On the monoidality of Saito reflection functors

Syu KaTto *

September 18, 2018

Abstract

We extend the definition of the Saito reflection functor of the Khovanov-
Lauda-Rouquier algebras to the case of symmetric Kac-Moody algebras
and prove that it defines a monoidal functor.

Introduction

In [6], the Saito reflection functors for the Khovanov-Lauda-Rouquier algebras
of type ADE are introduced. It categorifies Lusztig’s braid group action [11,
§39] on (a subalgebra of) of the positive half of the quantum groups in the sense
of Khovanov-Lauda-Rouquier [8, 16]. They are main ingredients to construct
PBW bases in the spirit of Lusztig [11], and provided a certain role in the
representation theory of the Khovanov-Lauda-Rouquier algebras.

The goal of this paper is to develop it little bit further, and provide some
basic properties in more general setting than that of [6]. Let A := Z[tT!]. Let
g be a symmetric Kac-Moody Lie algebra, and let Ut be the positive half of
the A-integral version of the quantum group of g (see e.g. Lusztig [11] §1). Let
Q" = Z>ol, where I is the set of positive simple roots. We have a weight
space decomposition UT = P Beq+ U /;r . We have the Weyl group W of g with
its set of simple reflections {s;};c;. For each 8 € QT, we have a finite set
B(oo)p which parameterizes a pair of distinguished bases {G"?(b) }ye B(s0), and
{G"" (b) }pe (o), Of Q(t) @4 U;r. The Khovanov-Lauda-Rouquier algebra Rg is
a certain graded algebra whose grading is bounded from below with the following
properties:

e The set of isomorphism classes of simple graded Rg-modules (up to grading
shifts) is also parameterized by B(co)g;

e For each b € B(oo)g, we have a simple graded Rg-module L; and its
projective cover P,. Let Ly (k) be the grade k shift of Ly, and let [P, :
Ly (k)]o be the multiplicity of Ly (k) in P, (that is finite). Then, we have

Glow(b) — Z tk[Pb : Ly <k>]0Gup(b/)§
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e For each 3,3’ € QT, there exists an induction functor

* : Rg-gmod x Rg-gmod > (M, N) — M x N € Rg, g-gmod;

o K:=@s.o+ Qt) ®a K(Rg-gmod) is an associative algebra isomorphic
to Q(t) ® 4 UT with its product inherited from % (and the t-action is a
grading shift).

For each i € I and 8 € QT, we have certain quotients ;R and ‘Rg of Rg. In
case s;3 € Q7T, an interpretation of Lusztig’s geometric construction yields that
iRz and "Ry, 5 must be Morita equivalent. This naturally enables us to define
a right exact functor

T, : Rg-gmod —» *Rs-gmod —> ; R, g-gmod < R, 3-gmod

that we call the Saito reflection functor. Under this setting, our main results
read:

Theorem A (Theorems 3.8 + 3.9 + 4.1). The functors {T;}icr satisfies the
following:

1. There exist a right adjoint functor T} of T;;

2. For each M € "Rg-gmod and N € ;Rs,3-gmod, we have

ext}}sﬂ (TlM, N) = ext}x{/j (]\47 T:N),

3. They satisfy the braid relations;

4. For each B1, 2 € Q* Ns;QT and My € ‘Rp,-gmod, My € ‘Rg,-gmod, we
have a natural isomorphism

Tz(Ml *Mz) = (Tle) * (TlMg)

Here we understand M, My as modules of Rg, and Rg, through the pull-
backs.

We remark that Theorem A confirms a conjecture in [5] and provides one
way to correct an error in [6] (see Remark 4.2 or the arXiv version of [6]). Also,
the above result should extend to the positive characteristic case at least when
g is of type ADE by using [15].

We note that Peter McNamara sent me a version of [14] during the prepa-
ration of this paper that partly overlaps with the content of this paper.

1 Conventions and recollections

An algebra R is a (not necessarily commutative) unital C-algebra. A variety X
is a separated reduced scheme X of finite type over some localization Zg of Z
specialized to C. It is called a G-variety if we have an action of a connected affine
algebraic group scheme G flat over Zg on X, (specialized to C). As in [1, §6]
and [2] (see alto [7]), we transplant the notion of weights to the derived category
of (G-equivariant) constructible sheaves with finite monodromy on X. Let us



denote by D®(X) (resp. DT (X)) the bounded (resp. bounded from the below)
derived category of the category of constructible sheaves on X, and denote by
Dg (X) the G-equivariant derived category of X. We have a natural forgetful
functor D (X) — D*(X), whose preimage of D*(X) is denoted by D% (X). For
an object of D%(X), we may denote its image in D°(X) by the same letter.

2 Quivers and the KLR algebras

Let T' = (I,Q) be an oriented graph with the set of its vertex I and the set of
its oriented edges €. Here I is fixed, and €2 might change so that the underlying
graph T'g of I is fixed. We refer ) as the orientation of I'. We form a path
algebra C[I'] of T.

For h € Q, we define b’ € I to be the source of h and h” € I to be the sink
of h. We denote i <+ j for ¢,j € I if and only if there exists h € €2 such that
{R',h"} ={i,j}. A vertex i € I is called a sink of T (or Q) if b’ # i for every
h € Q. A vertex i € I is called a source of I' (or Q) if h” # i for every h € Q.
We assume that h' # h” for every h € 2 in the below (i.e. T has no edge loop).
We have a symmetric Kac-Moody algebra g with its Dynkin diagram I'y.

