∂ ]) at the basis of Hd(C2(V
′), ∂C2(V

′)) in Lemma 7.9.

The class δ[ω∂ ] can be represented by d ω̃∂ , where ω̃∂ is an extension of ω∂ over

C2(V ) as a smooth (d− 1)-form. Since
∫

Gd
V ′ (ai)

d ω̃∂ =

∫

Fd−1

V ′ (ai)

ω∂ (i = 1, 2),

∫

S4(a3)×S4(a3)+
d ω̃∂ =

∫

∂(S4(a3)×S4(a3)+)

ω∂ (if d = 4)

by the Stokes theorem, it suffices to check that the right hand sides vanish. By

Lemma 7.16 below, we have
∫

Fd−1

V ′ (ai)

ω∂ =

∫

Fd−1
V

(ai)

ω1 (i = 1, 2),

∫

∂(S4(a3)×S4(a3)+)

ω∂ =

∫

∂(S4(a3)×S4(a3)+)

ω1,

(7.3)

where ω1 is a form as in Proposition 6.3. The right hand sides of (7.3) vanish since

F d−1
V (ai) and ∂(S4(a3) × S4(a3)

+) are null-homologous in C2(V ) by Lemma 7.7

and ω1 is defined there. Hence the left hand side of (7.3) vanishes, too. �

We give some lemmas to prove Lemma 7.16.

Lemma 7.11. Let (V,Σ) be as above, let ω1 be a propagator normalized as in

Proposition 6.3, and let ω∂ be the form of Lemma 7.10. Then we have
∫

p(a)×Σ+

V ′

ω∂ =

∫

p(a)×Σ+
V

ω1 and

∫

ΣV ′×p(a)+
ω∂ =

∫

ΣV ×p(a)+
ω1.

Proof. We see that
∫

p(a)×Σ+

V ′ [−1]

ω∂ =

∫

p(a)×Σ+
V
[−1]

ω1 = 0 (7.4)

since p(a)×Σ+
V ′ [−1] ⊂ (X−V̊ ′[3])×V ′[0] and ΣV ′ [−1]×p(a)+ ⊂ V ′[0]×(X−V̊ ′[3]),

and we have explicit formula for ω∂ there. Note that we are assuming V ′ = V ′
i [4]

and a = {4} × aij , but we consider V ′[3], Σ+
V ′ [−1] etc. denotes V ′

i [3], S(a
i
j [−1])+

etc. By the same reason, the second integral of (7.4) vanishes. We have similar

identities for the integrals over ΣV ′ [−1]× p(a)+ and ΣV [−1]× p(a)+.
Also, we have

∫

p(a)×(Σ+

V ′−Σ̊+

V ′ [−1])

ω∂ =

∫

p(a)×(Σ+
V
−Σ̊+

V
[−1])

ω1

since the domains are both included in the common subspace p−1
Bℓ(([−1, 4]×∂V ′)2) =

p−1
Bℓ(([−1, 4] × ∂V )2), where the two forms ω∂ and ω1 agree. We have similar

identities for the integrals over (ΣV ′−Σ̊V ′ [−1])×p(a)+ and (ΣV −Σ̊V [−1])×p(a)+.
This completes the proof. �
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Lemma 7.12. Let (V,Σ) be as above, let ω1 be a propagator normalized as in

Proposition 6.3, and let ω∂ is the form of Lemma 7.10. Then we have∫

T (a)+A(a)

ω∂ =

∫

T (a)+A(a)

ω1.

Proof. The identity holds since the domains are both included in the common

subspace p−1
Bℓ(([−1, 4]×∂V ′)2) = p−1

Bℓ(([−1, 4]×∂V )2), where the two forms ω∂ and

ω1 agree. �

Lemma 7.13. Let (V,Σ) be as above and let ω1 be a propagator normalized as in

Proposition 6.3. Then we have ∫

diag(ν)Σ

ω1 = δ(Σ).

Proof. First we prove that∫

diag(ν)Σ−δ(Σ)ST (∗)
ω1 =

∫

diag(ν)Σ

ω1 − δ(Σ)

does not change if Σ is replaced with the spanning disk Σ0 = (aTj × I)[4] bounded
by a = aj [4]. Namely, by the analogues of Lemmas 7.11 and 7.12 obtained by

replacing (V ′,ΣV ′) and ω∂ with (V,Σ0) and ω1, respectively, we have
∫

C′
∗,≥

(Σ,Σ+)

ω1 −
∫

C′
∗,≥

(Σ0,Σ
+
0 )

ω1 =

∫

diag(ν)Σ

ω1 −
∫

diag(ν)Σ0

ω1.

On the other hand, it follows from Lemma 7.4 (b) that
∫
∑

k ck×c∗+
k

ω1 =

∫
∑

j,ℓ λ
V
jℓ
bj×bℓ+δ(Σ)ST (∗)

ω1 = δ(Σ),

where the right equality holds since Lk(bp, bq) = 0 for p 6= q. Since

[C′
∗,≥(Σ,Σ

+)]− [C′
∗,≥(Σ0,Σ

+
0 )] =

∑

k

[ck × c∗+k ]

in C2(V ), it follows that
∫

diag(ν)Σ

ω1 − δ(Σ) =
∫

diag(ν)Σ0

ω1 − δ(Σ0).

It is easy to see that the right hand side of this identity is zero. �

Lemma 7.14. Let τV be the framing on V as in Corollary 3.22 and let p(τV ) : ST (V )|Σ →
Sd−1 be the composition ST (V )|Σ τV−→ Σ×Sd−1 pr−→ Sd−1. Let ν be the unit normal

vector field on Σ in V . Then we have∫

diag(ν)Σ

ω1 = deg (p(τV ) ◦ ν).

Similarly, we have ∫

diag(νΣ
V ′ )ΣV ′

ω∂ = deg (p(τV ′) ◦ νΣV ′ ).

Proof. This follows since ω1|SN(∆V ) = p(τV )
∗VolSd−1 and its integral is the map-

ping degree. The latter identity holds since ω∂ is defined on SN(∆V ′). �
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Lemma 7.15. Let τV and τV ′ be the framings on V and V ′, respectively, as in

Corollary 3.22. Let ΣV ′ be the component of S(ãj) of Lemma 4.2 included in V ′.
There is a submanifold ΣV bounded by a = aj [4] in V such that

(1) ΣV ′ and ΣV agree on their intersections with [−4, 4]×∂V ′
j and [−4, 4]×∂Vj,

respectively, if we identify [−4, 4]× ∂V ′
j and [−4, 4]× ∂Vj.

(2) There is a diffeomorphism ΣV ′ ∼= ΣV relative to their intersections with

[−4, 4]× ∂Vj.
(3) deg (p(τV ′) ◦ νΣV ′ ) = deg (p(τV ) ◦ νΣV

).

(4) δ(ΣV ′) = δ(ΣV ).

Proof. Recall from [Wa3, Proof of (a)] that τV ′ was obtained from the standard

framing st on the string link complement model (§3.7.1 (3.5)) in the Euclidean space

by perturbing st in a neighborhood of the link components to realize the boundary

behavior. We show that the pair (ΣV , τV ) has an interpretation similar to this.

Namely, we choose the representative L1 ∪ L2 ∪ L3 in Definition 3.6 of the long

Borromean link B(d− 2, d− 2, 1)d. Let Lst,1, Lst,2, Lst,3 denote the components of

the standard inclusion Lst : I
d−2∪Id−2∪I1 → Id. Then Li = Li#Lst,i (i = 1, 2, 3),

where Li is the i-th component of the standard Borromean link B(d− 2, d− 2, 1)d.

We consider the string link L[j] = L[j]1 ∪ L[j]2 ∪ L[j]3 : Id−2 ∪ Id−2 ∪ I1 → Id

defined by

L[j]i =

{
Lj = Lj#Lst,j if i = j,

Lst,i if i 6= j.

As Lj has the spanning disk Dj and the spanning submanifold D′
j as before, and

the restrictions of the framings τV ′ and τV to D′
j agree, we obtain ΣV ′ for L[j] that

satisfies (1) and (2), and we have p(τV ′) ◦ νΣV ′ = p(τV ) ◦ νΣV
for this particular

model, proving (3). For (4), it follows from the proof of Lemma 7.13 that

δ(ΣV ) =

∫

(
∑

k ck×c∗+
k

)(ΣV )

ω1 and δ(ΣV ′) =

∫

(
∑

k ck×c∗+
k

)(ΣV ′ )

ω′
1

for any propagator ω′
1 on C2(V

′) that does not detect Hd−1(V
′2) (see Lemma 7.2).

The right hand sides of these identities are the sum of the linking numbers that

can be computed via the same submanifold D′
j with the same normal vector field.

Thus the two integrals agree. �

Lemma 7.16. Let ω∂ and ω1 be as in the proof of Lemma 7.10. We have
∫

Di(V ′)

ω∂ =

∫

Di(V )

ω1 for i = 1, 2, 3, (7.5)

where for U = V ′ or V ,

(1) D1(U) = −p(a)× Σ+
U − ΣU × p(a)+ +A(a) + T (a),

(2) D2(U) = diag(ν)ΣU −
∑

p,q λ
U
pq bp × bq − δ(ΣU )ST (∗),

(3) D3(U) = ∂(S4(a3)U × S4(a3)
+
U ) (only for d = 4).

The superscript + denotes the parallel copy in Σ+.

Proof. (1) The identity (7.5) for i = 1 holds by Lemmas 7.11 and 7.12.
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(2) We prove the identity (7.5) for i = 2, which is equivalent to the following:

∫

diag(νΣ
V ′ )ΣV ′

ω∂ − δ(ΣV ′) =

∫

diag(νΣV
)ΣV

ω1 − δ(ΣV ), (7.6)

as in the proof of Lemma 7.13. By Lemma 7.13, the right hand side of this identity

does not depend on the choice of ΣV . Thus we may choose ΣV as in Lemma 7.15.

For such a ΣV , we have deg (p(τV ′)◦νΣV ′ ) = deg (p(τV )◦νΣV
) and δ(ΣV ′) = δ(ΣV ),

which imply (7.6) by Lemma 7.14.

