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Abstract

We construct a smooth projective algebraic variety XΨ that compact-
ifies the total space of an equivariant vector subbundle of the cotangent
bundle of the flag variety for GL(n) (determined by a root ideal Ψ). The
variety XΨ carries a natural family of line bundles whose spaces of global
sections give rise to the symmetric functions known as Catalan functions,
defined by Chen-Haiman [PhD thesis, University of California, Berke-
ley (2010)] and studied in Blasiak-Morse-Pun-Summers [J. Amer. Math.
Soc. (2019), Invent. Math. (2024)]. Analyzing the geometry of XΨ, we
prove the vanishing conjectures of Chen-Haiman and (the tame case of
that of) Blasiak-Morse-Pun, as well as the monotonicity conjectures of
Shimozono-Weyman [Electronic J. Combin. (2000)].

Introduction

In search of a better understanding of the internal structure of Macdonald poly-
nomials [26] after Haiman’s solution [14] of the Macdonald positivity conjecture,
LaPointeLascouxMorse [23] proposed the concept of k-Schur functions. These
functions have been shown to represent Schubert classes of affine Grassman-
nians [21], and hence play a role in the study of the quantum cohomology of
the flag variety X associated with G = GL(n,C) [34, 22]. However, the pre-
cise relationship with Macdonald polynomials, as well as their connection to
computations in quantum cohomology, is not yet fully understood.

ChenHaiman [8] made remarkable conjectures about the internal structure
of k-Schur functions and their generalizations, sometimes called Catalan func-
tions, through a geometric interpretation in terms of certain vector bundles on
the flag variety X. Their conjectures include, as special cases, a conjectural
resolution of a question posed by Broer [5, 3.16] (in type A) and a conjecture of
ShimozonoWeyman [35]. Although the numerical part of their conjectures has
been established by BlasiakMorsePunSummers [3, 2], the cohomological vanish-
ing component, further refined in [2], remains open. These conjectures lie at
the heart of the geometric framework of [8], and also underpin the logic of the
monotonicity conjectures in [35, §2.10]. In this light, the vanishing assertions
may be viewed as completing a conceptual framework whose structure has grad-
ually emerged through decades of work by ChenHaiman, ShimozonoWeyman,
and others.
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In this paper, we define and study a smooth projective variety XΨ, which
compactifies the G-equivariant vector subbundle T ∗

ΨX ⊂ T ∗X introduced in [8].
To state our results more precisely, we fix notation as follows: Let Ψ denote a
Dyck path of size n, corresponding to a root ideal in type An−1 [6]. Then, the
above T ∗

ΨX is specified by Ψ. Let Par denote the set of partitions of length at
most n. The set Par parametrizes the irreducible polynomial representations
of G up to isomorphism. For each λ ∈ Par, let V (λ) denote the corresponding
representation, whose character is the Schur polynomial sλ. Encoding the C×-
weights as powers of q, we consider the graded character gchV of a rational
(G × C×)-module V . For a (G × C×)-module M , let M∨ denote its restricted
dual, i.e., the direct sum of the duals of C×-isotypic components.

The Catalan symmetric function associated to a Dyck path Ψ of size n and
λ ∈ Par is defined as:

H(Ψ;λ) :=
󰁛

µ∈Par,m∈Z
qmsµ ·dim HomG×C×(V (µ)⊠Cmδ, H

0(T ∗
ΨX,OT∗

ΨX(λ))∨),

(0.1)
where H(Ψ;λ) = H(Ψ;λ;w0) in [3, (2.2)]. We remark that the sum in (0.1) is
finite, while we have

dim H0(T ∗
ΨX,OTΨX(λ)) = ∞

in general. Most of the irreducible rational representations of G appearing in
H0(T ∗

ΨX,OTΨX(λ)) are therefore not captured by (0.1); they are precisely the
rational but non-polynomial representations of G.

Our main results are summarized below.

Theorem A (
.
= Theorems 3.9, 5.1, and 4.1). There exists a smooth projective

algebraic variety XΨ equipped with a (G×C×)-action which satisfies the following
properties:

1. There is an open embedding T ∗
ΨX ↩→ XΨ;

2. For each λ ∈ Par, there exists a (G×C×)-equivariant line bundle OXΨ
(λ)

on XΨ such that:

H>0(XΨ,OXΨ(λ)) = 0,

gchH0(XΨ,OXΨ(λ))
∨ = [H(Ψ;λ)]q 󰀁→q−1 .

3. There exists a (G× C×)-equivariant effective Cartier divisor ∂ supported
on XΨ \ T ∗

ΨX such that

H>0(XΨ,OXΨ(λ+m∂)) = 0 for all λ ∈ Par, m ≥ 0.

In particular, we have

H>0(T ∗
ΨX,OT∗

ΨX(λ)) = lim−→
m

H>0(XΨ,OXΨ(λ+m∂)) = 0.

A parabolic analogue of this vanishing result also holds; see Corollary 5.4.

Part (3) of Theorem A resolves the vanishing conjecture of Chen-Haiman [8,
Conjecture 5.4.3(2)]. Combined with [2, Theorem 2.18], this establishes [8,
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Conjecture 5.4.3] in full generality. Since this conjecture answers a question
of Broer [5, 3.16] (in type A) and generalizes that of ShimozonoWeyman [35,
§2.4], our result settles these as well (see Remark 5.2). When Ψ is maximal (so
that T ∗

ΨX = T ∗X), the variety XΨ recovers the smooth resolution [31, 28] of
Lusztig’s compactification [25] of the nilpotent cone of gl(n,C). For reference,
we note in Remark 5.5 that our proof generalizes to positive characteristic.

As a corollary of Theorem A, we find:

Corollary B (
.
= Lemma 5.6). There exists an action of GL(n,C[[z]])⋊Gm on

XΨ that makes

H0(T ∗
ΨX,OT∗

ΨX(λ))∨ −→→ H0(XΨ,OXΨ(λ))
∨, λ ∈ Par

into a quotient as (graded) representations of gl(n,C[z]).

A local chart analysis of XΨ further leads to the following result:

Theorem C (
.
= Theorem 5.8). For each λ ∈ Par, the space H0(XΨ,OXΨ

(λ))
has a simple head as a (graded) gl(n,C[z])-module.

As an additional consequence of our construction, we have:

Corollary D (
.
= Corollary 5.21). Let Ψ′ ⊂ Ψ be an inclusion of Dyck paths

that yields T ∗
Ψ′X ⊂ T ∗

ΨX. For each λ ∈ Par, the restriction map

H0(T ∗
ΨX,OT∗

ΨX(λ)) −→ H0(T ∗
Ψ′X,OT∗

Ψ′X(λ))

is surjective.

Corollary 5.21 establish [35, Conjecture 12] and its generalizations as their
module-theoretic upgrades.

The organization of this paper is as follows: In Section 1, we fix notation
and recall basic facts. In Section 2, we present a new expression for the rotation
theorem from [2]. In Section 3, we construct the variety XΨ (Theorem 3.9)
and work out an explicit example (Example 3.10). In Section 4, we establish
parts (1) and (2) of Theorem A. In Section 5, we explore consequences of our
construction, including:

• part (3) of Theorem A (Section 5.1),

• Corollary B and Theorem C (Section 5.2), and

• Corollary D (Section 5.4).

Since the proof of Theorem C is technically involved, we devote Section 5.3 and
its three subsubsections to this purpose.

A previous version of this paper claimed the full proofs of two conjectures
of Blasiak-Morse-Pun. We retract the general case of [3, Conjecture 3.4(ii)],
retaining only the tame case (Theorem 5.1) due to a gap in the original proof.
In contrast, we make [3, Conjecture 3.4(iii)] explicit as Corollary 5.3.

The varieties introduced here serve as natural geometric counterparts of the
Catalan functions. A natural direction for future research is to place these
constructions within the context of topological field theories and geometric re-
alizations of Macdonald polynomials arising from G = GL(n). We hope to
answer these questions in the sequel.
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1 Preliminaries

We work over the field C of complex numbers. By a variety, we mean a sepa-
rated, integral, normal scheme of finite type over C. We often identify a variety
X with its set of C-points X(C) when the topology and scheme structure are
clear from context. In particular, the algebraic groups Gm and Ga denote the
multiplicative group C× and the additive group C, respectively.

For a C-vector space V , let S•V =
󰁏

i≥0 S
iV denote its symmetric algebra.

Let L be a free abelian monoid. A L-graded vector space V is a C-vector space V
equipped with a direct sum decomposition V =

󰁏
a∈L Va such that dimVa < ∞

for each a ∈ L. For a L-graded vector space V =
󰁏

a∈L Va, we set

V ∨ :=
󰁐

a∈L
V ∗
a .

A L-graded ring R is a unital C-algebra that is a L-graded C-vector space such
that C · 1 = R0 and Ra ·Ra′ ⊂ Ra+a′ (a, a′ ∈ L).

If R is commutative, then we define

ProjLR :=
󰀓
SpecR \ irr

󰀔
/(Gm)rank L, (1.1)

where irr ⊂ SpecR denotes the closed subscheme consisting of points where the
(Gm)rank L-action is not free.

For a representation M , we define its head to be its largest semisimple quo-
tient module.

For general background, we refer the reader to Kumar [20] and Chriss-
Ginzburg [9].

1.1 Algebraic Groups

We fix an integer n > 0 and define the algebraic group

G = C×Id · SL(n) = GL(n) ⊂ Mn
∼= Cn2

.

We also define a (pro-)algebraic group G = C×Id ·SL(n,C[[z]]) over C. We also
consider the group

G((z)) := C×Id · SL(n,C((z))),

regarded as a topological group.
Let Eij ∈ Mn (1 ≤ i, j ≤ n) be the matrix unit. Let T ⊂ G be the diagonal

torus and let B ⊂ G (resp. B− ⊂ G) be the upper (resp. the lower) triangular
part of G. The group N := [B,B] ⊂ B is the group of upper unitriangular
matrices. We have the evaluation map

ev0 : G −→ G z 󰀁→ 0.

We set B := ev−1
0 (B).

For each 1 ≤ i < n, let Pi ⊂ G be the (algebraic) subgroup generated by B
and Id +CEi+1,i, and let Pi ⊂ G be the (proalgebraic) subgroup generated by
B and Id+CEi+1,i. We set P0 as the (pro)algebraic group generated by B and
Id + Cz−1E1,n inside G((z)). Observe that there is a loop rotation Gm-action
(denoted Grot

m ) on each of B, Pi, and G.
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We denote by 󰁥B, 󰁥Pi, and 󰁥G the semidirect products of B,Pi, and G with
Grot

m , respectively. In addition, the group G((z)) admits a central extension by

C×, that induces a trivial central extension 󰁨Pi (0 ≤ i < n) of 󰁥Pi by Gm (which
we denote by Gc

m). We define the extended torus

󰁥T := T ×Grot
m × {1} ⊂ T ×Grot

m ×Gc
m =: 󰁨T ,

so that 󰁨B := 󰁥B×Gc
m contains 󰁨T , and 󰁥B∩ 󰁨T = 󰁥T . We also set 󰁨G := 󰁥G×Gc

m ⊃
󰁨B, 󰁥G such that 󰁨B ∩ 󰁥G = 󰁥B. We have 󰁨Pi ∩ 󰁨Pj = 󰁨B when i ∕= j. For each

0 ≤ i < n, we have the unique 󰁨T -stable algebraic subgroup of 󰁨Pi isomorphic to
SL(2), which we denote by SL(2, i). We sometimes denote the Lie algebra of
an algebraic group by the corresponding German small letters.

For each 0 ≤ i < n, we define a homomorphism ui : Ga → 󰁨B by

ui(x) := Id + xEi ∈ 󰁨B, where x ∈ C and Ei :=

󰀫
Ei,i+1 (i ∕= 0)

zEn,1 (i = 0)
.

We define
󰁨G((z)) := Grot

m ⋉G((z))⋉Gc
m

as a group. Let 󰁨G− ⊂ 󰁨G((z)) be the subgroup generated by ( 󰁨T · G) and Id +

Cz−1E1,n. Note that the groups 󰁨G((z)) and 󰁨G− are not algebraic.
For 1 ≤ i ≤ n, we have an algebraic character 󰂃i : T → Gm that extracts the

i-th (diagonal) entry of T . We set P :=
󰁏n

i=1 Z󰂃i. Consider its subsets

Comp :=
󰁛

i=1

Z≥0󰂃i, and P+ := {
n󰁛

i=1

λi󰂃i ∈ P | λ1 ≥ λ2 ≥ · · · ≥ λn}.

For λ =
󰁓n

i=1 λi󰂃i ∈ P, we set |λ| :=
󰁓n

i=1 λi ∈ Z. The permutations of indices
define Sn-actions on P and Comp.

We define Par := (P+ ∩ Comp) and identify it with the set of partitions with
its length at most n. The semi-group Par is generated by

ϖi := 󰂃1 + · · ·+ 󰂃i 1 ≤ i ≤ n.

We write λ ≫ 0 for λ ∈ Par to indicate that all coefficients in the {ϖi}-expansion
of λ are sufficiently large.

Let ℘ and δ denote the degree one character of Gc
m and Grot

m extended

to 󰁨T trivially, respectively. We may regard ϖi as a character of 󰁨T through
the projection to T . We refer this as the standard lift of ϖi. We define an
alternative (non-standard) lift of ϖi to 󰁨T by setting

Λi :=

󰀫
ϖi + ℘ if 1 ≤ i < n,

ϖn + ℘ if i = 0.
. (1.2)

Extending by linearity defines a non-standard lift of a character of T to 󰁨T .
We set Iaf := {0, 1, . . . , (n− 1)} and I := {1, 2, . . . , (n− 1)}. We frequently

identify the index 0 with n in the sequel, and hence {ϖi}i is indexed by Iaf .
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Note that {ϖi}i∈Iaf and {Λi}i∈Iaf correspond to each other by restriction. We
define the affine weight lattice and its subset of dominant weights as follows:

Paf :=

n󰁐

i=1

Zϖi ⊕ Z℘⊕ Zδ, and P+
af :=

󰀣
󰁛

i∈Iaf

Z≥0Λi

󰀤
+ Zϖn + Zδ ⊂ Paf .

The set Paf is the character group of 󰁨T .
The set of positive roots ∆+ of G is ∆+ := {󰂃i − 󰂃j}1≤i<j≤n ⊂ P. We set

αi := (󰂃i− 󰂃i+1) for 1 ≤ i < n, and define α0 := −ϑ+ δ, where ϑ := 󰂃1− 󰂃n. We
define a bilinear form on Paf as:

〈󰂃i, 󰂃j〉 = δij , ℘, δ ∈ Rad 〈•, •〉.

Let n := LieN ⊂ Mn. For α = (󰂃i − 󰂃j) ∈ ∆+, we set

gα := CEij ⊂ n ⊂ Mn.

The root lattice Q ⊂ P is defined as Q :=
󰁓

β∈∆+ Zβ. The permutation
Sn-action on P restricts to Q, and we set

󰁨Sn := Sn ⋉ Q.

The embedding Sn ⊂ G via permutation matrices naturally extends to an
embedding 󰁨Sn ↩→ G((z)) given by

Q ∋
n󰁛

i=1

µi󰂃i 󰀁→ zµ :=

󰀳

󰁅󰁅󰁅󰁃

zµ1 0 · · · 0
0 zµ2 · · · 0
...

...
. . .

...
0 0 · · · zµn

󰀴

󰁆󰁆󰁆󰁄
∈ G((z))

n󰁛

i=1

µi = 0.

The group 󰁨Sn is generated by {si}i∈Iaf , where

si =

󰀫
(i, i+ 1) (1 ≤ i < n)

(1, n) · z−ϑ (i = 0)
.

We have si ∈ 󰁨Pi for each i ∈ Iaf . We have an action of 󰁨Sn on Paf given by

si(Λ) := Λ− (〈αi,Λ〉+ δi0Λ(K))αi i ∈ Iaf ,

where K ∈ Hom(Paf ,Z) is defined as

ϖi(K) = 0 (i ∈ Iaf), δ(K) = 0, and ℘(K) = 1.

