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Abstract

We generalize Lusztig’s geometric construction of the PBW bases of
finite quantum groups of type ADE under the framework of [Varagnolo-
Vasserot, J. reine angew. Math. 659 (2011)]. In particular, every PBW
basis of such quantum groups is proven to yield a semi-orthogonal collec-
tion in the module category of the KLR-algebras. This enables us to prove
Lusztig’s conjecture on the positivity of the canonical (lower global) bases
in terms of the (lower) PBW bases. In addition, we verify Kashiwara’s
problem on the finiteness of the global dimensions of the KLR-algebras of
type ADE.

Introduction

Canonical/global bases of quantum groups, defined by Lusztig [Lu90a] and
Kashiwara [Kas91] subsequently, open up scenery in many areas of mathematics
which are visible only through quantum groups [Ari05, Lus08, Nak06]. They are
certain bases of quantum groups different from the natural quantum analogue
of the classical Poincaré-Birkhoff-Witt theorem (that are usually referred to as
the PBW bases).

Among these, the interaction between canonical/global bases of quantum
groups and affine Hecke algebras of type A (and their cyclotomic quotients)
yields many representation-theoretic consequences [Ari96, Ari05]. It is general-
ized to more general quantum groups and their representations by Khovanov-
Lauda, Rouquier, Varagnolo-Vasserot, Zheng, Webster, and Kang-Kashiwara
[KL09, Rou08, VV11, Zhe08, Web10, KK12] as a categorical counter-part of the
theory of canonical/global bases.

More precisely, to each symmetric Kac-Moody algebra g, they introduced a
series of algebras Rβ (that we call the KLR-algebras) whose simple/projective
modules give rise to the upper/lower global bases of the corresponding positive
half of the quantum group of g. There the emphasis is on the categorification of
quantum groups, and their results are strong enough to generalize and categorify
Ariki’s result [Ari96] in these cases (Lauda-Vazirani [LV11] and [VV11, KK12]).

This story is sufficient to recover deep representation-theoretic properties,
without the PBW bases. The main observation of this paper is that the PBW
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bases still exist in the world of KLR-algebras, with essential new features which
are visible only with the KLR-algebras.

To see what we mean by this, we prepare some notations: Let A := Z[t±1].
Let g be a simple Lie algebra of type ADE, and let U+ be the positive half of the
A-integral version of the quantum group of g (see e.g. Lusztig [Lus93] §1). Let
Q+ := Z≥0I, where I is the set of positive simple roots. We have a weight space
decomposition U+ =

⊕
β∈Q+ U

+
β . We have the Weyl group W of g with its

set of simple reflections {si}i∈I and the longest element w0. For each β ∈ Q+,
we have a finite set B(∞)β which parameterizes a pair of distinguished bases
{Gup(b)}b∈B(∞)β and {Glow(b)}b∈B(∞)β of Q(t)⊗A U

+
β . The Khovanov-Lauda-

Rouquier algebra Rβ is a certain graded algebra whose grading is bounded from
below with the following properties:

• The set of isomorphism classes of simple gradedRβ-modules (up to grading
shifts) is also parameterized by B(∞)β ;

• For each b ∈ B(∞)β , we have a simple graded Rβ-module Lb and its
projective cover Pb. Let Lb′ ⟨k⟩ be the grade k shift of Lb′ , and let [Pb :
Lb′ ⟨k⟩]0 be the multiplicity of Lb′ ⟨k⟩ in Pb (that is finite). Then, we have

Glow(b) =
∑

b′∈B(∞)β ,k∈Z

tk[Pb : Lb′ ⟨k⟩]0Gup(b′);

• For each β, β′ ∈ Q+, there exists an induction functor

⋆ : Rβ-gmod×Rβ′ -gmod ∋ (M,N) 7→M ⋆N ∈ Rβ+β′ -gmod;

• K :=
⊕

β∈Q+ Q(t) ⊗A K(Rβ-gmod) is an associative algebra isomorphic

to Q(t) ⊗A U+ with its product inherited from ⋆ (and the t-action is a
grading shift).

As mentioned earlier, Lusztig [Lu90a] studied the geometric side of the story.
By applying the results in [K12a], we first observe the following:

Theorem A (Kashiwara’s problem = Corollary 2.9). For every β ∈ Q+, the
algebra Rβ has finite global dimension.

This problem is raised by Kashiwara several times in his lectures on KLR
algebras. We remark that in type A case, Theorem A follows through a Morita
equivalence with an affine Hecke algebra of type A (see e.g. Opdam-Solleveld
[OS09]).

For quantum groups, a way to construct a (nice) PBW basis depends on an
arbitrary sequence i := (i1, i2, · · · , iℓ) ∈ Iℓ corresponding to a reduced expres-
sion of w0. Associated to i, we have a total order <i on each B(∞)β (see §4).
We define two collections of graded Rβ-modules {Ẽi

b}b∈B(∞)β and {Ei
b}b∈B(∞)β

as follows (cf. Corollary 4.12): 1) Ẽi
b is obtained from Pb by annihilating all

Lb′ ⟨k⟩ with b′ <i b and k ≥ 0, and 2) Ei
b is obtained from Ẽi

b by annihilating
all Lb ⟨k⟩ with k > 0.

Since Rβ is a graded algebra with finite global dimension, we set

⟨M,N⟩gEP :=
∑
i≥0

(−1)igdim extiRβ
(M,N) ∈ Q(t) for M,N ∈ Rβ-gmod,
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where homRβ
(M,N) :=

⊕
k∈Z HomRβ-gmod(M ⟨k⟩ , N).

By construction, we deduce that the graded character expansion coefficient
[M : Ẽi

b′ ] ∈ Z((t)) is well-defined for every M ∈ Rβ-gmod.

The above definitions of Ẽi
b and E

i
b look natural, but not apparently related

to a PBW basis of U+.

Theorem B (Orthogonality relation = Theorem 4.11 and its corollaries). In
the above setting, we have:

1. For b <i b
′, we have ext•Rβ

(Ei
b, E

i
b′) = {0};

2. We have

extiRβ
(Ẽi

b, (E
i
b′)

∗) =

{
C (b ̸= b′, i = 0)

{0} (otherwise)
, and

⟨
Ẽi

b, (E
i
b′)

∗
⟩
gEP

= δb,b′ ;

3. The graded Rβ-module Ẽi
b is a self-extension of Ei

b in the sense that there

exists a separable decreasing filtration of Ẽi
b whose associated graded is a

direct sum of grading shifts of Ei
b.

Since we have ⟨Pb, Lb′⟩gEP = δb,b′ by definition, the pairing ⟨•, •⟩gEP is essen-
tially the Lusztig inner form (cf. [Lus93] 1.2.10–1.2.11). Therefore, Theorem

B guarantees that our {Ẽi
b}b, and {Ei

b}b must be the categorifications of the
lower/upper PBW bases by their characterization. We remark that some of
these modules seem to coincide with those obtained by Kleshchev-Ram [KR11],
Webster [Web10], and Benkart-Kang-Oh-Park [BKOP].

Theorem C (Lusztig’s conjecture = Theorem 4.16). We have [Pb : Ẽi
b′ ] =

[Ei
b′ : Lb] for each b, b′ ∈ B(∞)β. In particular, we have

[Pb : Ẽ
i
b′ ] ∈ N[t] for every b, b′ ∈ B(∞)β .

Theorem C is conjectured by Lusztig as his comment on [Lu90a] in his
webpage. Note that Theorem C is established in Lusztig [Lu90a] Corollary 10.7
when the reduced expression i satisfies the condition so-called “adapted” (see
§3).
Example D (g = sl3). We have I = {α1, α2}. The standard generators E1, E2 of
U+ correspond to projective modules P1 and P2 of Rα1

and Rα2
, respectively.

Then, one series of the (lower) PBW basis {Ẽi
b}b are:

P
(c1)
1 ⋆ Q

(c2)
21 ⋆ P

(c3)
2 for c1, c2, c3 ≥ 0.

Here X(c) denotes a direct factor of X ⋆X ⋆ · · · ⋆ X (c times). Note that P
(c1)
1 ,

Q
(c2)
21 , and P

(c3)
2 are maximal self-extensions of simple modules (this is a general

phenomenon). We have a short exact sequence

0→ P1 ⋆ P2 ⟨2⟩ −→ P2 ⋆ P1 −→ Q21 → 0,

which is a categorical version of E2E1 − t2E1E2.
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The organization of this paper is as follows: In the first section, we collect
several results from [K12a] needed in the sequel. The second section is the
preliminary on the KLR algebra. In the third section, we abstract and categorify
Lusztig’s arguments in the setting of the Hall algebras [Lus98] to the KLR
algebras by utilizing the results of [K12a] and the induction theorem imported
from [KL87, Lus02, K09]. This includes categorifications of Saito’s reflection
actions [Sai94] that we call the Saito reflection functors. In the fourth section, we
depart from geometry and utilize the properties of the Saito reflection functors
established in the earlier sections to deduce Theorem B and Theorem C.

After submitted the initial version this paper, there appeared another (al-
gebraic) proofs of the main results of this paper by McNamara [Mac12] and
Brundan-Kleshchev-McNamara [BKM12], which also covers non-simply laced
cases. Thier approach is quite different from that of ours, and one merit of our
approach is that it provides a bridge between geometric/algebraic view points,
typically seen in the Saito reflection functor used in the proof.

Acknowledgement: The author is indebted to Masaki Kashiwara for helpful
discussions, comments, and lectures on this topic. He is also indebted to Yoshiyuki
Kimura for helpful discussions, comments, and pointing out some errors. He is also
grateful to Michela Varagnolo for pointing out a reference.

This version corrects a couple of errors in the published version of this paper, most

notably these in Lemma 4.2 2) noticed by Euiyong Park and communicated to the

author by Myungho Kim. The author wants to express his thanks to them.

Convention

An algebra R is a (not necessarily commutative) unital C-algebra. A variety
X is a separated reduced scheme X0 of finite type over some localization ZS of Z
specialized to C. It is called a G-variety if we have an action of a connected affine
algebraic group scheme G flat over ZS on X0 (specialized to C). As in [BBD82]
§6 and [BL94], we transplant the notion of weights to the derived category
of (G-equivariant) constructible sheaves with finite monodromy on X. Let us
denote by Db(X) (resp. D+(X)) the bounded (resp. bounded from the below)
derived category of the category of constructible sheaves on X, and denote by
D+

G(X) the G-equivariant derived category of X. We have a natural forgetful
functor D+

G(X)→ D+(X), whose preimage of Db(X) is denoted by Db
G(X). For

an object of Db
G(X), we may denote its image in Db(X) by the same letter.

Let vec be the category of Z-graded vector spaces (over C) bounded from
the below so that its objects have finite-dimensional graded pieces. In partic-
ular, for V = ⊕i≫−∞V

i ∈ vec, its graded dimension gdimV :=
∑

i t
i dimVi ∈

Z((t)) makes sense (with t being indeterminant). We define V ⟨m⟩ by setting
(V ⟨m⟩)i := Vi−m.

In this paper, a graded algebra A is always a C-algebra whose underlying
space is in vec. Let A-gmod be the category of finitely generated graded A-
modules. For E,F ∈ A-gmod, we define homA(E,F ) to be the direct sum of
gradedA-module homomorphisms homA(E,F )

j of degree j (= HomA-gmod(E ⟨j⟩ , F )).
We employ the same notation for extensions (i.e. extiA(E,F ) = ⊕j∈Zext

i
A(E,F )

j).
We denote by IrrA the set of isomorphism classes of graded simple modules of
A, and denote by Irr0A the set of isomorphism classes of graded simple modules
of A up to grading shifts. Two graded algebras are said to be Morita equivalent
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if their graded module categories are equivalent. For a graded A-module E, we
denote its head by hdE, and its socle by socE.

For Q(t) ∈ Q(t), we set Q(t) := Q(t−1). For derived functors RF or LF
of some functor F , we represent its arbitrary graded piece (of its homology
complex) by R∗F or L∗F , and the direct sum of whole graded pieces by R•F or
L•F . For example, R∗F ∼= R∗G means that RiF ∼= RiG for every i ∈ Z, while
R•F ∼= R•G means that

⊕
i RiF ∼=

⊕
i RiG.

When working on some sort of derived category, we suppress R or L, or
the category from the notation for simplicity when there is only small risk of
confusion.

1 Recollection from [K12a]

Let G be a connected reductive algebraic group. Let X be a G-variety. Let Λ
be the labelling set of G-orbits of X. For λ ∈ Λ, we denote the corresponding
G-orbit by Oλ. For λ, µ ∈ Λ, we write λ ⪯ µ if Oλ ⊂ Oµ. We assume the
following property (♠):

(♠)1 The set Λ is finite. For each λ ∈ Λ, we fix xλ ∈ Oλ(C);

(♠)2 For each λ ∈ Λ, the group StabG(xλ) is connected.

We have a (relative) dualizing complex ωX := p!C ∈ Db
G(X), where p : X→

{pt} is the G-equivariant structure map. We have a dualizing functor

D : Db
G(X)

op ∋ C• 7→ Hom•(C•, ωX) ∈ Db
G(X).