Let Q™ be the free abelian semi-group generated by {a; }ics, and let QT C Q
be the free abelian group generated by {«;}ic;. We sometimes identify @ with
the root lattice of g with a set of its simple roots {a;}icr. Let W = W (Ty)
denote the Weyl group of type I'g with a set of its simple reflections {s;};c;.
The group W acts on @ via the above identification.

An I-graded vector space V is a vector space over C equipped with a direct
sum decomposition V' = P, ; V.

Let V be an I-graded vector space. For 8 € Q, we declare dimV = 3
it and only if = >, ;(dim V;)a;. We call dim V' the dimension vector of V.
Form a vector space

i€l

E‘S} = @ Hom@(Vh/, V}w).
heQ
We set Gv := [[,c; GL(V;). The group Gy acts on Ej} through its natural
action on V. The space E§! can be identified with the based space of C[I']-
modules with its dimension vector (.

For each k > 0, we consider a sequence m = (my,ma,...,my) € I*. We
abbreviate this as ht(m) = k. We set wt(m) := 25:1 am; € QT. For f =
wt(m) € QF, we set ht 3 = k. For a sequence m’ := (m/,...,m},) € I*, we set

m+m' = (my,...,mp,m),...,mp) e I*H,

For i € I and k > 0, we understand that ki = (i,...,i) € I*.

For each € QF, we set Y7 to be the set of all sequences m such that
wt(m) = 3. For each 8 € QT with ht 3 =n and 1 <i < n, we define an action
of {o; ?;11 on Y7# as follows: For each 1 <i <n and m = (my,...,m,) € Y7
we set

o;m = (ml, ey TGy T 1, T, T 42, ,mn).

It is clear that {o; ;:11 generates a &,-action on Y7, In addition, &,, naturally
acts on a set of integers {1,2,...,n}. For 1 <1i < n, we set hm; := #{h € Q|
K =m;, h" = mi+1} and am,i := Pm,i + Po,m,i-



Definition 2.1 (Khovanov-Lauda [8], Rouquier [16]). Let 8 € Q1 so that n =
ht 3. We define the KLR algebra Rg as the unital algebra generated by the
elements z1,...,%n, Tiy--,Tn—1, and e(m) (m € Y?) subject to the following
relations:

1. degz;e(m) = 2 for every i, and
=2 (M =mit1)
degrie(m) = ¢ am,; (m; <> miy1) ;
0 (otherwise)
[zi,2j] = 0, e(m)e(m’) =y ve(m), and Y oy s e(m) = 1;
Tie(m) = e(o;m)e(m), and 7;7je(m) = 7y1e(m) for |i — j| > 1;

T?e(m) = Qm,i('ziv Zi+1>e(m);

For each 1 <1 <n, we have

TZ‘+1TZ‘TZ‘+1€(1’I1)—TiTi+1Ti€(m)
{ Qm,i(zi+2,2i+1)—Qm,i(2i,2zi+1) 6(

m) (mit2 =m;)

0 (otherwise)

Zi42 %4

76(111) (Z = k,mi = mi_,_l)
6. Tizpe(m) — 2, (i Tie(m) = ¢ e(m) (i=k—1,m; =m;;41).

0 (otherwise)

Here we set

1 (mi # M1, m ¢ miy1)
Qun,i(u,v) = ¢ (=)t (u—v)®t (my < miy1) ;
0 (otherwise)
where u,v are indeterminants. O

Remark 2.2. Note that the algebra Rg a priori depends on the orientation
Q through Qm(u,v). Since the graded algebras Rz are known to be mutually
isomorphic for any two choices of Q (cf. [16,83.2.4] and Theorem 2.3), we
suppress this dependence in the below.

For an I-graded vector space V with dim V' = 3, we define

F; C V is an I-graded vector subspace,

x € E2. For each 0 < j < htf,
and
Fj11 C Fj, and satisfies *F; C Fjy1.

ng ::{({Fj}?t_ﬁo,x)

Bg 1:{{Fj}?t_ﬁo

F; C V is an I-graded vector subspace s.t. Fj11 C F]}

We have a projection

h h
w/gz : FBQ > ({Fj}jtfoax) = {Fj}jtfo € B/?’



which is Gy -equivariant. For each m € Y”, we have a connected component

Fa = {({F}}%,2) € F§ | dim F}/Fj 1 = apm,,, Vj} C Fg,

that is smooth of dimension d,. We set B, := wg (FSY), that is an irreducible

component of Bg. Let

sl F s ({Fj}?tfo,x) >z € B

be the second projection that is also Gy-equivariant. The map 7} is projective,
and hence
Ly = (mp) C[dy)]

decomposes into a direct sum of (shifted) irreducible perverse sheaves with their
coefficients in D®(pt) (Gabber’s decomposition theorem, [1, Théoreme 6.2.5]).
Let us denote by Q% be the set of isomorphism classes of simple irreducible
perverse sheaves that appear as a direct summand of £} (with some shifts).
We set £g = Bpeys L and Qg = Umeys Q5. We might also denote Eg
by £ in order to clarify the dependence on V. Let e(m) be the idempotent
in End(ﬁg) so that e(m)L$ = L. Since 7fl is projective, we conclude that
DLE = L8 for each m € Y#, and hence

DLY = L. (2.1)

Theorem 2.3 (Varagnolo-Vasserot [17]). Under the above settings, we have an
isomorphism of graded algebras:

Rs = @) Ext, (L5, L5).
i€Z
In particular, the RHS does not depend on the choice of an orientation 2 of T'y.
For each m,m’ € Y?, we set
R = e(m)Rge(m’) = @ Extfy, (L, L)
€L

We set S C Rp to be a subalgebra which is generated by e(m) (m € Y#)
and 21,..., 2.