Elements in the 󰁨Sn-orbit of {αi}i∈Iaf ⊂ Paf are called affine roots. If an affine
root is contained in the non-negative integer span of {αi}i∈Iaf , then we call
it a positive affine root. Note that the affine Dynkin diagram automorphism

of type A
(1)
n−1 acts on the set of affine roots and positive affine roots by the

linear transform that shifts the index uniformly (modulo n). This induces an

automorphism of 󰁨G((z)) that fixes scalar matrices.

Every w ∈ 󰁨Sn can be written as a product

w = si1si2 · · · siℓ i1, . . . , iℓ ∈ Iaf . (1.3)
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Let i := (i1, i2, . . . , iℓ) be the sequence of indices appearing in (1.3). If the
length ℓ of i is minimal among all such expressions in (1.3), then we call i a
reduced expression of w and call ℓ the length of w.

We define the (strong) Bruhat order on 󰁨Sn by setting w < v if a reduced
expression of w appears as an ordered subword of a reduced expression of v. We
denote the length of w ∈ 󰁨Sn by ℓ(w). Let w0 ∈ Sn denote the longest element,
i.e. w0(i) = n− i+ 1 for 1 ≤ i ≤ n.

1.2 Recollection on root ideals

Definition 1.1 (Root ideals). A subset Ψ ⊂ ∆+ is called a root ideal if and
only if

(Ψ+∆+) ∩∆+ ⊂ Ψ.

Equivalently, Ψ is a root ideal if for every (󰂃i − 󰂃j) ∈ Ψ, we also have (󰂃i −
󰂃j), (󰂃i − 󰂃j) ∈ Ψ for all i < i and j < j. For a root ideal Ψ ⊂ ∆+, we define

n(Ψ) :=
󰁐

α∈Ψ

gα ⊂ n.

We denote by |Ψ| the cardinality of Ψ, which equals dim n(Ψ).

For better intuition, it might be helpful to consult the diagram in Exam-
ple 1.4.

Definition 1.2. For a root ideal Ψ ⊂ ∆+ and 1 ≤ i < n, we set

di(Ψ) := #{i ≤ j ≤ n | Eij ∕∈ n(Ψ)}, and ei(Ψ) := i+ di(Ψ)

and define

I(Ψ) := {1 ≤ i < n | ei(Ψ) ≤ n, di(Ψ) ≤ di+1(Ψ)}.

We set ℓ(Ψ) := |I(Ψ)|. We denote the increasing rearrangement of {ei(Ψ) | i ∈
I(Ψ)} by

{ei(Ψ)}i∈I(Ψ) = {e1(Ψ) < e2(Ψ) < · · · < eℓ(Ψ)},

where ℓ = ℓ(Ψ), and set eℓ+1(Ψ) = en+1(Ψ) := (n + 1). For each 1 ≤ j ≤ ℓ,
there exists a unique i ∈ I(Ψ) such that ej(Ψ) = ei(Ψ) and set ij(Ψ) := i. By
convention, we set i0(Ψ) = 0 and e0(Ψ) = 1. For e1(Ψ) ≤ k ≤ n, we set

hk(Ψ) := ij(Ψ), where ej(Ψ) ≤ k < ej+1(Ψ). (1.4)

By convention, we set hd1(Ψ)(Ψ), or equivalently he1(Ψ)−1(Ψ), equal to zero.

Definition 1.3 (Ψ-tame elements). Let Ψ ⊂ ∆+ be a root ideal. We say that
w ∈ Sn is Ψ-tame if wsi < w for each d1(Ψ) < i < n. We set wΨ

0 to be the
longest element in

Sn−d1(Ψ)
∼=

󰀍
se1(Ψ), se1(Ψ)+1, . . . , s(n−1)

󰀎
⊂ Sn.

Example 1.4. Assume that n = 6, and

Ψ = {󰂃1 − 󰂃3, 󰂃1 − 󰂃4, 󰂃1 − 󰂃5, 󰂃1 − 󰂃6, 󰂃2 − 󰂃3, 󰂃2 − 󰂃4, 󰂃2 − 󰂃5, 󰂃2 − 󰂃6, 󰂃3 − 󰂃6}.
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We have d1(Ψ) = 2, d2(Ψ) = 1, d3(Ψ) = 3, d4(Ψ) = 3, d5(Ψ) = 2, d6(Ψ) = 1, and
hence

e1(Ψ) = 3, e2(Ψ) = 3, e3(Ψ) = 6, e4(Ψ) = 7,

and therefore
e1(Ψ) = 3, e2(Ψ) = 6, ℓ(Ψ) = 2.

We have e5(Ψ) = e6(Ψ) = 7 > n = 6, and these do not contribute to e•(Ψ), ℓ(Ψ),
and i•(Ψ). We have i0(Ψ) = 0 by convention, and i1(Ψ) = 2, i2(Ψ) = 3 from
the above. Thus, we have I(Ψ) = {i1(Ψ), i2(Ψ)} = {2, 3}. For 3 = e1(Ψ) ≤
k ≤ n, we have

h3(Ψ) = i1(Ψ) = 2, h4(Ψ) = i1(Ψ) = 2, h5(Ψ) = i1(Ψ) = 2, h6(Ψ) = i2(Ψ) = 3

from e1(Ψ) = e2(Ψ) = 3 and e2(Ψ) = e3(Ψ) = 6. This situation is illustrated
as follows:

Ψ

i0

i1

i2

e1

d3

d1

e5

h6
h4

.

We note that the red-shaded boxes represent the elements of Ψ.

Let us summarize basic properties of our invariants associated to the root
ideal Ψ.

Lemma 1.5 (Cellini [6] §3). For a root ideal Ψ ⊂ ∆+, the subspace n(Ψ) ⊂ n
is B-stable. In addition, every B-stable subspace of n arises in this way. ✷

Remark 1.6. As shown in [32, §4], the set of B-stable ideals in nequivalently,
root idealsis in natural bijection with the set of Dyck paths of size n.

Lemma 1.7. For a root ideal Ψ ⊂ ∆+ and 1 ≤ i < n, we have

di(Ψ) ≤ di+1(Ψ) + 1, and i < ei(Ψ) ≤ ei+1(Ψ) ≤ (n+ 1).

In addition, we have ij−1(Ψ) < ij(Ψ) and ij(Ψ) < ej(Ψ) for 1 ≤ j ≤ ℓ(Ψ).

Proof. Straightforward.

Lemma 1.8. Let Ψ ⊂ ∆+ be a root ideal. Let 1 ≤ s ≤ ℓ(Ψ) and let es(Ψ) ≤
j < es+1(Ψ). Then, we have Eij ∈ n(Ψ) if and only if 1 ≤ i ≤ is(Ψ) = hj(Ψ).

Proof. The equality is(Ψ) = hj(Ψ) is by definition. For 1 ≤ i ≤ is(Ψ), we
have ei(Ψ) ≤ es(Ψ) by the monotonicity of e•(Ψ) (Lemma 1.7). Hence, the
if direction follows. For i > is(Ψ), we have ei(Ψ) > es(Ψ) since is(Ψ) is the
largest index such that e•(Ψ) = es(Ψ). This implies the only if part of the
assertion, completing the proof.
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Lemma 1.9. For a root ideal Ψ ⊂ ∆+ and e1(Ψ) ≤ k ≤ n, we have

hk−1(Ψ) ≤ hk(Ψ) < k.

In addition, we have

|Ψ| =
n󰁛

k=e1(Ψ)

hk(Ψ). (1.5)

Proof. Since i•(Ψ) is non-decreasing, we find hk−1(Ψ) ≤ hk(Ψ). By Lemma 1.8,
we have

hk(Ψ) = |{i | Eik ∈ n(Ψ)}|.

It follows that hk(Ψ) < k and |Ψ| =
󰁓n

k=e1(Ψ) hk(Ψ) as required.

1.3 Representations

For a finite-dimensional rational representation V of T , we define its character
as

chV :=
󰁛

λ∈P

eλ · dimHomT (Cλ, V ).

In particular, the character of a rational representation of G or Pi can be defined
by restriction to T . For a rational representation V of 󰁨T , we define

gchV :=
󰁛

λ∈P,m∈Z
qmeλ · dimHomT×Grot

m
(Cλ+mδ, V ).

For two rational 󰁨T -representations V and V ′, we write gchV ≤ gchV to mean
that the inequality holds coefficientwise, i.e.,

dim HomT×Grot
m
(Cλ+mδ, V ) ≤ dim HomT×Grot

m
(Cλ+mδ, V

′) λ ∈ P,m ∈ Z.

A rational representation of 󰁨B (resp. 󰁨Pi for i ∈ Iaf) is a representation V

of 󰁨B (resp. 󰁨Pi), where the group action factors through a finite-dimensional
quotient, yielding a rational representation of an algebraic group.

For each λ ∈ P+, let V (λ) denote the irreducible finite-dimensional G-
module generated by a B-eigenvector vλ of T -weight λ. By the natural Sn-
action on V (λ), we have a T -eigenvector vwλ ∈ V (λ) of weight wλ ∈ P for each
w ∈ Sn. For each Λ ∈ P+

af , we have an integrable highest weight module L(Λ) of
󰁨G((z)) generated by a 󰁨B-eigenvector vΛ of 󰁨T -weight Λ. The natural 󰁨Sn-action

on L(Λ) yields a 󰁨T -eigenvector vwΛ ∈ L(Λ) of weight wΛ for each w ∈ 󰁨Sn.
For λ ∈ P+ and w ∈ Sn, we define a Demazure module of V (λ) by

Vw(λ) := Span 〈Bvwλ〉 ⊂ V (λ).

Similarly, for Λ ∈ P+
af and w ∈ 󰁨Sn, we define a Demazure module of L(Λ) by

Lw(Λ) := Span
󰁇
󰁨BvwΛ

󰁈
⊂ L(Λ).
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1.4 Flag varieties and Demazure functors

We set X := G/B and call it the flag manifold of G. For each λ ∈ P, we
define OX(λ) to be the G-equivariant line bundle on X whose fiber at the point
B/B ∈ X is C−λ. We set X(w) := BwB/B ⊂ X for each w ∈ Sn and call it
the Schubert subvariety of X attached to w. The restriction of OX(λ) to X(w)
is denoted by OX(w)(λ).

Using Lemma 1.5, we define a (G×Gm)-equivariant vector subbundle

T ∗
ΨX := G×B n(Ψ) ⊂ G×B n ∼= T ∗X

for a root ideal Ψ ⊂ ∆+, where Gm acts by fiberwise scalar dilation. Let
πΨ : T ∗

ΨX → X be the projection map. We set

T ∗
ΨX(w) := π−1

Ψ (X(w)) w ∈ Sn.

We may denote the restriction of πΨ to T ∗
ΨX(w) by the same symbol, by slight

abuse of notation.
For a sequence i := (i1, i2, . . . , iℓ) of elements of Iaf , we define the following

󰁨B-schemes:

󰁨X(i) := 󰁨Pi1 ×
󰁨B 󰁨Pi2 ×

󰁨B · · ·×󰁨B 󰁨Piℓ and X(i) := 󰁨X(i)/󰁨B. (1.6)

By convention, we set X(∅) = pt.

Lemma 1.10 (Kumar [20] §7.1). Let i := (i1, i2, . . . , iℓ) be a sequence of ele-
ments of Iaf . It holds:

1. Let i󰂐 be the sequence obtained by forgetting the last element iℓ in i. Then,
X(i) is a P1-fibration over X(i󰂐) whose fiber is isomorphic to 󰁨Piℓ/

󰁨B;

2. Let 1 ≤ j1 < j2 < · · · < jm ≤ ℓ. We set i′ := (ij1 , ij2 , . . . , ijm). Then

there is a 󰁨B-equivariant embedding X(i′) ↩→ X(i) induced by the group
homomorphism

m󰁜

t=1

󰁨Pjt ∋ (gjt) 󰀁→ (gj) ∈
ℓ󰁜

j=1

󰁨Pj ,

where gj = 1 ∈ 󰁨B for all j /∈ {j1, . . . , jm}. ✷

For any rational 󰁨B-module M , we have a vector bundle

Ei(M) := X(i)×󰁨B M∨ −→ X(i).

In case M ∼= CΛ for a 󰁨T -weight Λ, we set Oi(Λ) := Ei(CΛ). By Lemma 1.10 (2),

the restriction of Ei(M) to X(i′) is identified with Ei′(M) as a 󰁨B-equivariant
vector bundle.

Definition 1.11 (Demazure functors). The (covariant) functor assigning a ra-

tional 󰁨B-module M to a rational 󰁨B-module Γ(X(i), Ei(M))∨ is called the De-
mazure functor associated with the sequence i, and is denoted by Di. In partic-
ular, Di denotes the Demazure functor corresponding to i ∈ Iaf . We also define
its contragredient variant by

D
†
i (•) := Di(•∨)∨.
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If a sequence i in Iaf is a concatenation of i1 followed by i2, then the corre-
sponding Demazure functors satisfy Di

∼= Di1 ◦Di2 by repeated applications of
Lemma 1.10(1).

Definition 1.12. Let L be a free abelian monoid, and let R be a L-graded C-
algebra. We say that R is 󰁨B-equivariant if the following conditions are satisfied:

• For each a ∈ L, the graded component Ra admits a rational 󰁨B-action;

• The multiplication maps Ra ⊗Rb → Ra+b are 󰁨B-equivariant;

• R0 = C is the trivial 󰁨B-module.

Lemma 1.13. Let L be a free abelian monoid, and let R be a 󰁨B-equivariant L-
graded C-algebra. Then D

†
i (R) naturally acquires the structure of a 󰁨B-equivariant

L-graded C-algebra for each i ∈ Iaf . Moreover, the following hold:

• D
†
i (R) is commutative if R is commutative;

• D
†
i (R) is integral if R is integral;

• D
†
i (R) is integrally closed if R is integrally closed.

Proof. The 󰁨B-equivariant algebra R induces a L-graded 󰁨Pi-equivariant sheaf of
algebras Ei(R) over X(i) = 󰁨X(i)/󰁨B = 󰁨Pi/󰁨B. Therefore, its global sections form

a L-graded algebra equipped with a degreewise rational 󰁨Pi-action compatible
with multiplication. The degree zero part of D†

i (R) is given by

C = Γ(X(i),OX(i)) = Γ(P1,OP1).

If R is commutative, then Ei(R) is a sheaf of commutative algebras, and hence

D
†
i (R) is also commutative.
Note that the ring R⊗CC[t] is integral if R is integral. In addition, this ring

is integrally closed if R is integrally closed, which can be verified inductively by
examining the coefficients of t starting from the lowest degree term. For each
x ∈ P1, there exists an affine open neighborhood Ux with local coordinate tx
such that Γ(Ux, Ei(R)) ∼= R⊗R0 C[tx]. Since we have P1 =

󰁖
x∈P1 Ux, we find

D
†
i (R) = Γ(P1, Ei(R∨)) =

󰁟

x∈P1

R⊗C C[tx].

It follows that D
†
i (R) is integral (resp. integrally closed) if R is (since the

intersection of integrally closed domains with the same field of fractions is again
integrally closed). This completes the proof.

Theorem 1.14 (Joseph [16]). For each i ∈ Iaf , it holds:

1. There exists a natural transformation Id → Di;

2. We have an isomorphism of functors Di → Di ◦Di;

3. For a rational 󰁨Pi-module M , we have an isomorphism of functors

Di(M ⊗ •) ∼= M ⊗Di(•);
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4. Let w ∈ 󰁨Sn admit two reduced expressions i and i′ connected by a sequence
of braid relations. Then, we have an isomorphism Di

∼= Di′ of functors.

Moreover, Di maps finite-dimensional rational 󰁨B-modules to finite-dimensional
rational 󰁨Pi-modules, which may be regarded as 󰁨B-modules via restriction.

By Theorem 1.14(4), we set Dw := Di for a reduced expression i of w ∈
󰁨Sn. We have a natural transformation Dw → Dv when w < v in 󰁨Sn by
Theorem 1.14(1).