(3) For d = 4, we prove (7.5) for i = 3 as follows. The proof is similar to that of

D1(U). Namely, for U = V ′, we have

∂(S4(a3)× S4(a3)
+) = a3[4]× S4(a3)

+ + S4(a3)× a3[4]+

= a3[4]× S−1(a3)
+ + S−1(a3)× a3[4]+

+ a3[4]×
(
S4(a3)

+ ∩ ([−1, 4]× ∂U)
)
+
(
S4(a3) ∩ ([−1, 4]× ∂U)

)
× a3[4]+.

Here, a3[4]× S−1(a3)
+ ⊂ (X − V̊ ′[3])× V ′[0] and S−1(a3)× a3[4]+ ⊂ V ′[0]× (X −

V̊ ′[3]), and the integral vanishes by the explicit formula of ω∂ there. The same is

true for the integral of ω1. The part a3[4]×
(
S4(a3)

+ ∩ ([−1, 4]× ∂U)
)
+
(
S4(a3)∩

([−1, 4]×∂U)
)
×a3[4]+ is included in p−1

Bℓ(([−1, 4]×∂V ′)2) = p−1
Bℓ(([−1, 4]×∂V )2),

where the two forms ω∂ and ω1 agree, and the integrals are equal. �

7.3. Extension over family of type II handlebodies. Now we consider Ṽ of

type II. Recall that we have set Ṽ = Ṽj [4] before Lemma 7.1. Let V = π−1
v (s0) be

the fiber of the bundle πV : Ṽ → Sd−3 over the basepoint s0 ∈ Sd−3.

(1) We assume i = 2 or 3 in the model of §4.2. Let ã be ãi = Sd−3×ai[4] ⊂ ∂Ṽ
that is of dimension (d−3)+1 = d−2. Let ã×[−1, 1] = Sd−3×(a×[−1, 1]) ⊂
Sd−3× ∂V = ∂Ṽ be a parametrization of a Sd−3-family of small embedded

annuli in ∂V such that ã× {0} = ã.

(2) Let p(ã) = Sd−3 × p(a), p(ã)+ = Sd−3 × p(a)+.
(3) Let Σ̃ be the submanifold S(ã) of Ṽ of Lemma 4.2 (such that ∂S(ã) = ã),

and let Σ̃+ = (S(ã) ∩ Ṽ [−1]) ∪ {(5t− 1, ã(s, v), t) | (s, v) ∈ Sd−3 × S1, t ∈
[0, 1]}, where (5t− 1, ã(s, v), t) ∈ [−4, 4]× (ã× [−1, 1]). We will also denote

Σ̃ and Σ̃+ by Σ̃Ṽ and Σ̃+

Ṽ
, respectively, to emphasize that Σ̃ and Σ̃+ is in

Ṽ .

(4) Let diag(ν̃)Σ̃ be the chain given by a section ν̃ of ST v(Ṽ )|Σ̃ ⊂ ∂EC2(Ṽ )

obtained by the normalization of a vector field on Σ̃.

(5) Let A(ã) = Sd−3 × A(a), T (ã) = Sd−3 × T (a), where T (a) and A(a) are

defined analogously for 1-cycle a as in §7.2 (5), (6). We orient T (ã) by

∂y ∧ ∂z ∧ o(Sd−3), where ∂y ∧ o(Sd−3) = (−1)d−3o(Sd−3) ∧ ∂y = o(ã).

Also, we orient A(ã) by o((0, 1]) ∧ o(ã). We consider A(ã) and T (ã) as

chains in ∂EC2(Ṽ ) = Sd−3 × ∂C2(V ).

(6) Let p(ã) ×Sd−3 Σ̃+

Ṽ
be the pullback of the diagram p(ã) → Sd−3 ← Σ̃+

Ṽ
of

the maps induced from the bundle projection πV : Ṽ → Sd−3. Similarly, let
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Σ̃Ṽ ×Sd−3p(ã)+ be defined by the diagram Σ̃Ṽ → Sd−3 ← p(ã)+. Explicitly,

p(ã)×Sd−3 Σ̃+

Ṽ
= {(s, p(a), x) | s ∈ Sd−3, x ∈ π−1

V (s) ∩ Σ̃+

Ṽ
},

Σ̃Ṽ ×Sd−3 p(ã)+ = {(x, s, p(a)+) | s ∈ Sd−3, x ∈ π−1
V (s) ∩ Σ̃Ṽ }.

We equip them with orientations that are naturally induced by that of Σ̃+

Ṽ

and Σ̃Ṽ , respectively.

(7) Let V ′ be a type I handlebody included in the type II handlebody, corre-

sponding to the inclusion of the i-th S1 leaf of the type I Y-graph into the

i-th Sd−2 leaf of the type II Y-graph.

We assume the following without loss of generality.

Assumption 7.17. (1) The unit vertical vector field ν̃ on Σ̃ is such that its

restriction to [−1, 4]× ã is included in the subspace T v({u}× ã× [−1, 1]) ⊂
T v({u} × ∂Ṽ ) of T vṼ |[−1,4]×ã and is orthogonal to [−1, 4]× ã.

(2) Let τṼ be the vertical framing on Ṽ as in Corollary 3.22 and let p(τṼ ) : ST
v(Ṽ )|Σ̃ →

Sd−1 be the composition ST v(Ṽ )|Σ̃
τ
Ṽ−→ Σ̃ × Sd−1 pr−→ Sd−1. We assume

that the restriction of p(τṼ ) ◦ ν̃ to [−1, 4]× ã is a constant map.

The following lemma is an analogue of Lemma 7.7 for the family Ṽ of type II

handlebodies.

Lemma 7.18 (Type II). For some choice of ν̃, the (d− 1)-cycle

F d−1

Ṽ
(ã) = diag(ν̃)Σ̃Ṽ − p(ã)×Sd−3 Σ̃+

Ṽ
− Σ̃Ṽ ×Sd−3 p(ã)+ +A(ã) + T (ã)

−
{∑

j,ℓ

λV
′

jℓ bj × bℓ + δ(ΣV ′)ST (∗)
}

(7.7)

in ∂EC2(Ṽ ) is null-homologous in EC2(Ṽ ), where λV
′

jℓ , bj × bℓ, δ(ΣV ′) are the

same as that of Lemma 7.7 for V ′.

Remark 7.19. Let us first explain how non-subtle Lemma 7.18 is, after having

Lemma 7.7. The first line of the RHS of (7.7) is a natural analogue of that of

F d−1
V (a) in Lemma 7.7. That F d−1

Ṽ
(ã) is a cycle is immediate from

∂(diag(ν̃)Σ̃Ṽ ) = Sd−3 × diag(ν)a,

∂(p(ã)×Sd−3 Σ̃+

Ṽ
) = Sd−3 × (p(a)× a+), ∂(Σ̃Ṽ ×Sd−3 p(ã)+) = Sd−3 × (a× p(a)+),

∂A(ã) = Sd−3 × ∂A(a), ∂T (ã) = Sd−3 × ∂T (a),

where ν is the restriction of ν̃ to the fiber ΣV = V ∩Σ̃Ṽ of πV |Σ̃
Ṽ

, and diag(ν)a is the

chain given by the section ν of ST (V )|ΣV
⊂ ∂C2(V ) obtained by the normalization

of the vector field on ΣV . By the Leray–Hirsch theorem and by Lemma 7.2, it can

be shown that Hd−1(EC2(Ṽ )) is spanned by the cycles

• ST (∗), bj × bℓ with dim bj + dim bℓ = d − 1 that generate H0(S
d−3) ⊗

Hd−1(C2(V )),

• the cycles that generateHd−3(S
d−3)⊗H2(C2(V )) = Hd−3(S

d−3)⊗H2(V
2).
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Note that the Leray–Hirsch theorem can be applied here since bj and bℓ in bj × bℓ
both lie in a small neighborhood of ∂V , over which the restriction of the bundle

Ṽ has a trivialization, and Sd−3 × (bj × bℓ) makes sense as cycles in EC2(Ṽ ) (see

also Lemma 7.22 for a similar computation). It is easy to see that the restriction

of F d−1

Ṽ
(ã) to the fiber over the basepoint is null-homologous (see §7.3.5). Hence

the first line of the RHS of (7.7) is homologous in EC2(Ṽ ) to a linear

combination of the cycles ST (∗), bj×bℓ with dim bj+dim bℓ = d−1,

and the nontriviality of the family Ṽ is reflected to the coefficients. This implies

that the first line of the RHS of (7.7) can be made null-homologous by subtracting a

certain linear combination of ST (∗) and bj× bℓ. Thus, what is done in Lemma 7.18

is to determine the coefficients in the second line. But the value of the coefficient

λV
′

jℓ is not important later, as in the previous case of type I handlebody (see Proof

of Lemma 7.13).

The terms in F d−1

Ṽ
(ã) on which the nontriviality of the family Ṽ is reflected are

the first three terms involving Σ̃Ṽ , which agrees with ΣV ′ outside a neighborhood

of the boundary ã = ∂Σ̃Ṽ . We need only to make sure that Σ̃Ṽ can be obtained by

“suspension” as in §5.5 from ΣV ′ of the previous case to determine the coefficients

(see §7.3.2 and §7.3.3 for how ΣV ′ is included in Σ̃Ṽ ). The possibility of such an

interpretation is essentially due to the fact that the Sd−3-family of embeddings

Id−2 ∪ I1 ∪ I1 → Id to define Ṽ is obtained by iterated supension of the first

and third components from the Borromean string link B(d− 2, d− 2, 1)d (Proof of

Lemma 5.3 (b)).

The proof of Lemma 7.18 looks lengthy, compared to the simplicity of the idea,

mostly because of the explicit description of how to “connect-sum” ΣV ′ to the collar

of ∂Σ̃Ṽ in the suspension model as in §5.5 (see Figure 15). No ingenuity is needed

in the description because ΣV ′ (from D′
i in Lemma 3.7) could be replaced with a

(d− 1)-disk (from Di in Lemma 3.7) for the purpose of only giving the collar.

7.3.1. Pushing most of Σ̃ into a single fiber. We first assume that ã is the second

component Sd−3×a2[4], which corresponds to the second component in the spinning

construction in §3.8 and §5.3. To prove Lemma 7.18, we decompose Σ̃ into two

parts Σ̃0 and Σ̃1, and F
d−1

Ṽ
(ã) accordingly, and prove the nullity of the two parts

separately.

