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1 Introduction

In this article, manifolds and maps between them are assumed to be C∞, spaces of
mappings between manifolds are equipped with the weak C∞-topology. For a compact
manifold X, let Diff∂(X) denote the group of self-diffeomorphisms of X that restrict to
the identity on the boundary. For a compact submanifold Y ⊂ X, let Emb∂(Y,X) denote
the space of embeddings Y → X that agree on ∂Y with the inclusion Y ⊂ X. Let
Diff(X) and Emb(Y,X) denote the group of self-diffeomorphisms of X and the space of
embeddings Y → X, respectively, without the boundary condition. The homotopy types
of these spaces have been extensively studied by various methods. We study the following
problem.

Problem 1.1. What is π0Diff∂(D
3 × S1)?

The group π0Diff∂(D
3×S1) is sometimes called the mapping class group of D3×S1 and

is of interest from several viewpoints. Here we shall mention an insight of D. Gabai from
the “4-dimensional light bulb problem”, about which some results were stated in [Ga] and
developed in detail in his joint work with R. Budney [BG]. Gabai pointed out that there
is an important application of the study of π0Diff∂(D

3×S1) to the 4-dimensional smooth
Schoenflies conjecture ([Ki, Problem 4.32]).

Conjecture 1.2 (4-dimensional smooth Schoenflies conjecture). Any smooth embedding
S3 → S4 can be extended to a smooth embedding D4 → S4. In other words, any embedding
S3 → S4 is trivial up to isotopy, or π0Emb(S3, S4) = 0.

This is one of the major problems in 4-dimensional topology. It is known that any
smooth 3-sphere in S4 bounds a “topological” 4-disk in S4 (Mazur [Ma]). Thus, if Con-
jecture 1.2 would be false, then there would exist a smooth 3-sphere in S4 which bounds
an exotic 4-disk, i.e., a 4-manifold homeomorphic to but not diffeomorphic to the standard
4-disk, contradicting to the 4-dimensional smooth Poincaré conjecture.

In 3-dimension, Hatcher proved that the restriction map Emb(D3,R3) → Emb(S2,R3)
is a homotopy equivalence, by proving that the induced maps on homotopy groups are
isomorphisms ([Hat]). The result for π0 is the smooth Schoenflies theorem in 3-dimension
(Alexander’s theorem, [Hat2]). On the other hand, we have proved that the restriction
map πkEmb(D4,R4) → πkEmb(S3,R4) is not surjective for some higher k in [Wa1].
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Gabai related Diff∂(D
3×S1) with Emb∂(D

3, D3×S1) by applying Cerf–Palais’ theorem.
We considerD3 as a submanifold ofD3×S1 via the standard inclusion ι : D3 → D3×{∗} ⊂
D3 × S1. According to Cerf–Palais theorem ([Ce, Pa]), the restriction map

Diff∂(D
3 × S1) → Emb∂(D

3, D3 × S1),

given by g 7→ g ◦ ι, is a locally trivial fiber bundle with fiber having the homotopy type
of Diff∂(D

4). In [BG], a stronger result is proved. It is proved in [BG] that there is a
homotopy equivalence

Diff∂(D
3 × S1) ≃ Emb∂(D

3, D3 × S1)×Diff∂(D
4).

π0Emb∂(D
3, D3 × S1) and π0Emb∂(D

3, D4) are related in the following way. There are
natural embeddings

Emb∂(D
3, D3 × (−ε, ε))

i→ Emb∂(D
3, D3 × S1)

λ→ Emb∂(D
3, D3 × R),

where i is induced by inclusion (−ε, ε) ⊂ S1 and λ is given by the (unique) lift in the
infinite cyclic cover of D3 × S1. One may see that both π0Emb∂(D

3, D3 × (−ε, ε)) and
π0Emb∂(D

3, D3 ×R) are isomorphic to π0Emb∂(D
3, D4) as sets. Since λ ◦ i is homotopic

to the identity, the natural map i∗ : π0Emb∂(D
3, D3 × (−ε, ε)) → π0Emb∂(D

3, D3 ×
S1) is injective, and the image of i∗ is precisely the subset of elements that survives in
π0Emb∂(D

3, D3 × R).