Theorem 1.15 (Demazure character formula, see e.g. [20]). The following hold:

1. Let λ ∈ P+ and w ∈ Sn, with i a reduced expression of w. We have

Hm(X(w),OX(w)(λ))
∗ ∼= Hm(X(i),Oi(λ))

∗ ∼= L−mDi(Cλ) ∼=

󰀫
Vw(λ) (m = 0)

0 (m ∕= 0)
;

2. Let Λ ∈ P+
af and let i be a sequence of elements of Iaf . Then, there exists

w ∈ 󰁨Sn such that

Hm(X(i),Oi(Λ))
∗ ∼= L−mDi(CΛ) ∼=

󰀫
Lw(Λ) (m = 0)

0 (m ∕= 0)
;

3. The line bundle Oi(Λ) on X(i) is base-point-free for Λ ∈ P+
af .

Proof. The first two assertions are special cases of [20, 8.1.26 Corollary], and
the last follows from the second together with [20, 7.1.15 Proposition].

1.5 Affine Demazure modules

For each λ ∈ P and k ∈ Z>0, there exists w ∈ 󰁨Sn such that

λ+ kΛ0 = wΛ ∈ P+
af , (1.7)

as guaranteed by [18, Corollary 10.1]. We set

D
(k)
λ := Dw(CΛ) ≡ Lw(Λ) ⊂ L(Λ)

and call it the Demazure module (of level k). They are finite-dimensional ratio-

nal 󰁨B-modules, and are independent of the choice of w in (1.7).

Definition 1.16. Let k ∈ Z>0. A finite-dimensional 󰁨B-module M is said to
be D(k)-filtered if it admits a finite filtration whose associated graded module
is the direct sum of Demazure modules of level k.

Theorem 1.17 (Joseph [17], see also [30, 19]). For each λ ∈ P and k ∈ Z>0, it
holds:

1. For each i ∈ Iaf , the module D
(k)
λ ⊗ CΛi

admits a D(k+1)-filtration;

2. For a D(k)-filtered module M and i ∈ Iaf , we have L<0Di(M) = 0 and
Di(M) is D(k)-filtered.
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Proof. The first assertion is a special case of [17, 5.22 Theorem] ([30, Remark
4.15] for the n = 2 case, and [19] for another proof). In light of the first
assertion, the second follows by repeated application of Theorem 1.15(2) to the
short exact sequences arising from the D(k)-filtration.

Corollary 1.18 (Demazure module branching). Let k ∈ Z>0 and w ∈ 󰁨Sn. For
a D(k)-filtered module M and m ∈ Z≥0, we have L<0Dw(CmΛi ⊗M) = 0, and

the 󰁨B-module Dw(CmΛi ⊗M) is D(m+k)-filtered. In addition, we have

CmΛi ⊗M ⊂ Dw(CmΛi ⊗M). (1.8)

Proof. Consider a finite-dimensional 󰁨T -semisimple 󰁨B-module N that fits into a
short exact sequence

0 → N1 → N → N2 → 0

such that N2 is a Demazure module and N1 ⊂ Dw(N1). Applying the Leray
spectral sequence to L•Di for a reduced expression i of w, we deduce

L<0Dw(N2) = 0

by Theorem 1.17 2). We have a commutative diagram of short exact sequences:

0 󰈣󰈣 N1
󰈣󰈣

󰉳 󰉓

󰈃󰈃

N 󰈣󰈣

󰈃󰈃

N2

ı

󰈃󰈃

󰈣󰈣 0

0 L−1Dw(N2) 󰈣󰈣 Dw(N1) 󰈣󰈣 Dw(N) 󰈣󰈣 Dw(N2) 󰈣󰈣 0

.

(1.9)
The map ı is injective by Theorem 1.15 2) and the inclusion relations of De-
mazure modules. Thus, the five lemma implies N ⊂ Dw(N).

If we have L<0Dw(N1) = 0 in addition, then we have L<0Dw(N) = 0 by the
long exact sequence associated to the bottom row of (1.9).

Therefore, we apply Theorem 1.17(1) m-times to obtain a D(m+k)-filtration
on CmΛi

⊗M . Then, all the assertions follow by induction on the length of the
filtration by Demazure modules via the above discussion.

Proposition 1.19 (Joseph, see also [19] Lemma 4.1). For each λ ∈ Comp and
k ∈ Z>0, we have

gchD
(k)
λ ∈ Z[q][X1, . . . , Xn],

with Xi := e󰂃i for 1 ≤ i ≤ n.

Proof. Let λ+ be the unique element in (Snλ ∩ P+), and we set λ− := w0λ+.

By the comparison of defining equations of D
(•)
λ−

([16, 3.5], see [12, Theorem

1] or [19, Proof of Lemma 4.1] for explicit equations), we find that D
(k)
λ−

is a

quotient of D
(1)
λ−

. Moreover, D
(1)
λ−

is the local Weyl module whose highest weight

is λ+ by [7, Corollary 1.5.1]. We have

[D
(1)
λ−

: Vµ] ∕= 0 ⇒ λ+ − µ ∈
󰁛

i∈I
Z≥0αi (1.10)
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by [7, Definition 1.2.1]. It follows that µ ∈ P+ (and λ ∈ Comp) implies µ ∈ Par

under the situation of (1.10). Observe that eµ ∈ Z[X1, . . . , Xn] (µ ∈ P) if and
only if µ ∈ Comp. Therefore, we obtain

gchD
(1)
λ−

∈ Z[q][X1, . . . , Xn]
Sn .

Taking Theorem 1.15(2) into account, we deduce D
(k)
λ ⊂ D

(k)
λ−

as the inclusion
relation of Demazure modules. Hence, we have

gchD
(1)
λ−

≥ gchD
(k)
λ−

≥ gchD
(k)
λ .

This completes the proof.

2 An interpretation of the rotation theorem

Keep the setting of § 1. For each λ ∈ Par, we define

mi(λ) :=

󰀫
λi − λi+1 for 1 ≤ i < n,

λn for i = n.
(2.1)

For each 1 ≤ i < n and 1 ≤ e ≤ n, we define the composition functors as:

Ci,e := (Di−1 ◦Di−2 ◦ · · · ◦De)

Ci,e(λ)(•) := (Di−1 ◦Di−2 ◦ · · · ◦De) (Cme(λ)Λe
⊗ •).

Here, the composition of D•’s is taken from (i−1) down to e (modulo n). When
i ≤ e, we interpret the sequence modulo n as wrapping around from 0 to n− 1,
and the total number of terms is (i+ n− e).

For a root ideal Ψ ⊂ ∆+ and 1 ≤ j ≤ ℓ(Ψ), we define

CΨ
j (λ)(•) :=

󰀓
Cij(Ψ),ej(Ψ)(λ) ◦ Cij(Ψ),ej(Ψ)+1(λ) ◦ · · · ◦ Cij(Ψ),e(j+1)(Ψ)−1(λ)

󰀔
(•).

We set λ(Ψ) :=
󰁓d1(Ψ)

j=1 mj(λ)Λj . Using these, we define

NΨ
w (λ) := Dw

󰀓
Cλ(Ψ) ⊗ (CΨ

1 (λ) ◦ CΨ
2 (λ) ◦ · · ·CΨ

ℓ(Ψ)(λ))(C)
󰀔
, and (2.2)

MΨ
w (λ) := Dw

󰀓
Cm1(λ)Λ1

⊗ (C1,e1(Ψ)(Cm2(λ)Λ2
⊗ C2,e2(Ψ)(Cm3(λ)Λ3

⊗

C3,e3(Ψ)(· · · (Cmn−1(λ)Λn−1
⊗ Cn−1,en−1(Ψ)(Cmn(λ)Λn

) · · · )
󰀔

(2.3)

for each w ∈ Sn.

Proposition 2.1. Let Ψ ⊂ ∆+ be a root ideal, w ∈ Sn, and λ ∈ Par. We have
the following vanishing of the total homology complex associated to (2.3):

L<0
󰀓
Dw

󰀓
Cm1(λ)Λ1

⊗ (C1,e1(Ψ)(Cm2(λ)Λ2
⊗ C2,e2(Ψ)(Cm3(λ)Λ3

⊗

C3,e3(Ψ)(· · · (Cmn−1(λ)Λn−1
⊗ Cn−1,en−1(Ψ)(Cmn(λ)Λn

) · · · )
󰀔󰀔

= 0.
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Proof. There is a Leray spectral sequence of the form

LrDi(CmΛi ⊗ LsDw(M)) ⇒ Ls+r(Di ◦ (CmΛi ⊗Dw))(M),

for i ∈ Iaf , m ∈ Z≥0, and w ∈ 󰁨Sn, and M is any D(k)-filtered 󰁨B-equivariant
graded module for some k ∈ Z>0.

By Corollary 1.18, this spectral sequence degenerates at the E2-stage, and all
negative-degree terms vanish. Hence, we apply this starting from the rightmost
factors in (2.3), and proceed inductively to conclude the vanishing of all negative
derived functors.

Proposition 2.2. Let Ψ ⊂ ∆+ be a root ideal, w ∈ Sn, and λ ∈ Par. We have
the following vanishing of the total homology complex associated to (2.2):

L<0
󰀓
Dw

󰀓
Cλ(Ψ) ⊗ (CΨ

1 (λ) ◦ CΨ
2 (λ) ◦ · · ·CΨ

ℓ(Ψ)(λ))(C)
󰀔󰀔

= 0.

Moreover, for each e1(Ψ) ≤ k ≤ n, we have

L<0
󰀃
Chk,k(λ) ◦ Chk+1,k+1(λ) ◦ · · ·Chn,n(λ)

󰀄
(C) = 0.

Proof. The assertions follow from the Leray spectral sequence applied to re-
peated applications of Corollary 1.18.

Theorem 2.3 (Blasiak-Morse-Pun [2] Theorem 2.3). Let Ψ ⊂ ∆+ be a root
ideal, and suppose w ∈ Sn is Ψ-tame. Then, we have

H(Ψ;λ;w) =
󰁫
gchMΨ

w (λ)
󰁬

q 󰀁→q−1
λ ∈ Par,

where H(Ψ;λ;w) is defined as a natural generalization of (0.1) in [2, (2.2)].

Remark 2.4. The automorphism Φ in [2, (2.4)] is a lift of the affine Dynkin

diagram automorphism (of type A
(1)
ℓ−1) that satisfies

Φ ◦ πi = πi+1 ◦ Φ 0 ≤ i < ℓ,

where πi (1 ≤ i < ℓ) is the Demazure operator (the graded character counterpart
of the functor Di) borrowed from [2, (2.1)] (see also [20, 8.2.7]), and π0 = πℓ

is defined here for the first time. Thus, by moving all occurrences of Φ to the
right, we rewrite the right-hand side of [2, (2.5)] as follows:

gchMΨ
w (λ) = gchDw

󰀓
Cm1(λ)Λ1

⊗· · · (Cmn−1(λ)Λn−1
⊗Cn−1,en−1(Ψ)(Cmn(λ)Λn

) · · · )
󰀔

obtained from (2.3) and Proposition 2.1 (up to substitution q 󰀁→ q−1). We
note that in [2, (2.4)], Φ(xℓ) = qx1, which under our convention corresponds to
Φ(Xn) = q−1X1 with n = ℓ, that explains the substitution q 󰀁→ q−1.

Lemma 2.5. Let 1 ≤ i < e ≤ n. If Dj(M) ∼= M for all 0 < j < i, then
Dj(Ci,e(M)) ∼= Ci,e(M) for all 0 ≤ j < i.

Proof. Let v′ and v be the longest elements in

〈si−1, si−2, . . . , s1〉 ⊂ 〈si−1, si−2, . . . , s0〉 ⊂ 󰁨Sn,
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respectively, i.e. v′ is the longest element in Si and v is the longest element
of Si+1. By assumption, we have Dv′(M) ∼= M , and hence Ci,e(Dv′(M)) ∼=
Ci,e(M). We have vsj < v for 0 ≤ j < i. Moreover, we have

Ci,e ◦Dv′ ∼= (Di−1 ◦ · · · ◦D1 ◦D0) ◦ (Dn−1 ◦ · · · ◦De) ◦Dv′

∼= Dv ◦ (Dn−1 ◦ · · · ◦De) ∼= Dv ◦ Ci,e

by inspection using Theorem 1.14(2,4). We have sjv < v for 0 ≤ j < i. Thus,
we deduce Dj ◦Dv

∼= Dv by Theorem 1.14(2,4). The claim follows.

Corollary 2.6. Let 1 ≤ i < e ≤ e′ ≤ n. If Dj(M) ∼= M for all 0 ≤ j < i and
e′ < j < n, then Dj(Ci,e(M)) ∼= Ci,e(M) for all 0 ≤ j < i and e′ ≤ j < n.

Proof. Since we have automorphisms of affine Dynkin diagram of type A
(1)
n−1

given by the cyclic rotation of indices of simple roots, we simply add (n− e′) to
all the indices (modulo n) to deduce the result from Lemma 2.5.

Lemma 2.7. Let 1 ≤ i < e ≤ n. For each e ≤ j < n or 0 ≤ j < i− 1, we have

Dj ◦ Ci,e
∼= Ci,e ◦Dj+1.

Proof. By the isomorphism of functors

Dj ◦Dj+1 ◦Dj
∼= Dj+1 ◦Dj ◦Dj+1,

that is a special case of Theorem 1.14(4), the assertion reduces to checking that
Di−1, . . . ,Dj+2 commutes withDj , andDj−1, . . . ,De commutes withDj+1.

Corollary 2.8. Let 1 ≤ i < e < n. For each e ≤ e′ < n or 0 ≤ e′ < i − 1, we
have

Ci−1,e′ ◦ Ci,e
∼= Ci,e ◦ Ci,e′+1.

Proof. Apply Lemma 2.7 to Ci−1,e′ ◦ Ci,e ≡ Di−2 ◦ · · · ◦De′ ◦ Ci,e repeatedly to
deduce

Di−2 ◦ · · · ◦De′ ◦ Ci,e
∼= Ci,e ◦Di−1 ◦ · · · ◦De′+1,

that is equivalent to the assertion.

Proposition 2.9. Let Ψ ⊂ ∆+ be a root ideal. Assume that w ∈ Sn is Ψ-tame.
Then NΨ

w (λ) ∼= MΨ
w (λ) for all λ ∈ Par.

Example 2.10. We illustrate the arguments in the proof of Proposition 2.9 in
the setting of Example 1.4 with λ = ϖn. We need to transform

C2,3 ◦ C2,4 ◦ C2,5 ◦ C3,6 = (D1D0D5D4D3)(D1D0D5D4)(D1D0D5)(D2D1D0)

into

(D0D5D4D3)(D1D0D5D4D3)(D2D1D0)(D3D2D1)(D4D3D2D1) (2.4)

by applying a character CΛn from the RHS, and let D3,D4,D5 act freely from
the LHS. Observe that (2.4) simplifies to

(D0D5D4D3)(D1D0D5D4D3)(D2D1D0) (2.5)
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as Di(CΛn) = CΛn for i ∕= 0. Here, we have

Di(D1D0D5D4D3) = (D1D0D5D4D3)Di+1 i = 3, 4, 5, 0.

This transforms (2.5) into

(D1D0D5D4D3)(D1D0D5D4)(D2D1D0). (2.6)

For i = 3, 4, 5, we have

Di(D1D0D5D4D3)(D1D0D5D4) = (D1D0D5D4D3)(D1D0D5D4)Di+2.

Hence, applying the left actions of D3,D4,D5 to (2.6), we obtain the identity

(D1D0D5D4D3)(D1D0D5D4)(D1D0D5)(D2D1D0) = C2,3 ◦ C2,4 ◦ C2,5 ◦ C3,6.

Proof of Proposition 2.9. By Theorem 1.14, we find an isomorphism L•Di(CΛj⊗
•) ∼= CΛj ⊗ L•Di(•) for distinct i, j ∈ Iaf . In addition, we have L•Di(C) ∼= C.
Using these two facts repeatedly, we shift the character twists to the left and
discard Di’s with trivial effects repeatedly to obtain

MΨ
w (λ) ∼= Dw

󰀓
Cµ0 ⊗ (C1,e1(Ψ)(Cµ1 ⊗ C2,e2(Ψ)(· · · (Cµr−1 ⊗ Cr,er(Ψ)(Cµr ) · · · )

󰀔
,

(2.7)
where r = max{1 ≤ s < n | s+ d(Ψ)s ≤ n} = iℓ(Ψ)(Ψ), and

µi =

ei+1(Ψ)−1󰁛

j=ei(Ψ)

mj(λ)Λj .