We make an assumption on the string link in the construction of Ṽ in §5. Recall
that the Sd−3-family of embeddings Id−2∪I1∪I1 → Id that defines Ṽ can be taken

so that the first and third components are constant families, and the locus of the

second component with the (unparametrized) first and third components forms a

Borromean string link B(d− 2, d− 2, 1)d (§3.8 and §5.3). We now assume that the

family of the second component is constructed according to the model described in

Lemma 5.4. By precomposing with an isotopy of the parameter space Sd−3 of the

family of framed embeddings, we may assume that the second component agrees

with the standard inclusion outside a small neighborhood Us of a single parameter

s ∈ Sd−3.
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Figure 14. Σ̃ = Σ̃0 ∪δ Σ̃1, where Σ̃1 is included in a small neigh-

borhood of a single fiber.

7.3.2. Decomposition of Σ̃. After perturbing Σ̃ suitably, it can be decomposed as

the sum of the submanifolds with corners Σ̃0 and Σ̃1 satisfying the following con-

ditions (as in Figure 14).

(1) Σ̃0 ∩ Σ̃1 = ∂Σ̃0 ∩ ∂Σ̃1 and this is a (d − 2)-disk δ such that ∂δ is included

in ∂Ṽ .

(2) Σ̃1 is diffeomorphic to S1 × Sd−2 − (open disk) and included in π−1
V (Us),

where πV : Ṽ → Sd−3 is the bundle projection (§3.8.1).
(3) Σ̃0 is diffeomorphic to Sd−3 × I2. The bundle structure of Ṽ induces a

product structure Sd−3 × I2 (i.e. trivial I2-bundle over Sd−3) of Σ̃0.

(4) Let ã(0) = ∂Σ̃0 and ã(1) = ∂Σ̃1. Then we have ã(0) ∼= Sd−3 × S1 and

ã(1) ∼= Sd−2. As a chain, ã(0) + ã(1) = ã up to taking subdivisions.

Let us look more closely at Σ̃ near the intersection disk δ. According to the band

model described in §5.6, the intersection ã(0) ∩ ã(1) forms a (d − 3)-disk family

of singular intervals in ã(1) (or ã(0)) that restricts to a family of points over the

boundary of the (d − 3)-disk, and to a family of nondegenerate intervals over the

interior, which is a “lens” (Figure 17, right).

7.3.3. Fixing the vector field ν̃. The nonsingular vector field ν̃ ∈ Γ(ST vṼ |Σ̃) on Σ̃

can be chosen so that

• it is orthogonal to Σ̃ near ∂Σ̃,

• it is orthogonal to both Σ̃0 and Σ̃1 on δ, and

• the degree of the composition p(τṼ ) ◦ ν̃ : Σ̃ → ST v(Ṽ )|Σ̃ → Sd−1 (relative

to ∂Σ̃) agrees with the degree of p(τV ′) ◦ νΣV ′ in Lemma 7.14,

and we choose such.

Such a ν̃ can be constructed as follows. Let (t1, . . . , td−3) be local coordinates for

the parameter space Sd−3 about a point in Us. Let (x1, . . . , xd) be local coordinates

of the (d-dimensional) fiber about a point of ∂Σ̃0. Suppose that a fiber of Σ̃0 =

Sd−3 × I2 agrees (in this local model) with a 2-disk in the x1x2-plane. We put

ΣV ′ in a fiber of Ṽ so that it is disjoint from Σ̃0, and a small neighborhood of

∂ΣV ′ in ΣV ′ is included in the codimension 1 plane xd = 0. We may connect a

(d− 2)-disk in ∂ΣV ′ and a (d− 2)-disk in ∂Σ̃0 by rotating the axes of x3, . . . , xd−1

until they agree with those of t1, . . . , td−3 over a path in the x1-axis. This defines a

boundary connect-sum Σ̃0♮ΣV ′ . We may perturb ∂(Σ̃0♮ΣV ′) by a small isotopy to
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Figure 15. Extension from ΣV ′ to Σ̃1

make πV |∂(Σ̃0♮ΣV ′)
: ∂(Σ̃0♮ΣV ′)→ Sd−3 a submersion. We assume that Σ̃ = Σ̃0∪Σ̃1

is the sum of Σ̃0♮ΣV ′ and the collar obtained by the locus of the small isotopy of

∂(Σ̃0♮ΣV ′) (Figure 15).

Since Σ̃0♮ΣV ′ is included in the codimension one plane orthogonal to ∂
∂xd

, the

vector field ∂
∂xd

defines a normal vector field on Σ̃0 and on a neighborhood of ∂ΣV ′

in ΣV ′ . And this vector field can be extended by the normal vector field of ΣV ′

in a (d-dimensional) fiber. We then extend this normal vector field on Σ̃0♮ΣV ′ to

a vector field in Γ(ST vṼ |Σ̃) that is transversal to Σ̃, where the transversality can

be assumed because the isotopy of ∂(Σ̃0♮ΣV ′) can be arbitrarily small. Finally, we

perturb the resulting vector field further to that orthogonal to T vΣ̃ along ∂Σ̃. The

resulting vector field on Σ̃0 ∪ Σ̃1 is our ν̃.

7.3.4. The decomposition of F d−1

Ṽ
(ã). By pushing ã slightly in a direction of ν̃, we

obtain parallel copies ã+(0) and ã+(1) of ã(0) and ã(1), respectively. The chains Σ̃+
0

and Σ̃+
1 are defined by decomposing Σ̃[−1] into two pieces Σ̃0[−1] = Sd−3× I2[−1]

and Σ̃1[−1] (Figure 16) so that Σ̃+ = Σ̃+
0 +Σ̃+

1 as chains up to taking subdivisions.

To give them explicitly, we consider the local coordinates [−4, 4]× (ã(0) × [−1, 1])
determined by ν̃ and the collar of ∂Σ̃0 in Σ̃0, as in the item (1) in the beginning of

§7.3. Then the chains Σ̃0[−1] and Σ̃+
0 are defined as in the item (3) in the beginning

of §7.3. The chains Σ̃1[−1] and Σ̃+
1 are defined so that Σ̃[−1] = Σ̃0[−1] + Σ̃1[−1]

and Σ̃+ = Σ̃+
0 + Σ̃+

1 as chains modulo subdivisions. Note that Σ̃1[−1] is not a

subspace of Σ̃1. Then the chains F d−1

Ṽ
(ã(0)), F

d−1

Ṽ
(ã(1)) are defined similarly as

above:

F d−1

Ṽ
(ã(0)) =diag(ν̃)Σ̃0 − p(ã(0))×Sd−3 Σ̃+

0 − Σ̃0 ×Sd−3 p(ã(0))
+ +A(ã(0)) + T (ã(0)),

F d−1

Ṽ
(ã(1)) =diag(ν̃)Σ̃1 − p(ã(1))×Sd−3 Σ̃+

1 − Σ̃1 ×Sd−3 p(ã(1))
+ +A(ã(1)) + T (ã(1))

−
{∑

j,ℓ

λV
′

jℓ bj × bℓ + δ(ΣV ′)ST (∗)
}
,

where we choose the loci of the basepoints p(ã(0)) and p(ã(1)) so that they agree

with p(ã) outside π−1
V (Us) and they are compatibly chosen (i.e. p(ã(0)) = p(ã(1)))

over δ. Note that these are cycles of EC2(Ṽ ) but not of ∂EC2(Ṽ ).

Lemma 7.20. [F d−1

Ṽ
(ã)] = [F d−1

Ṽ
(ã(0))]+[F d−1

Ṽ
(ã(1))] for the choice of ν̃ in §7.3.3.
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Figure 16. Σ̃+, Σ̃+
0 , and Σ̃+

1 near δ. Σ̃+ = Σ̃+
0 + Σ̃+

1 .

Proof. To see this, we need only to prove the additivity of the term T (ã) = Sd−3×
T (a) when the loci p(ã(i)) and p(ã(i))

+ are chosen compatibly, as this is the only

term in F d−1

Ṽ
(ã) for which the additivity is not obvious. Recall that T (a) was

defined by taking coordinates on the sphere a by the reduced suspension of a lower

dimensional sphere. Here we consider the pair (ã(0), ã(1)) of (d − 3)-parameter

families of singular 1-spheres over a (d−3)-disk in Us such that ã(1) ⊂ π−1
V (Us). We

modify the definition of T (a) at some fibers a of ã(0) or ã(1) over Us slightly in a such

way that we consider a 1-sphere as unreduced suspension of S0, which is suspended

between the points±∞, instead of the reduced suspension (Figure 17, left). Thus we

consider a 1-sphere as the quotient of S0×[−1, 1], where S0×{−1} is identified with

−∞ and S0×{1} is identified with∞. Then T (a) : S0×T → (a×{0})× (a×{1}),
where T = {(y, z) ∈ [−1, 1]2 | y ≥ z}, is redefined with these coordinates by the

same formula:

T (a)(v′; y, z) = ((a(v′, y), 0), (a(v′, z), 1)) ((v′; y, z) ∈ S0 × T ).
The following holds, similarly as (7.1).

∂T (a) = −diag(a× a+) +∞× a+ + a× (−∞)+.

We need to modify accordingly the definitions of p(ã) and p(ã)+ over Us into those

given by the loci of +∞ and −∞ in ã, respectively, so that F d−1

Ṽ
(ã) is still a

cycle. We take the locus of basepoints +∞ to be the locus of the maximal points

of the intervals in the “lens” δ (Figure 17, right). Also, we take the locus of

−∞ to be the locus of the minimal points of the intervals. Then we take p(ã(0))

and p(ã(1)) to be the locus of ∞, and take p(ã(0))
+ and p(ã(1))

+ to be the locus

of −∞. Then one can choose coordinates on T (ã(0)) and T (ã(1)) so that they

are consistent on δ = ã(0) ∩ ã(1). With this choice of coordinates, the additivity

T (ã) = T (ã(0))+T (ã(1)) is obvious, and the boundaries of both sides are compatible

with those of the chains p(ã)×Sd−3 Σ̃+

Ṽ
and Σ̃Ṽ ×Sd−3 p(ã)+ etc.