Theorem 1.3 (Budney–Gabai [BG]). (a) Explicitly constructed a subgroup of the abelian
group π0Diff∂(D

3 × S1) of infinite rank by their “barbells” (with twists).

(b) π0Emb∂(D
3, D3 × S1) is naturally an abelian group. The subgroup of (a) has image

in π0Emb∂(D
3, D3 × S1) of infinite rank.

(c) The image of the subgroup of (a) in π0Diff0(S
3×S1) has infinite rank, where Diff0(S

3×
S1) is the subgroup of Diff(S3 × S1) consisting of diffeomorphisms homotopic to the
identity.

(d) The subgroup of π0Diff0(S
3×S1) of (a) has image in π0Emb0(S

3, S3×S1) of infinite
rank, where Emb0(S

3, S3 × S1) is the space of embeddings S3 → S3 × S1 homotopic
to the standard inclusion S3 → S3 × {∗} ⊂ S3 × S1.

(e) Every counterexample of the 4-dimensional Schoenflies conjecture can be obtained
from π0Diff∂(D

3 × S1).

(f) An element δ of π0Emb∂(D
3, D3 × S1) is a counterexample of the 4-dimensional

Schoenflies conjecture if and only if λ∗(δ) ̸= 0, i.e., nontrivial after lifting to cyclic
covers.

(g) π0Emb∂(D
3, D3 × S1) ∼= π1Emb∂(D

2, D4).

This is a part of Budney and Gabai’s results in [BG]. They proved (a), (b), (c),
(d) by utilizing “embedding calculus” for the space of embeddings of circles and arcs in
manifolds, which is a homotopy theoretic method. Roughly, a “barbell” introduces a
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1-parameter crossing change between two arcs in a 4-manifold, given by spinning an arc
along a meridian 2-sphere of another arc. D. Gabai remarked that the geometric criterion
(f) had been known by Mazur since many years ago, and Gabai rediscovered the same
criterion. They applied the criterion (f) to see that their construction does not give a
counterexample to the 4-dimensional smooth Schoenflies conjecture. The barbells with
twists and the results (c), (d) have been added in the recently updated version (v3) of
[BG].

The main result of this article is another approach to the statement (a) of Theorem 1.3,
obtained independently of [BG]. Before stating the result, we recall the fact that Diff∂(X)
has a classifying space BDiff∂(X) and that the homotopy group πkBDiff∂(X) is identified
with the set of isomorphism classes of X-bundles π : E → Sk that is standard near
the fiber of the base point π−1(∗) and near ∂X. Also, there is a natural isomorphism
πkDiff∂(X) ∼= πk+1BDiff∂(X) of groups.

Theorem 1.4 ([Wa2]). Surgery on “Θ-graph claspers” generates a subgroup of π1BDiff∂(D
3×

S1) of infinite rank, where by a Θ-graph we mean a graph consisting of two vertices with
three edges connecting them.

Roughly, a Θ-graph clasper surgery is defined by twisting a small neighborhood of an
embedded Θ-graph in D3 × S1 in some complicated way. This is a higher dimensional
analogue of the theory of graph claspers due to Goussarov and Habiro ([Gu, Hab]). We
detect nontrivial elements by using a version of “configuration space integrals”, which is a
higher dimensional analogue of invariants of Marché ([Ma]) and Lescop ([Les]) defined for
knots and 3-manifolds. The general method of configuration space integrals for families
of manifolds is originally due to Kontsevich ([Ko]).

We emphasize that there seems to be no difficulty to generalize this theorem to arbitrary
trivalent graphs by an analogue of Lescop’s method on equivariant perturbative invariant
([Les]), which fits to our graph clasper construction. General trivalent graphs would then
give many nontrivial elements of πkBDiff∂(D

3 × S1) for all k ≥ 1.
It would be natural to ask how different the two constructions “barbells” and “Θ-graph

claspers” in π0Diff∂(D
3 × S1) are. We checked that the two constructions are equivalent,

in the sense of the following proposition.