For 0 ≤ j ≤ ℓ(Ψ), the value ek(Ψ) is constant for ij(Ψ) < k ≤ ij+1(Ψ). In
particular, we have µi ∕= 0 (i ≥ 1) only if i ∈ I(Ψ).

In the below (during this proof), we drop Ψ from the notation of numbers
presented by the typesetting fonts (i.e. i and e). We discard Cµi with µi ≡ 0
in (2.7). Then, we inductively transform the sequence of terms

Cµi(j−1)
⊗ (Ci(j−1)+1,ej ◦ Ci(j−1)+2,ej ◦ · · · ◦ Cij ,ej )(Cµij

⊗ •), (2.8)

that is a part of (2.7), into

Cµi(j−1)
⊗ (Cij ,ej ◦ Cij ,ej+1 ◦ · · · ◦ Cij ,ij−1)(Cµij

⊗ •) (2.9)

for each 1 ≤ j ≤ ℓ(Ψ) by assuming that we can freely apply

Di(j−1)−1,Di(j−1)−2, . . . ,Dej (2.10)

to (2.8) from the LHS without affecting the total output of (2.7). For the initial
case j = 1, the functors in (2.10) arises from Dw since we have wsi < w for
e1(Ψ) ≤ i < n, that implies Dw

∼= Dw ◦ Di for e1(Ψ) ≤ i < n (and we have
i0 = 0 by convention).

Note that each of the terms in (2.10) commute with Cµi(j−1)
since we have

i(j−1) − 1 < i(j−1) + di(j−1)
(Ψ) = e(j−1) < ej ,
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by Lemma 1.7. In particular, we can add each of (2.10) freely in front of
Ci(j−1)+1,ej

in (2.8). Applying Lemma 2.7 repeatedly, this is the same as adding

each of
Dij−1,Dij−2, . . . ,Dej+ij−i(j−1)

. (2.11)

freely just after Cij ,ej in (2.8) without affecting the output. Hence, we can freely
insert

Cij ,ej+ij−i(j−1)
, . . . ,Cij ,ij−1 (2.12)

just after Cij ,ej in addition to (2.11).
By using Corollary 2.8 repeatedly, we have

Ci(j−1)+1,ej ◦ Ci(j−1)+2,ej ◦ · · · ◦ Cij ,ej
∼= Cij ,ej ◦ Cij ,ej+1 ◦ · · · ◦ Cij ,ej+ij−i(j−1)−1.

Combining this with (2.12), we obtain the desired composition form as in (2.9).
Here the product of C’s in (2.9) gives a reduced expression of the longest element
of 󰀍

sij−1, . . . , s0, . . . , sej
󰀎
⊂ 󰁨Sn. (2.13)

Thus, we can add each of

Dij−1,Dij−2, . . . ,De(j+1)

just after Cij ,ij−1 in (2.9) without modifying the output. This allows us to
proceed with the induction on j. Hence, we can replace every (2.8) in (2.7)
into (2.9) inductively.

The terms
Cij ,e(j+1)

,Cij ,e(j+1)+1, · · · ,Cij ,ij−1 (2.14)

in (2.7) commute with Cµij
, and can be moved to the component (2.9) for j

replaced with (j + 1). Each of (2.14) is the composition of Demazure functors
corresponding to the simple reflections listed in (2.13), with j replaced by (j+1)
(as ij < i(j+1)). Thus, we can delete them making use of the expression (2.9)
for j replaced with (j + 1) when j < ℓ(Ψ) and Di(CmkΛk

) = CmkΛk
for 1 ≤ i <

iℓ(Ψ)(Ψ) and eℓ(Ψ) ≤ k ≤ n when j = ℓ(Ψ) coming from Theorem 1.14(3).
This procedure further replaces (2.8) in (2.7) with

Cµi(j−1)
⊗ (Cij ,ej ◦ Cij ,ej+1 ◦ · · · ◦ Cij ,e(j+1)−1)(Cµij

⊗ •).

This is identical to the definition of CΨ
j (λ), tensored by Cµi(j−1)

.

This completes the transformation from MΨ
w (λ) to NΨ

w (λ), and establishes
the proposition.

For e1(Ψ) ≤ k ≤ n, we have unique 1 ≤ j ≤ ℓ(Ψ) such that ej(Ψ) ≤ k <
ej+1(Ψ) by the monotonicity of e•. We define

NΨ(λ; k) :=
󰀓󰀃

Cij(Ψ),k(λ) ◦ · · · ◦ Cij(Ψ),ej+1(Ψ)−1(λ)
󰀄
◦
󰀃
CΨ
j+1(λ) ◦ · · ·CΨ

ℓ(Ψ)(λ)
󰀄
(C)

󰀔

=
󰀃
Chk(Ψ),k(λ) ◦ Chk+1(Ψ),k+1(λ) ◦ · · ·Chn(Ψ),n(λ)

󰀄
(C),

where the two expressions are the same by examining (1.4).

Lemma 2.11. Let Ψ ⊂ ∆+ be a root ideal, and let λ ∈ Par. For each e1(Ψ) ≤
k ≤ n, the 󰁨B-module NΨ(λ; k) is invariant under Dk, . . . ,Dn−1,D0, . . . ,Dhk(Ψ)−1.
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Proof. We proceed by downward induction on k, starting from k = n. If k = n,
then the functor Di (1 ≤ i < n) acts trivially on Cmn(λ)Λn

, and hence the
assertion holds by Lemma 2.5 for e = n.

We assume the assertion for all larger values of k. We have ij(Ψ) < ij+1(Ψ)
and ej(Ψ) < ej+1(Ψ) by Lemma 1.7. By the induction hypothesis,

󰀓
Chk+1(Ψ),k+1(λ) ◦ · · · ◦ Chn(Ψ),n(λ)

󰀔
(C)

is invariant under the application of Dk+1, . . . ,Dn−1,D0, . . . ,Dhk(Ψ)−1. We
haveDj(Cmk(λ)Λk

⊗•) ∼= Cmk(λ)Λk
⊗Dj(•) for j ∕≡ k mod n by 〈αj ,Λk〉 = 0 and

Theorem 1.14(3). Hence, Corollary 2.6 implies the assertion from the induction
hypothesis. This allows us to proceed with the induction. This completes the
proof.

Lemma 2.12. Let Ψ ⊂ ∆+ be a root ideal, and let w ∈ Sn. We have

NΨ
w (λ) ∼= NΨ

wsi(λ) λ ∈ Par, e1(Ψ) ≤ i < n.

Proof. By Lemma 2.11, NΨ(λ; e1(Ψ)) is invariant under all Dj with e1(Ψ) ≤
j < n. Therefore, the claim follows from

〈αj ,

d1(Ψ)󰁛

i=1

mi(λ)Λi〉 = 0, for e1(Ψ) ≤ j < n,

together with Theorem 1.14(3).

3 Construction of the variety XΨ

Keep the setting of the previous section.

Lemma 3.1. Let Ψ ⊂ ∆+ be a root ideal. Let w ∈ Sn and e1(Ψ) ≤ k ≤ n.
Then, the Par-graded vector spaces

󰁐

λ∈Par
NΨ

w (λ)∗ and
󰁐

λ∈Par
NΨ(λ; k)∗, (3.1)

acquire the structure of commutative C-algebras with 󰁨B-actions that respect the
grading. In addition, they are integral and integrally closed.

Proof. The character twists appearing in the construction of the modules NΨ
w (λ)

and NΨ(λ; k) are additive with respect to the monoid structure of Par. There-
fore, we may apply Lemma 1.13 repeatedly to deduce the desired properties.

For a root ideal Ψ ⊂ ∆+ and w ∈ Sn, we define a 󰁨B-scheme

XΨ(w) := ProjPar
󰁐

λ∈Par
NΨ

w (λ)∗

as a multigraded Proj over C following the construction in (1.1). Similarly, for

e1(Ψ) ≤ r ≤ n, we define a 󰁨B-scheme

XΨ(k) := ProjPar
󰁐

λ∈Par
NΨ(λ; k)∗
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In view of Lemma 3.1, both of the XΨ(w) and XΨ(k) are integral and normal
schemes.

For a more explicit illustration, we refer to an example calculation for n = 4
about the construction of XΨ(w0) in Example 3.10 in the end of this section.

Corollary 3.2. Let Ψ ⊂ ∆+ be a root ideal. Then, there exist natural 󰁨B-
equivariant morphisms

XΨ(w
Ψ
0 ) −→

n󰁜

k=e1(Ψ)

P(NΨ
wΨ

0
(ϖk)) ↩→

󰁜

k∈Iaf

P(L(Λk)), (3.2)

where the second map is the closed embedding.

Proof. For each e1(Ψ) ≤ k ≤ n, the module NΨ
wΨ

0
(ϖk) is the (dual of the) space

of the global sections of the line bundle Oi′(Λk), where i′ is the sequence in Iaf
read out from (2.2) as the index of D’s in the definition of NΨ

e (ϖk) (thanks
to Lemma 2.12) until the character twist by CΛk

. Let i be the sequence i′

corresponding to the case k = n. Since i is an initial subsequence of i, we
obtain a map f : X(i) → X(i′) by repeated applications of Lemma 1.10(1).
By Theorem 1.15(3), the line bundle Oi′(Λk) is base-point-free over X(i′).
Hence, f∗Oi′(Λk) is base-point-free on X(i). Here X(i) maps onto XΨ(w

Ψ
0 )

and f∗Oi′(Λk) is the pullback of a line bundle on XΨ(w
Ψ
0 ) by the definition of

Di and (2.2). Therefore, we find an induced map

XΨ(w
Ψ
0 ) −→ P(NΨ

wΨ
0
(ϖk)).

Taking the product of these morphisms gives the first map in (3.2).
In view of Theorem 1.15(2), we have NΨ

wΨ
0
(ϖk) ⊂ L(Λk) for 1 ≤ k ≤ n.

Moreover, we have NΨ
wΨ

0
(ϖk) = CvΛk

for 1 ≤ k ≤ d1(Ψ). This yields the second

embedding by sending all points to [vΛk
] ∈ P(L(Λk)) for 1 ≤ k ≤ d1(Ψ).

Lemma 3.3. Let Ψ ⊂ ∆+ be a root ideal. Let w ∈ Sn and e1(Ψ) ≤ k ≤ n.

Then, we have closed embeddings XΨ(k) ⊂ XΨ(w) ⊂ XΨ(w0) of 󰁨B-schemes. In
particular, we have XΨ(e1(Ψ)) = XΨ(w

Ψ
0 ).

Proof. In view of Lemma 2.12, we have an identification of the coordinate rings
of XΨ(e1(Ψ)) = XΨ(w

Ψ
0 ) as NΨ

e (λ) = NΨ(λ; e1(Ψ)) for each λ ∈ Par. The
remaining inclusions follow from surjections of homogeneous coordinate rings
that are guaranteed by repeated applications of Corollary 1.18.

The graded components of the ring (3.1) define 󰁨B-equivariant line bundles
OXΨ(w)(λ) on XΨ(w) and OXΨ(k)(λ) on XΨ(k) for each λ ∈ Par, extended to
λ ∈ P by taking the duals and tensor products. We define two subgroups of
󰁨G((z)) as

󰁨P(k) :=
󰁇
󰁨Pi | k ≤ i ≤ n or 1 ≤ i < hk(Ψ)

󰁈
and

G(k) := 〈SL(2, i) | k ≤ i ≤ n or 1 ≤ i < hk(Ψ)〉 ,

where e1(Ψ) ≤ k ≤ n. By convention, we set 󰁨P(n+ 1) := 󰁨G.

20



Lemma 3.4. Let Ψ ⊂ ∆+ be a root ideal. For each e1(Ψ) ≤ k ≤ n, we have

G(k) ∼= SL(hk(Ψ) + n − k + 1), 󰁨P(k) = G(k) · 󰁨B, and the group 󰁨P(k) is a
proalgebraic group. In addition, we have a split quotient map

󰁨P(k) −→ G(k).

Proof. We make use of the Dynkin diagram automorphism of type A
(1)
n−1, which

permutes the subgroups SL(2, i) corresponding to i ∈ Iaf . We apply the cyclic
shift to the simple roots ±αk, . . . ,±αhk(Ψ) of G(k) by uniformly adding (n− k)
to the index (modulo n). Since hk(Ψ) < k, the corresponding one-parameter

subgroups generate SL(hk(Ψ)+n−k+1) inside G ⊂ 󰁨G. The rotation of each 󰁨Pi

(k ≤ i < hk(Ψ)) is also contained by 󰁨G. Hence, it generates a closed subgroup

of 󰁨G, that is proalgebraic. Here the rotation of 󰁨Pi has its image Pi+n−k ⊂ G

that generates SL(hk(Ψ)+n−k+1). It follows that 󰁨P(k) = G(k) · 󰁨B. Moreover,
we conclude that z 󰀁→ 0 (after cyclic shift) yields the desired split quotient map
of proalgebraic groups.

Lemma 3.5. Let Ψ ⊂ ∆+ be a root ideal, and let e1(Ψ) ≤ k < n. Then, the
algebraic subgroup

G(k) ∩ 󰁨P(k + 1) ⊂ G(k),

is a maximal proper parabolic subgroup such that the natural map

G(k)/(G(k) ∩ 󰁨P(k + 1)) −→ 󰁨P(k)/(󰁨P(k) ∩ 󰁨P(k + 1)) (3.3)

induced by the inclusion is an isomorphism. In addition, the resulting vari-
ety (3.3) is isomorphic to the projective space of dimension (hk(Ψ) + n− k).

Proof. The Iwahori subgroup 󰁨B is stable by the Dynkin diagram automorphism

of type A
(1)
n−1. It follows that (G(k) ∩ 󰁨B) must contain a Borel subgroup of

G(k) corresponding to the positive affine roots. Thus, (G(k) ∩ 󰁨P(k + 1)) is a
parabolic subgroup of G(k). Now the natural inclusion induces a map (3.3),

that is injective. By 󰁨P(k) = G(k) · 󰁨B, we conclude the map is also surjective.
By the comparison the definition using hk(Ψ) ≤ hk+1(Ψ), we have

SL(2, i) ⊂ G(k) ∩G(k + 1) if and only if k < i ≤ n or 1 ≤ i < hk(Ψ).

Thus, (G(k) ∩ 󰁨P(k + 1)) is the maximal proper parabolic subgroup of G(k) ∼=
SL(hk + n− k + 1) whose Levi component is SL(hk + n− k). This implies the
last assertion, concluding the proof.

Lemma 3.6. Let Ψ ⊂ ∆+ be a root ideal, and let e1(Ψ) ≤ k < n. Suppose M

is a 󰁨P(k+1)-module whose restriction to G(k+1) is a rational representation.
Then, we have

Chk,k(λ)(M) ∼= H0(󰁨P(k)/(󰁨P(k + 1) ∩ 󰁨P(k)),F(M))∨,

where F(M) is the vector bundle on

󰁨P(k)/(󰁨P(k) ∩ 󰁨P(k + 1)) ∼= Phk(Ψ)+n−k

induced by the (󰁨P(k) ∩ 󰁨P(k + 1))-module structure of M∨.
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Proof. Let i := {k, k + 1, . . . , hk − 1}. Then, we have a map

πi : X(i) −→ 󰁨P(k)/(󰁨P(k + 1) ∩ 󰁨P(k)) ∼= Phk(Ψ)+n−k.

We have π∗
i F(M) ∼= Ei(M). Hence, we have

H0(X(i), Ei(M)) ∼= Chk,k(λ)(M)∨.

We have

R•(πi)∗π
∗
i F(M) ∼= (R•(πi)∗OX(i))⊗O󰁨P(k)/(󰁨P(k+1)∩󰁨P(k))

F(M)

by the projection formula. Since we know

R>0(πi)∗OX(i) = 0

from [20, 8.2.2 Theorem (c) and A.24], the Leray spectral sequence

Hq(󰁨P(k)/(󰁨P(k + 1) ∩ 󰁨P(k)),Rp(πi)∗π
∗
i F(M)) ⇒ Hq+p(X(i),π∗

i F(M))

degenerates at the E1-stage. This implies

Chk,k(λ)(M)∨ = H0(X(i),π∗
i F(M)) ∼= H0(󰁨P(k)/(󰁨P(k + 1) ∩ 󰁨P(k)),F(M))

as desired.