For each 31,32 € QT with ht3; = n; and ht 3y = no, we have a natural
inclusion:

Rﬂl X Rﬁz > e(m) X e(m/) — e(m + m/) € R31+ﬂ2 .
Rﬁl X1 =) 21&1,7}&1 — Ziy T € R51+52
1 gRBQ > 1 @zi,l &Ti — Zidny, Tidn, € R51+ﬁ2
This defines an exact functor
*: Rg, M Rg,-gmod > M1 XM — Rg, 45, ®r, ®R,, (M1XM2) € Rg, 45,-gmod.

The functor « restricts to an exact functor in the category of graded projective
modules (see e.g. [8, Proposition 2.16]):

*: Rg, W Rg,-proj > My W My — Rg, 4p, ®R[11|XR/32 (M1 X Ms) € Rpg, +,-proj.



If i € I is a source of I and f = (fu)heqn € EY, then we define

€ (f) := dimker @ fn <dimV;.
heQ,h/=i

Ifi € Iis asink of I' and f = (fy)neq € E{}, then we define

€;(f) := dim coker @ frn <dimV;.
heQ,h'=i

Each of €f(f) or ¢;(f) does not depend on the choice of a point in a Gy-orbit,
and is a constructible function on Ef?. Hence, ¢; or €/ induces a function on ES}
that is constant on each Gy -orbit, and a function on Q% through its value on
an open dense subset of the support of its element whenever i is a source or a
sink.

Proposition 2.4 (Lusztig [13]). For each i € I, the functions €; and €} descend
to functions on Qg for each B € Q. In particular, it gives rise to functions
on the set of isomorphism classes of simple graded Rg-modules (up to degree

shifts).

Proof. Note that [13, Proposition 6.6] considers only ¢;, but € is obtained by
swapping the order of the convolution operation. O

Theorem 2.5 (Khovanov-Lauda [8], Rouquier [16], Varagnolo-Vasserot [17]).
In the above setting, we have:

1. For each i € I and n > 0, Ryo, has a unique indecomposable projective
module Py; up to grading shifts;

2. The functor x induces a Z[tT']-algebra structure on

K:= P K(Rs-proj);
BEQT

3. The algebra K is isomorphic to the integral form U™ of the positive part
of the quantized enveloping algebra of type Tg by identifying [Py;] with the
n-th divided power of a Chevalley generator of UT;

4. The above isomorphism identifies a class of indecomposable graded projec-
tive Rg-module (B € Q) up to grading shifts with an element of the lower
global basis of U in the sense of [4];

5. There exists a set B(oo) = | |gcq+ B(00)s that parameterizes the set of
lower global basis of U™ ([4]). The above bijection identifies the functions
€, €f (i € I) on the indecomposable graded projective (or graded simple)

modules of | |5 Rg-gmod with the corresponding functions on B(cc).
Proof. See [6, Theorem 2.5]. O

Proposition 2.6 ([6]). The sheaf E% can be equipped with the structure of pure
weight 0. In particular, the graded algebra Rg itself is pure of weight 0.



Proof. The statement of [6, Proposition 2.7] is only when I'j is a Dynkin quiver,
but the argument works in general. O

Thanks to Theorem 2.3 and Theorem 2.5 5), we have an identification
B(o0)g = Qg. Via this idenfication, each b € B(c0)s defines a Gy -equivariant

simple perverse sheaf IC(b) on E$, where dim V = . Each b € B(co)s defines
an indecomposable graded projective module P, of Rg with simple head L; that
is isomorphic to its graded dual Lj.
Let 8 € QT so that ht 3 =n. For each i € I and k > 0, we set
Yk[fi ={m=(m;) €Y?|my=---=my =i} and
Ykﬁ,%* ={m = (m;) € v? | My =+ = mp_g41 =1}

In addition, we define two idempotents of Rg as:

ei(k):= Y e(m), and (k)= Y  e(m).
mey,?, mey’”

Theorem 2.7 (Lusztig [10] §6, Lauda-Vazirani [9] §2.5.1). Let 8 € Q*. For
each b € B(oo)g and i € I, we have

€;(b) = max{k| e;(k)Ly # {0}} and

€ (b) = max{k| e (k) Ly, # {0}}.
Moreover, e;(€;(b)) Ly, and e (€5 (b)) Ly are irreducible R, (p)a, "Rz _c, (b)a, -module
and R cx(pyon B Reg(b)ai-module, respectively. In addition, if we have distinct
b,/ € B(co)s so that ¢;(b) = k = ¢;(b') with k > 0, then e;(k)Ly and e;(k)Ly

are not isomorphic as an Riq, X Rg_pq,-module. O

3 Saito reflection functors

Let ; be the set of edges h € Q with A’ =i or b’ =i. Let s;9; be a collection
of edges obtained from h € Q; by setting (s;h)’ = b and (s;h)” = h'. We define
58 = (Q\Q;) U s;Q; and set s;I" := (I, 5;02). Note that I'g = (s;I')0.