Note that the introduction of the two basepoints and the corresponding mod-

ification of F d−1

Ṽ
(ã) does not change its homology class. More precisely, what

may be changed under the modification of F d−1

Ṽ
(ã) are the chains p(ã) ×Sd−3 Σ̃+

Ṽ
,

Σ̃Ṽ ×Sd−3p(ã)+, and T (ã). The changes of the first two chains are induced by homo-

topies of p(ã). If we consider that the single point∞ (for reduced suspension outside

π−1
V (Us)) is the special case of the double basepoint ±∞ (for unreduced suspension)



84 TADAYUKI WATANABE

Figure 17. Left: Introducing a pair of basepoints ±∞ to modify

T (ã). Right: Appearance of δ.

where the two basepoints agree, then the change of T (ã) is given by a homotopy

that is consistent with the homotopies for p(ã)×Sd−3 Σ̃+

Ṽ
and Σ̃Ṽ ×Sd−3 p(ã)+ above.

Note that considering a single basepoint as a special case of double basepoint over

Sd−3 − Us does not change the chain T (ã). The invariances of [F d−1

Ṽ
(ã(0))] and

[F d−1

Ṽ
(ã(1))] under the homotopy of p(ã(0)) etc. are similar. �

We may further impose the following assumption on τṼ , which will be used later

in the proof of Lemma 7.27(2).

Assumption 7.21. Let τṼ be the vertical framing on Ṽ as in Corollary 3.22 and

Assumption 7.17(2). Let p(τṼ ) : ST
v(Ṽ )|Σ̃ → Sd−1 be the composition ST v(Ṽ )|Σ̃

τ
Ṽ−→

Σ̃×Sd−1 pr−→ Sd−1. We assume that the restriction of p(τṼ )◦ν̃ to Σ̃0∪([−1, 4]×ã(1))
is a constant map.

This assumption is possible since Σ̃0 ∪ ([−1, 4]× ã(1)) deformation retracts onto

the union of a collar neighborhood of ã in Σ̃Ṽ and ΣV = V ∩ Σ̃Ṽ , over which we

have imposed Assumption 7.17(2).

7.3.5. Homological triviality of F d−1

Ṽ
(ã): Proof of Lemma 7.18 for the second com-

ponent. Once the additivity Lemma 7.20 has been proved, the terms [F d−1

Ṽ
(ã(0))]

and [F d−1

Ṽ
(ã(1))] can be separately altered by homotopies or addition of boundaries

since the two terms are both represented by cycles. We have [F d−1

Ṽ
(ã(0))] = 0 since

C∗,≥(I2, (I2)+) as in the proof of Lemma 7.7 is null-homologous.

For [F d−1

Ṽ
(ã(1))], if the radius of Us is sufficiently small, then Σ̃1 is close to a part

of S(a′) for a (d− 2)-cycle a′ of the boundary of a type I handlebody V ′ included

in a single fiber of Ṽ ,
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and there is a homotopy of Σ̃1 in π−1
V (Us) which shrinks the part near δ and then

make the whole coincide with S(a′) that lies in a single fiber.
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This deformation is similar to the one considered in the proof of Lemma 5.3 (2).

It does not matter if the boundary of Σ̃1 becomes disjoint from the boundary of

Ṽ during the homotopy, as long as it does not go out of Ṽ . Hence F d−1

Ṽ
(ã(1)) is

homologous to F d−1
V ′ (a′) in EC2(Ṽ ). By Lemma 7.7 for the single fiber, we have

[F d−1

Ṽ
(ã(1))] = [F d−1

V ′ (a′)] = 0. Hence we have [F d−1

Ṽ
(ã)] = 0. �

7.3.6. Proof of Lemma 7.18 for the third component. We show that the famlily

[β] ∈ πd−3(Embf0(I
d−2 ∪ I1 ∪ I1, Id)) has a symmetry with respect to the last two

components. According to Proposition 4.12 and Theorem 4.14 of [KoTei], there is

an isomorphism

Dax : πd−2(Imm(I1 ∪ I1, X),Emb(I1 ∪ I1, X))→ Z[π1(X)× C],
where X = Id − Id−2 and C = {t1, t2, t12} is the set of three elements. The

generators are given explicitly in [KoTei, Theorem 4.21]. In particular, the image

of Dax−1(tk12) for k ∈ π1(X) = Z in πd−3(Emb(I1 ∪ I1, X)) is given by replacing a

small arc µ in the first I1-component of I1 ∪ I1 ⊂ X with an Sd−3-family of arcs

B1 ∪A1
∼= I in X , where B1 is the side I × ∂I of a band I × I attached to µ along

{0} × I, and A1 is a smaller arc such that ∂A1 is attached to ∂B1 along {1} × ∂I.
The family of arcs B1 ∪ A1 is given by assuming that

• it is constant (i.e. independent of the parameter) on B1,

• the core I × { 12} of the band I × I goes around the generating loop for

π1(X) k times (thus B1 consists of parallel copies of the core), and

• the Sd−3-family ofA1 swings around the meridian of the second I1-component

of the original embedding I1 ∪ I1 → X .

See [KoTei, Theorem 4.21] for detail. It follows from the ribbon presentation of

B(d− 2, d− 2, 1) in [Wa5, Fig. 6 (move 18)] that our [β] ∈ πd−3(Embf0(I
d−2 ∪ I1 ∪

I1, Id)) is given by the image from Dax
−1(±(t012 − t112)). By the symmetry (up to

sign) of the image from Dax
−1(tk12) with respect to the two components, we have

that [β] is symmetric up to sign with respect to the last two components. This

implies that exchanging the last two components in the construction of β results in

the same element of πd−3(Embf0(I
d−2 ∪ I1 ∪ I1, Id)) up to sign. Hence the proof of

Lemma 7.18 for the second component of [β] works for the third component. �

7.3.7. Homology of EC2(Ṽ ).

Lemma 7.22 (Type II). H2d−3(EC2(Ṽ )) = Λ⊕ Λ′, where

Λ = 〈[ST v(b2)], [ST
v(b3)]〉, Λ′ = 〈[ST v(̃b1)]〉 ⊕H2d−3(Ṽ ×Sd−3 Ṽ ),
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and H2d−3(Ṽ ×Sd−3 Ṽ ) is nonzero only if d = 4, in which case H5(Ṽ ×S1 Ṽ ) has

the following basis.
{
[S1 × (bj × b′ℓ)] | dim bj = dim b′ℓ = 2

}
,

where b′ℓ is a parallel copy of bℓ in ∂V .

Proof. The proof is an analogue of Lemma 7.2(ii). Put Ṽ ◦ = Int Ṽ and K = Sd−3.

We consider the homology exact sequence for the pair

→ Hp+1(Ṽ
◦ ×K Ṽ ◦)

i→ Hp+1(Ṽ
◦ ×K Ṽ ◦, Ṽ ◦ ×K Ṽ ◦ −∆Ṽ ◦)→ Hp(EC2(Ṽ

◦))→

The bundle isomorphism ϕ̃ of Proposition 3.21 induces trivializations of the bun-

dles Ṽ ◦ ×K Ṽ ◦ and EC2(Ṽ
◦) over K, which are natural with respect to the

exact sequence above. Hence the long exact sequence splits into tensor prod-

uct of that of the fiber and the homology of K. It follows from triviality of

H∗(V̊ 2) → H∗(V̊ 2, V̊ 2 − ∆V̊ ) shown in the proof of Lemma 7.2 that the map i

is zero, and we have the isomorphism

Hp(EC2(Ṽ
◦)) ∼= Hp+1(Ṽ

◦ ×K Ṽ ◦, Ṽ ◦ ×K Ṽ ◦ −∆Ṽ ◦)⊕Hp(Ṽ
◦ ×K Ṽ ◦).

By excision, we have

Hd+r(Ṽ
◦ ×K Ṽ ◦, Ṽ ◦ ×K Ṽ ◦ −∆Ṽ ◦) =

{
〈[Dd, ∂Dd]〉 ⊗Hr(Ṽ ) (r ≥ 0),

0 (r < 0),

where the image of 〈[Dd, ∂Dd]〉⊗Hr(Ṽ ) inHd+r−1(EC2(Ṽ
◦)) is spanned by ST v(α)

for r-cycles α of Ṽ generating Hr(Ṽ ). The generators α can be given explicitly. We

have the following commutative diagram

Ṽ
ϕ̃II

∼=
// K × V

∂Ṽ

∪

OO

=
// K × ∂V

∪

OO

where ϕ̃II is a bundle isomorphism by Proposition 3.21. It follows from this that

Hd−2(Ṽ ) is generated by the classes of the following cycles in K × ∂V .

∗ × b2, ∗ × b3, b̃1 = K × b1.

Namely, the image ofHd+(d−2)(Ṽ
◦×K Ṽ

◦, Ṽ ◦×K Ṽ
◦−∆Ṽ ◦) (∗ ≥ 0) inH2d−3(EC2(Ṽ

◦))

is generated by ST v(b2), ST
v(b3) and ST

v (̃b1).

Since by Proposition 3.21 the bundle Ṽ ◦ ×K Ṽ ◦ over K is a trivial V̊ 2-bundle,

we have

H2d−3(Ṽ
◦ ×K Ṽ ◦) ∼= H2d−3(K × V 2).

It follows from Lemma 7.2(i) and the Künneth formula that

H2d−3(K × V 2) = Hd−3(K)⊗Hd(V
2)

=

{
〈[S1 × (bj × bℓ)] | dim bj = dim bℓ = 2〉 (d = 4),

0 (otherwise).
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The expression S1 × (bj × bℓ) also makes sense in Ṽ ◦ ×K Ṽ ◦ since it is a cycle in

∂Ṽ ×K ∂Ṽ = K × (∂V × ∂V ), where the identification is given by the trivialization

∂Ṽ = K × ∂V . This completes the proof. �

By Lemma 7.18, there exist d-chains Gd
Ṽ
(ã2), G

d
Ṽ
(ã3) of EC2(Ṽ ) such that

∂Gd
Ṽ
(ãi) = F d−1

Ṽ
(ãi) (i = 2, 3).

Lemma 7.23. Hd(EC2(Ṽ ), ∂EC2(Ṽ )) has the following basis.

{[Gd
V (a1)], [G

d
Ṽ
(ã2)], [G

d
Ṽ
(ã3)]}

∪
{ {[S(aj)× S(aℓ)+] | dim aj = dim aℓ = 1} (d = 4),

∅ (d > 4).