Proposition 3.7. Let Ψ ⊂ ∆+ be a root ideal, and let e1(Ψ) ≤ k < n. The

variety XΨ(k) is a 󰁨P(k)-equivariant XΨ(k + 1)-fibration over the base space
󰁨P(k)/(󰁨P(k) ∩ 󰁨P(k + 1)).

Proof. We have a natural map

󰁐

λ∈Par
NΨ(λ; k)∗ −→

󰁐

λ∈Par
NΨ(λ; k + 1)∗ ⊗ C−mk(λ)Λk

offered by Corollary 1.18, that is surjective. By Lemma 3.6, the LHS is the
global section of the sheaf A of algebras over 󰁨P(k)/(󰁨P(k) ∩ 󰁨P(k + 1)) arising
from the RHS. The sheaf of algebras A defines XΨ(k+1) through taking ProjPar
over each fiber. Thus, we obtain a map

πk : 󰁨P(k)×(󰁨P(k)∩󰁨P(k+1)) XΨ(k + 1) −→ XΨ(k).

The above surjection implies that the fiber XΨ(k + 1) embeds into XΨ(k) as a
closed subscheme. Here we consider the weights of the form cϖk for c ∈ Z>0.
We have mj(cϖk) = 0 for j > k and mk(cϖk) = c. Since Dj(C) ∼= C for all
j ∈ Iaf , the construction of NΨ(cϖk) yields

NΨ(cϖk; k + 1) = C c ∈ Z≥0.

Therefore, the 󰁨P(k)-equivariant morphism

ψ : X(k) −→ P(L(Λk))
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induced by OX(k)(ϖk), that exists in view of Theorem 1.15(3), sends the fiber

XΨ(k + 1) over the point (󰁨P(k) ∩ 󰁨P(k + 1))/(󰁨P(k) ∩ 󰁨P(k + 1)) to

pt = ProjZ≥0

󰁐

c≥0

C−cΛk
⊂ P(NΨ(ϖk; k)),

that is a 󰁨P(k + 1)-fixed point. Since the unique 󰁨P(k + 1)-eigenvector in L(Λk)
(up to scalar) is vΛk

, we find that the image of XΨ(k + 1) is [vΛk
]. It follows

that
Imψ ∼= 󰁨P(k)/(󰁨P(k) ∩ 󰁨P(k + 1)) ∼= Phk(Ψ)+n−k

as topological space. Since Phk(Ψ)+n−k is 󰁨P(k)-homogeneous, we find thatXΨ(k)

admits a 󰁨P(k)-equivariant fiber bundle structure over Phk(Ψ)+n−k with its fiber
XΨ(k + 1). Thus, we find that the map πk is locally an isomorphism. Now the
󰁨P(k)-action makes πk into a 󰁨P(k)-equivariant isomorphism as required.

Corollary 3.8. Let Ψ ⊂ ∆+ be a root ideal, and let e1(Ψ) ≤ k < n. The
variety XΨ(k) is smooth and

dim XΨ(w
Ψ
0 ) = |Ψ|+ ℓ(wΨ

0 ). (3.4)

Proof. By Proposition 3.7, the algebraic variety XΨ(k) is a successive projective
space bundle of dimensions {hj +n− j}nj=k. Thus, it must be smooth. Here wΨ

0

is a longest element of Sn−d1(Ψ) that has length

ℓ(wΨ
0 ) =

n−d1(Ψ)−1󰁛

i=0

i =
(n− d1(Ψ))(n− d1(Ψ)− 1)

2
.

Now we compute the dimension as

dim XΨ(w
Ψ
0 ) = dim XΨ(e1(Ψ)) =

n󰁛

k=e1(Ψ)

(hk + n− k) =

n󰁛

k=e1(Ψ)

hk +

n−d1(Ψ)−1󰁛

i=0

i

= |Ψ|+ (n− d1(Ψ))(n− d1(Ψ)− 1)

2
= |Ψ|+ ℓ(wΨ

0 ),

where we used (1.5) in the first equality of the second line, as required.

Theorem 3.9. Let Ψ ⊂ ∆+ be a root ideal, and let w ∈ Sn be a Ψ-tame
element. There exists a G-equivariant closed embedding

XΨ(w0) ∼= G×Q XΨ(w
Ψ
0 ) ↩→

n󰁜

i=1

P(L(Λi)), (3.5)

where Q ⊂ G is the parabolic subgroup generated by Pi (e1(Ψ) ≤ i < n). We
have

dim XΨ(w) = ℓ(w) + |Ψ|. (3.6)

The variety XΨ(w) is smooth if and only if the Schubert variety X(w) is smooth.
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Proof. By (2.2) and Lemma 3.3, the projective coordinate rings of XΨ(w0) and
XΨ(w

Ψ
0 ), denoted by RΨ(w0) and RΨ(w

Ψ
0 ) respectively, satisfy

RΨ(w0) ∼= D†
w0

(RΨ(w
Ψ
0 )).

The functor D†
w0

transforms the 󰁨B-equivariant Par-graded algebra RΨ(w
Ψ
0 ) into

the space of global sections of a 󰁨G-equivariant Par-graded sheaf R on 󰁨G/󰁨B ∼=
G/B. This sheaf has fiber RΨ(w

Ψ
0 )

∨ over B/B. Lemma 2.12 asserts that

RΨ(w0) is stable under the action of 󰁨Pi for e1(Ψ) ≤ i < n. Therefore, the
parabolic subgroup Q acts on RΨ(w

Ψ
0 ) as a rational representation, and we

may form a 󰁨G-equivariant Par-graded sheaf of algebras on G/Q that carries
RΨ(w0)

∨ as its fiber over Q/Q. Let πQ : X = G/B → G/Q be a natural
projection. Then, we have R ∼= π∗

QR′ and

R•(πQ)∗R ∼=
󰀃
R•(πQ)∗OX

󰀄
⊗OG/Q

R′ ∼= R′,

where the first isomorphism is the projection formula, and the second isomor-
phism follows from R•(πQ)∗OX

∼= OG/Q, that in turn follows from

H•(Q/B,OQ/B) ∼= C.

It follows that
RΨ(w0) ∼= H0(X,R) ∼= H0(G/Q,R′),

and that induces a surjective 󰁨G-equivariant morphism

f : G×Q XΨ(w
Ψ
0 ) −→ XΨ(w0).

The image of XΨ(w
Ψ
0 ) under the map (3.2) composed with the projection to󰁔d1(Ψ)

i=1 P(L(Λi)) is a Q-fixed point

{[vΛi ]}
d1(Ψ)
i=1 ∈

d1(Ψ)󰁜

i=1

P(L(Λi)).

Each OXΨ(w0)(ϖi) (1 ≤ i ≤ d1(Ψ)) induces a map

XΨ(w0) −→ P(NΨ
w0

(ϖi)) ⊂ P(L(Λi))

that sends XΨ(w
Ψ
0 ) to {[vΛi ]}

d1(Ψ)
i=1 since we have

(CΨ
1 (ϖi) ◦ · · · ◦ CΨ

ℓ(Ψ)(ϖi))(C) ∼= C

for 1 ≤ i ≤ d1(Ψ). Thus, we find a 󰁨G-equivariant map

pr : XΨ(w0) −→
d1(Ψ)󰁜

i=1

P(L(Λi)),

whose image is G/Q and whose fiber contains XΨ(w
Ψ
0 ). From this, we conclude

that f is in fact a 󰁨G-equivariant isomorphism. Using this isomorphism, the
embedding (3.2) extends naturally to (3.5) via the G-action. Since XΨ(w

Ψ
0 )
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is smooth and projective, so is XΨ(w0). Hence the embedding (3.5) must be
closed. This yields the first part of the assertion.

Since w is Ψ-tame, we have w = vwΨ
0 for some v ∈ Sn such that ℓ(w) =

ℓ(v) + ℓ(wΨ
0 ). Let v = si1si2 · · · siℓ be a reduced expression of v, that we record

as i. We set
Y (w) := BwQ/Q ⊂ G/Q.

The variety Y (w) is normal of dimension ℓ(v), equipped with a resolution

X(i)
f−→ Y (w) such that OY (w)

∼=→ f∗OX(i) (3.7)

([20, 8.2.2 Theorem (c) and A.24]). Since pr−1(Y (w)) is a locally trivial fibration
over Y (w) with fiber XΨ(w

Ψ
0 ), we have

dim pr−1(Y (w)) = dim XΨ(w
Ψ
0 ) + ℓ(v) = ℓ(v) + ℓ(wΨ

0 ) + |Ψ| = ℓ(w) + |Ψ|.

It is smooth if and only if Y (w) is smooth. Taking into account the locally
trivial Q/B-fibration structure of G/B → G/Q, it is also equivalent to X(w)
being smooth.

By Lemma 3.3, XΨ(w) is a closed subvariety of XΨ(w0). Hence, the image
of the map

󰁨X(i)×󰁨B XΨ(w
Ψ
0 )

∼= X(i)×Y (w) pr
−1(Y (w)) −→ pr−1(Y (w)) ⊂ XΨ(w0) (3.8)

is identified with XΨ(w) as a set of points. This completes the proof.

Example 3.10 (n = 4). We illustrate the construction of XΨ(w0) in the case
G = GL(4,C) with the root ideal

Ψ = {󰂃1 − 󰂃3, 󰂃1 − 󰂃4, 󰂃2 − 󰂃4}.

In this case, we have e1(Ψ) = 3 and

h2(Ψ) = 0, h3(Ψ) = 1, h4(Ψ) = 2.

We have vectors labelled by T -weights

V (4) := Cv1111 ⊕ Cv2110 ⊕ Cv1210 ⊂ L(Λ4),

where v1111 := vΛ4
∈ L(Λ4) is the highest weight vector, and v2110,v1210 ∈

L(Λ4) are unique vectors with their 󰁨T -weights (Λ4 − α0) and (Λ4 − α0 − α1),
respectively. The vectors v2110 and v1210 have degree −1, while v1111 has degree
0. We have

P2 ∼= XΨ(4) = P(V (4)) ⊂ P(L(Λ4)).

This variety is preserved under the action of

󰁨P(4) =
󰁇
SL(2, 0), SL(2, 1), 󰁨B

󰁈
⊂ 󰁨G((z)).

We additionally have vectors labelled by T -weights

V (3) := Cv1110 ⊕ Cv1101 ⊕ Cv2100 ⊂ L(Λ3),
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where v1110 := vΛ3 ∈ L(Λ3) is the highest weight vector, and v1101 and v2100

are unique vector with their 󰁨T -weights (Λ3−α3) and (Λ3−α3−α0), respectively.
The vector v2100 has degree −1, while v1110 and v1101 have degree 0. The space
P(V (3)) ⊂ P(L(Λ3)) is stable under the action of 󰁨P(3), that is generated by

SL(2, 3), SL(2, 0), and 󰁨B. Define

G(3) :=
󰁇
SL(2, 3), SL(2, 0), 󰁨B

󰁈
⊂ 󰁨G((z)).

We have G(3) ∼= SL(3) ⊂ 󰁨G((z)). A parabolic subgroup P (3) ⊂ G(3) that

contains SL(2, 0) stabilizes V (4) since V (4) admits SL(2, 0)-action and 󰁨B-action.
It follows that we have

XΨ(3) = G(3)×P (3) P(V (4)) ∼= G(3)([v1110]× P(V (4))) ⊂ P(L(Λ3))× P(L(Λ4)).

This is a P(V (4))-fibration over P(V (3)). To describe theG(3)-orbitG(3)P(V (4)),
we must extend V (4) to include three additional vectors of degrees −1 and −2:
namely, v2101,v1201 (degree −1), and v2200 (degree −2). Note that they are
also labelled by T -weights, which uniquely determine the corresponding weight
vectors in each graded component of L(Λ4). Define the extended space

W (4) := V (4) ⊕ Cv2101 ⊕ Cv1201 ⊕ Cv2200,

which is stable by the actions of SL(2, 3), SL(2, 0), and 󰁨B. We have

XΨ(3) ={

󰀳

󰁅󰁃
x
(3)
1110

x
(3)
1101

x
(3)
2100

󰀴

󰁆󰁄 //

󰀳

󰁅󰁃
x
(4)
1210

x
(4)
1201

x
(4)
2200

󰀴

󰁆󰁄 , x
(3)
1110x

(4)
2101 + x

(3)
1101x

(4)
2110 + x

(3)
2100x

(4)
1111 = 0}

⊂ P(V (3))× P(W (4)) ∼= P2 × P5,

where x
(3)
• and x

(4)
• are coefficients of the vectors v

(3)
• ∈ V (3) and v

(4)
• ∈ W (4)

and the coloring pattern indicates degree 0 (black), 1 (red), and 2 (blue), re-
spectively. The degree 0-part of XΨ(3) is

P1 ∼= P(Cv1110 ⊕ Cv1101)× P(Cv1111) ⊂ P(V (3))× P(W (4))

since P(Cv1111) = {pt}. We consider a (locally closed) neighbourhood U− of

the 󰁨B-fixed point ([v1110], [v1111]) ∈ P1 along the negative degree direction. It
is described by setting

x
(3)
1101 = 0, x

(3)
1110 = 1 = x

(4)
1111,

where the parameters x
(4)
2110, x

(4)
1210, x

(4)
2101 can move freely. The variables x

(4)
2110, x

(4)
1210, x

(4)
2101

have degree 1 with their T -characters

−󰂃1 + 󰂃4, −󰂃2 + 󰂃4, −󰂃1 + 󰂃3,

and we have a B-equivariant (degree preserving) identification

U− = exp(CE14z
−1+CE24z

−1+CE13z
−1)([v1110], [v1111]) ⊂ P(V (3))×P(W (4)).

26



Now XΨ(3) is SL(2, 3)-stable, and we have

T ∗
ΨX

∼= G×B U− ⊂ G×P3 XΨ(3) ∼= XΨ(w0). (3.9)

Note that x
(4)
1111 ∕= 0 automatically implies (x

(3)
1110, x

(3)
1101) ∕= (0, 0) from

x
(3)
1110x

(4)
2101 + x

(3)
1101x

(4)
2110 + x

(3)
2100x

(4)
1111 = 0,

which means (XΨ(w0) \ T ∗
ΨX) = (x

(4)
1111).

4 Properties of the variety XΨ(w)

Keep the setting of the previous section.

Theorem 4.1. Let Ψ ⊂ ∆+ be a root ideal, and let w ∈ Sn be Ψ-tame. For
each λ ∈ Par, we have:

1. H>0(XΨ(w),OXΨ(w)(λ)) = 0;

2. H0(XΨ(w),OXΨ(w)(λ))
∗ ∼= NΨ

w (λ) as 󰁨B-modules;

3. the module NΨ
w (λ) admits a D(λ1)-filtration, and H0(XΨ(w),OXΨ(w)(λ))

admits an excellent filtration when regarded as a B-module in the sense of
van der Kallen [36].

Proof. We replace w with w(wΨ
0 )

−1 by Lemma 2.12 to achieve

ℓ(wwΨ
0 ) = ℓ(w) + ℓ(wΨ

0 )

without altering the module NΨ
w (λ) (λ ∈ Par). Let i be the sequence in Iaf

extracted from the definition of NΨ
w (λ) (λ ∈ Par) by fixing a reduced expression

of w. By construction, the sequence i has length ℓ = dimXΨ(w), as follows from
Lemma 2.12 and the dimension formula (3.6).

By construction, we have a surjective 󰁨B-equivariant morphism

π : X(i) −→ XΨ(w)

of varieties. We have π∗OX(i) = OXΨ(w) by Lemma 3.1.

Suppose, for contradiction, that Rkπ∗OX(i) ∕= 0 for some k > 0. Then, we
have

H0(XΨ(w), (Rkπ∗OX(i))⊗OXΨ(w)
OXΨ(w)(λ)) ∕= 0 λ ≫ 0.

For each k′ > 0, Serre’s vanishing theorem implies that

Hk′
(XΨ(w), (Rkπ∗OX(i))⊗OXΨ(w)

OXΨ(w)(λ)) = 0 λ ≫ 0.

By the degeneration of the Leray spectral sequence

Hr(XΨ(w), (Rpπ∗OX(i))⊗OXΨ(w)
OXΨ(w)(λ)) ⇒ Hp+r(X(i),π∗OXΨ(w)(λ))

at the E1-stage, this implies

Hk(X(i),π∗OXΨ(w)(λ)) ∕= 0,
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for sufficiently large λ, contradicting Proposition 2.2. Therefore, we must have
R>0π∗OX(i) = 0.