Let V be an I-graded vector space with dim V' = . For a sink i of I', we
define

BV ={(fn)nea € EY} | coker( @ fn: @Vh/ — Vi) ={0}}.
hEQ,h =i R
For a source i of I', we define

zE\S} ::{(fh)heg € E% | ker( @ fn:Vi— @Vh”) _ {O}}

heQ,h/ =i I
Let Q be an orientation of I' so that i € I is a sink. Let 8 € QT N s;QT.
Let V and V' be I-graded vector spaces with dimV = 8 and dim V' = s;0,
respectively. We fix an isomorphism ¢ : @ V; — @;%;V] as I-graded vector
spaces. We define:

(fn) € BV, (fh) € "Ey.2, }

ZYy = {{(fh)heﬂa (f1)hesis ¥} 0= fho for b & Q;
YV — ker(@h&ﬂi Jn @y Vi = Vi)



We have a diagram:

B <O < 79y, e ipyfc L gy (3.1)
If we set
Gv,yr = GL(V;) x GL(V]) x [ [ GL(V}) = GL(V;) x GL(V{) x [ [ GL(V]
J#i J#i

then the maps p%,, and q{, are G,y -equivariant.

Proposition 3.1 (Lusztig [12]). The morphisms pi, and ¢i, in (3.1) are Aut(V;)-
torsor and Aut(V/)-torsor, respectively. O

When g =dimV, we set
iRY = Ext® (jy L3, 50 LY) and ‘RIG = Ext, (37 Ly, 50 L3).
For each k£ > 0, we fix an I-graded vector subspace U C V so that dim U =
B — ka; and an I-graded vector subspace Uj, C V' so that dim U}, = s;5 — kay.
We have natural embeddings xy, : Egk C EY and 7y, E[S],Q C E3? by adding
4 k

direct sums of k copies of one-dimensional C[I']-modules and C[s;I'|-modules of
their dimension vectors «;, respectively.

Theorem 3.2 (Lusztig [13]). Let k > 0. The restriction n,’;ﬁg is a direct sum
of shifted perverse sheaves in Qg_,mj. Similarly, the restriction nkﬁs 2 s a

direct sum of shifted perverse sheaves in Qsﬂ—ka-'
K2 k3

Proof. The assertion is exactly [13, Proposition 4.2] since the projection map p
(in the notation of [13]) is an isomorphism (onto the image) if we appropriately
arrange W and T in [13, §4.1]. O

We set By, = GvED , iEY 4y = B3 \iBY s ik E{}k — B and
ke : Z-E&(k) — iE‘S}’k for each k > 0. We have Z—E‘s},k |_|k/>kz V. (k) and we
have ¢;(x) =k for x € E‘g/l(k) The map iy is closed immersion, and the map ji

is an open embedding. We set ZE‘S,,Q,C = Gy E5 and we define similar maps

UL
1%, 7 for them that we use only as “an analogous situation.

Proposition 3.3. Let K > 0. The sheaf z,*c[,g is the direct sum of shifted
perverse sheaves in Q% supported on iE37k if we restrict them to iES(k)- Simi-
larly, the restriction ZZEZZ% is a direct sum of shifted perverse sheaves in Q:g
supported on iE‘s;',Qk along the loci with € = k.

Proof. As the proofs of the both cases are completely parallel, we concentrate

into the case of z,*cllg
The map sy factors through iy as

/ .
Q Rk Q ik, -0
Ey, — by, — By

for each k. Thus, Theorem 3.2 asserts that (x},)*i; LY is a direct sum of shifted
perverse sheaves in Qg_,mi. We set n :=dim V;. Let P, C GL(n) =2 GL(V;) be



the parabolic subgroup so that its Levi part is GL(n— k) x GL(k) and stabilizes
Ef}k C E{}. Then, we have a map

7 GL(n) Xp, Egk — B},

that is projective over the image. Note that 7 is locally trivial fibration over
,-Eg(k) with its fiber isomorphic to Gr(k,n).

The sheaf (7).} £Q can be regarded as the induction of the sheaf x} £,
and hence it is a direct sum of shifted perverse sheaves in QQ The above
argument tells us that iZE is a direct summand of (g ).y 15 LS 3 When restricted
to iE& (k)" Therefore, we conclude that i} £ 7 1s a direct sum of shifted perverse

sheaves in Q% supported on ZE‘S},c restricted to iEg (k) B8 required. O

For each k > 0, we define
iR = Bty Gl Jvnly),

where jy i : Eg\lE‘(}k — Eg By definition, we have iRg,l = iR%. By conven-
tion, we have jy = id for k > dim V;, and we have ing = R% in this case.
We also define lR‘;g  in a similar fashion, that we use only as “an analogous”
situation.

Theorem 3.4. For each k > 0, we have an algebra isomorphism
iR5 1 = Rs/(Rpei(k)Rg).

Moreove?r, Z—R%kﬂei(k)ingH s projective as a ing)kH -module. Similarly, the
algebm’RsiQk is isomorphic to R’ /(R‘z g (k )Rs"ﬂ), and 'R} ki€l (k) R9 B k1
is projective as a 'R’ 15 kH-module In particular, the algebras ; Rﬁ x ond RS Bk

do not depend on the choice of ).

Proof. Since the case of RS gk IS completely parallel, we concentrate into the

case of ZR% x- The case k> 0 is clear, and hence we prove the assertion by the
downward induction on k. In particular, we assume that

iRS 141 = Rg/(Rpei(k + 1)Rp)

to prove our assertion. We denote iRg’k 11 by Rg g+1 for simplicity.
We have

Extg;,, (ﬁ,k»’:%}aﬁ,kﬁg) > Exte,, (j{/,kﬁg’j\!/,k/:g)
~ Ext&, (v iy e Ly, L3)-

We set Ej, := (E‘g,l\iE%k_H). By assumption, we can restrict ourselves to Ej to
compute the Ext-groups. Hence, we freely assume that our maps are restricted
to Fj unless otherwise stated (during this proof).