Proposition 1.5 ([Wa3]). In π1BDiff∂(D
3 × S1), we have the following.

(i) A “Θ-graph clasper” can be written by one “strict barbell”.

(ii) A “strict barbell” can be written by a sum of “Θ-graph claspers”.

By using this proposition and a result of [BG] saying that some strict barbells generates
π1Embfr(S1, S3 × S1)f0 , where Embfr(S1, S3 × S1)f0 is the component of the inclusion

f0 : S
1 =→ S1×{∗} ⊂ S1×S3 in the space of framed embeddings S1 → S3×S1, we see that

Θ-graph claspers give infinitely many nontrivial elements of π0Diff0(S
3×S1), which survive

in π0Emb0(S
3, S3×S1). This can also be obtained just by combining Proposition 1.5 and

Budney–Gabai’s stronger Theorem 1.3 (a), (c) instead of our Theorem 1.4. We will explain
more about this corollary later.

Remark 1.6. We have seen that some more elements constructed by collections of basic
claspers can be written by sums of Θ-graphs. D. Gay used Cerf theory to describe

3



general handle structures for elements of π0Diff∂(D
4) ([Gay]). By considering similarly

for D3 × S1, it could be seen that 1-parameter families generated by collections of basic
claspers are in the 1,2-handle pairs subgroup of π0Diff∂(D

3×S1) (or of π0 of the group of
pseudoisotopies of D3 × S1). These observations suggest that Θ-graphs generate a large
part of π1BDiff∂(D

3×S1) and that Budney–Gabai’s invariant W3 detects that part since
Proposition 1.5 and Theorem 1.3(a) imply that W3 detects Θ-graphs.

2 Configuration space integrals

We use a version of configuration space integrals to detect nontrivial elements of π1BDiff∂(D
3×

S1). We have the following result.

Proposition 2.1. “Configuration space integrals” gives a homomorphism

ZΘ : π1BDiff∂(D
3 × S1) →

3∧
Q[t±1]/∼,

where the equivalence relation ∼ is generated by the relation f ∧ g ∧ h ∼ tnf ∧ tng ∧ tnh
for n ∈ Z.

This is an analogue of the invariant for knots and 3-manifolds with trivial Alexander
polynomial by Marché and Lescop ([Ma, Les]), valued in Sym3Q[t±1]/∼.

The invariant ZΘ is defined roughly as follows. Instead of D3×S1, we take X = R3×S1

for a technical reason and we consider S3 = R3 ∪{∞}. An element of π1BDiff∂(D
3 ×S1)

can be represented by an X-bundle

X → E
π→ S1

that is standard near infinity and the base point of S1, with structure group Diffc(X),
the group of diffeomorphisms with compact support. Note that there is a homotopy
equivalence Diff∂(D

3×S1) ≃ Diffc(X). Then we consider the associated bundle to π with
fiber a compactified configuration space of two labeled points in X:

Conf2(X) → EConf2(π) → S1.

Here, Conf2(X) is a compactification of the configuration space Conf2(X) = X×X \∆X ,
which is obtained from (S3×S1)× (S3×S1) by blowing-up strata involving the diagonal
∆S3×S1 and ∞ × S1. The interior of Conf2(X) is canonically identified with Conf2(X)
and the inclusion Conf2(X) → Conf2(X) is a homotopy equivalence.