By Proposition 2.2 and (2.2), we find

Hk(XΨ(w),OXΨ(w)(λ))
∗ ∼=

󰀫
NΨ

w (λ) (k = 0)

0 (k > 0)
.

for each λ ∈ Par. This proves the first two assertions. The 󰁨B-module NΨ
w (λ)

admits a D(λ1)-filtration by applying Corollary 1.18 repeatedly to the definition

of NΨ
w (λ). Taking into account the fact that D

(k)
λ admits a D(k+1)-filtration

for each k > 0 (Theorem 1.17) and D
(k′)
µ (µ ∈ P) is a Demazure module of G

for k′ ≫ 0 (that can be read off from [16, 3.5] and [12, Theorem 1], cf. [19,
Theorem B]). This completes the proof of the third assertion, and thus of the
theorem.

Corollary 4.2. Let Ψ ⊂ ∆+ be a root ideal, and let w ∈ Sn be Ψ-tame. For
each λ ∈ Par, we have

gchH0(XΨ(w),OXΨ(w)(λ))
∗ =

󰀅
H(Ψ;λ;w)

󰀆
q 󰀁→q−1 .

Proof. Combine Theorem 4.1 with Theorem 2.3.

For each i ∈ I, we have an embedding V (ϖi) ⊂ L(Λi) of 󰁨G-modules, that

can be also understood to be the Gm-fixed part of L(Λi). We also have a 󰁨G-

module embedding C ∼= V (0) ⊂ L(Λ0). These induce a 󰁨G-equivariant closed
embedding 󰁜

i∈I
P(V (ϖi)) ↩→

󰁜

i∈Iaf

P(L(Λi)).

Note that L(Λi) is concentrated in degrees ≤ 0, so that the Gm-action given by
t 󰀁→ ∞ contracts general points of P(L(Λi)) to the fixed point locus P(V (ϖi)).

Lemma 4.3. For a root ideal Ψ ⊂ ∆+ and a Ψ-tame w ∈ Sn, the intersection

XΨ(w) ∩
󰁜

j∈I
P(V (ϖi))

is isomorphic to the Schubert variety X(w).

Proof. By the construction of XΨ(w
Ψ
0 ) in the proof of Theorem 3.9, we find that

the image of the composition map

fj : XΨ(w
Ψ
0 ) ↩→

n󰁜

i=1

P(L(Λi)) −→ P(L(Λj)) 1 ≤ j ≤ n

satisfies (Im fj ∩ P(V (ϖj))) = [vϖj ] for 1 ≤ j ≤ d1(Ψ). We set

f≤k :=

k󰁜

j=e1(Ψ)

fj : XΨ(w
Ψ
0 ) −→

k󰁜

i=e1(Ψ)

P(L(Λi))

for e1(Ψ) ≤ k ≤ n.
We set K := 〈SL(2, i) | e1(Ψ) ≤ i < n〉 ⊂ G. By inspection, K ∼= SL(n −

d1(Ψ)) is the largest semisimple algebraic subgroup of StabG({[vΛj
]}d1(Ψ)

j=1 ) stable

under the adjoint 󰁨T -action. We prove
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(♠)k K{[vϖj
]}kj=e1(Ψ) =

󰀓
Im f≤k ∩

󰁔k
j=e1(Ψ) P(V (ϖj))

󰀔

for k ≥ e1(Ψ) by induction from the case k = e1(Ψ). The assertion (♠)e1(Ψ)

follows as the image is the projective space homogeneous under the action of
G(k), and its Gm-attracting fixed points are homogeneous under the action of

G(e1(Ψ)) ∩K ∼= SL(n− d1(Ψ)).

We assume (♠)k, and we replace K with a smaller group

K(k + 1) := K ∩G(e1(Ψ)) ∩ · · · ∩G(k + 1) = 〈SL(2, i) | k < i < n〉 ⊂ G,

which acts on the fiber F of the map Im f≤k+1 → Im f≤k along {[vΛj
]}kj=e1(Ψ) ∈

Im f≤k. Since F is G(k+1)-homogeneous by Proposition 3.7, its Gm-attracting
fixed point is homogeneous under the action of K(k + 1), that is isomorphic to
SL(n− k − 1). This implies (♠)k+1, and the induction proceeds.

Therefore, we have (♠)k holds for each k ≥ e1(Ψ). In particular, we have

XΨ(w
Ψ
0 ) ∩

󰁜

i∈I
P(V (ϖi)) = X(wΨ

0 ).

We have XΨ(siw) = (󰁨Pi ∩ G)XΨ(w) when w ∈ Sn is Ψ-tame and siw > w

by (3.8). Since (󰁨Pi ∩G) preserves
󰁔

j∈I P(V (ϖj)), we conclude

XΨ(siw) ∩
󰁜

j∈I
P(V (ϖj)) = (󰁨Pi ∩G)(XΨ(w) ∩

󰁜

j∈I
P(V (ϖj)))

in this case. Therefore, the assertion follows by induction on the length of w.

Theorem 4.4. For a root ideal Ψ ⊂ ∆+, the Gm-attracting set of X = X(w0) ⊂
XΨ(w0) is open dense, and is isomorphic to T ∗

ΨX.

Proof. Since XΨ(w0) is a connected smooth variety and X ⊂ XΨ(w0) is a
connected component of its Gm-fixed part, we find that the attracting locus
X̊Ψ ⊂ XΨ(w0) is identified with the intersection of the product of the attracting
loci of the ambient spaces P(V (ϖi)) ⊂ P(L(Λi)) (i ∈ Iaf) and the image of
XΨ(w0) under the embedding (3.5). In particular, X̊Ψ is a Zariski open subset
of XΨ(w0).

By Bia󰀀lnyki-Birula’s theorem [1], we see that X̊Ψ is an affine bundle over
X, that admits an action of (G × Gm). By X ∼= G/B, we take a base point
p = X(e) = B/B. We have a direct sum decomposition

TpXΨ(w0) ∼= TpX ⊕ E, (4.1)

where TpX admits trivial Gm-action and E has strictly negative Gm-degree.
Note that each direct summand of (4.1) is B-stable. In view of the fiber bundle

structure of XΨ(w0), the 󰁨T -character of E is calculated from the tangent spaces
of the projective spaces

G(k)/(G(k) ∩ 󰁨P(k + 1)) ∼= P(G(k)vΛk
) ⊂ P(L(Λk)) e1(Ψ) ≤ k ≤ n (4.2)

borrowed from Proposition 3.7. Observe that

G(k)vΛk
⊂ L(Λk)
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defines a vector subspace, that is in fact a vector representation of G(k) ∼=
SL(hk + n− k + 1). It follows that

T[vΛk
]P(G(k)vΛk

) ∼=
󰀃 󰁐

k<s≤n

C󰂃s−󰂃k

󰀄
⊕
󰀃 󰁐

1≤t<hk(Ψ)

C󰂃t−󰂃k−δ

󰀄
(4.3)

by inspection. Let us denote by Πk the set of 󰁨T -weights appearing in (4.3).

We find that the 󰁨T -character contribution of E is precisely the 󰁨T -weights of
n(Ψ)⊗ C−δ counted with multiplicities.

For each β ∈ Πk (e1(Ψ) ≤ k ≤ n), we have a 󰁨T -stable connected one-

dimensional unipotent subgroup Uβ ⊂ 󰁨G((z)) such that Cβ
∼= LieUβ as 󰁨T -

modules. Since Uβ ⊂ G(k) for β ∈ Πk, it preserves XΨ(k). We have

UβvΛk
= vΛk

β ∈ Πk′ for k′ > k

since the 󰁨T -weight (β+Λk)-part of L(Λk) is zero by inspection (e.g. s0Λk = Λk

for 1 ≤ k < n). Thus, we can apply Uγ ’s (γ ∈ Πk′) to p = {[vΛi
]}i∈I from the

case of k′ = n and then lowering k′ consecutively to obtain a well-defined action
map

Adim XΨ(k) ∼= (
󰁜

β∈Πk+1

Uβ)(
󰁜

β∈Πk+2

Uβ) · · · (
󰁜

β∈Πn

Uβ)p ↩→ XΨ(k), (4.4)

for each d1(Ψ) ≤ k < n. By (4.3) and Proposition 3.7, we have

󰁛

k≤k′≤n

|Πk′ | = dim XΨ(k).

Therefore, the image of (4.4) is an open subset of XΨ(k). Gathering these gives

rise to a 󰁨T -equivariant surjection

LieN− ⊕ (n(Ψ)⊗ C−δ) −→→ TpXΨ(w0)

by Lemma 1.8. The Lie algebras of the unipotent groups in the middle term of
(4.4) generate a Lie subalgebra of g⊗ C[z−1] that contains

n(Ψ)⊗ C−δ
∼= n(Ψ)⊗ Cz−1 mod g⊗ z−2C[z−1],

and any 󰁨T -module map g⊗ z−2C[z−1] → TpXΨ(w0) is zero due to weight con-
siderations. From this, we see that B acts on (n(Ψ)⊗C−δ) viewed as a subspace
of

g⊗ Cz−1 ∼= g⊗ z−1C[z−1] mod g⊗ z−2C[z−1].

Thus, we have necessarily E ∼= n(Ψ) ⊗ C−δ as B-modules. Therefore, we con-
clude that

X̊Ψ
∼= G×B (n(Ψ)⊗ C−δ) = T ∗

ΨX

as required.

Corollary 4.5 (Corollary of the proof of Theorem 4.4). Keep the setting of
Theorem 4.4. The fiber of T ∗

ΨX as a vector bundle on X injects into P(L(Λ0))
through the projection from the RHS of (3.5). ✷
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By the comparison with Lusztig [25], we find:

Corollary 4.6 (Ngô [31] and Mirković-Vybornov [28]). The composition map

X∆+(w0) ↩→
󰁜

i∈Iaf

P(L(Λi)) → P(L(Λ0))

defines a resolution of a compactification of the nilpotent cone of gl(n,C) realized
in the affine Grassmannian of G. ✷

For each λ ∈ Comp, let OT∗
ΨX(λ) be the restriction of OXΨ(w0)(λ) through

Theorem 4.4.

Corollary 4.7. For each λ ∈ P, the restriction of OXΨ(w0)(λ) to T ∗
ΨX is iso-

morphic to π∗
ΨOX(λ).

Proof. Since both line bundles are G-homogeneous, it suffices to compare their
restrictions to the fiber of T ∗

ΨX over B/B ∈ X as 󰁨B-equivariant line bundles. As

a 󰁨B-equivariant line bundle on the affine space n(Ψ) is completely determined

by the character at the 󰁨T -fixed point, we conclude the result by the character
comparison.

Let us record the nef cone (see [24, Definition 1.4.1] for definition) of XΨ(w0):

Corollary 4.8. For any nonempty root ideal Ψ ⊂ ∆+, we have PicXΨ(w0) ∼= P.
For each λ ∈ P, the line bundle OXΨ(w0)(λ) is nef if and only if λ ∈ Par.

Proof. Proposition 3.7 and Theorem 3.9 imply that XΨ(w0) is a n-times succes-
sive projective space fibration realized as the projectifications of vector bundles.
Here each OXΨ(w0)(ϖi) (1 ≤ i ≤ n) yields a primitive ample line bundle of the
fiber at the i-th step. Hence, we conclude that P ∼= PicXΨ(w0) by repeatedly
applying [15, II Ex. 7.9].

The restriction of OXΨ(w0)(λ) (λ ∈ P) to X is OX(λ), and hence it is nef if
and only if λi − λi+1 ≥ 0 for each 1 ≤ i < n. Consider the subspace

Y := Phn(Ψ) ∼= P(CvΛ0
⊕

hn(Ψ)󰁐

t=1

C(z−1Et,n)vΛ0
) ⊂ n(Ψ) ⊂ P(L(Λ0))

arising from the fiber direction of T ∗
ΨX atB/B (cf. proof of Theorem 4.4). Then,

the restriction of OXΨ(w0)(λ) to Y is O(λn) as mn(λ) = λn by the construction
of NΨ

w0
(λ) in (2.2). Thus, the restriction of OXΨ(w0)(λ) to Y is nef only if λn ≥ 0.

Hence, OXΨ(w0)(λ) is nef only if λ ∈ Par.
For each 1 ≤ i ≤ n, the embedding (3.5) implies OXΨ(w0)(ϖi) is nef. Thus,

OXΨ(w0)(λ) is nef if λ ∈ Par as required.

Corollary 4.9. For a root ideal Ψ ⊂ ∆+ and w ∈ Sn that is Ψ-tame, the
Gm-attracting set of X(w) ⊂ XΨ(w) is isomorphic to T ∗

ΨX(w).

Proof. Since XΨ(w) is the restriction of (3.5) to BwQ/Q ⊂ G/Q, the claim
follows from Theorem 4.4.

5 Consequences

Keep the setting of the previous section.
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5.1 Vanishing theorems

Theorem 5.1. Let Ψ ⊂ ∆+ be a root ideal. Then the line bundle OXΨ(w0)(ϖn)
defines an effective Cartier divisor D with

suppD = XΨ(w0) \ T ∗
ΨX.

Moreover, we have

Hi(T ∗
ΨX(w),OT∗

ΨX(w)(λ)) = lim−→
m

Hi(XΨ(w),OXΨ(w)(λ+mϖn))⊗Cmϖn (5.1)

for each i ∈ Z and λ ∈ Par whenever w is Ψ-tame. In this case, we have

H>0(T ∗
ΨX(w),OT∗

ΨX(w)(λ)) = 0. (5.2)

Proof. Let D be the divisor defined by the vanishing of the coordinate corre-
sponding to vΛ0

under the embedding

XΨ(w0) ↩→ P(L(Λ0)).

The divisor D is 󰁨T -stable and T ∗
ΨX lies in the complement of the vanishing locus

by the description of XΨ(w0) near the 󰁨T -fixed point {[vΛi
]}i∈Iaf in Theorem 4.4.

Hence, we obtain
suppD ∩ T ∗

ΨX = ∅.

By Corollary 4.5, the boundary of the closure of a fiber of T ∗
ΨX is contained

in suppD. Taking the G-action into account, we conclude

suppD = XΨ(w0) \ T ∗
ΨX,

that is the first assertion. It follows that the embedding T ∗
ΨX ⊂ XΨ(w0) is

affine. Consequently, so is T ∗
ΨX(w) ⊂ XΨ(w) by (3.5) and Corollary 4.9. In

particular, we have

Hi(T ∗
ΨX(w),π∗

ΨOX(w)(λ)) = Hi(XΨ(w), ȷ∗π
∗
ΨOX(w)(λ)) i ∈ Z,

where ȷ : T ∗
ΨX(w) ↩→ XΨ(w) is an inclusion. We have

ȷ∗π
∗
ΨOX(w) = lim−→

m

OXΨ(w)(λ+mϖn)⊗ Cmϖn ,

where the transition maps in the RHS are induced by multiplication by a homo-
geneous coordinate function that extracts the coefficient of vΛ0 from the global
sections of O(ϖn). From these, we conclude that

Hi(T ∗
ΨX(w),π∗

ΨOX(w)(λ)) = lim−→
m

Hi(XΨ(w),OXΨ(w)(λ+mϖn))⊗ Cmϖn

for each i ∈ Z by the commutation of the cohomology with direct limits ([15,
III, Proposition 2.9]). This is the second assertion.

We combine the second assertion with Theorem 4.1 to conclude the third
assertion. These complete the proof.
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Remark 5.2. The vanishing result (5.2) establishes the tame case of the van-
ishing conjecture proposed by BlasiakMorsePun [2, Conjecture 3.4(ii)], which
implies the vanishing conjectures of ChenHaiman [8, Conjecture 5.4.3(2)] and
ShimozonoWeyman [35, Conjecture 5]. The result was previously known for
strictly dominant λ [33, 27], or in certain special cases [4, 5, 13]. However, these
earlier results do not fully encompass situations where H(Ψ;λ;w0) is a k-Schur
polynomial [3], or where n(Ψ) arises as the Lie algebra of the unipotent radical
of a proper parabolic subgroup of G.