We have a distinguished triangle

+1

(JVk)‘JVkEV - ﬁv = (i)« iT/,k[’S\}' - (3.2)



where iy : Z—Eg(k) — FE}, is the complement inclusion. This yields an exact
seqgeunce

. . ok . P . . .
EXtGV((ZV,k)*ZV,kﬁg\Ev £Y) — Exte, (LY, L) — EXtGV((JV,k)!]{/,kLS\}a £3)

— ExtetH ((iv) iy £V, £7)

as Rg j+1-modules. Note that L; is the coefficient of ICQ(b) in £2, and hence its
support is contained in lEg » when ¢;(k)Ly # {0}. In particular, the simple Rg—
module L; contributes to Extg, (j{/,kﬁg‘},ji/’kﬁg) by (graded) Jordan-Hélder
multiplicity zero when €;(k)L, # {0}. It follows that Rgpi1e:(k)Rgrt1 C
ker 1.

r}‘l}he action of He, (pt) on Extg, (£$}, L) is through the center of Rg (see
e.g. [17]), and it is torsion-free. Hence, the action of H&L(Vi)(pt) and H¢, , (pt)
on Ry i1 = Extey, (7 1 £ i pe1 £3}) factors through the center of Ry py1.

Since (iv,k)« = (4v,x)1, we have

Extgy, ((ivie) iy 1 £, £V) = Extg, (v, LV, iy, L)

By our convention, i’{/’k/lg and z"/kﬁg are supported on iE‘f})(k). In addition, we
have iE‘S}’(k) = GL(V;)xp, (lEgk mE&(k)) for a parabolic subgroup P, C GL(V;)
borrowed from the proof of Proposition 3.3. Here, the subgroup GL(k) C Py
acts on Z—E{}k trivially. From this and the induction equivalence ([2, §2.6.3]),
we obtain a free action of H¢, . (pt) on Ext&L(%)((iV’k)*i’Q’kﬁg,Eg). The
image of the pullback map H&.L(Vi)(pt) = Hep o (pt) contain k-algebraically
independent elements (over the base field C). From these, we conclude that
the H2; v (pt)-action on ExtE;L(VL_)((imk)*i’{/’kﬁs‘},L’g) contains at least k al-
gebraicaﬁy independent elements that acts torsion-freely.

On the other hand, the action of Hg . (pt) on ExtaL(%)(j‘!/’kﬁs‘},j{,)kﬁg‘})
arises from the GL(V;)-action on some algebraic stratification of Ej_; (see e.g.
Chriss-Ginzburg [3, Definition 3.2.23 and §8.4]) so that the stalks of elements
of Q% are constant (by the construction of Q%; note that our stratification is
finite). In other words, we have a finite Gy -stable stratification

EY\EY, = || Sa
AEA

and a complex of locally constant sheaves £, (obtained by a successive appli-

cation of recollements) over Sy so that Ext&L(w)(j§/7k£8,ji,7k£3) is written

as a finite successive distinguished triangles using Hg L(V; )(S s €). Moreover,

Ext'GL(w)(j{/7k£3,j{,7k£8) must be a finitely generated Hg,; v, (pt)-module as

a result of the the fact that £5} is a finite direct sum of constructible complexes
Q

over Ey;.

The rank of the stabilizer of the GL(V;)-action on a point of Ej_; is always
< k. As a consequence, the action of Hg 1) (pt) on Hgp ) (Sx, €x) (for every
A € A) cannot carry k-algebraically independent elements that act torsion-freely.
Therefore, the same holds for Extg; (v, (v, £V, jyx £1)- Thus, the map

Ext&p vy (Gva)uivily, £8) = EXtE;El(w)((iV,k)*i;,kﬁga Ly)

10



must be nullity as we do not have enough number of algebraically independent
elements of HéL(Vi)(pt) that acts on the LHS without torsion. By imposing the
Gy -equivariance, we obtain a map

He o) (pt) @ Extg v, ((jV,k)!j{/,kﬁgv L)

—H¢ arv,) (Pt ® EXtE;T(m((Z‘V,k)*@,kL& Ly)
that induces a map
Extg, (v x £V, £0) = Exteh ! ((ivie)«i3 4 LV, £7)

through the Serre spectral sequences (applied after pulling back to the classifying
space of Gy). This map must be also nullity as it is induced from the nullity.
Hence, we conclude a short exact seqeuence

. . - Y
0 — Ext®, ((ive)«iyx LV, LY) = Rgps1 — R — 0

as left Rg r41-modules.

By Proposition 3.3, the sheaf (ZVk)*zt/kﬁg is a direct sum of shifted perverse
sheaves on EYy, that is supported on iE{}’ r (or "E& ( k)). It follows that the graded
Rg j+1-module Extz,v((iv,k)*i"{/,kﬁf&, L$}) is the direct sum of projective covers
of Ly, with ¢;(b) = k. Since Rg g+1€:(k)Rp k+1 is the maximal left Rg-submodule
of Rg ;+1 generated by irreducible constituents {Lb}ei(b):k, we deduce

R pr1ei(k)Rp pr1 =2 Bxtl, ((ivk) iy, £, £3) = Exte, (LY, (ivik) iy p L3),

where the latter modules are actually calculated on Ej. Therefore, we conclude
the assertions for Rg; as required.
This proceeds the induction step, and we conclude the assertion. O

Corollary 3.5. The set of isomorphism classes of graded simple modules of
iRg and ZR?? are {Ly (J) Ye;)=0,5ez and {Ly (§)}er (b)=0,jez, Tespectively. O

Theorem 3.6 ([12]). The maps ¢, and pi,, give rise to a bijective correspon-
dence between perverse sheaves corresponding to {b € B(co)g | €;(b) = 0} and
{b € B(c0)s,5 | €(b) = 0}

Proof. In view of Theorem 3.4, the combination of [12, Theorem 8.6] and Propo-
sition 2.4 implies the result (see also [11, Proposition 38.1.6]). O

Proposition 3.7 ([6]). In the setting of Proposition 3.1, two graded algebras
iRg and 1R§Q are Morita equivalent to each other. In addition, this Morita
equivalence is independent of the choice of Q (as long as i is a sink).