We have a D-autodual t-structure of Db
G(X) whose truncation functor and

perverse cohomology functor are denoted by τ and pH, respectively.
For each λ ∈ Λ, we have a constant local system Cλ on Oλ. We have

inclusions iλ : {xλ} ↪→ X and jλ : Oλ ↪→ X. Let Cλ := (jλ)!Cλ[dimOλ] and
ICλ := (jλ)!∗Cλ[dimOλ], which we regard as objects of Db

G(X). We denote by

Ext•G(•, •) : Db
G(X)

op ×Db
G(X) −→ D+(pt)

Ext•(•, •) : Db(X)op ×Db(X) −→ Db(pt)

the Ext (as bifunctors) of Db
G(X) and D

b(X), respectively.
For each λ ∈ Λ, we fix Lλ ∈ Db(pt) as a non-zero graded vector space with

a trivial differential which satisfies the self-duality condition Lλ
∼= L∗

λ. We set

L :=
⊕
λ∈Λ

Lλ ⊠ ICλ ∈ Db
G(X).

By construction, we find an isomorphism L ∼= DL.
We form a graded Yoneda algebra

A(G,X) =
⊕
i∈Z

Ai
(G,X) :=

⊕
i∈Z

ExtiG(L,L)

whose degree is the cohomological degree. We denote by B(G,X) the algebra
A(G,X) by taking L =

⊕
λ∈Λ ICλ (and call it the basic ring of A(G,X)). The
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algebra B(G,X) is Morita equivalent to A(G,X), and hence all the arguments in
the below are independent of the choice of L, which we suppress for simplicity.
We also drop (G,X) in case the meaning is clear from the context. It is standard
that {Lλ}λ∈Λ forms a complete collection of graded simple A-modules up to
grading shifts.

Lemma 1.1 (see [K12a] 1.2). For a graded A-module M , its graded dual M∗

is again a graded A-module. 2

For each λ ∈ Λ, we set

Pλ := Ext•G(ICλ,L) =
⊕
i∈Z

ExtiG(ICλ,L).

Each Pλ is a graded projective left A-module. By construction, we have

A ∼=
⊕
λ∈Λ

L∗
λ ⊠ Ext•G(ICλ,L) =

⊕
λ∈Λ

Pλ ⊠ L∗
λ

as left A-modules. It is standard that Pλ is an indecomposable A-module whose
head is isomorphic to Lλ (cf. [CG97] §8.7). We have an idempotent eλ ∈ A so
that Pλ

∼= Aeλ as left graded A-modules (up to a grading shift).
For each λ ∈ Λ, we set

K̃λ := Ext•G(Cλ,L) and Kλ := H•i!λL[dimOλ].

We call Kλ a standard module, and K̃λ a dual standard module of A.
We regard each ICλ as a simple mixed perverse sheaf (of weight zero) in the

category of mixed sheaves on X via [BBD82] §5 and §6, and each Lλ as a mixed
(complex of) vector space of weight zero. I.e. each Li

λ is pure of weight i in the
sense that the geometric Frobenius acts by qi/2id if we switch the base field to
the algebraic closure of a finite field of cardinality q. It follows that the algebra
A acquires a (mixed) weight structure.

We consider the following property (♣):

(♣)1 The algebra A is pure of weight 0;

(♣)2 For each λ ∈ Λ, the perverse sheaf ICλ is pointwise pure;

Theorem 1.2 ([K12a] 3.5). Assume the properties (♠) and (♣). Then, the
algebra A has finite global dimension. 2

For M ∈ A-gmod and i ∈ Z, we define

[M : Lλ ⟨i⟩]0 := dim HomA-gmod(Pλ ⟨i⟩ ,M) ∈ Z and

[M : Lλ] := gdim homA(Pλ,M) ∈ Z((t)).

We have [M : Lλ] =
∑

i∈Z[M : Lλ ⟨i⟩]0ti ∈ Z((t)).

Theorem 1.3 ([K12a] 1.6). Assume the properties (♠) and (♣):

1. We have

[K̃λ : Lµ] = 0 = [Kλ : Lµ] for λ ̸⪯ µ and [Kλ : Lλ] = 1;
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2. For each µ ̸⪯ λ, we have

ext•A(K̃λ, K̃µ) = {0} and ext•A(Kλ,Kµ) = {0};

3. For each λ ∈ Λ, we have

K̃λ
∼= Pλ/

(∑
µ≺λ

AeµPλ

)
;

4. Each K̃λ is a successive self-extension of Kλ. In addition, we have

[K̃λ : Lλ] = gdimH•
StabG(xλ)

(pt).

For M ∈ A-gmod and N ∈ A-gmod, we define its graded Euler-Poincaré
characteristic as:

⟨M,N⟩gEP :=
∑
i≥0

(−1)igdim extiA(M,N) ∈ Z((t)). (1.1)

Let j : Y ↪→ X be the inclusion of an open G-stable subvariety. We form a
graded algebra

A(G,Y) := Ext•G(j
∗L, j∗L).

Lemma 1.4 ([K12a] 4.4). Let j : Y ↪→ X be the inclusion of an open G-stable
subvariety. Then, Y satisfies the conditions (♠) and (♣) if X does. 2

Proposition 1.5 ([K12a] 4.3, 4.5). Let i : Oλ ↪→ X be the inclusion of a closed
G-orbit (with λ ∈ Λ), and let j : Y ↪→ X be its complement. Then, we have an

isomorphism A(G,X)/(A(G,X)eλA(G,X))
∼=−→ A(G,Y). 2

Corollary 1.6 ([K12a] 4.2, 4.3, 4.5). Let j : Y ↪→ X be the inclusion of an open
G-stable subvariety. We have

ext∗A(A,Lµ) ∼= ext∗A(A(G,Y), Lµ)

for every µ ∈ Λ so that Oµ ⊂ Y. 2

2 Quivers and the KLR algebras

Let Γ = (I,Ω) be an oriented graph with the set of its vertex I and the set of
its oriented edges Ω. Here I is fixed, and Ω might change so that the underlying
graph Γ0 of Γ is a fixed Dynkin diagram of type ADE. We refer Ω as the
orientation of Γ. We form a path algebra C[Γ] of Γ.

For h ∈ Ω, we define h′ ∈ I to be the source of h and h′′ ∈ I to be the sink
of h. We denote i ↔ j for i, j ∈ I if and only if there exists h ∈ Ω such that
{h′, h′′} = {i, j}. A vertex i ∈ I is called a sink of Γ if h′ ̸= i for every h ∈ Ω.
A vertex i ∈ I is called a source of Γ if h′′ ̸= i for every h ∈ Ω.

Let Q+ be the free abelian semi-group generated by {αi}i∈I , and let Q+ ⊂ Q
be the free abelian group generated by {αi}i∈I . We sometimes identify Q with
the root lattice of type Γ0 with a set of its simple roots {αi}i∈I . LetW =W (Γ0)
denote the Weyl group of type Γ0 with a set of its simple reflections {si}i∈I .
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The groupW acts on Q via the above identification. Let R+ :=W{αi}i∈I ∩Q+

be the set of positive roots of a simple Lie algebra with its Dynkin diagram Γ0.
An I-graded vector space V is a vector space over C equipped with a direct

sum decomposition V =
⊕

i∈I Vi.
Let V be an I-graded vector space. For β ∈ Q+, we declare dimV = β

if and only if β =
∑

i∈I(dimVi)αi. We call dimV the dimension vector of V .
Form a vector space

EΩ
V :=

⊕
h∈Ω

HomC(Vh′ , Vh′′).

We set GV :=
∏

i∈I GL(Vi). The group GV acts on EΩ
V through its natural

action on V . The space EΩ
V can be identified with the based space of C[Γ]-

modules with its dimension vector β. Let Mi be a unique C[Γ]-module (up to an
isomorphism) with dim Mi = αi.

For each k ≥ 0, we consider a sequence m = (m1,m2, . . . ,mk) ∈ Ik. We

abbreviate this as ht(m) = k. We set wt(m) :=
∑k

j=1 αmj ∈ Q+. For β =

wt(m) ∈ Q+, we set htβ = k. For a sequence m′ := (m′
1, . . . ,m

′
k′) ∈ Ik

′
, we set

m+m′ := (m1, . . . ,mk,m
′
1, . . . ,m

′
k′) ∈ Ik+k′

.

For i ∈ I and k ≥ 0, we understand that ki = (i, . . . , i) ∈ Ik.
For each β ∈ Q+, we set Y β to be the set of all sequences m such that

wt(m) = β. For each β ∈ Q+ with htβ = n and 1 ≤ i < n, we define an action
of {σi}n−1

i=1 on Y β as follows: For each 1 ≤ i < n and m = (m1, . . . ,mn) ∈ Y β ,
we set

σim := (m1, . . . ,mi−1,mi+1,mi,mi+2, . . . ,mn).

It is clear that {σi}n−1
i=1 generates a Sn-action on Y β . In addition, Sn naturally

acts on a set of integers {1, 2, . . . , n}.

Definition 2.1 (Khovanov-Lauda [KL09], Rouquier [Rou08]). Let β ∈ Q+ so
that n = htβ. We define the KLR algebra Rβ as a unital algebra generated
by the elements κ1, . . . , κn, τ1, . . . , τn−1, and e(m) (m ∈ Y β) subject to the
following relations:

1. deg κie(m) = 2 for every i, and

deg τie(m) =


−2 (mi = mi+1)

1 (mi ↔ mi+1)

0 (otherwise)

;

2. [κi, κj ] = 0, e(m)e(m′) = δm,m′e(m), and
∑

m∈Y β e(m) = 1;

3. τie(m) = e(σim)τie(m), and τiτje(m) = τjτie(m) for |i− j| > 1;

4. τ2i e(m) = Qm,i(κi, κi+1)e(m);

5. For each 1 ≤ i < n, we have

τi+1τiτi+1e(m)−τiτi+1τie(m)

=

{
Qm,i(κi+2,κi+1)−Qm,i(κi,κi+1)

κi+2−κi
e(m) (mi+2 = mi)

0 (otherwise)
;
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6. τiκke(m)− κσi(k)τie(m) =


−e(m) (i = k,mi = mi+1)

e(m) (i = k − 1,mi = mi+1)

0 (otherwise)

.

Here we set hm,i := #{h ∈ Ω | h′ = mi, h
′′ = mi+1} and

Qm,i(u, v) =


1 (mi ̸= mi+1,mi ̸↔ mi+1)

(−1)hm,i(u− v) (mi ↔ mi+1)

0 (otherwise)

,

where u, v are indeterminants. 2

Remark 2.2. Note that the algebra Rβ a priori depends on the orientation Ω
through Qm,i(u, v). Since the graded algebras Rβ are known to be mutually iso-
morphic for any two choices of Ω (cf. Theorem 2.3), we suppress this dependence
in the below.

For an I-graded vector space V with dimV = β, we define

FΩ
β :=

{
({Fj}htβj=0, x)

∣∣∣∣∣ x ∈ EΩ
V . For each 0 < j ≤ htβ,

Fj ⊂ V is an I-graded vector subspace,
Fj+1 ⊊ Fj , and satisfies xFj ⊂ Fj+1.

}
and

BΩβ :=

{
{Fj}htβj=0

∣∣∣∣∣Fj ⊂ V is an I-graded vector subspace s.t. Fj+1 ⊊ Fj .

}
.

We have a projection

ϖΩ
β : FΩ

β ∋ ({Fj}htβj=0, x) 7→ {Fj}htβj=0 ∈ B
Ω
β ,

which is GV -equivariant. For each m ∈ Y β , we have a connected component

FΩ
m := {({Fj}htβj=0, x) ∈ F

Ω
β | dimFj/Fj+1 = αmj+1 ∀j} ⊂ FΩ

β ,

that is smooth of dimension dΩm. We set BΩm := ϖΩ
β (F

Ω
m), that is an irreducible

component of BΩβ . Let

πΩ
m : FΩ

m ∋ ({Fj}htβj=0, x) 7→ x ∈ EΩ
V

be the second projection that is also GV -equivariant. The map πΩ
m is projective,

and hence
LΩ
m := (πΩ

m)! C [dΩm]

decomposes into a direct sum of (shifted) irreducible perverse sheaves with their
coefficients in Db(pt) (Gabber’s decomposition theorem, [BBD82] 6.2.5). We set
LΩ
β :=

⊕
m∈Y β LΩ

m. Let e(m) be the idempotent in End(LΩ
β ) so that e(m)LΩ

β =

LΩ
m. Since πΩ

m is projective, we conclude that DLΩ
m
∼= LΩ

m for each m ∈ Y β ,
and hence

DLΩ
β
∼= LΩ

β . (2.1)

Theorem 2.3 (Varagnolo-Vasserot [VV11]). Under the above settings, we have
an isomorphism of graded algebras:

Rβ
∼=

⊕
i∈Z

ExtiGV
(LΩ

β ,LΩ
β ).

In particular, the RHS does not depend on the choice of an orientation Ω of Γ0.

9



For each m,m′ ∈ Y β , we set

Rm,m′ := e(m)Rβe(m
′) =

⊕
i∈Z

ExtiGV
(LΩ

m′ ,LΩ
m).

We set Sβ ⊂ Rβ to be a subalgebra which is generated by e(m) (m ∈ Y β)
and κ1, . . . , κn.

For each β1, β2 ∈ Q+ with htβ1 = n1 and htβ2 = n2, we have a natural
inclusion:

Rβ1
⊠Rβ2

∋ e(m)⊠ e(m′) 7→ e(m+m′) ∈ Rβ1+β2

Rβ1
⊠ 1 ∋ κi ⊠ 1, τi ⊠ 1 7→ κi, τi ∈ Rβ1+β2

1⊠Rβ2
∋ 1⊠ κi, 1⊠ τi 7→ κi+n1

, τi+n1
∈ Rβ1+β2

.