Corollary 5.3 (Conjecture 3.4 (iii) in Blasiak-Morse-Pun [2]). Let Ψ ⊂ ∆+ be
a root ideal, and let w ∈ Sn be Ψ-tame. Then, the space

H0(T ∗
ΨX(w),OT∗

ΨX(w)(λ)) λ ∈ Par

admits an excellent filtration in the sense of van der Kallen [36].

Proof. By Theorem 4.1(3), each G-module appearing in the direct system on the
right-hand side of (5.1) admits an excellent filtration in the sense of [36]. By [36,
Corollary 1.8], the inductive limit of modules that admit excellent filtrations
again admits an excellent filtration.

Corollary 5.4 (Parabolic vanishing). Let P ⊂ G be a parabolic subgroup that
contains B, and let Ψ be a root idealsuch that n(Ψ) is P -stable. We set

T ∗
ΨX

P := G×P n(Ψ)
πP
Ψ−→ G/P =: XP .

For λ ∈ Par such that 〈αi,λ〉 = 0 when Pi ⊂ P , the line bundle OX(λ) is
isomorphic to the pullback of a line bundle OXP (λ) on XP and we have

H>0(T ∗
ΨX

P , (πP
Ψ)

∗OXP (λ)) = 0.

Proof. Since P stabilizes n(Ψ), we have a natural P/B-fibration

η : T ∗
ΨX = G×B n(Ψ) −→ G×P n(Ψ) = T ∗

ΨX
P .

The condition on λ guarantees that λ descends to a character of P , and hence
OX(λ) is a pullback of the G-equivariant line bundle OXP (λ) on G/P . In partic-
ular, (πΨ)

∗OX(λ) is trivial along the fiber of η. Since we haveHi(P/B,OP/B) =

Cδi,0 by the Borel-Weil-Bott, the Leray spectral sequence

Eq,p
2 := Hq(T ∗

ΨX
P ,Rpη∗(πΨ)

∗OX(λ)) ⇒ Hq+p(T ∗
ΨX, (πΨ)

∗OX(λ))

degenerates at the E1-stage, as E
q,p
1 = 0 for p > 0. This yields

Eq,p
2

∼= Hq(T ∗
ΨX

P , η∗(πΨ)
∗OX(λ)) = Hq(T ∗

ΨX
P , (πP

Ψ)
∗OXP (λ)).

Therefore, (5.2) for w = w0 implies the result.

Remark 5.5. (1) Corollary 5.4 also admits a B-equivariant analogue, in the
same sense as (5.2). (2) The results in §1.4 are valid in all characteristics.
Those in §1.5 also hold in positive characteristic [17], except in the case n = 2,
where the corresponding affine Lie algebra is not simply-laced. Therefore, all
the results in §3, as well as Theorem 5.1 and Corollary 5.4, remain valid in
arbitrary characteristic when n ≥ 3. The exceptional case n = 2 in positive
characteristicwhere the associated affine Lie algebra is not simply-lacedcan be
treated separately by elementary methods and is left to the reader.
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5.2 Simple head property

Lemma 5.6. For a root ideal Ψ ⊂ ∆+, we have a natural infinitesimal action
of gl(n,C[z]) on T ∗

ΨX. This equips H0(T ∗
ΨX,OT∗

ΨX(λ))∨ (λ ∈ Par) with the
structure of a graded gl(n,C[z])-module, and makes the map

H0(T ∗
ΨX,OT∗

ΨX(λ))∨ −→→ H0(XΨ(w0),OXΨ(w0)(λ))
∗

into a graded gl(n,C[z])-module surjection.

Proof. The action of 󰁨G on XΨ(w0) differentiates into the action of its Lie alge-
bra, and this Lie algebra action is well-defined on an open subset T ∗

ΨX. Thus,
we obtain the desired action and the quotient map.

Remark 5.7. We caution that the gl(n,C[z])-action on

H0(T ∗
ΨX,OT∗

ΨX(λ)) λ ∈ Par

is generally not compatible with the identification (5.1). This is parallel to the
fact that the g-module map

H0(X,OX(λ)) ↩→ H0(w0Bw0B/B,OX(λ)) λ ∈ Par,

is not compatible with the character twists as b-modules.

Theorem 5.8. For a root ideal Ψ ⊂ ∆+, the 󰁨G-module

H0(XΨ(w0),OXΨ(w0)(λ)) λ ∈ Par

has a simple head isomorphic to H0(X,OX(λ)).

Since the proof of Theorem 5.8 is rather involved, we postpone its proof to
§5.3 and discuss one consequence here:

Corollary 5.9. Let Ψ ⊂ ∆+ be a root ideal, and let w ∈ Sn be Ψ-tame. For
each λ ∈ Par, the 󰁨B-module H0(XΨ(w),OXΨ(w)(λ)) has a simple head.

Proof. We employ the setting of the proof of Theorem 5.8. A reduced expression
i′ of w can be extended to a reduced expression i of w0 by prepending additional
simple reflections from I. By repeated applications of Corollary 1.18 to the
presentations in (2.2), we find a surjective 󰁨B-module map

H0(XΨ(w0),OXΨ(w0)(λ)) −→→ H0(XΨ(w),OXΨ(w)(λ)). (5.3)

By Theorem 5.8 and the PBW theorem, we find that the LHS of (5.3) has a

simple head as a 󰁨B-module (the lowest weight part of V ∗
λ ). Thus, so is the RHS

of (5.3) as required.

5.3 Proof of Theorem 5.8

The proof is divided into two steps: first, we enlarge the spaceH0(XΨ(w0),O(λ))
via twisting by ϖn (§5.3.1); second, we analyze the limiting behavior using the
representation theory of affine Lie algebras (§5.3.2). We combine both steps in
§5.3.3.

We warn the reader that we use non-standard lifts of weights in P to Paf

throughout the proof.
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5.3.1 The first step

We have a short exact sequence of line bundles

0 → OXΨ(w0)(λ) → OXΨ(w0)(λ+ϖn)⊗ Cϖn
→ coker → 0,

where coker is supported on ∂ = (XΨ(w0) \T ∗
ΨX). This induces the short exact

sequence

0 → H0(XΨ(w0),OXΨ(w0)(λ)) → H0(XΨ(w0),OXΨ(w0)(λ+ϖn))⊗ Cϖn

→ H0(XΨ(w0), coker) → 0, (5.4)

of graded G-modules by Theorem 4.1. We remark that ∂ is not 󰁨G-stable, and
hence this short exact sequence cannot be lifted into a short exact sequence of
graded sl(n,C[z])-modules.

Lemma 5.10. Let Ψ be a root ideal and let λ ∈ Par. We have a graded
gl(n,C[z])-module map

η(λ) : H0(XΨ(w0),OXΨ(w0)(λ+ϖn))⊗ Cϖn
−→ H0(XΨ(w0),OXΨ(w0)(λ)).

Proof. The effect of tensoring with CΛn enlarges the output of the functor D0.

Thus, a 󰁨B-module M induces a 󰁨B-module inclusion

D0(M) ↩→ D0(M ⊗ CΛn
)⊗ C−Λn

.

Since D0 is a covariant functor, a 󰁨B-module map M ′ −→ M yields

D0(M
′) −→ D0(M) −→ D0(M ⊗ CΛn)⊗ C−Λn .

Therefore, a 󰁨B-module map M ′ −→ M yields

Chk(Ψ),k(λ)(M
′) −→ Chk(Ψ),k(λ+ϖn)(M)⊗ C−Λn

for each e1(Ψ) ≤ k ≤ n; see (2.2) for the definition of Chk(Ψ),k(λ).

Now we compose them for e1(Ψ) ≤ k ≤ n to obtain a 󰁨B-module map

H0(XΨ(w
Ψ
0 ),OXΨ(wΨ

0 )(λ))
∨ −→ H0(XΨ(w

Ψ
0 ),OXΨ(wΨ

0 )(λ+ϖn))
∨ ⊗ C−ϖn .

Applying Dw0
and dualizing this yields the desired map η(λ) as required.

We set P (k) := (G(k)∩ 󰁨P(k+1)) for e1(Ψ) ≤ k ≤ n and P (d1(Ψ)) := Q, and
set G(d1(Ψ)) := G for notational simplicity. As seen in §3, P (k) is a maximal
parabolic subgroup of G(k) ∼= SL(hk + n − k + 1) for e1(Ψ) ≤ k ≤ n. Let
U(k) be the unipotent radical of P (k) ⊂ G(k) for d1(Ψ) ≤ k ≤ n. Let U−(k)
(d1(Ψ) ≤ k ≤ n) denote the opposite unipotent subgroup of U(k) with respect
to the respective reductive groups and its parabolic subgroups.

For e1(Ψ) ≤ k ≤ n, set ik := (hk−1(Ψ), . . . , 0, . . . , k). Let i′[k] be a sequence
of Iaf that records a reduced expression of w0w

Ψ
0 followed by the sequence read

from (2.2) until the tensor twist of Cmk−1Λk
. We have a map

f : X(ik) −→ G(k)/P (k).
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For a P (k)󰁨B-module M , we define M󰂒 := f∗Ei(M ⊗CΛn). Let M be the G(k)-
equivariant vector bundle on G(k)/P (k) whose fibers at P (k)/P (k) is M∨. We
set G󰂐

k := 〈SL(2, i) | 1 ≤ i < hk(Ψ)〉 ⊂ G(k) and

P 󰂐
k := (〈SL(2, i) | 1 < i < hk(Ψ)〉 󰁨B ∩ SL(hk(Ψ),C))

for each e1(Ψ) ≤ k ≤ n.
Let Y (k) to be the pullback of (G󰂐

k/P
󰂐
k) to XΨ(k), and define

Y̊ (k) := U−(d1(Ψ))× U−(e1(Ψ))× · · ·× U−(k − 1)× Y (k) ⊂ XΨ(w0), (5.5)

for each e1(Ψ) ≤ k ≤ n. Note that Y (k) ⊂ ∂, and its codimension is

codimG(k)/P (k)(G
󰂐
k/P

󰂐
k)− 1 = (n− k).

Lemma 5.11. For each e1(Ψ) ≤ k ≤ n, we have

Y (k) ⊂ U−(k)Y (k + 1), (5.6)

which in turn implies that Y̊ (k) ⊂ Y̊ (k + 1).

Proof. We prove (5.6). The case k = n is trivial, and the case k = (n − 1) is
Y (k) ⊂ ∂. It suffices to consider the image of XΨ(w0) under the map

XΨ(w0) −→ P(L(Λk))× P(L(Λk+1))

induced from (3.2), and examine the inclusion. Let A := (Idk+1, aIdn−k−1) ∈ G
be a diagonal matrix with a ∈ R>1. We have an inclusion of the A-fixed parts
of Y (k) ⊂ U−(k)Y (k + 1) by the case k = (n − 1) (c.f. Corollary 4.5). We
apply the action of GL(n− k) ⊂ G to obtain (5.6). The latter assertion follows
from (5.6) by applying U−(l) for d1(Ψ) ≤ l < k. This completes the proof.

Proposition 5.12. In the setting of Lemma 5.10, we have

gch ker η(λ) ≤ gchH0(∂,OXΨ(w0)(λ+ϖn))⊗ Cϖn . (5.7)

Proof. We adopt the notation and framework from the proof of Lemma 5.10.
We consider

F := coker((D0 ◦ · · · ◦Dk)(M) ↩→ (D0(CΛn ⊗ (Dn−1 ◦ · · · ◦Dk))(M)⊗ C−Λn).

We observe that F is a 󰁨B-module equipped with an action of P 󰂐
k . If we

denote by F the G󰂐
k-equivariant vector bundle on G󰂐

k/P
󰂐
k whose fiber at P 󰂐

k/P
󰂐
k

is F∨, then we have a short exact sequence

0 → M → M󰂒 → F → 0. (5.8)

In particular, the space

coker(Chk(Ψ),k(λ)(M) −→ Chk(Ψ),k(λ+ϖn)(M)⊗ C−Λn
)∨

is identified with the space of rational sections of M having a simple pole along
(G󰂐

k/P
󰂐
k).
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In the following, we consider the case

M = Γ(XΨ(k + 1),OXΨ(wΨ
0 )(λ)) ⊂ Γ(XΨ(k + 1),OXΨ(wΨ

0 )(λ+ϖn))⊗ Cϖn

for e1(Ψ) ≤ k ≤ n. We have

Γ(G(k)/P (k),M󰂒) ↩→ Γ(XΨ(k),OXΨ(wΨ
0 )(λ+ϖn))⊗ Cϖn . (5.9)

The image of Γ(G(k)/P (k),M󰂒) under (5.9) vanishes along general points of

U−(k)× Y (k + 1) ⊂ XΨ(w0).

The space Γ(G(k)/P (k),F) inflates to a 󰁨T -equivariant vector bundle F(k)
on Y̊ (k) by adjusting characters Λ1, . . . ,Λk−1 appearing in (2.2). A non-zero
element of Γ(G(k)/P (k),F) is a non-zero along general points of Y (k).

By construction, we have

H0(X(i′), Ei′(Γ(G(k)/P (k),F))⊗OX(i′) L) ⊂ Γ(Y̊ (k),F(k)), (5.10)

where L is a line bundle that adjusts the twists bymiΛi (1 ≤ i < k) that appears
in the middle of X(i′). Let f be a non-zero section of the RHS of (5.10). Then,
f is non-zero on general points of Y̊ (k), since it specializes to a non-zero element
of Γ(G(k)/P (k),F) at a general fiber Y (k). On the other hand, the lift of f to

Γ(U−(d1(Ψ))×U−(e1(Ψ))× · · ·×U−(k− 1)×XΨ(k),OXΨ(w0)(λ+ϖn))⊗Cϖn

through (5.9) vanishes at general points of Y̊ (k + 1) by construction.
A non-zero section in the LHS of (5.10) for e1(Ψ) ≤ k ≤ n is precisely a

section of H0(XΨ(w
Ψ
0 ),OXΨ(wΨ

0 )(λ+ϖn))⊗Cϖn that vanishes along Y̊ (k+ 1),

but whose leading term in the local expansion along Y̊ (k) is generically non-zero.
Thus, the LHS of (5.10) contributes distinctly to

H0(∂,OXΨ(w0)(λ+ϖn))⊗ Cϖn .

This concludes the proof of (5.7).

Corollary 5.13. The map η(λ) in Lemma 5.10 is surjective.

Proof. By construction, we have

gch ker η(λ) ≥ gchH0(XΨ(w
Ψ
0 ),OXΨ(wΨ

0 )(λ+ϖn))⊗ Cϖn

− gchH0(XΨ(w
Ψ
0 ),OXΨ(wΨ

0 )(λ)),

with an equality when the map η(λ) is surjective. Since (5.4) implies

gchH0(∂,OXΨ(w0)(λ+ϖn))⊗ Cϖn =gchH0(XΨ(w
Ψ
0 ),OXΨ(wΨ

0 )(λ+ϖn))⊗ Cϖn

− gchH0(XΨ(w
Ψ
0 ),OXΨ(wΨ

0 )(λ)).

Thus, (5.7) yields an opposite inequality

gch ker η(λ) ≤ gchH0(XΨ(w
Ψ
0 ),OXΨ(wΨ

0 )(λ+ϖn))⊗ Cϖn

− gchH0(XΨ(w
Ψ
0 ),OXΨ(wΨ

0 )(λ)).

This establishes the surjectivity of η(λ), completing the proof.
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5.3.2 The second step

To apply more advanced representation-theoretic tools from affine Lie algebras,
we introduce some additional objects beyond the material presented in the end

of §1.3. Let 󰁨g ⊂ Lie 󰁨G((z)) be the affine Kac-Moody Lie algebra of type A
(1)
n−1,

and 󰁨b ⊂ Lie 󰁨B be its non-negative part [18, Chapter 6]. Let 󰁨n− be the lower

(opposite) triangular part of 󰁨g with respect to 󰁨b.
Remark 5.14. Real roots (resp. positive simple roots) of 󰁨g correspond precisely
to the affine roots (resp. {αi}i∈Iaf ) in our convention, and sl(2, i) (i ∈ Iaf)
contains both of the positive/negative Kac-Moody generators Ei/Fi. We have

g(k) ⊂ 󰁨g and (g(k) ∩ 󰁨b) ⊂ p(k) for each d1(Ψ) ≤ k ≤ n.