Proof. Although the original setting in [6, Proposition 3.5] is only for types
ADE, the arguments carry over to this case in view of Theorem 3.6. O

For each b € B(00)s,3, we denote by T;(b) € B(co)s U {0} the element so
that
() 1C* 2 () [(dim V;)?] 2 (i) "IC(T;(b))[(dim V)?],
(we understand that T;(b) = 0 if supp IC***(b)NIm pi,, = @). Note that T;(b) = 0
if and only if €f(b) > 0. In addition, we have €;(T;(b)) = 0 if T;(b) # 0. We set
M) == b if b = Ty(b) # 0.

11



Thanks to Theorem 3.4, we can drop 2 or ;2 from Z-Rg and lR‘;’Q We
define a left exact functor

T; : Rg-gmod —» ; Rg-gmod = ‘R,,5-gmod < R, s-gmod,

where the first functor is Homp, (; R, ®), the second functor is Proposition 3.7,
and the third functor is the pullback. Similarly, we define a right exact functor

T, : Rg-gmod —» 'Rz-gmod —» ; R, s-gmod — R, 3-gmod,

where the first functor is iR[; ®r, o We call these functors the Saito reflection
functors ([6, §3]). By the latter part of Proposition 3.7, we see that these
functors are independent of the choices involved.

Theorem 3.8 ([6] Theorem 3.6). Leti € I. We have:

1. For each b € B(oc0)a, we have

T,, {LTi(b) (€7 (b)

0 () >

=0) an o LTfl(b) (61'(5):0).
o @m0 M m“‘{ 0

2. The functors (T;, TF) form an adjoint pair;
3. For each M € “Rg-gmod and N € ;Rs,3-gmod, we have

exth, (T:M,N) = ext},, (M, T;N).

Proof. The proof of the first assertion is the same as [6, Theorem 3.6] if we
replace standard modules with projective modules, that involves only simple
perverse sheaves. The proof of the second assertion is exactly the same as [6,
Theorem 3.6]. The third assertion requires the second part of Theorem 3.4
instead of [6, Corollary 1.6] (and also we need to repeat projective resolutions
inductively on ¢; and € in a downward fashion). O

Theorem 3.9. Leti,j € I. We have:

o Ifi ¢ j, then we have T;T; = T;T;;

o If#{h e Q|{W, A"} ={i,j}} =1, then we have T,T,;T; = T,;T,T;.
The same is true for T} and T}.

Proof. By [12, §9.4], the functor T; induces an isomorphism described in [11,
Lemma 38.1.3] (see also [18]). Hence, [11, Theorem 39.4.3] (cf. Theorem 3.8
1)) implies that the both sides give the same correspondence between simple
modules. As each of T; transplants the simple modules and annihilates all the
submodule that contains some specific simple modules (that induces an equiva-
lence between some Serre subcategories), the same is true for their composition.
Therefore, we conclude the result. O

12



4 Monoidality of the Saito reflection functor

We work in the setting of §2. The goal of this section is to prove the following:

Theorem 4.1. Leti € I, and let B1, 82 € QT so that s;51, 582 € QF. There
exists a natural transformation

T5 (o x ) — T;(e) x T; (o)

as functors from the category of ;Rg, M ;Rg,-modules that gives rise to an iso-
morphism of functors. The same holds for T; if we consider functors from the
category of *Rs, 3, W 'R, g, -modules.

Remark 4.2. Theorem 4.1, or rather its T-version, corrects a mistake in the
proof of [6, Lemma 4.2 2)]. Note that another correction was made for the arXiv
version of [6].

The rest of this section is devoted to the proof of Theorem 4.1, and the main
body of the proof is at the end of this section.

Let 81,32 € QT and set 3 := 1 + B2. The induction functor  is represented
by a bimodule Rgeg, g,, where

€818, = > e(my) X e(my).
m; €Y A1 myeY 2

We fix an orientation €2, and we might drop the superscript 2 freely if the
meaning is clear from the context. We fix I-graded vector spaces V(1) and V(2)
so that dim V(i) = 8; = }_ ;¢ d;(i)e for i = 1,2, and V := V(1) & V(2).

We consider two varieties with natural Gy -actions:

F C V : I-graded vector subspace}

Gy ve(V) = {(F’%lﬁl,%)‘ @ € By, st. aF CF
Y1 : V/F 2V (1), : F =V (2)

o F C V : I-graded vector subspace
Gr51,52(v) = {(F’x)‘ xGE"/, st. cF C F }
dim F' = B

We have a Gy(1) x Gy (2)-torsor structure ¥ : Gry (1) v (2)(V) — Grp, 3,(V)

given by forgetting 7 and 5. We have two maps

p :Grp, 5,(V) 3 (F,z) — z € By and

q° :Grv ), v (V) 2 (F2,91,12) = (Y1(z mod F),va(x|p)) € Evy @ Ev(s).
Notice that ¢ and q are smooth of relative dimensions dim Gy (1) + dim Gy (2)

and §(dim Gy +dim Gy (1) +dim Gy (2)) + Y cq d1 (R))d2 (1), respectively. The

map p is projective. We set Ngl,ﬁz = %(dim Gy — dim Gy ) — dim Gy (g)) +

di(R)do(Rh"). For Gy (;-equivariant constructible sheaves F; on Ey (; for
heQ (1) (2)
i = 1,2, we define their convolution product as