This defines an exact functor

⋆ : Rβ1
⊠Rβ2

-gmod ∋M1⊠M2 7→ Rβ1+β2
⊗Rβ1

⊠Rβ2
(M1⊠M2) ∈ Rβ1+β2

-gmod.

It is straight-forward to see that ⋆ restricts to an exact functor in the category
of graded projective modules:

⋆ : Rβ1
⊠Rβ2

-proj ∋M1 ⊠M2 7→ Rβ1+β2
⊗Rβ1

⊠Rβ2
(M1 ⊠M2) ∈ Rβ1+β2

-proj.

It is straight-forward to define an analogous functor

⋆ :

n⊗
i=1

Rβi
-gmod→ Rβ-gmod

whenever β =
∑n

i=1 βi.
If i ∈ I is a source of Γ and f = (fh)h∈Ω ∈ EΩ

V , then we define

ϵ∗i (f) := dimker
⊕

h∈Ω,h′=i

fh ≤ dimVi.

If i ∈ I is a sink of Γ and f = (fh)h∈Ω ∈ EΩ
V , then we define

ϵi(f) := dim coker
⊕

h∈Ω,h′′=i

fh ≤ dimVi.

Each of ϵ∗i (f) or ϵi(f) do not depend on the choice of a point in a GV -orbit.
Hence, ϵi or ϵ

∗
i induces a function on EΩ

V that is constant on each GV -orbit, and
a function on the set of isomorphism classes of simple GV -equivariant perverse
sheaves on EΩ

V through a unique open dense GV -orbit of its support whenever
i is a source or a sink.

Proposition 2.4 (Lusztig [Lus91] 6.6). For each i ∈ I, the functions ϵi and
ϵ∗i descend to functions on the set of isomorphism classes of simple graded Rβ-
modules (up to degree shift).

Proof. Note that [Lus91] 6.6 considers only ϵi, but ϵ
∗
i is obtained by swapping

the order of the convolution operation.
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Theorem 2.5 (Khovanov-Lauda [KL09], Rouquier [Rou08], Varagnolo-Vasserot
[VV11]). In the above setting, we have:

1. For each i ∈ I and n ≥ 0, Rnαi
has a unique indecomposable projective

module Pni up to grading shifts;

2. The functor ⋆ induces a Z[t±1]-algebra structure on

K :=
⊕

β∈Q+

K(Rβ-proj);

3. The algebra K is isomorphic to the integral form U+ of the positive part
of the quantized enveloping algebra of type Γ0 by identifying [Pni] with the
n-th divided power of a Chevalley generator of U+;

4. The above isomorphism identifies the classes of indecomposable graded pro-
jective Rβ-modules (β ∈ Q+) with an element of the lower global basis of
U+ in the sense of [Kas91];

5. There exists a set B(∞) =
⊔

β∈Q+ B(∞)β that parameterizes indecompos-
able projective modules of

⊕
β∈Q+ Rβ-gmod. This identifies the functions

ϵi, ϵ
∗
i (i ∈ I) with the corresponding functions on B(∞).

Proof. The first assertion is [KL09] 2.2 3), the second and the third assertions
are [KL09] 3.4, and the fourth assertion is [VV11] 4.4. Based on this, the fifth
follows from Proposition 2.4. See also Theorem 2.12 in the below.

Remark 2.6. The coincidence of the lower global basis and the canonical basis
is proved by Lusztig [Lu90b] and Grojnowski-Lusztig [GL93]. We freely utilize
this identification in the below.

Proposition 2.7. In the above setting, the conditions (♠) and (♣) are satisfied.

Proof. The condition (♠)1 is the Gabriel theorem (on the classification of finite
algebras, applied to C[Γ]). The condition (♠)2 follows by the fact that StabG(xλ)
is the automorphism group of a C[Γ]-module M, which must be an open dense
part of a linear subspace.

We set ZΩ
β := FΩ

β ×EΩ
V
FΩ
β . By [VV11] 1.8 (b) and 2.23 (or [CG97] 8.6.7),

we have an isomorphism HGV
• (ZΩ

β )
∼= Ext•GV

(LΩ
β ,LΩ

β ) as graded algebras (here
we warn that the grading on the LHS is imported from the RHS, and is not the
standard one; cf. [VV11] 1.9). Since GV is a reductive group, we know that
each GV -orbit of (BΩβ )2 is an affine bundle over a connected component of BΩβ
(see e.g. [CG97] §3.4). By [VV11] 2.11, each fiber of the GV -equivariant map
ZΩ
β → (BΩβ )2 induced from ϖΩ

β is a vector space. Therefore, we conclude that

ZΩ
β is a union of finite increasing sequence of closed subvarieties

∅ = ZΩ
β,0 ⊊ ZΩ

β,1 ⊊ ZΩ
β,2 ⊊ · · · ⊊ ZΩ

β,ℓ = ZΩ
β ,

where each ZΩ
β,j\ZΩ

β,j−1 is an affine bundle over a connected component of BΩβ .
This implies the purity of HGV

• (ZΩ
β ), and hence (♣)1 follows.

The condition (♣)2 is Lusztig [Lu90a] 10.6.
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Corollary 2.8 (Lusztig [Lu90a]). Every simple GV -equivariant perverse sheaf
on EΩ

V appears as a non-zero direct summand of LΩ
β up to a degree shift.

Proof. By Proposition 2.7 and Theorem 2.3, we deduce that the assertion is
equivalent to #Irr0Rβ = #(GV \EΩ

V ). This follows from a standard bijection
between the set of isomorphism classes of indecomposable C[Γ]-modules and a
basis of U+ à la Ringel [Rin90] (or a consequence of the Gabriel theorem).

Theorem 2.9 (Kashiwara’s problem). The algebra Rβ has finite global dimen-
sion.

Proof. Apply Theorem 1.2 to (2.1), Proposition 2.7, and Corollary 2.8.

Thanks to Corollary 2.8 and Theorem 2.5 5), we have an identification
B(∞)β ∼= GV \EΩ

V , where V is an I-graded vector space with dimV = β.
By regarding GV \EΩ

V as the space of C[Γ]-modules with its dimension vector
β, each b ∈ B(∞)β gives rise to (an isomorphism class of) a C[Γ]-module Mb.
Let us denote by OΩ

b the GV -orbit of EΩ
V corresponding to b ∈ B(∞)β . Each

b ∈ B(∞)β defines an indecomposable graded projective module Pb of Rβ with
simple head Lb that is isomorphic to its graded dual L∗

b (see §1).
The standard module Kb and the dual standard module K̃b in §1 depends

on the choice of Ω since the Fourier transform interchanges the closure relations.
Therefore, we denote by KΩ

b (resp. K̃Ω
b ) the standard module (resp. the dual

standard module) of Lb arising from EΩ
V .

Example 2.10. If β = mαi for m ≥ 1 and i ∈ I, then the set B(∞)mαi
is a

singleton. Let Lmi and Pmi be unique simple and projective graded modules
of Rmαi

up to grading shifts, respectively. The standard module Kmi and the

dual standard module K̃mi do not depend on the choice of Ω in this case. We
have Lmi

∼= Kmi and Pmi
∼= K̃mi, and

[K̃mi : Kmi] = gdimC[x1, · · · , xm]Sm .

Let QΩ
β be the fullsubcategory of Db

GV
(EΩ

V ) consisting all complexes whose

direct summands are degree shifts of that of LΩ
β .

Let β ∈ Q+ with htβ = n. Let ≤B be the Bruhat order of Sn with respect
to the set of simple reflections {σ1, σ2, . . . , σn−1}. For each w ∈ Sn and its
reduced expression

w = σj1σj2 · · ·σjL ,

we set τw := τj1τj2 · · · τjL . Note that τw depends on the choice of a reduced
expression.

Theorem 2.11 (Poincaré-Birkoff-Witt theorem [KL09] 2.7). We have equalities
as vector spaces:

Rβ =
⊕

w∈Sn,m∈Y β

τwSβe(m) =
⊕

w∈Sn,m∈Y β

Sβτwe(m),

regardless the choices of τw. 2
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Let β ∈ Q+ so that htβ = n. For each i ∈ I and k ≥ 0, we set

Y β
k,i := {m = (mj) ∈ Y β | m1 = · · · = mk = i} and

Y β,∗
k,i := {m = (mj) ∈ Y β | mn = · · · = mn−k+1 = i}.

In addition, we define two idempotents of Rβ as:

ei(k) :=
∑

m∈Y β
k,i

e(m), and e∗i (k) :=
∑

m∈Y β,∗
k,i

e(m).

Theorem 2.12 (Lusztig [Lus91] §6, Lauda-Vazirani [LV11] 2.5.1). Let β ∈ Q+

and i ∈ I. For each b ∈ B(∞)β and i ∈ I, we have

ϵi(b) = max{k | ei(k)Lb ̸= {0}} and
ϵ∗i (b) = max{k | e∗i (k)Lb ̸= {0}}.

Moreover, ei(ϵi(b))Lb and e
∗
i (ϵ

∗
i (b))Lb are irreducible Rϵi(b)αi

⊠Rβ−ϵi(b)αi
-module

and Rβ−ϵ∗i (b)αı
⊠ Rϵ∗i (b)αi

-module, respectively. In addition, if we have distinct
b, b′ ∈ B(∞)β so that ϵi(b) = k = ϵi(b

′) with k ≥ 0, then ei(k)Lb and ei(k)Lb′

are not isomorphic as an Rkαi
⊠Rβ−kαi

-module. 2

Lemma 2.13. Let i ∈ I and let b1, b2 ∈ B(∞). Let Lb denote an irreducible
constituent of Lb1 ⋆ Lb2 . In case ϵi(b1) > 0 = ϵi(b2), then we have ϵi(b1) ≥
ϵi(b) > 0. In case ϵi(b1) = 0 = ϵi(b2), then we have ϵi(b) = 0. The same is true
if we replace ϵi with ϵ

∗
i and b1 with b2.

Proof. By [KL09] §2.6, we deduce that the e(m)(Lb1 ⋆ Lb2) ̸= {0} implies that
m is obtained by the shuffle of m1 and m2 so that e(m1)Lb1 ̸= {0} ̸= e(m2)Lb1 .
This yield all the assertions by their definitions.

3 Saito reflection functors

Keep the setting of the previous section. Let Ωi be the set of edges h ∈ Ω with
h′′ = i or h′ = i. Let siΩi be a collection of edges obtained from h ∈ Ωi by
setting (sih)

′ = h′′ and (sih)
′′ = h′. We define siΩ := (Ω\Ωi) ∪ siΩi and set

siΓ := (I, siΩ). Note that Γ0 = (siΓ)0.
Let w0 ∈W be the longest element. Choose a reduced expression

w0 = si1si2 · · · siℓ .

We denote by i := (i1, . . . , iℓ) ∈ Iℓ the data recording this reduced expression.
We say i is adapted to Ω (or Γ) if each ik is a sink of sik−1

· · · si1Γ.
Let V be an I-graded vector space with dimV = β. For a sink i of Γ, we

define

iE
Ω
V :=

{
(fh)h∈Ω ∈ EΩ

V | coker(
⊕

h∈Ω,h′′=i

fh :
⊕
h′

Vh′ → Vi) = {0}
}
.

For a source i of Γ, we define

iEΩ
V :=

{
(fh)h∈Ω ∈ EΩ

V | ker(
⊕

h∈Ω,h′=i

fh : Vi →
⊕
h′′

Vh′′) = {0}
}
.
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Let Ω be an orientation of Γ so that i ∈ I is a sink. Let β ∈ Q+ ∩ siQ+.
Let V and V ′ be I-graded vector spaces with dimV = β and dimV ′ = siβ,

respectively. We fix an isomorphism ϕ : ⊕j ̸=iVj
∼=−→ ⊕j ̸=iV

′
j as I-graded vector

spaces. We define:

iZ
Ω
V,V ′ :=

{
{(fh)h∈Ω, (f

′
h)h∈siΩ, ψ}

∣∣∣∣∣
(fh) ∈ iE

Ω
V , (f

′
h) ∈ iEsiΩ

V ′ ,
ϕfh = f ′

hϕ for h ̸∈ Ωi

ψ : V ′
i

∼=−→ ker(
⊕

h∈Ωi
fh :

⊕
h Vh′ → Vi)

}
.

We have a diagram:

EΩ
V iE

Ω
V

? _
jVoo

iZ
Ω
V,V ′

pi
V ′ // //qiVoooo iEsiΩ

V ′
� � ȷV ′ // EsiΩ

V ′ . (3.1)

If we set

GV,V ′ := GL(Vi)×GL(V ′
i )×

∏
j ̸=i

GL(Vj) ∼= GL(Vi)×GL(V ′
i )×

∏
j ̸=i

GL(V ′
j ),

then the maps piV ′ and qiV are GV,V ′ -equivariant.

Proposition 3.1 (Lusztig [Lus98]). The morphisms piV and qiV in (3.1) are
Aut(Vi)-torsor and Aut(V ′

i )-torsor, respectively. 2

When β = dimV , we set

iR
Ω
β := Ext•GV

(j∗V LΩ
V , j

∗
V LΩ

V ) and iRsiΩ
siβ

:= Ext•GV ′ (ȷ
∗
V ′LsiΩ

V ′ , ȷ
∗
V ′LsiΩ

V ′ )

for the time being (see Corollary 3.4).

Lemma 3.2. We have an algebra isomorphism iR
Ω
β
∼= Rβ/(Rβei(1)Rβ). Simi-

larly, the algebra iRsiΩ
siβ

is isomorphic to Rsiβ/(Rsiβe
∗
i (1)Rsiβ).