Since Id commutes with sl(n,C) in g, we may adjoin an additional factor
C[z]Id to sl(n,C[z]) to track the eigenvalues of Id. Note that zC[z]Id acts
trivially.

Lemma 5.15. We have a surjective inverse system of graded gl(n,C[z])-modules
{L(λ+mϖn)

∨ ⊗ Cmϖn}m≥0 such that

lim←−
m

L(λ+mϖn)
∨ ⊗ Cmϖn

∼= U(sl(n,C[z]))⊗U(sl(n)) V
∗
λ . (5.11)

In particular, (5.11) has simple head V ∗
λ as a graded gl(n,C[z])-module.

Proof. By the presentation of L(λ) in [18, Proof of Lemma 10.1], we obtain the
following description of the dual module:

L(λ)∨ ∼=
U(sl(n,C[z]))⊗U(sl(n,C)) V

∗
λ

(zEn,1)mn+1(1⊗ v∨
λ )

,

where v∨
λ is the g-lowest weight vector of V ∗

λ . Thus, we can form an inverse
limit of surjective systems

lim←−
m

L(λ+mϖn)
∨ ⊗ Cmϖn , (5.12)

that is isomorphic to (U(sl(n,C[z]))⊗U(sl(n))V
∗
λ ) as graded gl(n,C[z])-modules.

Hence, we deduce (5.11). From its presentation, we see that

U(sl(n,C[z]))⊗U(sl(n)) V
∗
λ

has simple head V ∗
λ as graded gl(n,C[z])-modules, completing the proof.

For each e1(Ψ) ≤ k ≤ n, we set G0(k) := 〈SL(2, j) | k ≤ j < n〉, and let

P 0(k) :=
󰀃
〈SL(2, j) | k < j < n〉 󰁨B ∩G0(k)

󰀄
⊂ G0(k)

be its parabolic subgroup. We set

V (k) :=
󰀃hk(Ψ)󰁐

j=1

Ej,k

󰀄
.

Remark 5.16. The subgroups G󰂐(k) and G0(k) of G(k) are distinct: the present
argument takes place along the base X ⊂ XΨ(w0), whereas the argument in
§5.3.1 concerns the boundary ∂.
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Proposition 5.17. Let Ψ be a root ideal and let λ ∈ Par. For e1(Ψ) ≤ k ≤ n
and 1 ≤ i < k, we have an isomorphism

CΛi⊗lim−→
m

C−mϖn⊗Chk(Ψ),k(λ+mϖn)(•) ∼= lim−→
m

C−mϖn⊗Chk(Ψ),k(λ+mϖn)(CΛi⊗•)

of endofunctors on the category of P 0(k)󰁨B-modules.

Proof. Geometrically, the application of Chk(Ψ),k(λ+mϖn)(•)⊗C−mϖn corre-
sponds to considering the dual of the global sections of the associated vector
bundle over G(k)/P (k) by Lemma 3.6.

Taking the limit as m → ∞ amounts to computing the global sections over
an open subspace of G(k)/P (k) that contributes to T ∗

ΨX, namely

Z(k) := G0(k)×P 0(k) V (k) ⊂ G(k)/P (k). (5.13)

In particular, we have isomorphisms

lim−→
m

C−mϖn
⊗ CΨ

k (λ+mϖn)(M) ∼= H0(Z(k),M) ∼= H0(G0(k)/P 0(k),M↓(M)),

for a P (k)-module M , where M is the G(k)-equivariant vector bundle on
G(k)/P (k) whose fiber at P (k)/P (k) isM∨, andM↓(M) is theG0(k)-equivariant
vector bundle on G0(k)/P 0(k) whose fiber at P 0(k)/P 0(k) is C[V (k)]⊗M∨.

Thus, we can replace

lim−→
m

C−mϖn
⊗ Chk(Ψ),k(λ+mϖn)(•) (5.14)

with H0(G0(k)/P 0(k),M↓(•)) in order to calculate the desired limit.

Originally, Chk(Ψ),k(λ+mϖn)(•) is defined for 󰁨P(k)-modules. Since the base
space is shrinked to G0(k)/P 0(k) ⊂ G(k)/P (k), our reinterpretation of (5.14)

extends to an endofunctor on the category of P 0(k)󰁨B-modules.
In this setting, the construction of H0(G0(k)/P 0(k),M↓(•)) involves form-

ing a vector bundle, that replace the effect of the application of

lim−→
m

C−mΛn ⊗D0(CmΛn ⊗ •)

followed by Dj for 0 ≤ j < hk(Ψ), and the application of the Demazure functors
of shape Dj for k ≤ j < n. The former operation (forming vector bundles)
commutes with arbitrary character twists, while the latter operations (Demazure
functors) commute with the character twist by CΛi

for i < k.
This shows that in the inductive limit, the character twist by CmiΛi com-

mutes with the operations defining Chk(Ψ),k. Hence, we obtain the desired func-
torial isomorphism:

CΛi⊗lim−→
m

C−mϖn⊗Chk(Ψ),k(λ+mϖn)(•) ∼= lim−→
m

C−mϖn⊗Chk(Ψ),k(λ+mϖn)(CΛi⊗•).

This completes the proof.

Corollary 5.18. We have a surjective graded sl(n,C[z])-module map

U(sl(n,C[z]))⊗U(sl(n,C)) V
∗
λ ↠ lim←−

m

H0(XΨ(w0),OXΨ(w0)(λ+mϖn))⊗ Cmϖn .
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Proof. By repeatedly applying Proposition 5.17, we move the character twists
to the initial term C in (2.2) to identify

lim−→
m

Dw0
(Che1(Ψ),e1(Ψ)(λ+mϖn) ◦ · · · ◦ Chn(Ψ),n(λ+mϖn))(C))⊗ C−mϖn

,

that calculates the (restricted) dual of

lim←−
m

H0(XΨ(w0),OXΨ(w0)(λ+mϖn))⊗ Cmϖn
,

with lim−→m
Di(Cλ+mϖm), where i is a sequence in Iaf that records a reduced

expression of w0 followed by the sequence read out from (2.2).
By Theorem 1.15(2), we have

lim−→
m

Di(Cλ+mϖm) ∼= lim−→
m

Lw(λ+mϖn)⊗ C−mϖn ⊂ lim−→
m

L(λ+mϖn)⊗ C−mϖn

for some w ∈ 󰁨Sn determined uniquely by i. In particular, we conclude that

lim←−
m

L(λ+mϖn)
∨ ⊗ Cmϖn

↠ lim←−
m

H0(XΨ(w0),OXΨ(w0)(λ+mϖn))⊗ Cmϖn

by taking (restricted) dual. Now Lemma 5.15 yields the result.

5.3.3 The final step

To conclude the proof of Theorem 5.8, we combine the surjective map from
Corollary 5.18 with the surjectivity of η(λ) established in Corollary 5.13. This
yields a sequence of surjective maps:

U(sl(n,C[z]))⊗U(sl(n,C)) V
∗
λ ↠ lim←−

m

H0(XΨ(w0),OXΨ(w0)(λ+mϖn))⊗ Cmϖn

↠ H0(XΨ(w0),OXΨ(w0)(λ)),

all regarded as graded gl(n,C[z])-modules. Since the leftmost term has simple
head V ∗

λ (by Lemma 5.15), the same holds for the final term. This completes
the proof of the theorem.

5.4 Monotonicity of multiplicities

Proposition 5.19. Let Ψ′ ⊂ Ψ ⊂ ∆+ be root ideals, and let w′, w ∈ Sn be
Ψ-tame permutations such that X(w′) ⊂ X(w). For each λ ∈ Par, we have an
inclusion

NΨ′

w′ (λ) ⊂ NΨ
w (λ) as 󰁨B-modules.

Proof. Note that a Ψ-tame element is automatically Ψ′-tame by d1(Ψ
′) ≥ d1(Ψ),

and hence w′ is Ψ′-tame. Thanks to Proposition 2.9, we can replace NΨ
w (λ) and

NΨ′

w′ (λ) with MΨ
w (λ) and MΨ′

w′ (λ).
By interpreting (2.3) as successive applications of Demazure functors to-

gether with the character twists, we have a sequence i of elements of Iaf such
that

(MΨ
w (λ))∗ = H0(X(i),Lλ),
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where X(i) is defined in (1.6), and Lλ is defined as: {Lϖi}i∈Iaf is a collection

of 󰁨B-equivariant line bundles on X(i) obtained as the pullback of Oi[k](Λk)
on X(i[k]) (using the maps offered in Lemma 1.10), where i[k] denotes the
truncation of the sequence i up to the place where CmkΛk

appears in (2.3). For
general λ ∈ Comp, we extend this definition by tensor products to obtain Lλ.

Examining the sequence offered in (2.3), we have its subsequence i′ that
realizes MΨ′

w′ (λ). In particular, we have X(i′) ⊂ X(i). Thus, we obtain a
restriction map

MΨ
w (λ)∗ = H0(X(i),Lλ) −→ H0(X(i′),Lλ) = MΨ′

w′ (λ)∗. (5.15)

The 󰁨T -weights of simple heads of both sides of (5.15), provided by Corollary 5.9,

coincide, as both are realized as the (dual of the) fiber of Lλ at the 󰁨T -fixed point
X(∅) ∈ X(i′) ⊂ X(i). Hence, we deduce that (5.15) is surjective. Taking duals

then yields the desired inclusion of 󰁨B-modules.

Proposition 5.20. Let Ψ′ ⊂ Ψ ⊂ ∆+ be root ideals, and let w′, w ∈ Sn

be Ψ-tame elements such that X(w′) ⊂ X(w). Then we have an inclusion
XΨ′(w′) ⊂ XΨ(w) that induces a surjection

H0(XΨ(w),OXΨ(w)(λ)) −→→ H0(XΨ′(w′),OXΨ(w′)(λ)) λ ∈ Par.

Proof. Recall that the homogeneous coordinate ring of XΨ(w) is
󰁏

λ∈Par(N
Ψ
w (λ))∗.

By Proposition 5.19, the natural map

NΨ
w (λ)∗ −→ NΨ′

w′ (λ)∗

is surjective for each λ ∈ Par. This implies that the homogeneous coordinate
ring of XΨ′(w′) is a quotient of that of XΨ(w). In view of Theorem 4.1, we
conclude the desired surjection.

Corollary 5.21. Let Ψ′ ⊂ Ψ ⊂ ∆+ be root ideals, and let w′, w ∈ Sn be Ψ-tame
elements such that X(w′) ⊂ X(w). The natural restriction map

H0(T ∗
ΨX(w),OXΨ(w)(λ)) −→ H0(T ∗

Ψ′X(w′),OXΨ′ (w′)(λ)) λ ∈ Par

is surjective. Furthermore, there is a scheme-theoretic identification

XΨ′(w′) = TΨ′X(w′) ⊂ XΨ(w).

Proof. Note that w′ is Ψ′-tame. By Proposition 5.20, we have the following
commutative diagram

H0(T ∗
ΨX(w),OXΨ(w)(λ)) 󰈣󰈣 H0(T ∗

Ψ′X(w′),OXΨ(w′)(λ))

H0(XΨ(w),OXΨ(w)(λ+mϖn))⊗ Cmϖn

󰈳󰈓

󰉃󰉃

󰈣󰈣 󰈣󰈣 H0(XΨ′(w′),OXΨ′ (w′)(λ+mϖn))⊗ Cmϖn

󰈳󰈓

󰉃󰉃

for each λ ∈ Par and m ≥ 0. Thus, Theorem 5.1 yields the first assertion.
The second assertion follows directly from a comparison of the homogeneous
coordinate rings via the above commutative diagram.
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Definition 5.22. For a root ideal Ψ ⊂ ∆+ and weights λ, µ ∈ P+, we define
the graded multiplicity series

KΨ
λ,µ(q) :=

󰁛

m∈Z
qm dim HomG×Grot

m
(V (λ)⊠C−mδ, H

0(T ∗
ΨX,OXΨ(w0)(µ))

∨) ∈ Z[[q]].

The following assertion generalizes and proves [35, Conjecture 12]:

Corollary 5.23. Let Ψ′ ⊂ Ψ ⊂ ∆+ be root ideals. We have

KΨ′

λ,µ(q) ≤ KΨ
λ,µ(q) λ, µ ∈ P+.

Proof. Since rational representations of (G × Grot
m ) are completely reducible,

KΨ
λ,µ(q) counts the graded multiplicities of V (λ) in

H0(T ∗
ΨX(w0),OXΨ(w0)(µ))

∨.

Therefore, the w = w′ = w0 case of Corollary 5.21 yields the assertion.

Remark 5.24. By Corollary 5.21, we deduce that the composition map

SpecH0(T ∗
ΨX,OT∗

ΨX) → SpecH0(T ∗X,OT∗X) ⊂ sl(n)

defines an irreducible and reduced closed subscheme1. Thus, it must be the
closure of a nilpotent orbit, denoted by OΨ.

Taking into account the fact that ϖn is the determinant character of G, we
find that

OXΨ(w0)(ϖn)|T∗
ΨX

∼= OT∗
ΨX ⊗ C−ϖn

for each Ψ ⊂ ∆+.
From these, we have

KΨ′

λ,kϖn
(q) ≤ KΨ

λ,kϖn
(q) k ∈ Z,λ ∈ P+

if Ψ,Ψ′ ⊂ ∆+ satisfies OΨ′ ⊂ OΨ (and the equality holds when OΨ′ = OΨ).
This recovers (or generalizes) [35, Conjecture 13] for γ = (kn), that is implicit
in Fenn-Sommers [11, §5.1]. In a similar manner, Corollary 5.21 provides a wide
extension of the speculations presented in [35, §2.10].

The following assertion generalizes and proves [35, Conjecture 13]:

Corollary 5.25. Let 1 ≤ a < b ≤ n and let µ ∈ Par be a partition such that

µa = µa+1 = · · · = µb.

Let Ψ′,Ψ ⊂ ∆+ be two root ideals with the following properties:

1. Ea−1,j , Ei,b+1 ∈ n(Ψ′) ∩ n(Ψ) for j ≥ a, i ≤ b;

2. When i < a or j > b, then we have Ei,j ∈ n(Ψ′) if and only if Ei,j ∈ n(Ψ).

1This feature no longer holds if we replace G with other type even when we employ an
equivariant vector subbundle of T ∗(G/B) corresponding to the pullback of T ∗(G/P ) for a
parabolic subgroup P ⊂ G (see e.g. [10, 29]).
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Consider the subgroup Ga,b := SL(b − a + 1) ⊂ G whose set of T -weights are
{󰂃i − 󰂃j}a≤i,j≤b. If we have

Ga,bn(Ψ
′) ⊂ Ga,bn(Ψ),

then we have
KΨ′

λ,µ(q) ≤ KΨ
λ,µ(q) λ ∈ P+. (5.16)

Proof. We consider the parabolic subgroup P ⊂ G defined by P = Ga,bB. By
assumption, we have

ga,b + n(Ψ) = ga,b + n(Ψ′),

and they are stable under the action of P . Hence, we have a map

fΨ : T ∗
ΨX = G×B n(Ψ) −→ G×P (ga,b + n(Ψ)),

and similarly a map fΨ′ for Ψ′. By the discussion in Remark 5.24, we have a
surjection of (P × C×)-equivariant sheaves

(fΨ)∗OT∗
ΨX(µ) −→ (fΨ′)∗OT∗

Ψ′X(µ),

defined as the restriction. Taking their global sections, we obtain a map

ı : H0(T ∗
ΨX,OT∗

ΨX(µ)) −→ H0(T ∗
Ψ′X,OT∗

Ψ′X(µ)). (5.17)

This is enhanced into a commutative diagram induced by the restrictions of
sheaves on G×P (ga,b + n(Ψ)):

H0(T ∗X,OT∗X(µ))

󰈃󰈃󰈃󰈃 󰈝󰈝 󰈝󰈝❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

H0(T ∗
ΨX,OT∗

ΨX(µ))
ı 󰈣󰈣 H0(T ∗

Ψ′X,OT∗
Ψ′X(µ)),

where the vertical maps are surjective by Corollary 5.21. This implies that ı
is surjective. Taking the graded characters of (5.17), we conclude (5.16). This
completes the proof.
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