We take three generic chains P1, P2, P3 of the total space EConf2(π) which represent
the same element of H6(EConf2(π), ∂EConf2(π);Q[t±1]) and which are “standard” near
the diagonal and infinity. The boundary condition is a bit complicated, but the chains
with the boundary condition can be found by rather a straightforward analogue of [Les,
Proposition 12.2], which is based on a computation of twisted homology of the config-
uration space. Then ZΘ is defined by the triple intersection in EConf2(π) for generic
chains:

ZΘ =
1

6
⟨P1, P2, P3⟩.
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Remark 2.2. In [Wa2], a detailed proof of the well-definedness of ZΘ is given in a slightly
different manner. The detailed proof given in [Wa2] of the corresponding fact is for the
closed manifold Σ× S1, where Σ is the Poincaré homology 3-sphere. Then we show that
the image of

π1BDiff∂(D
3 × S1) → π1BDiff0(Σ× S1)

is nontrivial. The boundary condition for Pi is simpler for closed manifold. Neverthe-
less, the computation of the twisted homology of the configuration space is not different
between Σ× S1 and D3 × S1.

A Θ-graph clasper surgery is defined for each embedding φ : (Θ-graph) → X with
some choice of edge orientations and labels on edges. The homotopy class of φ can be
described by a triple (a, b, c) of integers modulo the relation (a, b, c) ∼ (a+n, b+n, c+n).

Proposition 2.3 ([Wa2]).

ZΘ

(
surgery on φ

)
= [ta ∧ tb ∧ tc] + [t−a ∧ t−b ∧ t−c].

The computation can be done by an analogue of [Les, KT] for fiber bundles. The
integers a, b, c can be arbitrary, and it can be checked that the image of ZΘ is of infinite
rank. This proves Theorem 1.4.

3 Claspers and barbells

Budney and Gabai considered another fiber sequence

Diff∂(D
3 × S1) → Diff0(S

3 × S1) → Embfr(S1, S3 × S1)f0

obtained by Cerf–Palais’ theorem. The horizontal sequence in the following diagram is
exact by the long exact sequence of a fibration:

π1Embfr(S1, S3 × S1)f0
∂ // π1BDiff∂(D

3 × S1) i //

ZΘ

��

π1BDiff0(S
3 × S1)

∧3Q[t±1]/∼

(1)

where ∂ is given by taking the (family of) exteriors and i is induced by the inclusion.
We shall only explain how a special case of Proposition 1.5 shows that the Θ-graph

clasper surgeries give nontrivial elements of π0Diff0(S
3 × S1). Budney and Gabai com-

puted the group π1Embfr(S1, S3×S1)f0 , following a method of Arone–Szymik ([AS]), and
constructed a generating set by barbells. Let Lknot be the image of ZΘ ◦ ∂ in the above
diagram, and let LΘ be the image of ZΘ of the subgroup generated by Θ-graph clasper
surgeries. We proved the following lemma by using a 4-dimensional analogue of Habiro’s
clasper moves.

Lemma 3.1. Lknot ⊂ 2LΘ.
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We remark that the subgroup generated by Θ-graph clasper surgeries is included in
that of general barbell with twists of [BG]. As LΘ has infinite rank, it follows that
∂ has nontrivial cokernel, which is infinitely generated and isomorphic to the image in
π1BDiff0(S

3 × S1).

Remark 3.2. The result we have obtained for Diff0(S
3×S1) is weaker than Budney–Gabai’s

(Theorem 1.3(c)). We only found infinitely many nontrivial elements in π0Diff0(S
3×S1),

whereas Budney and Gabai found a subgroup of infinite rank.

4 Concluding remark

Problem 4.1. What is the correct analogue of the content of §3 in 3-dimension? Does it
lead to any nontrivial result?

The analogues of the groups in the sequence in (1) would be related to finite type
invariants of knots in homology S2 × S1, homology D2 × S1, and homology S2 × S1,
respectively, of degree 1. This might be used to prove the existence of new finite type
invariant of homology S2 × S1. One could also study higher odd dimensions first: one
could study the exact sequence

π2n−2Embfr(S1, S2n × S1)f0
∂→ π2n−2BDiff∂(D

2n × S1)
i→ π2n−2BDiff0(S

2n × S1)

for 2n+1 ≥ 5. Budney and Gabai also have some results for the first two groups in higher
odd dimensions ([BG]).
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