Proof. As in the proof of Lemma 7.9, the dimension of Hd(EC2(Ṽ ), ∂EC2(Ṽ ))

is determined by Lemma 7.2 and by Poincaré–Lefschetz duality, the linear inde-

pendence of the generating d-chains can be checked by computing the intersection

numbers with the basis of Lemma 7.22. �

7.3.8. Extension of ω′
4,i.

Lemma 7.24 (Type II). For the propagator ω′
4,i of Lemma 7.1, the closed form

ω∂ = ω′
4,i|∂EC2(Ṽ )

on ∂EC2(Ṽ ) extends to a closed form on EC2(Ṽ ).

Proof. We consider the map δ : Hd−1(∂EC2(Ṽ )) → Hd(EC2(Ṽ ), ∂EC2(Ṽ )). We

would like to prove that δ([ω∂ ]) = 0. As in the proof of Lemma 7.10, it suffices

to show that the evaluation of δ([ω∂ ]) with a basis of Hd(EC2(Ṽ ), ∂EC2(Ṽ )) of

Lemma 7.23 vanishes.

Moreover, by an argument similar to the type I case, we need only to check that

the following integrals are zero.∫

Fd−1
V

(a1)

ω∂ ,

∫

Fd−1

Ṽ
(ãi)

ω∂ (i = 2, 3), and

∫

∂(S(aj)×S(aℓ)+)

ω∂ (if d = 4 and dim aj = dim aℓ = 1).

The computations of these integrals are similar to the proof of Lemma 7.10. Namely,

by Lemma 7.27 below, we have∫

Fd−1

Ṽ
(ãi)

ω∂ = 0 and

∫

∂(S(aj)×S(aℓ)+)

ω∂ = 0.

This completes the proof. �

The idea to prove Lemma 7.27 is similar to that of Lemma 7.16. We give some

lemmas to prove Lemma 7.27.

Lemma 7.25. Let (Ṽ , Σ̃) be as above and let ω∂ is the form of Lemma 7.24. Then

we have ∫

p(ã)×
Sd−3 Σ̃

+

Ṽ

ω∂ =

∫

Σ̃
Ṽ
×

Sd−3p(ã)+
ω∂ = 0.
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Proof. We see that ∫

p(ã)×
Sd−3Σ̃Ṽ

[−1]+
ω∂ = 0 (7.8)

since p(ã)×Sd−3 Σ̃Ṽ [−1]+ ⊂ (EΓ − Int Ṽ [3])×Sd−3 Ṽ [0] and Σ̃Ṽ [−1]×Sd−3 p(ã)+ ⊂
Ṽ [0] ×Sd−3 (EΓ − Int Ṽ [3]), and we have explicit formula for ω∂ there. We have

similar identities for the integrals over Σ̃Ṽ [−1]×Sd−3 p(ã)+.

Also, we have ∫

p(ã)×
Sd−3(Σ̃

+

Ṽ
−Int Σ̃+

Ṽ
[−1])

ω∂ = 0

since the domain is included in the subbundle Sd−3 × p−1
Bℓ(([−1, 4]× ∂V )2), where

ω∂ is the pullback of ω1 in a single fiber p−1
Bℓ(([−1, 4] × ∂V )2) and the integral

vanishes by a dimensional reason. We have a similar vanishing of the integral over

(Σ̃+

Ṽ
− Int Σ̃+

Ṽ
[−1])×Sd−3 p(ã). This completes the proof. �

Lemma 7.26. Let (Ṽ , Σ̃) be as above and let ω∂ is the form of Lemma 7.24. Then

we have ∫

T (ã)+A(ã)

ω∂ = 0.

Proof. The identity holds since T (ã) = Sd−3 × T (a) and A(ã) = Sd−3 × A(a) are

included in the subbundle Sd−3× p−1
Bℓ(([−1, 4]× ∂V )2), where ω∂ is the pullback of

ω1 in a single fiber p−1
Bℓ(([−1, 4]× ∂V )2) and the integral vanishes by a dimensional

reason. �

Lemma 7.27. Let ω∂ be as in the proof of Lemma 7.24. We have
∫

Di(Ṽ )

ω∂ = 0 (i = 1, 2, 3), (7.9)

where

(1) D1(Ṽ ) = −p(ã)×Sd−3 Σ̃+ − Σ̃×Sd−3 p(ã)+ +A(ã) + T (ã),

(2) D2(Ṽ ) = diag(ν̃)Σ̃−∑
p,q λ

V ′

pq bp × bq − δ(ΣV ′)ST (∗),
(3) D3(Ṽ ) = ∂(S4(aj)V ′ × S4(aℓ)

+
V ′) (dim aj = dim aℓ = 1, only for d = 4).

The superscript + denotes the parallel copy in Σ+.

Proof. (1) The identity (7.9) for i = 1 holds by Lemmas 7.25 and 7.26.

(2) To prove the identity (7.9) for i = 2, we prove the identity
∫

diag(ν̃)Σ̃

ω∂ = δ(ΣV ′).

Let τṼ be the vertical framing on Ṽ as in Corollary 3.22 and let p(τṼ ) : ST
v(Ṽ )|Σ̃ →

Sd−1 be the composition ST v(Ṽ )|Σ̃
τ
Ṽ−→ Σ̃× Sd−1 pr−→ Sd−1. We use the decompo-

sition Σ̃ = Σ̃0 ∪ Σ̃1 given before Lemma 7.20. By Assumption 7.17 for the vertical

framing τṼ and ν̃ near ∂Ṽ , we see that
∫

diag(ν̃)Σ̃0

ω∂ = 0.
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Moreover, as we assume p(τṼ ) is constant near δ = Σ̃0 ∩ Σ̃1 and near ∂Ṽ (Assump-

tion 7.21), we may assume by a small perturbation of Σ̃1 in Ṽ that the result Σ̃′
1 of

the perturbation is included in a single fiber π−1
V (s), without changing the relative

homotopy class of p(τṼ ) ◦ ν̃Σ̃1
: (Σ̃1, ∂Σ̃1)→ (Sd−1, ∗). Thus we have

∫

diag(ν̃)Σ̃1

ω∂ =

∫

diag(ν̃)Σ̃′
1

ω∂ =

∫

diag(νΣ
V ′ )ΣV ′

ω∂ |π−1
V

(s) = δ(ΣV ′),

∫

D2(Ṽ )

ω∂ =

∫

diag(ν̃)Σ̃0

ω∂ +

∫

diag(ν̃)Σ̃1

ω∂ − δ(ΣV ′) = 0.

(3) The identity (7.9) for i = 3 is for the integral in a single fiber and the same

as Lemma 7.16 (3). �

Appendix A. Smooth manifolds with corners

We follow the convention in [BTa, Appendix] for manifolds with corners, smooth

maps between them and their (strata) transversality. We quote some necessary

terminology from [BTa]. We refer the reader to [Jo] for more detail.

Definition A.1. (1) A manifold with corners of dimension k > 0 is a topolog-

ical manifold X such that every point in X has a neighborhood which is

homeomorphic to [0,∞)m × Rk−m for some integer 0 ≤ m ≤ k. A smooth

manifold with corners is defined by requiring that the transition function

between two such coordinate charts is smooth, as in the next item.

(2) A map between manifolds with corners is smooth if it has a local extension,

at any point of the domain, to a smooth map from a manifold without

boundary, as usual.

(3) A manifold with corners X has the structure of a natural stratification as

follows. Let k = dimX and let Xm (0 ≤ m ≤ k) denote the submanifold of

X consisting of points having a neighborhood homeomorphic to [0,∞)m ×
Rk−m. Then X is the disjoint union X =

⋃
m≥0X

m and we call each Xm

or its component a (codimension m) stratum of X .

(4) Let Y, Z be smooth manifolds with corners, and let f : Y → Z be a bijective

smooth map. This map is a diffeomorphism if both f and f−1 are smooth.

(5) Let Y, Z be smooth manifolds with corners, and let f : Y → Z be a smooth

map. This map is strata preserving if the inverse image by f of a connected

component S of a stratum of Z of codimension i is a union of connected

components of strata of Y of codimension i.

(6) Let X,Y be smooth manifolds with corners and Z be a smooth manifold

without boundary. Let f : X → Z and g : Y → Z be smooth maps. Say

that f and g are (strata) transversal when the following is true: Let U

and V be connected components in strata of X and Y respectively. Then

f : U → Z and g : V → Z are transversal.
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Appendix B. Blow-up in differentiable manifold

B.1. Blow-up of Ri at the origin. Let γ̃1(Ri) denote the total space of the tauto-

logical oriented half-line ([0,∞)) bundle over the oriented Grassmannian G̃1(Ri) =

Si−1. Namely, γ̃1(Ri) = {(x, y) ∈ Si−1 × Ri; ∃t ∈ [0,∞), y = tx}. Then the

tautological bundle is trivial and γ̃1(Ri) is diffeomorphic to Si−1 × [0,∞).

Definition B.1. Let

Bℓ{0}(R
i) = γ̃1(Ri)

and call Bℓ{0}(R
i) the blow-up of Ri at 0.

Let π : Bℓ{0}(R
i) = γ̃1(Ri) → Ri be the map defined by π = p2 ◦ ϕ in the

following commutative diagram:

Bℓ{0}(R
i) = γ̃1(Ri)

ϕ

⊂
//

π
((◗◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

Si−1 × Ri

p2

��

p1 // Si−1

Ri

(B.1)

where ϕ : γ̃1(Ri)→ Si−1×Ri is the embedding which maps a pair (x, y) ∈ Si−1×Ri

with y = tx to (x, y). If y 6= 0, then ϕ(x, y) = ( y
|y| , y). We call π the blow-down

map of the blow-up. Here, the (i− 1)-sphere π−1(0) = ∂γ̃1(Ri) is the image of the

zero section of the tautological bundle p1 ◦ ϕ : γ̃1(Ri)→ Si−1.

Lemma B.2. (1) The restriction of π to the complement of π−1(0) = ∂γ̃1(Ri)

is a diffeomorphism onto Ri − {0}.
(2) The closure of ϕ(γ̃1(Ri)−π−1(0)) in Si−1×Ri agrees with the whole image

of ϕ from γ̃1(Ri).

(3) The map φ : Ri − {0} → Si−1 defined by y 7→ y
|y| extends to a smooth map

φ′ = p1 ◦ ϕ : Bℓ{0}(Ri)→ Si−1, in the sense that the composition

Ri − {0} π−1

−→ IntBℓ{0}(R
i)

ϕ−→ Si−1 × Ri p1−→ Si−1

agrees with φ.