]:1 @.7:2 = p!‘7:12[N§1,ﬁ2]’ Where 19*]:12 =~ q*(]:l @]:2) n ng (Grv(l),v(Q)(V>),

where we also make a renormalization of the weight so that F; ® F5 is pure of
weight 0 whenever Fp, Fy have pure weights whose sum is 0 (that is possible as
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p« = p1). We might drop [Ng1 ﬁ2] and the renormalization of the weight from
the convention in the below for the sake of simplicity.
By construction, the convolution of Egl and Eg,z yields the direct summand

of ﬁg corresponding to the idempotent eg, g,. Hence, we have
Rges, p, = Bxty, (L5 © LF,,L5) (4.1)
as (Rg, Rg, X Rg,)-bimodule.
Let 6%752 be a complex so that 19*5%1)52 = q*(ﬁg1 X £g2). Then, we have
Exty, (L5, © L5, L5) = Extg, (L3, 5,,0'LF).
Since we have (by the induction equivalence [2, §2.6.3])
Extly (£8,,5 £81.8,) = EXUG, 1y xGv oy (C5) B LB, L5, BLE,),

we have a (right) Rg, & Rg,-module structure of Rgeg, g,.
From now on, we assume that ¢ € [ is a sink of 2 and employ the setting of
§3. We find £g£b52 so that

* b AU K . .1 . .1
P LG5 = 0" (Gv)iv s B (ve)ive L),
and O := ﬁ(q_l(iEg(l) X Z-Eg(Q))). The graded vector space

Qb QN ~ Qb 1,0
EXtaV (p!‘cﬁl B2 ‘Cﬁ) = EXt&V (Eﬁhﬁz’ P £5)
admits an (Rg, ;Rz, K ;Rg,)-bimodule structure.
By restricting each components to the open set ; ES} by ji = j‘!/, we deduce
that Extg,, (j‘*/pyﬁgl’bm,j{‘/ﬁg) is a left ; Rg-module. Applying adjunctions, this
module is isomorphic to

. Qb . - ~ . Qb 1/ . o
Extg, (PLy 5, V)iV £5) 2 Extey (L4750 (v)-dvL5),  (4.2)

which admits a right ; Rg, K; Rg,-structure. Hence, (4.2) is an (;Rg, ;Rp, X;Rg, )-
bimodule.

We fix I-graded vector spaces V'(1) and V'(2) so that dim V' (i) = s;5; for

1 =1,2. A similar construction as above implies that we have a sheaf E;’glbs By

so that
* rsib ~ ok ! i ! i
v ‘Cz,ﬁl,si[b =9 ((]V’(l))IJV’(l)‘C;ﬂl X (JV'(Z))!JVf(z)ﬁi,;@)-
It yields an (“Rs, 5, Rs, 5, ¥ ' Rs, 3, )-bimodule
Qb * $id\ A~ Qb | * $;Q
EXtév/ (P!ﬁiiﬁ’l,smg» (]V’)*]V’[':iﬁ) = EXtZJV, (ﬁiiﬂl,sm, p'(jV’)*]V“C;ﬁ()‘ )
4.3

Theorem 4.3. Under the above setting, the image of the natural restriction
map o
EXtév(p!Eglﬁwﬁg) - Eth;v(p!Eﬂiﬁwﬁg)

is a submodule of the RHS, and is equal to

iRs @py R, (iRp MiRg,).
In addition, it is the pure part of weight zero in Extév(pgﬁgl’bﬁz, E%) The same
is true if we replace ) with s;82, B; by s:8;, and ;Rg, with ‘Rep, (7=0,1,2).

J
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Proof. Since the proofs of the both assertions are similar, we prove only the case
of Q. We have O C p_l(iEg), and hence the restriction map factors through
the restriction to ; F{?. By unwinding the definition, we have a factorization

) ) ! ¢ -l ¢
EXtév(pIL%lﬁz"ﬁgﬁ) — EXtE;V (]Vp!LﬁlhﬂijLﬂl)
~ . .l Q,b
=Exts, (v )iy PiLs, 5,, L) = Bxtg (mLy 5, L])

of (Rg, Rg, K Rg,)-bimodule map, where the first map (that is surjection by
Theorem 3.4) is the restriction to the open set, the second isomorphism is the
adjunction, and the third morphism is obtained by the base change using j{/ =
jv and the composition.

We have a distinguished triangle

. . 1
(JV(Z))']{/(Q)E%2 — 522 — Ker 3 .

Since £g2 is pure of weight 0, it follows that (jv(2))!ji/(2)/$g2 must have weight
< 0 ([1, Stabilités 5.1.14]). Taking account into the fact that (jv(g))gj{,@)EgQ
and Egz share the same stalk along iE‘g/Z(Q) and the stalk of (jv(z))!j{/(Q)Eg2
vanishes outside of iE8(2)’ we conclude that Ker has weight < 0. We set K :=
pi ', where 9*K' = q*(ﬁgl X Ker).

From now on, we make all computations over ZES by using jy, = j{, The
above construction gives us a distinguished triangle

Qb Q Q +1
plﬁﬁl;ﬁz - ‘651 ®£ﬂ2 —-K—.