Proof. The maps jV and ȷV ′ are GV - and GV ′-equivariant open embeddings,
respectively. Therefore, we apply Lemma 1.4 and Proposition 1.5 repeatedly to
deduce iR

Ω
β
∼= Rβ/(RβeRβ), where e ∈ Rβ is a degree zero idempotent so that

eLb = Lb (OΩ
b ̸⊂ Im jV ) or {0} (OΩ

b ⊂ Im jV ). By Proposition 2.4, Theorem 2.5
5), and Theorem 2.12, we conclude RβeRβ = Rβei(1)Rβ , which proves the first

assertion. The case of iRsiΩ
siβ

is similar, and we omit the detail.

Corollary 3.3. The set of isomorphism classes of graded simple modules of

iR
Ω
β and iRsiΩ

siβ
are {Lb ⟨j⟩}ϵi(b)=0,j∈Z and {Lb ⟨j⟩}ϵ∗i (b)=0,j∈Z, respectively. 2

Corollary 3.4. The algebras iR
Ω
β and iRsiΩ

siβ
do not depend on the choice of Ω.

2

Proposition 3.5. In the setting of Proposition 3.1, two graded algebras iR
Ω
β and

iRsiΩ
siβ

are Morita equivalent to each other. In addition, this Morita equivalence
is independent of the choice of Ω (as long as i is a sink).

Proof. First, note that the maps jV , ȷV ′ are open embeddings. In particular,
j∗V LΩ

V and ȷ∗V ′LsiΩ
V ′ are again direct sums of shifted equivariant perverse sheaves.

By Proposition 3.1 and [BL94] 2.2.5, we have equivalences

Db
GV

(iE
Ω
V )

(qiV )∗−→ Db
GV,V ′ (iZ

Ω
V,V ′)

(pi
V ′ )

∗

←− Db
GV ′ (

iEsiΩ
V ′ ).
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In addition, a simple GV,V ′ -equivariant perverse sheaf L on iZ
Ω
V,V ′ admits iso-

morphisms

(qiV )
∗ (iL [dimGL(V ′

i )])
∼= L ∼= (piV ′)∗

(
iL [dimGL(Vi)]

)
, (3.2)

where iL and iL are simple GV - and GV ′-equivariant perverse sheaves on iE
Ω
V

and iEsiΩ
V ′ , respectively. These induce isomorphisms of algebras:

B(GV ,iEΩ
V )
∼= B(GV,V ′ ,iZΩ

V,V ′ )
∼= B

(GV ′ ,iE
siΩ

V ′ )
. (3.3)

Therefore, B(GV ,iEΩ
V ) and B(GV ′ ,iE

siΩ

V ′ )
are Morita equivalent to the algebras in

the assertion by Corollary 2.8, which implies the first assertion.
We prove the second assertion. For any two orientations Ω and Ω′ which

have i as a common sink, we have Fourier transforms FΩ and FsiΩ so that

FΩ(LΩ
β ) = LΩ′

β and FsiΩ(LsiΩ
siβ

) = LsiΩ
′

siβ
. Since Ωi = Ω′

i, these two Fourier

transforms are induced by the pairing between direct summands E ⊂ EΩ
V and

E∗ ⊂ EΩ′

V which can be identified with those of EsiΩ
V ′ and EsiΩ

′

V ′ in (3.1) via ϕ.
Since the diagram (3.1) is the product of a vector space and the contribution

from Ωi, we conclude that two pairs of sheaves (LΩ
β ,L

siΩ
siβ

) and (LΩ′

β ,L
siΩ

′

siβ
) are

exchanged by FΩ and FsiΩ commuting with the diagram (3.1). This identifies
the Morita equivalences obtained by Ω and Ω′ as required.

The maps qiV and piV ′ give rise to a correspondence between orbits. For
each b ∈ B(∞)siβ , we denote by Ti(b) ∈ B(∞)β ⊔ {∅} the element so that

(piV ′)−1(OsiΩ
b ) ∼= (qiV )

−1(OΩ
Ti(b)

) (we understand that Ti(b) = ∅ if OsiΩ
b ̸⊂

Im piV ′). Note that Ti(b) = ∅ if and only if ϵ∗i (b) > 0. In addition, we have
ϵi(Ti(b)) = 0 if Ti(b) ̸= ∅. We set T−1

i (b′) := b if b′ = Ti(b) ̸= ∅.
Thanks to Corollary 3.4, we can drop Ω or siΩ from iR

Ω
β and iRsiΩ

β . We
define a left exact functor

T∗
i : Rβ-gmod −→→ iRβ-gmod

∼=−→ iRsiβ-gmod ↪→ Rsiβ-gmod,

where the first functor is HomRβ
(iRβ , •), the second functor is Proposition 3.5,

and the third functor is the pullback. Similarly, we define a right exact functor

Ti : Rβ-gmod −→→ iRβ-gmod
∼=−→ iRsiβ-gmod ↪→ Rsiβ-gmod,

where the first functor is iRβ ⊗Rβ
•. We call these functors the Saito reflection

functors (cf. [Sai94]). By the latter part of Proposition 3.5, we see that these
functors are independent of the choices involved.

Let i ∈ I. We define Rβ-gmodi (resp. Rβ-gmodi) to be the fullsubcategory
of Rβ-gmod so that each simple subquotient is of the form Lb ⟨k⟩ (k ∈ Z) with
b ∈ B(∞)β that satisfies ϵi(b) = 0 (resp. ϵ∗i (b) = 0). In addition, for each
i ̸= j ∈ I, we define Rβ-gmodij := Rβ-gmodi ∩Rβ-gmodj .

Theorem 3.6 (Saito reflection functors). Let i ∈ I. We have:

1. Assume that i is a source of Ω. For each b ∈ B(∞)β, we have

TiK
Ω
b =

{
KsiΩ

Ti(b)
(ϵ∗i (b) = 0)

{0} (ϵ∗i (b) > 0)
;
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2. For each b ∈ B(∞)β, we have

TiLb =

{
LTi(b) (ϵ∗i (b) = 0)

{0} (ϵ∗i (b) > 0)
, and T∗

iLb =

{
LT−1

i (b) (ϵi(b) = 0)

{0} (ϵi(b) > 0)
;

3. The functors (Ti,T∗
i ) form an adjoint pair;

4. For each M ∈ Rβ-gmodi and N ∈ Rsiβ-gmodi, we have

ext∗Rsiβ
(TiM,N) ∼= ext∗Rβ

(M,T∗
iN);

5. Let i ̸= j ∈ I. For each β ∈ Q+ and m ≥ 0, we have

Ti(Pmj ⋆ M) ∼= (TiPmj) ⋆ TiM

as graded Rsi(β+mαj)-modules for every M ∈ Rβ-gmodj.

Remark 3.7. The proof of Theorem 3.6 is given by two parts, namely 1)–4) and
5). We warn that the proof of the latter part rests on the earlier part.

Proof of Theorem 3.6 1)–4). We prove the first assertion. The subset iEΩ
V ⊂

EΩ
V (with dimV = β) is open. Therefore, Theorem 1.3 1) asserts that [KΩ

b :
Lb′ ] ̸= 0 only if ϵ∗i (b

′) = 0 whenever ϵ∗i (b) = 0. It follows that iRβ⊗Rβ
KΩ

b
∼= KΩ

b

as a vector space if ϵ∗i (b) = 0, and {0} otherwise. This gives rise to a standard
module of iRβ by Lemma 1.4, and thus it gives a standard module of iRsiβ by

Proposition 3.5. Note that the subset iE
siΩ
V ′ ⊂ EsiΩ

V ′ (with dimV ′ = siβ) is also
open. Therefore, we use Lemma 3.2 to deduce the first assertion.

The second assertion is immediate from the first assertion and the construc-
tion of Ti and T∗

i .
We prove the third assertion. By Lemma 3.2, we know that Ti factors

through the functor giving the maximal quotient which is a iRβ-module, while
T∗
i factors through the functor giving the maximal submodule which is an

iRβ-module. Therefore, the third assertion follows by the Morita equivalence
iRβ-gmod ∼= iRsiβ-gmod for every β ∈ Q+ ∩ siQ+.

For the fourth assertion, notice that Rβ- and Rsiβ-action on M and N
factors through iRβ and iRsiβ , respectively. It follows that iRβ ⊗Rβ

M ∼= M ,

iRsiβ ⊗Rsiβ
TiM ∼= TiM , and HomRsiβ

(iRsiβ , N) ∼= N . By Lemma 3.2 and
Corollary 1.6, we deduce that each indecomposable projective iRsiβ-module iP
admits an Rsiβ-graded projective resolution

· · · → P2 → P1 → P0 → iP → 0

so that P0 is indecomposable and iRsiβ ⊗Rsiβ
Pk = {0} for k ≥ 1. Therefore,

we have
ext∗Rsiβ

(M,N) ∼= ext∗
iRsiβ

(M,N),

where we regard M,N as iRsiβ-modules via Proposition 3.5 (here we treat
the Morita equivalence as an isomorphism for simplicity). Applying the same
argument for iRβ (again for M), we conclude the result.

Lemma 3.8. Let i ∈ I. For each β ∈ Q+, m ≥ 0, and an indecomposable
graded projective iRβ-module P , the module Pmi ⋆ P is an Rβ+mαi

-module with
simple head.
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Proof. By the Frobenius reciprocity, we have

homRβ+mαi
(Pmi ⋆ P, Lb) ∼= homRmαi

⊠Rβ
(Pmi ⊠ P,Lb) (3.4)

for every b ∈ B(∞)β+mαi
. Assume that the above space is non-zero to deduce

the uniqueness of b and the one-dimensionality of (3.4). Choose d ∈ B(∞)β so
that Ld is the unique simple quotient of P . We have ϵi(d) = 0 by assumption. By
Theorem 2.11, we have e(m)(Pmi⋆P ) ̸= {0} only if there exist a minimal length
representative w ∈ S(ht β+m)/(Sm ×Sht β) and m′ ∈ Y β so that e(m′)P ̸= {0}
and m = w(mi + m′). Since m′ ̸∈ Y β

1,i, we deduce ϵi(b) ≤ m. Thus, if (3.4)
is non-trivial, then we have ϵi(b) = m and w = 1. Now Theorem 2.12 forces
ei(m)Lb

∼= Lmi ⊠ Ld. Therefore, Pmi ⋆ P has at most one quotient, which
completes the proof.

Theorem 3.9 (Induction theorem). Let V (i) be I-graded vector spaces with
dimV (i) = βi, and bi ∈ B(∞)βi

for i = 1, 2. Let b ∈ B(∞)β1+β2
so that

Mb ∼= Mb1 ⊕ Mb2 as C[Γ]-modules. Assume the following condition (⋆):

(⋆)0 Mb′1
is not a quotient of Mb for every b1 ̸= b′1 ∈ B(∞)β1 , and Mb′2

is not
a submodule of Mb for every b2 ̸= b′2 ∈ B(∞)β2 ;

(⋆)1 Ext1C[Γ](Mb1 , Mb2) = {0}.

We have an isomorphism KΩ
b1
⋆ KΩ

b2
∼= KΩ

b as an ungraded Rβ1+β2
-module.

In addition, if Mb canonically determines the factor Mb2 as a vector subspace,
then (⋆)0 and (⋆)1 implies

KΩ
b1 ⋆ K

Ω
b2
∼= KΩ

b

as a graded Rβ1+β2
-module.

Before proving Theorem 3.9, we present some of its consequences. The proof
of Theorem 3.9 itself is given at the end of this section.

Corollary 3.10. Suppose that i is a sink of Ω. Let m ≥ 0. For each β ∈ Q+

and b ∈ B(∞)β with ϵi(b) = 0, the module Kmi ⋆ K
Ω
b is an indecomposable

graded Rβ+mαi-module isomorphic to KΩ
b′ with Mb′ ∼= M⊕m

i ⊕ Mb.

Proof. By Example 2.10, we deduce that the first part of (⋆)0 is a void condition.
Every irreducible subquotient of a C[Γ]-module isomorphic to Mi is in its socle.
Hence, the second part of (⋆)0 follows by the comparison of the socles. Since
i is a sink, we have no extension of M⊕m

i by Mb, which is (⋆)1. We write β =
kαi+

∑
j ̸=i kjαj . Since ϵi(b) = 0, Mi is not a direct summand of Mb. In particular,

Mb is canonically determined byMb′ as its direct factor. Applying Theorem 3.9
yields the result.

Corollary 3.11. Assume that i is a source and j is a sink of Ω. Let β ∈ Q+.
For each m ≥ 0 and b ∈ B(∞)β such that ϵj(b) = 0, we have

Ti(Kmj ⋆ K
Ω
b )
∼= (TiKmj) ⋆ TiK

Ω
b

as graded Rsi(β+mαj)-modules.

17



Proof. By Corollary 3.10, we see that Kmj ⋆ K
Ω
b
∼= KΩ

b′ , where Mb′
∼= M⊕m

j ⊕ Mb.
By [Lu90a] 4.4 (c), we deduce that Ti(b

′) ̸= ∅ if and only if Ti(b) ̸= ∅. Since a
standard module is generated by its simple head, we deduce that Ti(Kmj⋆K

Ω
b ) =

{0} if ϵ∗i (b) > 0, and it is isomorphic to KsiΩ
Ti(b′)

if ϵ∗i (b) = 0.

Since i ̸= j, we always have TiKmj ̸= {0}. Therefore, we conclude that the
RHS is non-zero if and only if the LHS is non-zero. Thus, it suffices to show
that the RHS is isomorphic to KsiΩ

Ti(b′)
.