(4) Bℓ{0}(R
i) admits a collar neighborhood ∂Bℓ{0}(R

i)×[0, ε) such that {(0, x)}×
[0, ε) is the preimage of the half-ray {x}×{tx | t ≥ 0} under ϕ, which agrees

with φ′−1(x).

B.2. Blow-up along a submanifold.

Definition B.3. When d > i ≥ 0, we put BℓRi(Rd) = Ri× γ̃1(Rd−i) (the blow-up

of Rd along Ri) and define the projection pBℓ : BℓRi(Rd)→ Rd by idRi × π.

This can be straightforwardly extended to the blow-up BℓX(Y ) of a manifold Y

along a submanifold X , by working on one chart at a time thanks to the naturality

properties of the blow-up with respect to linear isomorphisms ([ArK, Corollary 2.6]).

Lemma B.4. Let Y be a smooth k-manifold with corners and let X be a submani-

fold of Y that is strata transversal to ∂Y . Then BℓX(Y ) is a smooth manifold with

corners.
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Proof. By strata transversality, a standard local model of X at a corner point

x ∈ X ∩∂Y can be given by the subspace [0,∞)m×Rℓ ⊂ [0,∞)m×Rk−m for some

ℓ,m such that 0 ≤ ℓ ≤ k −m. Hence the blow-up along X can be locally given by

[0,∞)m ×BℓRℓ(Rk−m),

which is a manifold with corners. �

Appendix C. Compactification of configuration spaces of a manifold

with boundary

Lemma C.1. Let Y be a smooth m-manifold with nonempty boundary that is a

submanifold of a manifold X without boundary. Let C2(Y ) denote the closure of

p−1
Bℓ(Y ×Y −∆Y ) in C2(X) = Bℓ∆X

(X×X). Then C2(Y ) is the image of a smooth

manifold with corners under a smooth map.

Proof. A standard local model of ∆Y at a corner point in ∂Y × ∂Y ⊂ Y × Y can

be given by the pair ((Rm−1)2 × [0,∞)2,∆Rm−1 ×∆[0,∞)), which is identified with

Rm−1 × (Rm−1 × [0,∞)2, 0×∆[0,∞)). In this model

Rm−1 × (0×∆[0,∞)), Rm−1 × (Rm−1 × (0, 0)), Rm−1 × (0× (0, 0))

give local models of ∆Y , ∂Y × ∂Y,∆∂Y , respectively. We consider the sequence

L1 ⊂ L2 ⊂ L3 of subspaces of Rm−1 × R2, where

L1 = {0}, L2 = Rm−1 × (0, 0),

L3 = L2 ∪ (0×∆R) ∪ (Rm−1 × R× 0) ∪ (Rm−1 × 0× R),

and consider the successive blow-ups Rm−1 × R2 = Y0 ← Y1 ← Y2 ← Y3 along

this sequence. This gives a local model of the blow-ups along the sequence ∆∂Y ⊂
∂Y × ∂Y ⊂ (∂Y × ∂Y ) ∪ ∆Y ∪ (Y × ∂Y ) ∪ (∂Y × Y ). One can see that Y3 is a

smooth manifold with corners.

Let Y ++
3 be the component of Y3 that is projected to Rm−1×[0,∞)2. Then there

is a smooth projection Y ++
3 → Bℓ0×∆[0,∞)

(Rm−1 × [0,∞)2), which is induced by

the smooth projection Y3 → Bℓ0×∆R
(Rm−1 ×R2). Since Rm−1 × Y ++

3 is a smooth

manifold with corners and Rm−1 ×Bℓ0×∆[0,∞)
(Rm−1 × [0,∞)2) is a local model of

C2(Y ) at a corner point in ∂Y × ∂Y , the result follows. �

Definition C.2 (Compactification of C2(Y )). Let Y be as in Lemma C.1. Let

C2(Y ; ∂Y ) denote the manifold with corners obtained by the blow-ups of Y × Y
along the sequence

∆∂Y ⊂ ∂Y × ∂Y ⊂ (∂Y × ∂Y ) ∪∆Y ∪ (Y × ∂Y ) ∪ (∂Y × Y )

of strata as in the proof of Lemma C.1. Let p′Bℓ : C2(Y ; ∂Y ) → Bℓ∆Y
(Y × Y )

denote the smooth projection of Lemma C.1.

Remark C.3. (1) C2(Y ) is not a smooth manifold with corners. In particu-

lar, along the restriction of the normal sphere bundle over ∆Y to ∂∆Y in

∂C2(Y ) = C2(Y )− C2(Y ).
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(2) In Definition C.2, the blow-ups along (Y ×∂Y )∪(∂Y ×Y ) is in fact not nec-

essary since without this we get a diffeomorphic result. This was necessary

in the proof of Lemma C.1 to cut out one piece from Rm × Rm.

(3) A detail about a compactification of Cn(Y ) is given in [CILW].

Lemma C.4. Let Y and C2(Y ) be as in Lemma C.1. Then the maps p′Bℓ : C2(Y ; ∂Y )→
C2(Y ) and incl : C2(V ) → C2(Y ) are homotopy equivalences. Moreover, the in-

duced map p′Bℓ : (C2(Y ; ∂Y ), ∂C2(Y ; ∂Y ))→ (C2(Y ), ∂C2(Y )) is a homotopy equiv-

alence.

Proof. This is evident from the local model in the proof of Lemma C.1, as it is easy

to give explicit deformation retractions. Namely, we observe that C2(Y ; ∂Y ) is

embedded as the complement of the lift of a small tubular neighborhood of ∆∂Y in

C2(Y ) by pressing a small collar neighborhood the boundary of the blow-up along

∂Y × ∂Y into the interior of C2(Y ). Then there is a deformation retract of C2(Y )

onto C2(Y ; ∂Y ), which gives a homotopy inverse. �

Appendix D. Orientations on manifolds and on their intersections

D.1. Orientation of intersection. Suppose M and N are two cooriented sub-

manifolds of R of dimension m and n that intersect transversally. The transver-

sality implies that at an intersection point x, the product o∗R(M)x ∧ o∗R(N)x is a

non-trivial (2r −m− n)-tensor. We define

o∗R(M ⋔ N)x = o∗R(M)x ∧ o∗R(N)x. (D.1)

This depends on the order of the product. WhenM andN are compact andm+n =

r, this convention is the same as the integral interpretation of the intersection

number: ∫

R

ηM ∧ ηN

under the identification Γ(
∧∗ T ∗M) = Γ(

∧∗ TM) by the metric duality. See §4.1
for the η-forms representing the Thom classes of the normal bundles. There are

other interpretations of the intersection of submanifolds, such as
∫
M ηN or

∫
N ηM .

The relationship between these interpretations is as follows:

(−1)m(r−m)

∫

M

ηN =

∫

R

ηM ∧ ηN =

∫

N

ηM .

Indeed, the integral
∫
M
ηN counts an intersection point by +1 if o(M) ∼ o∗R(N),

which is equivalent to o∗R(M) ∧ o∗R(N) ∼ (−1)m(r−m)o(R) by (1.1). The integral∫
N
ηM counts an intersection point by +1 if o(N) ∼ o∗R(M), which is equivalent to

o∗R(M) ∧ o∗R(N) ∼ o(R) by (1.1).

D.2. Integration over direct product. Suppose thatM1 is a submanifold of R1

and M2 is a submanifold of R2, both oriented. Then M1 ×M2 is a submanifold of

R1×R2, which we orient by o(M1)∧o(M2). Suppose thatMi has a geometric dual

Ti of Ri, namely, Mi intersects Ti transversally in one point (we do not assume the

sign of the intersection is +1). Suppose that Ti is coorientable in Ri, and let ηTi
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be an η-form for Ti in Ri (§4.1). Then T1 × T2 is a geometric dual of M1 ×M2 in

R1 ×R2, and moreover the following identity holds.
∫

M1×M2

p∗1ηT1 ∧ p∗2ηT2 =

∫

M1

ηT1

∫

M2

ηT2 . (D.2)

Indeed, the sign of this integral is determined by the sign of the evaluation

(p∗1ηT1 ∧ p∗2ηT2)(o(M1) ∧ o(M2)) = p∗1ηT1(o(M1)) p
∗
2ηT2(o(M2)).

D.3. Proof of Lemma 4.1.

Lemma D.1 (Lemma 4.1). We have the following identities.

(1)

∫

b−
ℓ

ηS(aℓ) = (−1)kd+k+d−1, where k = dim aℓ.

(2)

∫

a+
ℓ

ηS(bℓ) = (−1)d+k, where k = dim aℓ.

(3) Lij
ℓm = (−1)d−1Lk(biℓ, b

j
m) for i, j, ℓ,m such that dim biℓ + dim bjm = d− 1.

Proof. We assume without loss of generality that aℓ and bℓ intersect orthogonally at

one point, say x, in ∂V . Moreover, we assume that S(aℓ) is orthogonal to ∂V at x.

To prove (1), we take a Euclidean local coordinate system (x1, x2, . . . , xd) around x,

in which aℓ agrees with the x1 · · ·xk-plane, bℓ agrees with the xk+1 · · ·xd−1-plane,

the outward normal vector at x corresponds to the positive direction in the xd
coordinate. We let

o(aℓ)x = α∂x1 ∧ · · · ∧ ∂xk, o(bℓ)x = β ∂xk+1 ∧ · · · ∧ ∂xd−1

for α = ±1, β = ±1. Then we see that

o(S(aℓ))x = (−1)kα ∂x1 ∧ · · · ∧ ∂xk ∧ ∂xd,
o(S(bℓ))x = (−1)d−kβ ∂xk+1 ∧ · · · ∧ ∂xd−1 ∧ ∂xd

by the outward-normal-first convention for the boundary orientations. This implies

o∗V (S(aℓ))x = (−1)d−1α∂xk+1 ∧ · · · ∧ ∂xd−1,

o∗V (S(bℓ))x = (−1)k(d−k)+d−kβ ∂x1 ∧ · · · ∧ ∂xk.