Moreover, K has weight < 0 by p. = p.
Hence, we deduce an exact sequence of ; Rg-modules

. . ° b
Ext, (K, L§) = Extg, (pLF, 4,.LF) 2 Bxt (pL5 5, L)

Note that the middle term has weight 0 by Theorem 3.4 as the both of Lgl @ng
and Eg are pure of weight 0. Since Extg, (K, Lg) has weight > 0 ([1, Stabilités
5.1.14]), we conclude that Im p is precisely the weight O-part of Extg,, (P!Egl’%ﬂz , Lg)

(see also the arguments in [7]).
Since the (;Rg, iR, X; R, )-action preserves the weight, it follows that Im p

is an (;Rg,;Rp, W ;Ra,)-subbimodule of Ext'Gv(pyﬁgl’bﬁz,Eg). Since we have
Ext'GV(p!Eghﬁz, Eg) = ;Rges, 5,, We have a surjection

™ iRgep, p, —» Imp.

By Proposition 3.3, the sheaf Ker is obtained by successive constructions of
cones of shifted perverse sheaves on Q%z that are supported outside of ZE{}(Q).
Therefore, we deduce that ker p admits a surjection from the direct sum of
Rg-modules of the form

Pb1 *)(F’b2 b, € B(Oo)ﬂl,bg S B(OO)52,6i(b2) >0,

that corresponds to IC*(by) © IC®%(by) with €;(by) > 0. Let us write E the sum
of the image of all such Rg-modules in ;Rgeg, g, arises as the above induction.
In view of the construction of Ker, we have ker w C E.
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On the other hand, E is precisely the kernel of the natural quotient map
iRges, p, — iRp Ory wir,, (1R MiRg,).
As a consequence, we have a quotient map
Imp —» ;Rg @r, ®R,, (iRp, ®iRpg,).

The module Imp is a (;Rg, ;Rg, X ;Rg,)-bimodule whose bimodule struc-
ture is induced from the (;Rg, Rg, X Rg,)-bimodule structure on ;Rgegs, g,
by construction (through Theorem 3.4). Thus, Im p admits a surjection from
iRg @r, wr,, (iRp, Xillg,), that is the maximal (;Rg, ;Rp, X ;Rg,)-bimodule
quotient of ;Rgeg, g, (regarded as a (;Rg, Rg, X Rg,)-bimodule). Therefore, we
conclude

Imp = iRs Qr, wR,, (i1Rp, Milkg,)

as required. O

Proof of Theorem 4.1. The open subset O C Grgl’ﬁ2 (V) is the set of points
(F, ) sothat z|p€ E&Q) andz mod F € 1E8(1)~ We set O := ﬁ(qfl(iE‘S}%) X
ZE?;/(Q))) The open subset O C Gré Br.si %2 (V') is the set of points (F',z') so
that o' |pr € lEf/,(z) and ' mod F' € ’Ef/,(l)

Consider a variety O with the Gy, y-action defined as:

{(fh)h€ﬂa (f}ll)hesiﬂaw} € ZS,VU
¢ W; =W for j #1i
{{{Wi, WEhe G, (s )| (idicr, () € G800, }
{wi }1617 (finesi) € Griig g (V')

’L/) : VVZ —) ker(@heﬂi fh : @h Whl — WZ)

In the definition of @, the condition (fx |{w,},)nen € iE‘S}(Q) guarantees that

dim W, = dim ker( @ fn: @Wh/ — W)
heQ;

and similarly the condition (f, [{w,},)nes;2 € iE‘S},((zz) guarantees that
dim W; = dim coker( @ fn: W — @ W),
heQ; h

that actually asserts the same thing. Since we have an isomorphism

o~

¥ : V! —s ker( @fh EDVMHV

he;

from the definition of Z&V,, taking quotients yield

(fn mod {Wili)heo € iEV () and (fn mod {W}i)hes,0 € 'EYy)-
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Hence, the quotients of O by Gy and Gy, gives i, and pi,, in the commu-
tative diagram in the below:

~;

Q v ﬁi" i
Gr51752 V) °0 0 o' GrziﬁlasiﬂQ (V)
Q Jv QO q%/ Q pi,/ : 0 Jv! iQ
by By Zyy "By Ey,

Therefore, we have an equivalence of the category of Gy -equivariant sheaves on
O, and the category of Gy-equivariant sheaves on O’ (cf. [2, §2.6.3]). With an
aid of Proposition 3.7, we conclude that

Qb A0 A Qb ! psiQ
EXtE;V (551752,]) ﬁﬁ) = EXt&v’ (Eziﬂhsi,@’z’ (p/) Zzﬂ)

up to amplifications of direct summands (i.e. we allow to duplicate direct sum-
mand of both terms). By Theorem 4.3, the comparison of their weight zero
parts identifies

iRp ®R51®Rﬁz (iRg, M ;Rg,) and iRSiﬁ ®Rsiﬁ1 XRs, s, (iRSzﬂl & iRSiB2)

through the Morita equivalences in Proposition 3.7. This is actually an identi-
fication of bimodules by construction.
In other words, we have an isomorphism

* . -5k Q.b -k ~ . * Qb * iQ
T7 (Exte;,, (v (£ 1,52)7JV£§32)) = Exte,, (v (L35 si5.) v Lolg)s

where the amplification of direct summands is subsumed in the constructions
of T;. This isomorphism commutes with the Morita equivalence of ;Rg, and
‘Rs,p, for j = 1,2 by the above. Hence, taking their weight 0 part yields the
desired natural transformation

T (exe) — T (e)xT; (o)

of functors, and it must be an equivalence. The case of T; is obtained similarly.
O
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