If we have i ̸↔ j, then j is a sink of siΓ. By ϵj(b) = 0 and the assumption,
we deduce that MTi(b) also do not contain Mj in this case. Hence, we deduce

ϵj(Ti(b)) = 0. In addition, we have TiK
Ω
mj
∼= KsiΩ

mj . Therefore, we apply

Corollary 3.10 to deduce that the RHS is KsiΩ
Ti(b′)

.

Assume that we have i ↔ j. Let Mi,j be a unique indecomposable C[siΓ]-
module with dim Mi,j = αi + αj (up to an isomorphism). By ϵj(b) = 0 and
loc. cit. 4.4 (c), we conclude that MTi(b) does not contain Mi, Mi,j as its direct
factor. By assumption, i is a sink of siΓ and j is a source of an edge from j
to i, but is a source of no other edges. This particularly implies that Mi is the
socle of Mi,j . Therefore, we conclude the first half of (⋆)0 in Theorem 3.9. If
an indecomposable C[siΓ]-module contains Mi or Mi,j as its subquotient, then
it must be a submodule. If an indecomposable C[siΓ]-module has a non-zero
homomorphism to Mi or Mi,j , then it must be isomorphic to either Mi or Mi,j .
These imply the latter half of (⋆)0 in Theorem 3.9. In addition, we have

Ext1C[siΓ](M
⊕m
i,j , MTi(b)) = {0}.

Therefore, we conclude (⋆)1 in Theorem 3.9. Let h∗ ∈ siΩ be the unique edge so
that h′∗ = j, h′′∗ = i. For a representation (fh)h∈siΩ on V =

⊕
i∈I Vi isomorphic

to M⊕m
i,j ⊕ MTi(b), we set

V ′
k :=


Vk (k ̸= i, j)

Im
(⊕

h∈siΩ,h′′=i fh ⊕
⊕

h∈siΩ,h′′=j fh∗fh
)

(k = i)

Im
⊕

h∈siΩ,h′′=j fh + f−1
h∗

(V ′
i ) + ker fh∗ (k = j)

.

Then, the space V ′ ⊂ V defines a canonical C[siΓ]-submodule M′ on V ′ so
that M′ ∼= MTi(b). Therefore, we conclude that (TiKmj) ⋆ TiK

Ω
b
∼= KsiΩ

Ti(b′)
as

required.

Lemma 3.12. Let i, j ∈ I be distinct vertices, m ≥ 0, and β ∈ Q+. For each
b ∈ B(∞) so that ϵi(b) > 0, the module TiKmj ⋆ Lb has simple head that is
isomorphic to Lb′ with ϵi(b

′) > 0 up to grading shifts.

Proof. We first consider the case i ̸↔ j. We assume that both i and j are sink.
We have TiKmj

∼= Kmj . By Theorem 3.9, we further deduce an isomorphism
Kmj⋆Kpj

∼= K(m+p)j for p ≥ 0. Together with Corollary 3.10 and the induction-
by-stage argument, we conclude thatKmj⋆Lb has simple head Lb′ . Moreover, we
have Mb′ ∼= M⊕m

j ⊕ Mb. Therefore, we have ϵi(b) > 0 if and only if ϵi(b
′) > 0 since

ϵi counts the number of direct summand isomorphic to Mi by our assumption
on Ω.

Now we consider the case i ↔ j. We rearrange Ω so that j is a sink of Ω
and i is sink of siΩ, and employ the same notation as in the proof of Corollary
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3.11. We have a decomposition

Mb ∼= M
⊕p
i ⊕ M

⊕q
i,j ⊕ Md with d ∈ B(∞)β−pαi−qsiαj

as C[siΓ]-modules so that Md does not contain Mi or Mi,j as its direct summand.
Here we have d = Ti(f) with ϵj(f) = 0 by [Lu90a] 4.4 (c). We set d′ ∈
B(∞)msiαj+β so that Md′ ∼= M⊕m

i,j ⊕ Mb. Thanks to Corollary 3.10 and Corollary
3.11, we have

KsiΩ
b
∼= Kpi ⋆ (TiKqj) ⋆ K

siΩ
d .

By Corollary 3.10, we deduce that Ki⋆TiKj is isomorphic to a standard module
of R2αi+αj

. Since the orbit corresponding to Ki⋆TiKj is open dense, we deduce
that Ki ⋆ TiKj is simple. By inspection, we find that #Irr0R2αi+αj

= 2 and
each of simple graded Rαi+2αj

-module has dimension 3. Hence, TiKj ⋆Ki must
be simple. By a weight comparison argument, we deduce that Ki ⋆ TiKj

∼=
TiKj ⋆ Ki ⟨1⟩. By Theorem 3.9, we deduce that

(TiKrj) ⋆ (TiKsj) ∼= TiK(r+s)j for every r, s ≥ 0.

Hence, we deduce Kpi ⋆TiKmj
∼= TiKmj ⋆Kpi up to grading shifts by induction.

Therefore, the induction-by-stage implies that the ungradedRβ+msiαj
-module

TiKmj⋆K
siΩ
b
∼= TiKmj⋆Kpi⋆(TiKqj)⋆K

siΩ
d
∼= Kpi⋆(TiK(m+q)j)⋆K

siΩ
d
∼= KsiΩ

d′

has simple head Lb′ with ϵi(b
′) = p > 0 as desired.

Lemma 3.13. For each β1, β2 ∈ Q+, we have a canonical surjection

Ti(M1 ⋆ M2) −→→ (TiM1) ⋆ (TiM2)

as graded Rsi(β1+β2)-modules for every M1 ∈ Rβ1 -gmod and M2 ∈ Rβ2 -gmod.

Proof. Put β := β1+β2. The induction functor ⋆ is represented by the (Rβ , Rβ1
⊠

Rβ2
)-bimodule Rβe1, where e1 is an idempotent. The Saito reflection functor

Ti factors through the quotient by Rβe
∗
i (1)Rβ . Therefore, the two compositions

are realized as

Rβe1/Rβe
∗
i (1)Rβe1 and Rβe1⊗((Rβ1

/Rβ1
e∗i (1)Rβ1

)⊠ (Rβ2
/Rβ2

e∗i (1)Rβ2
)) e1,

respectively. By Lemma 2.13, we know that an irreducible direct summand
of the head Lb of the induction of two simple modules Lb1 and Lb2 satisfies
ϵ∗i (b) > 0 only if ϵ∗i (b1) > 0 or ϵ∗i (b2) > 0. Therefore, the RHS annihilates more
simple modules than these from the LHS, and hence we obtain a surjection as
required.

Proof of Theorem 3.6 5). We choose an orientation Ω so that i is a source and
j is a sink. Let F1 := (TiPmj) ⋆ (Ti•) and F2 := Ti(Pmj ⋆ •) be two functors
from Rβ-gmodj to Rsi(β+mαj)-gmod. Both of them are exact on Rβ-gmodij .
Therefore, taking successive quotients of the isomorphisms in Corollary 3.11
(cf. Theorem 3.6 1)) yield

Ti(Kmj ⋆ Lb) ∼= (TiKmj) ⋆ TiLb (3.5)
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as a graded Rsi(β+mαj)-module for every b ∈ B(∞)β such that ϵj(b) = 0. By
Lemma 3.13, we have a natural transformation

F2 = Ti(Pmj ⋆ •) −→ (TiPmj) ⋆ Ti• = F1.

Thanks to Lemma 3.8, we see that F2 sends an indecomposable projective mod-
ule of jRβ (regarded as an Rβ-module) to a module with simple head (or zero).
The image of this simple head survives under this natural transformation by
(3.5). This forces two functors F1 and F2 to be isomorphic on projective ob-
jects of Rβ-gmodj by the comparison of their graded characters. Therefore, we
conclude that they are isomorphic.

The rest of this section is devoted to the proof of Theorem 3.9. During the
proof of Theorem 3.9, we omit Ω from the notation. We set β := β1 + β2, and
V := V (1) ⊕ V (2). We set n = htβ, and ni := htβi for i = 1, 2. We write
βi =

∑
j∈I di(j)αj for i = ∅, 1, 2.

We recall the convolution operation from Lusztig [Lu90a].
We consider two varieties with natural GV -actions:

GrV (1),V (2)(V ) :=
{
(F, x, ψ1, ψ2)

∣∣∣F ⊂ V : I-graded vector subspace
x ∈ EV , s.t. xF ⊂ F

ψ1 : V/F ∼= V (1), ψ2 : F ∼= V (2)

}
,

Grβ1,β2
(V ) :=

{
(F, x)

∣∣∣F ⊂ V : I-graded vector subspace
x ∈ EV , s.t. xF ⊂ F

dimF = β2

}
.

We have a GV (1) × GV (2)-torsor structure ϑ : GrV (1),V (2)(V ) −→ Grβ1,β2(V )
given by forgetting ψ1 and ψ2. We have two maps

p : Grβ1,β2(V ) ∋ (F, x) 7→ x ∈ EV and

q : GrV (1),V (2)(V ) ∋ (F, x, ψ1, ψ2) 7→ (ψ1(x mod F ), ψ2(x |F )) ∈ EV (1) ⊕ EV (2).

Notice that ϑ and q are smooth of relative dimensions dimGV (1) + dimGV (2)

and 1
2 (dimGV +dimGV (1)+dimGV (2))+

∑
h∈Ω d1(h

′)d2(h
′′), respectively. The

map p is projective. We set Nβ
β1,β2

:= 1
2 (dimGV − dimGV (1) − dimGV (2)) +∑

h∈Ω d1(h
′)d2(h

′′). For GV (i)-equivariant constructible sheaves Fi on EV (i) for
i = 1, 2, we define their convolution products as

F1⊙F2 := p!F12[N
β
β1,β2

], where ϑ∗F12
∼= q∗(F1⊠F2) in D

b
GV

(GrV (1),V (2)(V )).

We return to the proof of Theorem 3.9. Let us fix objects Cb1,b2 ,Lm1,m2 of
Db

GV
(Grβ1,β2

(V )) (m1 ∈ Y β1 and m2 ∈ Y β2) so that we have isomorphisms

ϑ∗(Cb1,b2)
∼= q∗(Cb1 ⊠ Cb2)[N

β
β1,β2

] and ϑ∗Lm1,m2 ∼= q∗(Lm1 ⊠ Lm2)[Nβ
β1,β2

].

Lemma 3.14. In the above settings, we have:

1. the variety p−1(Ob) is a single GV -orbit;

2. the map p : p−1(Ob) → Ob is a P-fibration, where P is a suitable partial
flag variety.
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Proof. We have Mb ∼= Mb1 ⊕ Mb2 by assumption. The condition (⋆)0 asserts that
the image of every two inclusions Mb2 ⊂ Mb are transformed by AutC[Γ](Mb). Here
we have AutC[Γ](Mb) ∼= StabGV

(xb) for xb ∈ Ob(C). Therefore, p−1(Ob) is a single
GV -orbit, which is the first assertion. Since p is projective, we conclude that
p−1(Ob) → Ob is projective. By (♠)2, the group StabGV

(xb) is connected. Let
Ub denote the unipotent radical of StabGV

(xb). Since we have p
−1(Ob) ∼= GV /Hb

with Hb ⊂ StabGV
(xb), the fiber of p is isomorphic to StabGV

(xb)/Hb, that is
projective. Therefore, we deduce Ub ⊂ Hb and the inclusion

Hb/Ub ⊂ StabGV
(xb)/Ub

must be a parabolic subgroup (of a connected reductive group). Therefore, we
set P to be their quotient to deduce the second part of the result.

Corollary 3.15. We have

Cb1 [dimOb1 ]⊙ Cb2 [dimOb2 ]
∼= D[d]⊠ Cb[dimOb],

where D ∼= H•(P,C) by a suitable partial flag variety P with its dimension d.

Proof. Thanks to (⋆)1, we deduce that ϑ(q
−1(Ob1×Ob2)) is contained in a single

GV -orbit. This, together with Lemma 3.14, implies that the stalk of the LHS
vanishes outside of Ob. In addition, every direct summand of p∗Cb1,b2 |Ob

, viewed
as a shifted GV -equivariant local system (which in turn follows by [BBD82] 5.4.5
or 6.2.5), must be a trivial local system by (♠)2. Therefore, we conclude that
Cb1 [dimOb1 ]⊙ Cb2 [dimOb2 ]

∼= D′ ⊠ Cb[dimOb] with a graded vector space D′.
The isomorphism D′ ∼= H•(P,C)[d] is by Lemma 3.14 2).

We return to the proof of Theorem 3.9. In the below (during this section),
we freely use the notation from Corollary 3.15.

Thanks to Corollary 2.8, Lβ1
and Lβ2

contains ICb1 and ICb2 , respectively.
We have

Lm1 ⊙ Lm2 ∼= Lm1+m2

by construction. Thanks to (⋆)1 and [BBD82] 5.4.5 or 6.2.5, ICb appears in
Lm1+m2 up to a grading shift if the following condition (⋄) hold:

(⋄) ICbi appears in Lmi for i = 1, 2.

We set m := m1 +m2. Let xb ∈ Ob be a point and let ib : {xb} ↪→ EV be
the inclusion.

Lemma 3.16. Assume that (⋄) holds. Then, the subspace

ı!bExt•Db(EV )(Cb1 ⊙ Cb2 ,Lm1+m2) ⊂ ı!bExt•Db(EV )(Cb1 ⊙ Cb2 ,Lβ)

∼= Ext•Db(pt)(ı
∗
b(Cb1 ⊙ Cb2), ı

!
bLβ) ∼=D∗[−d]⊠Kb ⟨2 dimOb⟩

is a generating subspace as an Rβ-module.