(See §1.4 (l) for the convention of coorientation.) By comparing o(bℓ)x and o∗V (S(aℓ))x,
we get ∫

b−
ℓ

ηS(aℓ) = (−1)d−1αβ. (D.3)

Now we recall that α and β are related by the condition Lk(b−ℓ , aℓ) = +1. More

precisely, suppose that the embeddings b−ℓ and aℓ are locally given near x by

b−ℓ (x
′
k+1, . . . , x

′
d−1) = (0, . . . , 0, x′k+1, . . . , x

′
d−1,−ε) (ε > 0),

aℓ(x
′′
1 , . . . , x

′′
k) = (x′′1 , . . . , x

′′
k , 0, . . . , 0, 0).

Applying the rule of §D.2, we have

o(b−ℓ × aℓ)(x′,x′′) = o(b−ℓ )x′ ∧ o(aℓ)x′′ = αβ ∂x′k+1 ∧ · · · ∧ ∂x′d−1 ∧ ∂x′′1 ∧ · · · ∧ ∂x′′k,
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where x′ = (x′k+1, . . . , x
′
d−1), x

′′ = (x′′1 , . . . , x
′′
k). To obtain Lk(b−ℓ , aℓ), we compute

φ(b−ℓ (x
′), aℓ(x

′′)) =
aℓ(x

′′)− b−ℓ (x′)
|aℓ(x′′)− b−ℓ (x′)|

=
(x′′1 , . . . , x

′′
k ,−x′k+1, . . . ,−x′d−1, ε)

|(x′′1 , . . . , x′′k ,−x′k+1, . . . ,−x′d−1, ε)|
,

and we have that φ∗VolSd−1 at (x′, x′′) = (0, 0) is a positive multiple of

(−1)d−1ε dx′′1 ∧ · · · ∧ dx′′k ∧ d(−x′k+1) ∧ · · · ∧ d(−x′d−1)

= (−1)k(−1)k(d−1−k)ε dx′k+1 ∧ · · · ∧ dx′d−1 ∧ dx′′1 ∧ · · · ∧ dx′′k .
Since (x′, x′′) = (0, 0) is the only point in the preimage of the regular value

(0, . . . , 0, 1) ∈ Sd−1 of φ, the sign at (x′, x′′) = (0, 0) gives

1 = Lk(b−ℓ , aℓ) =

∫

b−
ℓ
×aℓ

φ∗VolSd−1 = (−1)kd+kαβ.

By (D.3), we obtain (1).

The assertion (2) follows by using the coorientation of S(bℓ) and the value of αβ

obtained above, as∫

a+
ℓ

ηS(bℓ) = (−1)k(d−k)(−1)d−kαβ = (−1)kd+d(−1)kd+k = (−1)d+k.

The assertion (3) follows from
∫
bi
ℓ
×bjm

ω = Lk(biℓ, b
j
m), and

∫

bi−
ℓ

×bj−m

ηS(ai
ℓ
) ∧ ηS(aj

m) =

∫

bi−
ℓ

ηS(ai
ℓ
)

∫

bj−m

ηS(aj
m)

= (−1)kd+k+d−1 × (−1)k′d+k′+d−1 = (−1)(k+k′)(d+1) = (−1)d−1

by (D.2) and (1), where k = dim aiℓ and k′ = dim ajm = d− 1− k. �

Appendix E. Well-definedness of Kontsevich’s characteristic class

E.1. Integral along the fiber (e.g., [BTu, §6], [GHV, Ch.VII]). We follow [BTu,

p.61–p.62] or [GHV, Ch.II,§5] for the definition of integral along the fiber.

Proposition E.1 (Generalized Stokes theorem, e.g., [GHV, Ch.VII]). For a p-

form α on the total space of a fiber bundle π : E → B with compact oriented n-

dimensional fiber with n ≤ p, the following identity holds.

dπ∗α = π∗dα+ (−1)p−nπ∂
∗α,

where π∂ : ∂vE → B is the restriction of π to the fiberwise boundary∗.

The following identities for the pushforward, which are direct consequences of

the definition of π∗, will be frequently used:

π∗(π
∗β ∧ α) = β ∧ π∗α (E.1)

for forms α on E and β on B. If π : E → B is an orientation preserving diffeomor-

phism between oriented manifolds, then (E.1) gives

π∗(π
∗β) = β. (E.2)

∗The sign convention is different from that of [Wa2], where the boundary was oriented by the

inward-normal-first convention.
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When degα = dimE, we have
∫

B

π∗α =

∫

E

α, (E.3)

by the definition of π∗.
We need to consider pushforward in a fiber bundle with fiber a manifold with

corners. In general, the map Cr(X) → Cs(X) induced by the forgetful map

Cr(X) → Cs(X) may not be a submersion and pushforwards may produce non-

smooth forms. We need only to consider pushforwards of submersions for our

purpose, in which case we have smooth forms as in the following lemma, whose

proof is standard.

Lemma E.2. Suppose that π : E → B is a fiber bundle with fiber a compact oriented

n-manifold with corners. Then pushforward of a smooth form on E gives a smooth

form on B.

E.2. Family of codimension 1 strata. According to the description of the codi-

mension 1 strata of ∂Cv(S
d;∞), the codimension 1 strata of ECv(π) in ∂

vECv(π)

are parametrized by subsets Λ ⊂ {1, 2, . . . , v,∞} such that |Λ| ≥ 2. Let

πΛ : ESΛ(π)→ B (E.4)

denote the SΛ-bundle associated to the given bundle π : E → B.

If ∞ /∈ Λ, the stratum ESΛ(π) can be written as

ESΛ(π) ∼= ECv,Λ(π)× C
∗
r(R

d). (E.5)

Here, r = |Λ|, the identification is induced by the vertical framing τE at the multiple

point, and ECv,Λ(π) is the total space of the Cv,Λ(S
d;∞)-bundle associated to

π. Recall from Definition 2.5 that Cv,Λ(S
d;∞) ∼= Cv−r+1(S

d;∞). Under the

identification (E.5), the restriction of ω(Γ) can be written as

ω(Γ)|ESΛ(π) = ±p∗1 ω(Γ/Λ) ∧ p∗2 ω(ΓΛ), (E.6)

where ΓΛ is the subgraph of Γ spanned by the vertices labelled by Λ, Γ/Λ is the

graph obtained from Γ by contracting ΓΛ, ω(Γ/Λ) and ω(ΓΛ) are defined similarly

as (2.17), where φρ,i may be replaced with φ′i : C
∗
r(R

d) → C
∗
2(R

d) = Sd−1 to

pullback VolSd−1 if i is an edge of ΓΛ. The sign is determined by the permutation

{1, 2, . . . , e} → {edges of Γ/Λ} ∪ {edges of ΓΛ}.
If ∞ ∈ Λ, then we have

ESΛ(π) = ECN−Λ(π) × C
∗
r(R

d), (E.7)

where r = |Λ|, ECN−Λ(π) is the CN−Λ(S
d;∞)-bundle associated to π. Recall

that CN−Λ(S
d;∞) ∼= Cv−r+1(S

d;∞) and we identify C
∗
r(T∞X) with C

∗
r(R

d) as in

§2.3.3. Under the identification (E.7), the restriction of ω(Γ) can be written as

ω(Γ)|ESΛ(π) = ±p∗1 ω(ΓΛc) ∧ p∗2 ω(Γ/Λc), (E.8)

where Λc = N −Λ, and ω(ΓΛc), ω(Γ/Λc) are defined similarly as the previous case.

The sign is also similar to the previous case.
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E.3. Proof of Theorem 2.16. By the generalized Stokes theorem (Proposition E.1),

we have

dI(Γ) = (−1)(d−3)k+ℓCv(π)
∂
∗ ω(Γ) = (−1)(d−3)k+ℓ

∑

Λ⊂{1,...,v,∞}
|Λ|≥2

πΛ∗ ω(Γ).

Moreover, by Lemmas E.3, E.4 and E.5 below, we have

dI(Γ) = (−1)(d−3)k+ℓ
∑

Λ⊂{1,...,v,∞}
|Λ|=2

πΛ∗ ω(Γ) = (−1)(d−3)k+ℓ+1 I(δΓ),

where πΛ is the bundle projection (E.4). This completes the proof of (1) (that I is

a chain map).

For (2) (independence of ω), we consider the cylinder Cv(I × π) : I ×ECv(π)→
I ×B, which is a Cv(S

d;∞)-bundle obtained by direct product with I. We extend

the vertical framing τE on I ×E naturally by the product structure. Now we take

two propagators ω0 and ω1 on the ends {0, 1} × EC2(π). Then by Corollary 2.14,

there exists a propagator ω on I × EC2(π) for the extended framing that extends

both ω0 and ω1 on the ends. Then the form ω(Γ) on I×ECv(π) is defined by (2.17)

by using the extended propagator ω. Let Cv(π)
I = p◦Cv(I×π) : I×ECv(π)→ B,

where p : I ×B → B is the projection. Then by the generalized Stokes theorem for

this I × Cv(S
d;∞)-bundle, we have

dCv(π)
I
∗ω(Γ) = ǫ Cv(π)

I∂
∗ ω(Γ)

= ǫ
{
Cv(π)∗ω1(Γ)− Cv(π)∗ω0(Γ)−

∫

I

Cv(π)
∂
∗ω(Γ)

}
,

where ǫ = (−1)(d−3)k+ℓ−1. This is the identity between (d − 3)k + ℓ-forms on B

and
∫
I is the pushforward along I. The linear combination of this identity for a

δ-cocycle γ =
∑

ΓW (Γ)Γ of G even
ℓ,k gives rise to

dI(γ)(ω) = ǫ
{
I(γ)(ω1)− I(γ)(ω0) +

∫

I

I(δγ)(ω)
}

= ǫ
{
I(γ)(ω1)− I(γ)(ω0)

}

by a similar argument as in the proof of (1) and by δγ = 0. This implies (2).

The assertion (3) (invariance under homotopy of τE) can be proved similarly by

extending the vertical framing over I × E by the given homotopy, and by Corol-

lary 2.14 again.

The assertion (4) (naturality under bundle map) follows since the bundle map

over f can be used to pullback the propagator. Since the integral along the fiber

commutes with the pullback by a bundle map: Cv(π)∗f̃∗ = f∗Cv(π
′)∗, the result

follows. �

Lemma E.3. When |Λ| ≥ 3,

πΛ∗ ω(Γ) = 0.

Proof. When ∞ /∈ Λ, let ΓΛ be as defined in §E.2. When ∞ ∈ Λ, let ΓΛ be the

Γ/Λc in §E.2. There are two cases to be considered.

(1) Every vertex of ΓΛ is at least trivalent.