Proof. The isomorphism parts of the assertion follow by [KS90] 3.1.13 and Corol-
lary 3.15. By (⋄) and (⋆)1, we conclude that Lb1,b2 contains an irreducible per-
verse sheaf supported on SuppCb1,b2 . Thanks to [BBD82] 5.4.5 or 6.2.5, we
conclude that Lm1 ⊙ Lm2 contains ICb. Therefore, the head Lb of Kb satisfies
e(m)Lb ̸= {0}, which proves the assertion.
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We set O↑
b ⊂ EV to be the union of GV -orbits which contains Ob in its

closure. Let j↑b : O↑
b ↪→ EV be its inclusion.

Proposition 3.17. We have a canonical isomorphism

Ext•Db(EV )(Cb1 ⊙ Cb2 ,Lm1+m2) ∼= p∗Ext•Db(Grβ1,β2
(V ))(Cb1,b2 , D

∗ ⊠ Lm1,m2)

in the bounded derived category of constructible sheaves on EV .

Proof. During this proof, we repeatedly use the local form of the Verdier duality
(see e.g. [KS90] 3.1.10, or [SGA4] Exposé XVIII 3.1.10). We have

Ext•Db(EV )(Cb1 ⊙ Cb2 ,Lm1+m2) ∼= p∗Ext•Db(Grβ1,β2
(V ))(Cb1,b2 , p

!Lm1+m2).

Consider the Cartesian diagram

Grβ1,β2
(V )

p // EV

G
p //?�

ȷ↑b

OO

O↑
b

?�
j↑b

OO .

Note that ȷ↑b is an open embedding since p is continuous. It follows that

p∗Ext•Db(Grβ1,β2
(V ))(Cb1,b2 , p

!Lm1+m2)

∼= (j↑b )∗p∗Ext
•
Db(G)((ȷ

↑
b)

∗Cb1,b2 , (ȷ
↑
b)

!p!Lm1+m2) (Cb1,b2
∼= (ȷ↑b)!(ȷ

↑
b)

∗Cb1,b2)

∼= (j↑b )∗p∗Ext
•
Db(G)((ȷ

↑
b)

∗Cb1,b2 , p
!(j↑b )

!Lm1+m2) (j↑b ◦ p = p ◦ ȷ↑b).

In addition, (ȷ↑b)
∗Cb1,b2 is a local system supported on the closed GV -orbit Ob

of G. Let us denote by ȷb : Ob ↪→ G the inclusion. We have (ȷ↑b)
∗Cb1,b2

∼=
(ȷb)!C[dimOb]. Thus, we deduce

(j↑b )∗p∗Ext
•
Db(G)((ȷ

↑
b)

∗Cb1,b2 , p
!(j↑b )

!Lm1+m2)

∼= (j↑b )∗p
′
∗Ext•Db(Ob)

(C[dimOb], ȷ
!
bp

!(j↑b )
!Lm1+m2) ((ȷ↑b)

∗Cb1,b2
∼= (ȷb)!C[•])

∼= (j↑b )∗p
′
∗Ext•Db(Ob)

(C[dimOb], D
∗ ⊠ ȷ!b(ȷ

↑
b)

!Lm1,m2) (Corollary 3.15)

∼= p∗Ext•Db(Grβ1,β2
(V ))(Cb1,b2 , D

∗ ⊠ Lm1,m2),

where p′ : Ob → O↑
b is the restriction of p. Since all the maps are canonically

defined, composing all the isomorphisms yield the result.

We return to the proof of Theorem 3.9. Taking account into the fact
p−1(xb) ∼= P, we have an isomorphism

D∗ ⟨d⟩⊠ e(m1 +m2)Kb
∼= H•i!bExt•Db(EV )(Cb1 ⊙ Cb2 ,Lm1+m2)[2 dimOb]

and a spectral sequence arising from the base change (applied to ib and p)

E2 := D∗ ⊗H•(P)⊗
(
e(m1)Kb1 ⊠ e(m2)Kb2

)
⇒ H•i!bp∗Ext•Db(Grβ1,β2

(V ))(Cb1,b2 , D
∗ ⊠ Lm1,m2)[2 dimOb],
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where we used the fact that dim p−1(Ob)− dim p−1(xb) = dimOb in the degree
shift of the second spectral sequence. Here the modules Kb1 ,Kb2 , and Kb are
pure of weight 0 by [Lu90a] 10.6 (see the proof of Proposition 2.7 for a bit precise
account). By Lemma 3.14 2), we deduce that H•(P) is also pure. Therefore, the
spectral sequence E2 degenerates at the E2-stage. By factoring out the effect
of D∗, we conclude that

e(m1 +m2)Kb
∼= H•(P)⊠

(
e(m1)Kb1 ⊠ e(m2)Kb2

)
⟨−d⟩ .

This induces an inclusion as Rm1,m1 ⊠Rm2,m2-modules

φm1,m2 :
(
e(m1)Kb1 ⊠ e(m2)Kb2

)
⟨d⟩ ↪→ e(m1 +m2)Kb.

The module e(m1 + m2)Kb admits an Rm1+m2,m1+m2-module structure with
simple head thanks to Theorem 1.3 3). This extends the Rm1,m1 ⊠ Rm2,m2-
module structure. Recall that for each i = ∅, 1, 2, the simple head of Kbi

as an irreducible Rβi-module is realized as the coefficient vector space of ICbi

inside Lβi (see §1), and its weight e(mi)-part is that of Lmi (see §2). (Note
that this sheaf-theoretic interpretation gives a splitting of Lbi to Kbi as vector
spaces for each i = ∅, 1, 2.) By [BBD82] 5.4.5 or 6.2.5 and Corollary 3.15, the
complex H•(P)[d]⊠ ICb is a direct summand of ICb1⊙ ICb2 . Therefore, the above
interpretation implies that the unique simple quotients Lb1 and Lb2 of Kb1 and
Kb2 satisfy

φm1,m2(H•(P)⊗
(
e(m1)Lb1 ⊠ e(m2)Lb2

)
) ⟨−d⟩ ⊂ e(m)Lb ⊂ e(m)Kb

as vector subspaces, where Lb is the simple head of Kb. In addition, these
inclusions are non-zero if m1 and m2 satisfies (⋄). Since we can choose m1 and
m2 so that (⋄) is satisfied, we have a surjective map of graded Rβ-modules:

Kb1 ⋆ Kb2 ⟨d⟩ −→→ Kb.

Lemma 3.18. In the above settings, we have

dimKb = dim (Kb1 ⋆ Kb2) .

Proof. In this proof, i denotes either ∅, 1, or 2. Let us choose a point xbi ∈
Obi ⊂ EV (i). Let Ti be a maximal torus of StabGV (i)

xbi . Choose mi ∈ Y βi .
Thanks to the purity of each module (Lusztig [Lu90a] 10.6), we deduce that the
spectral sequence

H•
Ti
(pt)⊗H•(π

−1
mi(xbi))⇒ HTi

• (π−1
mi(xbi))

degenerates at the E2-stage. Here the RHS have the same H•
Ti
(pt)-rank as that

of HTi
• (π−1

mi(xb)
Ti). Therefore, we have

dimH•(π
−1
mi(xb)) = dimH•(π

−1
mi(xbi)

Ti).

By Theorem 2.11, we deduce that Rβ is a free Rβ1
⊠Rβ2

-module of rank n!
n1!n2!

.
Hence, it is enough to show∑
m∈Y β

dimH•(π
−1
m (xb)

T )

=
n!

n1!n2!

∑
m1 ∈ Y β1

m2 ∈ Y β2

(dimH•(π
−1
m1(xb1)

T1))(dimH•(π
−1
m2(xb2)

T2)).
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This follows by a simple counting since ETi

V (i) decomposes into the product of

varieties corresponding to each indecomposable module.

We return to the proof of Theorem 3.9. Lemma 3.18 asserts that

Kb1 ⋆ Kb2 ⟨d⟩ ∼= Kb

as graded Rβ-modules. This completes the proof of Theorem 3.9 except for the
last assertion. The last assertion follows since the assumption implies that pb1,b2
is birational onto its image, and hence d = 0.

4 Characterization of the PBW bases

Keep the setting of the previous section. For a reduced expression i of w0 and
a sequence of non-negative integers c := (c1, c2, . . . , cℓ) ∈ Zℓ

≥0, we call the pair
(i, c) a Lusztig datum, and we call c an i-Lusztig datum. For a Lusztig datum
(i, c), we define

wt(i, c) :=
ℓ∑

k=1

ckγ
(k)
i , where γ

(k)
i := si1 · · · sik−1

αik .

For two i-Lusztig data c and c′, we define c <i c
′ as: There exists 0 ≤ k < ℓ so

that
c1 = c′1, c2 = c′2, . . . , ck = c′k and ck+1 > c′k+1.

Associated to each Lusztig datum (i, c), we define the lower PBW-module Ẽi
c

as:
Ẽi

c := Pc1i1 ⋆ Ti1

(
Pc2i2 ⋆ Ti2

(
Pc3i3 ⋆ · · ·Tiℓ−1

Pcℓiℓ

)
· · ·

)
. (4.1)

Similarly, we define the corresponding upper PBW-module Ei
c as:

Ei
c := Lc1i1 ⋆ Ti1

(
Lc2i2 ⋆ Ti2

(
Lc3i3 ⋆ · · ·Tiℓ−1

Lcℓiℓ

)
· · ·

)
. (4.2)

By construction, it is clear that Ei
c is a quotient of Ẽi

c.

Remark 4.1. The modules Ei
c and Ẽi

c are identified with K̃Ω
b and KΩ

b from §2
when the reduced expression i is adapted to Ω (cf. Corollary 4.12). In addition,

we have Pci = K̃ci and Lci = Kci for each c ∈ Z≥0 and i ∈ I by Example 2.10.

Lemma 4.2. For each Lusztig datum (i, c), we have:

1. Ẽi
c and Ei

c are Rwt(i,c)-modules;

2. Ẽi
c and Ei

c are modules with simple heads if they are non-zero;

3. Ẽi
c ̸= {0} if and only if Ei

c ̸= {0}.

Proof. Since Ti is a functor sending an Rβ-module to an Rsiβ-module (possi-
bly zero), the first assertion is immediate. The functor Ti also preserves the
simple head property (provided if it does not annihilate the whole module) by
construction. Therefore, we apply Lemma 3.8 repeatedly to deduce the simple
head property of Ẽi

c and Ei
c from that of Pckik (1 ≤ k ≤ ℓ), which is the second

assertion. By construction, Ei
c contains the head of Ẽi

c, and hence the fourth
assertion.
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Theorem 4.3 (Lusztig [Lu90a]). Assume that the reduced expression i is adapted
to Ω. Then, we have Ei

c ̸= {0} for every i-Lusztig datum. Moreover, the set of
i-Lusztig data is in bijection with B(∞) as:

c 7→ hdEi
c
∼= Lb for b ∈ B(∞).

Proof. Since i is adapted, we deduce that a module Ti1Ti2 · · ·Tik−1
Lckik is sim-

ple and it corresponds to an indecomposable C[Γ]-module M(k) with dim M(k) =

γ
(k)
i ([Lu90a] 4.7). We apply Corollary 3.10 and Theorem 3.6 1) repeatedly to

construct a module with its simple head corresponding to the quiver represen-
tation M⊕c1

(1) ⊕ · · · ⊕ M⊕cℓ
(ℓ) . Now the Gabriel theorem yields the result.

Definition 4.4 (2-move, 3-move, [Lu90a] 2.3). We say that two Lusztig data
(i, c) and (i′, c′) are connected by a 2-move if

1. there exists 1 ≤ k < ℓ so that ik = i′k+1, ik+1 = i′k, ik ̸↔ ik+1, and il = i′l
for every l ̸= k, k + 1;

2. we have ck = c′k+1, ck+1 = c′k, and cl = c′l for every l ̸= k, k + 1.

We say that (i, c) and (i′, c′) are connected by a 3-move if

1. there exists 1 < k < ℓ so that ik−1 = ik+1 = i′k, ik = i′k−1 = i′k+1,
ik ↔ ik+1, and il = i′l for every l ̸= k − 1, k, k + 1;

2. we have cl = c′l for every l ̸= k − 1, k, k + 1, and

(c′k−1, c
′
k, c

′
k+1) = (ck+ck+1−c0, c0, ck−1+ck−c0) for c0 := min{ck−1, ck+1}.

Lemma 4.5. For two Lusztig data (i, c) and (i′, c′) which are connected by a
2-move, we have Ei

c
∼= Ei′

c′ .

Proof. Find a unique 1 ≤ k < ℓ so that ik = i′k+1 ̸= ik+1 = i′k. We realize Tik

and Tik+1
by choosing the orientation Ω so that the both of ik, ik+1 are source

(which is in turn possible since ik ̸↔ ik+1). We have TikLck+1ik+1
= Lck+1ik+1

and Tik+1
Lckik = Lckik since Rpαik

+qαjk
is Morita equivalent to Rpαik

⊠Rqαjk

for each p, q ≥ 0 by the product decomposition of (GV , E
Ω
V ). Applying Propo-

sition 3.6 2) and 5), it suffices to prove

Lckik⋆Lck+1ik+1
= Lckik⋆TikLck+1ik+1

∼= Lck+1ik+1
⋆Tik+1

Lckik = Lck+1ik+1
⋆Lckik

(4.3)
and TikTik+1

∼= Tik+1
Tik . The product decomposition of (GV , E

Ω
V ) also provides

(4.3) as ⋆ is the same as the external tensor product here.
We have TikTik+1

(b) = Tik+1
Tik(b), ϵik(b) = ϵik(Tik+1

(b)), and ϵik+1
(b) =

ϵik+1
(Tik(b)) by inspection. The essential image of the functor Ti (applied to

Rsiβ-gmod for some β ∈ Q+) is equivalent to iRβ-gmod by construction. We
have eik(1)eik+1

(1) = 0 = eik+1
(1)eik(1) by definition. Therefore, we deduce

that the essential image of each of the functors TikTik+1
and Tik+1

Tik is equiv-
alent to the graded module category of

(Rβ/(Rβeik(1)Rβ))⊗Rβ

(
Rβ/(Rβeik+1

(1)Rβ)
) ∼= Rβ/(RβeRβ) for some β ∈ Q+,

where e := eik(1) + eik+1
(1) is the minimal idempotent so that eeik(1) = eik(1)

and eeik+1
(1) = eik+1

(1). Hence, Theorem 3.6 2) guarantees that TikTik+1
∼=

Tik+1
Tik as functors, which completes the proof.
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Proposition 4.6. Let (i, c) and (i′, c′) be two Lusztig data which are con-
nected by a 3-move as (ik−1, ik, ik+1) = (i′k, i

′
k±1, i

′
k) for some k. Then, we

have hdEi
c
∼= hdEi′

c′ .

Proof. Let ik = j, ik+1 = i. By an explicit calculation (which reduces to the
rank two case, cf. Theorem 4.3), we see that

hd
(
Lck−1i ⋆ TiLckj ⋆ TiTjLck+1i

) ∼= hd
(
Lc′k−1j

⋆ TjLc′ki
⋆ TjTiLc′k+1j

)
. (4.4)

By Lemma 4.2 2), it suffices to show

hdEi
c
∼= hdEi′

c′

for every i-Lusztig datum c so that c1 = · · · = ck+1 = 0 (and its counterpart
i′-Lusztig datum c′).

We borrow the settings from the (case of i ↔ j in the) proof of Corollary
3.11. In particular, we arrange Ω so that j ∈ I is a sink and i ∈ I is a sink of
sjΩ. Thanks to Proposition 3.6 2) and the construction of the Saito reflection
functor, the set of simple modules that is not annihilated by T∗

iT∗
j corresponds

to a representation of C[Γ] that does not contain a direct factor from {Mi,j , Mj}.
For such d ∈ B(∞), we have a corresponding C[Γ]-module Md.

By inspection, we deduce that the pairs (M
⊕ck−1

j , Md) and (M⊕ck
i,j ⊕ M

⊕ck+1

j , Md)
satisfy the assumption of Theorem 3.9. We assume

L ∼= hdEi
d and M ∼= hdEi

c,

where d = (0, . . . , 0, ck+2, ck+3, . . . , cℓ) by Lemma 4.2 2). Note that

L ∼= Ti1Ti2 · · ·Tik−1
L′ and M ∼= Ti1Ti2 · · ·Tik−1

M ′

for the simple module L′ corresponding to d and a simple module M ′. We have

T∗
ik−2

T∗
ik−3
· · ·T∗

i1M
∼= hd

(
Lck−1ik−1

⋆ Ti(Lckj ⋆ Tj(Lck+1i ⋆ T∗
jT∗

iL
′))

)
∼= hd

(
Lck−1ik−1

⋆ Ti(Lckj ⋆ TjLck+1i ⋆ T∗
iL

′)
)

∼= hd
(
Lck−1ik−1

⋆ Ti(Lckj ⋆ TjLck+1i) ⋆ L
′)

∼= hd
(
Lck−1ik−1

⋆ TiLckj ⋆ TiTjLck+1i ⋆ L
′)

where the second and the fourth isomorphisms are by Proposition 3.6 5), and
the third isomorphism is obtained from the combination of Proposition 3.6 1)

and Theorem 3.9 applied to (M⊕ck
i,j ⊕ M

⊕ck+1

j , Md) and take some quotient (that
is possible since Lckj ⋆ TjLck+1i defines a standard module arising from Ω and
T∗
iL

′ is an unique simple quotient of the standard module corresponding to Md).
Since the same is true if we replace i with i′ and swap (i, j), we conclude the

assertion from (4.4).

Corollary 4.7. For Lusztig data (i, c) and (i′, c′), we have hdEi
c
∼= hdEi′

c′ if
and only if (i, c) and (i′, c′) are linked by a successive application of two-moves
and three-moves.

Proof. Every two reduced expressions of w0 ∈ W (Γ0) are connected by a re-
peated use of two moves and three moves ([Lu90a] 2.1 (c)). Therefore, we apply
Lemma 4.5 and Proposition 4.6 repeatedly from Theorem 4.3 to deduce the
assertion.
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Corollary 4.8. The module Ei
c is non-zero for every Lusztig datum (i, c), and

the map
c 7→ hdEi

c
∼= Lb for b ∈ B(∞)

sets up a bijection between the set of i-Lusztig data and B(∞).

Proof. This is a special case of Corollary 4.7.

Thanks to Corollary 4.8, we often write Ẽi
b and Ei

b instead of Ẽi
c and Ei

c.
For an i-Lusztig data c = (c1, c2, . . . , cℓ), we define c := (cℓ, cℓ−1, . . . , c1).

Proposition 4.9. For each Lusztig datum (i, c), it holds:

1. we have surjections as graded Rwt(i,c)-modules:

Ẽi
c −→→ Pc1i1 ⋆ (Ti1Pc2i2) ⋆ (Ti1Ti2Pc3i3) ⋆ · · · ⋆ (Ti1 · · ·Tiℓ−1

Pcℓiℓ)

Ei
c −→→ Lc1i1 ⋆ (Ti1Lc2i2) ⋆ (Ti1Ti2Lc3i3) ⋆ · · · ⋆ (Ti1 · · ·Tiℓ−1

Lcℓiℓ) :

2. we have [Ei
c : hdEi

c′ ] = 0 if c ̸<i c
′ or c ̸<i c′;

3. the module Ẽi
c is a successive self-extension of Ei

c.

Proof. The first assertion follows by a repeated use of Lemma 3.13 to the defi-
nitions.

For the second assertion, let us find b ∈ B(∞) so that Lb = hdEi
c′ by Lemma

2.11 2).
For each 1 ≤ k ≤ ℓ, we set

c[k] := (

k︷ ︸︸ ︷
0, . . . , 0, ck+1, ck+2, . . . , cℓ).

Lemma 2.13 and the definition of Ti imply that c1 ≥ c′1 if [Ei
c : Lb] = 0.

Moreover, c1 = c′1 implies that ei(c1)Lb is a quotient of Ei
c[1]. In particu-

lar, T∗
i1
(ei(c1)Lb) is an irreducible constituent of T∗

i1
Ei

c[1]. If we have c1 =

c′1, . . . , ck = c′k, then we apply Theorem 3.6 2) repeatedly to obtain

T∗
ik
eik(ck) · · ·T∗

i2ei2(c2)T
∗
i1ei1(c1)Lb ̸= {0}

and it is an irreducible constituent of T∗
ik
eik(ck) · · ·T∗

i2
ei2(c2)T∗

i1
ei1(c1)E

i
c. There-

fore, Lemma 2.13 implies ck ≥ c′k and we deduce the condition c ̸<i c
′ when

[Ei
c : Lb] = 0.
We set {j1, . . . , jℓ} ∈ Iℓ by αjk := −w0αiℓ−k+1

. By Corollary 4.8, the module

Ti1 · · ·Tik−1
Lcik

is simple and non-zero for every 1 ≤ k ≤ ℓ and c ∈ Z>0. Moreover, we have

Ti1 · · ·Tik−1
Lcik

∼= T∗
j1 · · ·T

∗
jℓ−k+2

Lciℓ−k+1

since {jℓ−k+2, jℓ−k+1, . . . , j1, i1, . . . , ik} defines a reduced expression of w0. It
follows that e∗j1(1)Ti1 · · ·Tik−1

Lcik = {0} except for k = ℓ. Since every two
reduced expressions of sj1w0 are connected by a successive applications of two
moves and three moves, we can choose an adapted reduced expression i′ of w0
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ending on iℓ that is connected to i without changing the last entry. For i′, the
surjection in the first assertion must be isomorphism by a repeated application
of Theorem 3.9. Moreover, Lemma 2.13 asserts [Ei

c : Lb] ̸= 0 only if cℓ ≥ c′ℓ by
examining ϵ∗j1 (for i′).

By the same arguments as in the proof of Lemma 4.5 and Proposition 4.6,
we deduce that each two move and three move (that fixes the last entry iℓ)
preserves the property [Ei

c : Lb] ̸= 0 only if cℓ ≥ c′ℓ. Therefore, we deduce that
[Ei

c : Lb] ̸= 0 only if cℓ ≥ c′ℓ. From this, we deduce the condition c ̸<i c′ when
[Ei

c : Lb] = 0 by induction using {j1, . . . , jℓ}, ϵ∗i , e∗i , Ti instead of i, ϵi, ei, T∗
i .

This complete the proof of the second assertion.
We prove the third assertion. The module Pcik is the maximal self-extension

of Lcik (for every 1 ≤ k ≤ ℓ and c ∈ Z>0) by inspection. The second assertion
guarantees that the T’s appearing in the definition Ei

c does not annihilate every

irreducible constituent. Therefore, Ẽi
c is a self-extension of Ei

c as required.

Since Rβ is a finitely generated algebra free over a polynomial ring (by
Theorem 2.11) with finite global dimension (by Theorem 2.9), it follows that

[M : Lb], ⟨M,N⟩gEP ∈ Z((t)), and gchM ∈
⊕

b∈B(∞)β

Z((t))[Lb]

for M,N ∈ Rβ-gmod. (See (1.1) and Theorem 2.3 for ⟨•, •⟩gEP.)

Corollary 4.10. Fix a reduced expression i and let β ∈ Q+. Then, two sets

{gch Ẽi
b}b∈B(∞)β and {gchEi

b}b∈B(∞)β are Z((t))-bases of
⊕

b∈B(∞)β
Z((t))[Lb],

respectively.

Proof. Thanks to Corollary 4.8 and Lemma 4.2 3), we deduce

gch Ẽi
b ⟨cb⟩ ∈ [Lb] +

⊕
b′∈B(∞)β

tZ[[t]][Lb′ ] for some cb ∈ Z.

This is enough to see the first assertion. (In fact, we can show cb = 0 by a
standard argument, or a consequence of Theorem 4.11 3).) The second assertion
is similar.

Thanks to Corollary 4.10, we define [M : Ẽi
b], [M : Ei

b] ∈ Z((t)) for every
M ∈ Rβ-gmod as:

gchM =
∑

b∈B(∞)β

[M : Ẽi
b] gch Ẽ

i
b and gchM =

∑
b∈B(∞)β

[M : Ei
b] gchE

i
b.

For a reduced expression i = (i1, . . . , iℓ) of w0, we have a unique reduced
expression of the form i# := (i2, i3, . . . , iℓ, i

′
1). (Namely si′1 := w0si1w

−1
0 .)

Theorem 4.11. Fix a reduced expression i and β ∈ Q+. We have:

1. For every b <i b
′, it holds ext•Rβ

(Ẽi
b, Ẽ

i
b′) = {0};

2. For each b ∈ B(∞)β, we have

ext•Rβ
(Ẽi

b, E
i
b) = homRβ

(Ẽi
b, E

i
b)
∼= C;
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3. For each b ∈ B(∞)β, we have

[Ei
b : Lb′ ] =

{
0 (b ̸≤i b

′)

1 (b = b′)
and [Ẽi

b : Lb′ ] = 0 (b ̸≤i b
′);

4. For every b ≤i b
′, it holds

ext•Rβ
(Ẽi

b, (E
i
b′)

∗) ∼= homRβ
(Ẽi

b, (E
i
b′)

∗) ∼= C⊕δb,b′ .

Proof. We fix two elements b <i b
′ ∈ B(∞)β which correspond to i-Lusztig data

c and c′, respectively. Let m be the smallest number so that cm ̸= 0. (Note that
c′1 = · · · = c′m−1 = 0.) We note that the third assertion follows by Proposition
4.9 2) and 3).

We prove these assertions by the downward induction on m. In particular,
we assume all the assertions if c1 = · · · = cm = 0. The base case m = ℓ is
examined in Example 2.10 (since γ

(ℓ)
i is a simple root).

We set wm := sim−1
sim−2

· · · si1 . Put β1 := wmβ− cmαim and β′
1 := wmβ

′−
c′mαim . By the (m − 1)-times repeated application of the construction i 7→ i♯,
we obtain

i♭ := (im, . . . , iℓ, i
′
1, i

′
2, . . . , i

′
m−1) ∈ Iℓ.

Let d and d′ be the i♭-Lusztig data given by d1 = cm, d2 = cm+1, . . . , dℓ−m+1 =
cℓ, dℓ−m+2 = · · · = dℓ = 0 and d′1 = c′m, d

′
2 = c′m+1, . . . , d

′
ℓ−m+1 = c′ℓ, d

′
ℓ−m+2 =

· · · = d′ℓ = 0, respectively. We also set d[1] and d′[1] as sequences defined as:
dj [1] = 0 (j = 1) or dj (1 < j ≤ ℓ), and d′j [1] = 0 (j = 1) or d′j (1 < j ≤ ℓ). We
have

Ẽi
c
∼= Ti1 · · ·Tim−1

Ẽi♭

d and Ei
c′ ∼= Ti1 · · ·Tim−1

Ei♭

d′ .