(2) ΓΛ has a vertex with valence 2, 1 or 0.
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Figure 18. The automorphism ιΛ.

Case (1): Suppose that ΓΛ has v′ vertices and e′ edges. The condition (1) implies

the inequality

2e′ − 3v′ ≥ 0. (E.9)

The product structure (E.5) or (E.7) and the decomposition (E.6) or (E.8) allows

us to integrate ω(ΓΛ) first along the fiber C
∗
r(R

d), where r = |Λ| = v′. The integral

of ω(ΓΛ) is non-trivial only if degω(ΓΛ) = dimC
∗
r(R

d), that is,

(d− 1)e′ = dv′ − d− 1. (E.10)

This is because if degω(ΓΛ) < dimC
∗
r(R

d) the integral of ω(Γ/Λ) vanishes. If

degω(ΓΛ) > dimC
∗
r(R

d) the result of the integral of ω(ΓΛ) along C
∗
r (R

d) is a form

of positive degree that is the pullback of some form on one point, which vanishes.

Now (E.9) and (E.10) imply (d− 3)v′ + 2d+ 2 ≤ 0, which is a contradiction when

d ≥ 3.

Case (2): In this case, we follow [Les1, Lemma 2.20], which also uses a symmetry

due to Kontsevich ([Kon, Lemma 2.1]), and [Les1, Lemma 2.18]†. If ΓΛ has a

bivalent vertex, say a, then there are two edges of ΓΛ incident to a, say with the

boundary vertices {a, b} and {a, c}, respectively. Here, we may assume that b 6= c, as

we may assume Γ does not have multiple edges, since otherwise ω(Γ) = 0 if d is even.

Let C be the subset of Cr(Rd) consisting of configurations x = (. . . , xa, xb, xc, . . .)

such that xb+xc−xa = xe for some e 6= a, where we assume the points are labelled

by Λ. Then C is a disjoint union of codimension d submanifolds, which has measure

0. We consider C∗
r (R

d) as the subspace of Cr(Rd) by letting

C∗
r (R

d) =
{
(y1, . . . , yr) ∈ (Rd)r | |y1|2 + · · ·+ |yr|2 = 1, yi 6= yj if i 6= j, yr = 0

}
.

Let ψ : Cr−1(Rd)× {0} → C∗
r (R

d) denote the projection ψ(x, 0) = x/|x|.
We consider the automorphism ι′Λ : Cr(Rd)− C → Cr(Rd)− C, which

takes xa to x′a := xb + xc − xa and fixes other points.

See Figure 18. Let ιΛ : C∗
r (R

d)−C → C∗
r (R

d)−C denote the induced map ψ ◦ ι′Λ,
which is an automorphism. Note that C ∩C∗

r (R
d) is codimension d in C∗

r (R
d), too.

Then ι∗Λω(ΓΛ) = −ω(ΓΛ) because

ι∗Λ(φ
′∗
i υ ∧ φ′∗ℓ υ) = ι∗Λφ

′∗
i υ ∧ ι∗Λφ′∗ℓ υ = φ′∗ℓ υ ∧ φ′∗i υ = −φ′∗i υ ∧ φ′∗ℓ υ

†There are other approaches to prove this lemma ([LV, KuTh]), which work with

compactifications.
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(υ = VolSd−1) and ι∗Λ acts trivially on other edge forms. Here the relations ι∗Λφ
′∗
i υ =

φ′∗ℓ υ etc. follow from the commutativity of the following diagram and Lemma 2.11.

C∗
r (R

d)
φ′
ℓ //

ιΛ

��

Sd−1

ι

��

(. . . , xa, xb, xc, . . .)
✤ //

❴

��

xa−xc

|xa−xc|
❴

��

C∗
r (R

d)
φ′
i // Sd−1 (. . . , x′a, xb, xc, . . .)

✤ // x′
a−xb

|x′
a−xb|

Moreover, the automorphism ιΛ preserves the orientation of C∗
r (R

d)−C. Since the
integral of ω(ΓΛ) on the noncompact manifold C∗

r (R
d)−C is absolutely convergent

and C has measure zero, we have that the integral of ω(ΓΛ) over C∗
r (R

d) can be

replaced with that over C∗
r (R

d)− C, and
∫

C∗
r (R

d)−C

ω(ΓΛ) =

∫

ιΛ(C∗
r (R

d)−C)

ω(ΓΛ) =

∫

C∗
r (R

d)−C

ι∗Λω(ΓΛ) = −
∫

C∗
r (R

d)−C

ω(ΓΛ).

Note that the integral depends on the orientation of the domain of integral. Hence

the integral πΛ∗ω(Γ) vanishes.
If ΓΛ has a univalent vertex, say a, then there is an edge i of ΓΛ incident to a,

say with the boundary vertices {a, b}. Let C∗
r−1,i(R

d) = C∗
r−1(R

d−1) × Sd−1. We

consider the map q : C∗
r (R

d)→ C∗
r−1,i(R

d) given by

q(x1, . . . , xr) = (µx1, . . . , µ̂xa, . . . , µxr, (xa − xb)/|xa − xb|)
(the factor µxa deleted), where µ = 1/

√
1− |xa|2. Then the form ω(ΓΛ) restricted

to C∗
r (R

d) is basic with respect to q, namely, it is the pullback of some (d − 1)e′-
form on the manifold C∗

r−1,i(R
d) of one less dimension since r = |Λ| ≥ 3. It follows

that the integral of ω(ΓΛ) over C
∗
r (R

d) is zero. The case where ΓΛ has a zerovalent

vertex is similar to this case. �

Lemma E.4. When |Λ| = 2 and ∞ ∈ Λ,

πΛ∗ ω(Γ) = 0.

Proof. If Λ = {j,∞} for some j 6= ∞, and if j has valence ℓ in Γ, then the

form ω(Γ/Λc) on C
∗
2(R

d) in (E.8) is (VolSd−1)ℓ for the volume form VolSd−1 on

C
∗
2(R

d) = Sd−1, which vanishes. �

Lemma E.5. When |Λ| = 2 and ∞ /∈ Λ,

πΛ∗ ω(Γ) = −I(Γ/Λ, induced ori).

Proof. Let Λ = {a, b} ⊂ N . We first describe the orientation on the stratum SΛ

induced from that of Cv(S
d;∞). The stratum SΛ is the face produced by the

blow-up along the locus {xa = xb}. A neighborhood of a generic point of SΛ can

be canonically identified with that of a generic point of ∂Bℓ∆
Rd
(Rd×Rd)× (Rd)n−2

in Bℓ∆
Rd
(Rd × Rd) × (Rd)n−2. Here, the order of the factors Rd is not important

since d is even and their permutation does not affect the orientation. Coordinates

on Rd × Rd with respect to the decomposition ∆Rd ×∆⊥
Rd are given by the map

Rd × Rd → ∆Rd ×∆⊥
Rd ; (t, t′) 7→

(( t+ t′

2
,
t+ t′

2

)
,
( t− t′

2
,
t′ − t
2

))
.
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We fix the following identifications

̟ : Rd ∼=→ ∆Rd ; ̟(t) = (t, t),

̟⊥ : Rd ∼=→ ∆⊥
Rd ; ̟⊥(t) = (−t, t).

(E.11)

The pushforwards of the orientation ∂t = ∂t1 ∧ · · · ∧ ∂td of Rd, where ∂ti =
∂
∂ti

,

gives

̟∗(∂t) ∧̟⊥
∗ (∂t) = (∂t1 + ∂t′1) ∧ · · · ∧ (∂td + ∂t′d) ∧ (∂t′1 − ∂t1) ∧ · · · ∧ (∂t′d − ∂td)

= 2d ∂t ∧ ∂t′,
which agrees with the orientation of Rd×Rd. Thus ̟∗(∂t) and ̟⊥

∗ (∂t) give natural
orientations on the subspaces ∆Rd and ∆⊥

Rd .

Since Bℓ∆
Rd
(Rd ×Rd) = ∆Rd ×Bℓ{0}(∆⊥

Rd), it suffices to determine the orienta-

tion induced on ∆Rd ×∂Bℓ{0}(∆⊥
Rd) from ̟∗(∂t)∧̟⊥

∗ (∂t) by the outward-normal-

first convention. Further, as ̟∗(∂t) is of even degree, we need only to determine

the induced orientation of ∂Bℓ{0}(R
d) from ∂t. Since the outward normal vector

at a point u of ∂Bℓ{0}(R
d) = Sd−1 is the preimage of −u under the blow-down

map, the induced orientation on ∂Bℓ{0}(R
d) is −VolSd−1 . Thus we have obtained

the following formula of the orientation of ∂Bℓ∆
Rd
(Rd × Rd)× (Rd)n−2:

−̟⊥
∗ (VolSd−1) ∧̟∗(∂t

(a)) ∧
∧

j 6=a,b

∂t(j), (E.12)

where we identified ∂Bℓ{0}(R
d) with the unit sphere Sd−1 ⊂ Rd via the isotopy in

Bℓ{0}(R
d) generated by the preimages of the radial rays from the origin.

Next, we need to determine the sign caused by the permutation of propagators

in ω(Γ). Namely, as in (E.6), one may transform as

ω(Γ)|ESΛ(π) = ±p∗2ω(ΓΛ) ∧ p∗1ω(Γ/Λ) = p∗2ω(ΓΛ) ∧ (±p∗1ω(Γ/Λ)). (E.13)

The term ±p∗1ω(Γ/Λ) corresponds to the induced orientation o(Γ/i) in (2.4). Hence

it turns out that the ± is in fact +. By (E.12) and (E.13), the integral along the

fiber gives

πΛ∗ω(Γ) = −I(Γ/Λ, induced ori).

�

Appendix F. Homology class of the diagonal

Proposition F.1. Let S be a closed oriented manifold. Suppose that H∗(S;Z)
is free and has finite Z-bases {ei} and {e∗i }, which are represented by oriented

submanifold cycles {γi} and {γ∗i }, respectively, and are dual to each other, namely,

γi ·γ∗j = δij (the algebraic intersection number, α ·β = 0 if dimα+dimβ 6= dimS).

Then we have

[∆S ] =
∑

i

ei ⊗ e∗i

in H∗(S × S;Z).
This can be deduced from the cohomology version in [MS, Theorem 11.11], except

for a sign. We leave the reader to check the sign.
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