Claim A. We have

Ẽi♭

d
∼= T∗

im−1
· · ·T∗

i1Ẽ
i
c and Ei♭

d′ ∼= T∗
im−1

· · ·T∗
i1E

i
c′ .

Proof. The assertion for Ei
c′ follows if every irreducible constituent of Ei

c′ does
not vanish by applying T∗

im−1
· · ·T∗

i1
. This is guaranteed by Proposition 4.9

2). The case of Ẽi
c′ follows from Proposition 4.9 3) in addition to the case of

Ei
c′ .

Claim B. The vanishing of ext•Rβ
(Ẽi

c, Ẽ
i
c′) follows from the vanishing of

ext•Rβ
(Ẽi

c, E
i
c′) ∼= ext•Rcmαim

⊠Rβ1
(Pcmim ⊠ Ẽi♭

d[1], E
i♭

d′). (4.5)

Proof. Thanks to Claim A, a repeated use of Theorem 3.6 4) implies a sequence
of isomorphisms

ext•Rβ
(Ẽi

c, E
i
c′) ∼= ext•Rβ

(T1 · · ·Tm−1Ẽ
i♭

d ,T1 · · ·Tm−1E
i♭

d′)

∼= ext•Rsi1
β
(T2 · · ·Tm−1Ẽ

i♭

d ,T2 · · ·Tm−1E
i♭

d′)

· · · ∼= ext•Rwmβ
(Ẽi♭

d , E
i♭

d′).
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Since ⋆ preserves the projectivity (see e.g. [KL09] 2.16) and Ẽi♭

d
∼= Pcmim ⋆Ẽ

i♭

d[1],
we conclude an isomorphism

ext•Rwmβ
(Ẽi♭

d , E
i♭

d′) ∼= ext•Rcmim⊠Rβ1
(Pcmim ⊠ Ẽi♭

d[1], E
i♭

d′).

It remains to deduce ext•Rβ
(Ẽi

c, Ẽ
i
c′) = {0} from the vanishing of (4.5).

Since Rβ is a Noetherian ring with finite global dimension, we have a pro-

jective resolution P• of Ẽi
c, which consists of finitely many finitely generated

projective Rβ-modules. In particular, there exists x ∈ Z so that the degrees of
simple quotients of all Rβ-module direct summands of P• are ≤ x.

For each j ∈ Z, we have a (surjective) A-module quotient φj : Ẽi
c′ → Ej

so that a) ker φj is concentrated in degree > j + x, and b) Ej is a finite
successive self-extension of (grading shifts) of Ei

c′ by Proposition 4.9 3). Then,

ext•Rβ
(Ẽi

c, E
i
c′) = {0} implies

ext•Rβ
(Ẽi

c, ker φj)
j = {0} = ext•Rβ

(Ẽi
c, Ej).

This yields ext•Rβ
(Ẽi

c, Ẽ
i
c′)j = {0} (for each j) as required.

We return to the proof of Theorem 4.11.
We have the following two short exact sequences:

0→ Lcmim ⊠ Ei♭

d[1] → Ei♭

d → C → 0 as Rcmαim
⊠Rβ1-modules, and

0→ Lc′mim ⊠ Ei♭

d′[1] → Ei♭

d′ → C ′ → 0 as Rc′mαim
⊠Rβ′

1
-modules.

Claim C. We have eim(cm)C = {0} and eim(c′m)C ′ = {0}.

Proof. Let Ψ be the set of m ∈ Y wmβ so that

e(m)(Lc′mim ⊠ Ei♭

d′[1]) ̸= {0}.

Let n = htwmβ, and let S be the set of minimal length representatives of
Sn/(Sc′m

×Sn−c′m
) inside Sn. We set S∗ := S\{1}. We have e(m)C ′ ̸= {0}

only if m ∈ S∗Ψ. Since Ei♭

d′[1] belongs to the (essential) image of Tim , we have

eim(1)Ei♭

d′[1] = {0}. On the other hand, we have Y c′1αi1 = {(i1, . . . , i1)}. Since
every element of S∗ decreases the number of heading i1, . . . , i1, we deduce the
assertion for C ′. The case of C is the same.

We return to the proof of Theorem 4.11. We assume cm ≥ c′m. Applying
Claim C, we deduce that

ext•Rcmαim
⊠Rβ1

(Pcmim ⊠ Ẽi♭

d[1], C
′) = {0}.

Therefore, the vector spaces in (4.5) are isomorphic to

ext•Rcmαim
⊠Rβ1

(Pcmim ⊠ Ẽi♭

d[1], Lcmim ⊠ Ei♭

d′[1]).
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Here we have ext•Rcmαim

(Pcmim , Lcmim) = homRcmαim
(Pcmim , Lcmim) = C.

Therefore, Claim A and Theorem 3.6 4) implies

ext∗Rcmαim
⊠Rβ1

(Pcmim ⊠ Ẽi♭

d[1], Lcmim ⊠ Ei♭

d′[1])
∼= ext∗Rβ1

(Ẽi♭

d[1], E
i♭

d′[1])

∼= ext∗Rsim−1
β1
(Tim−1

Ẽi♭

d[1],Tim−1
Ei♭

d′[1])
∼= · · · ∼= ext∗Rwmβ1

(Ẽi
c[1], E

i
c′[1]), (4.6)

where c[1] and c′[1] are the i-Lusztig data of Ti1 · · ·Tim−1
Ẽi♭

d[1] and Ti1 · · ·Tim−1
Ei♭

d′[1],
respectively. Therefore, we deduce the first two assertions by the induction hy-
pothesis and Claim B.

The fourth assertion follows from the vanishing of (4.5) and the middle two
assertions by applying long exact sequences repeatedly.

Therefore, the induction proceeds and we conclude the result.

Corollary 4.12. Fix a reduced expression i and β ∈ Q+. We have

Ẽi
b = Pb/

( ∑
f∈homRβ

(Pb′ ,Pb),b′<ib

Im f
)

and Ei
b = Pb/

( ∑
f∈homRβ

(Pb,Ẽi
b)

>0

Im f
)
,

where b and b′ runs over B(∞)β.

Proof. By Lemma 4.2 2), Ẽi
b admits a surjection from Pb. By Theorem 4.11 3),

we conclude that all the simple subquotient Ẽi
b is of the form Lb′ ⟨k⟩ for b ≤i b

′,

and hence the RHS surjects onto Ẽi
b. By Theorem 4.11 3) and 4), the head of

ker (Pb → Ẽi
b) must be spanned by Lb′ ⟨k⟩ for b′ <i b and k ∈ Z, and hence the

both sides are maximal quotients of Pb whose simple subquotients are that form.
Therefore, they are isomorphic to each other. This proves the first assertion.
The second assertion follows by Lemma 4.9 3) and Theorem 4.11 2).

Corollary 4.13. Fix a reduced expression i and β ∈ Q+. Then, we have

extiRβ
(Ẽi

b, (E
i
b′)

∗) =

{
C (b ̸= b′, i = 0)

{0} (otherwise)
, and

⟨
Ẽi

b, (E
i
b′)

∗
⟩
gEP

= δb,b′

for every b, b′ ∈ B(∞)β.

Proof. Since the first assertion implies the second assertion, we prove only the
first assertion. If b ≤i b

′, then the assertion follows from Theorem 4.11 4).
Thanks to Example 2.10, each Lci admits a finite resolution by the graded
shifts of Pci (for each c ≥ 1 and i ∈ I). By (the proof of) Lemma 4.9 3), we

deduce that each Ei
c admits a finite resolution by the graded shifts by Ẽi

c. By
taking the spectral sequence of this resolution, we deduce

ext•Rβ
(Ei

b, (E
i
b′)

∗) = {0} (4.7)

for each b <i b
′. Since ∗ is an exact functor and extiA is a universal δ-functor,

we deduce
homRβ

(M,N∗) ∼= homRβ
(N,M∗)

for each M,N ∈ Rβ-gmod. In particular, we conclude (4.7) unless b = b′.
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Thanks to Theorem 2.3 and the definition of the algebrasA(G,X) (andB(G,X))
in §1, we can replace Rβ with its basic ring to assume that it is non-negatively
graded. Then, we have (Ei

b′)
∗
k = {0} for every k > 0. For each j ∈ Z, we

have an Rβ-module quotient φj : Ẽ
i
b → Ej so that a) ker φj is concentrated in

degree > −j, and b) Ej is a finite successive self-extension of (graded shifts)
of Ei

b by Lemma 4.9 3). Then, the minimal projective resolution of ker φj is
concentrated in degree > −j. In particular, we have

ext•Rβ
(ker φj , (E

i
b′)

∗)j = {0} = ext•Rβ
(Ej , (E

i
b′)

∗) for each b ̸= b′.

This yields ext•Rβ
(Ẽi

b, (E
i
b′)

∗)j = {0} (for each j) as required.

Remark 4.14. For each β ∈ Q+, the standard normalization

⟨Pb, Lb⟩gEP = gdim homRβ
(Pb, Lb) = δb,b′ ,

combined with Theorem 2.5, Corollary 4.13 and Theorem 4.11 implies that
{gch Ẽi

b}b and {gchEi
b}b give rise to the lower/upper PBW bases corresponding

to i, respectively.

Corollary 4.15. For each Lusztig datum (i, c), we have isomorphism as graded
Rwt(i,c)-modules:

Ẽi
c
∼= Pc1i1 ⋆ (Ti1Pc2i2) ⋆ (Ti1Ti2Pc3i3) ⋆ · · · ⋆ (Ti1 · · ·Tiℓ−1

Pcℓiℓ)

Ei
c
∼= Lc1i1 ⋆ (Ti1Lc2i2) ⋆ (Ti1Ti2Lc3i3) ⋆ · · · ⋆ (Ti1 · · ·Tiℓ−1

Lcℓiℓ).

Proof. By Lemma 4.9 1), it remains to compare the characters of the both sides.
Thanks to Remark 4.14, this follows from the comparison with the definition of
the PBW bases in [Lus93] §38 as the definition there yield the graded characters
of the RHS.

Theorem 4.16 (Lusztig’s conjecture). For every reduced expression i of w0,
β ∈ Q+, and b, b′ ∈ B(∞)β, we have an equality

[Pb : Ẽ
i
b′ ] = [Ei

b′ : Lb].

In particular, the expansion coefficients of the lower global basis in terms of the
lower PBW basis are in N[t].

Remark 4.17. Thanks to [K12a] 1.7 (and Lusztig [Lu90a] 10.6), a projective

module Pb admits a filtration by {Ẽi
b′}b′ if i is adapted to Γ.

Proof of Theorem 4.16. By Corollary 4.13, we have

δb,b′ = ⟨Pb, L
∗
b′⟩gEP =

∑
d,d′∈B(∞)β

[Pb : Ẽi
d][Lb′ : Ei

d′ ]
⟨
Ẽi

d, (E
i
d′)∗

⟩
gEP

=
∑

d∈B(∞)β

[Pb : Ẽi
d][Lb′ : Ei

d].

By applying the bar involution, this shows that

([Pb : Ẽ
i
d])([E

i
d′ : Lb′ ])

−1 = (δb,b′),

which is equivalent to the assertion.
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For each β, β′ ∈ Q+, we define the formal expression qβ and qβ
′
so that

qβ · qβ′
= qβ+β′

. We define

ept(q
β) :=

∑
n≥0

qnβ

(1− t2)(1− t4) · · · (1− t2n)
∈ Q(t)[[Q+]].

Corollary 4.18 (cf. Problem 2 in Kashiwara [Kas95]). For each β ∈ Q+, we
set

[P : L]β := ([Pb : Lb′ ])b,b′∈B(∞)β = (⟨Pb′ , Pb⟩gEP)b,b′∈B(∞)β

as the square matrix with its determinant Dβ. We have∑
β∈Q+

Dβq
β =

∏
α∈R+

ept(α).

Proof. As in the proof of Theorem 4.16, we factorize

[P : L]β = [P : Ẽ]β [Ẽ : E]β [E : L]β ,

where the second term is the #B(∞)β-square matrix of expansion coefficients
between projectives/lower PBWs, lower PBWs/upper PBWs, and upper PBWs/simples,
respectively. By Theorem 4.11 3), the determinant of the third matrix is 1. By
Theorem 4.16, the determinant of the first matrix is also 1. By Lemma 4.2 2)
(cf. Corollary 4.13), we conclude

Dβ =
∏

b∈B(∞)β

[Ẽi
b : E

i
b].

By Corollary 4.9 and the construction of Tij , if we denote c the i-Lusztig datum
corresponding to b, then we have

[Ẽi
b : E

i
b] =

ℓ∏
j=1

[Pcjij : Lcjij ] =

ℓ∏
j=1

1

(1− t2)(1− t4) · · · (1− t2cj )
.

This is equivalent to the assertion by a simple counting.

Remark 4.19. 1) By a formal manipulation, we have

⟨Pb, Pb′⟩gEP = ⟨Pb, P ∗
b′⟩gEP for every b, b′ ∈ B(∞).

Since the RHS calculates the Lusztig inner form {•, •} ([Lus93] 1.2.10) of the
lower global basis, Corollary 4.18 yields the Shapovalev determinant formula of
quantum groups of type ADE. 2) The proof of Corollary 4.18 also follows from
[K12a] 3.12, but here the proof works also from the PBW bases {Ei

b}b in which
i is not an adapted reduced expression of w0.
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