

微分積分学Ⅲ ~ 常微分方程式論 ~

火曜日一限目 担当:坂上貴之(さかじょうたかし)

Department of Mathematics, Hokkaido University

Mathematics of Nonlinear Structure via Singularity

微分方程式とは?

- 方程式 = 未知の変数が満たす関係式のこと
- 二次方程式

$$ax^2 + bx + c = 0$$
, $a,b,c \in \mathbb{R}$

微分方程式:未知の関数が満たす関係式

$$\frac{dx}{dt} = f(x,t)$$
, fは与えられた関数

Department of Mathematics, Hokkaido University

Mathematics of Nonlinear Structure via Singularity

なぜ微分方程式

- 関数の微分 = グラフの接線、瞬間の変化量
- 微分方程式 = 瞬間(局所)の記述を与えているだけである。
- 広く世の中におこる現象の把握 我々は観測によって「瞬間」の関係しか知ること ができない。

我々は全知全能ではありえない よって、その記述は当然局所的なものにならざる を得ない。

微分方程式とそれを解くことの重要性

Department of Mathematics, Hokkaido University

Mathematics of Nonlinear Structure via Singularity

微分方程式の意義 モデル化 天体活動の観測 ニュートンの方程式 微分方程式に 現象·観測事実 よる記述 現象の理解 既存の事実の説明 常微分方程式を解く 新事実の提示 この講義の目的 解の性質 微分積分学 線形代数 微分方程式論 Department of Mathematics, Hokkaido University Mathematics of Nonlinear Structure via Singularity

例1:放射性物質の時間変化

- 観測事実:放射性物質は不安定で、時間が立つにつれて自然に崩壊して、徐々にその質量が一定率で減少する。
- 方程式の定式化

変数:放射性物質の量 u(t)

関係:質量の時間変化は質量に比例する

$$\frac{du}{dt} = -ku, \ k > 0: 減少率(一定)$$

Department of Mathematics, Hokkaido University

Mathematics of Nonlinear Structure via Singularity

例1:方程式を解く

• 初期値:最初にあった質量

$$u(0) = a$$

- $\mu(t) = ae^{-kt}$
- 解からわかること 質量は指数的に単調減少する。 半減期の推定ができる。

Department of Mathematics, Hokkaido University

Mathematics of Nonlinear Structure via Singularity

例2:マルサスの法則(人口論)

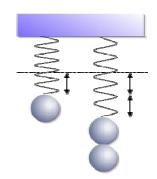
- 対象:試験管の中で培養されたバクテリア
- 事実:試験管内に栄養は酸素が十分あるとき、バク テリアはほぼ一定の割合で分裂を繰り返して増殖し てゆく。
- du モデル: $\frac{au}{a} = au, a > 0$:分裂率(一定)
- 解(マルサスの法則)

 $u(t) = u_0 e^{at}$, u_0 :初期のバクテリア数

Department of Mathematics, Hokkaido University Mathematics of Nonlinear Structure via Singular

例2:マルサスの法則(続き)

- しかし、バクテリアは無限に成長できるわけで はない。
- 有限の餌 成長を抑える効果 一定の餌に 対して成長率は利用できる餌の残りに比例
- 方程式の精密化(ロジスティック方程式)


a = (a - bu)u, a > 0:成長率、b:餌の効果

Department of Mathematics, Hokkaido University

Mathematics of Nonlinear Structure via Singularit

例3:バネの運動

- 運動の第二法則 (Newton) "運動の加速度は力に比例 する"
- 加速度
 - = 速度の変化率
 - = 位置の二階微分
- バネの運動:物質に加わる 力は伸びに比例する。

Department of Mathematics, Hokkaido University

Mathematics of Nonlinear Structure via Singularity

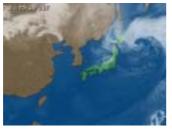
例3:バネの運動

• 運動方程式:

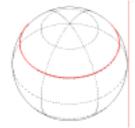
$$m\frac{d^2x}{dt^2} = -kx$$
, k :バネ定数, $x(t)$:バネの位置

解:最初にaだけ伸ばす.

$$x(0) = a$$
, $\frac{dx}{dt}(0) = 0 \Rightarrow x(t) = a\cos\sqrt{\frac{k}{m}}t$


• わかること:振動の周期

$$T = 2\pi \sqrt{m/k}$$


Department of Mathematics, Hokkaido University

Mathematics of Nonlinear Structure via Singularity

例4:もっと複雑な方程式へ

現象(大気の運動)

球面上の渦層(赤い線)

$$\theta_{t} = -\frac{1}{4\pi} \operatorname{pv} \int_{0}^{2\pi} \frac{\sin \theta' \sin(\varphi - \varphi')}{1 - \cos \gamma} d\alpha',$$

$$\sin \theta \varphi_{t} = -\frac{1}{4\pi} \operatorname{pv} \int_{0}^{2\pi} \frac{\cos \theta \sin \theta' \cos(\varphi - \varphi') - \sin \theta \cos \theta'}{1 - \cos \gamma} d\alpha',$$

渦層の運動を記述する方程式

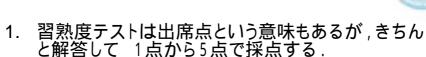
Department of Mathematics, Hokkaido University Mathematics of Nonlinear Structure via Singularit;

常微分方程式論を学ぶと

- 数学的な理論が豊富なので未知の問題にも 「使える」
- 微分方程式を解くことで我々は未来の現象の 予測や現象の中にあるメカニズムを理解する ことができる。
- この講義では「方程式を解くこと」にこだわる

Department of Mathematics, Hokkaido University Mathematics of Nonlinear Structure via Singulari

講義の進め方



- 1. 講義は板書形式
- 2. 毎回講義終了10分前に簡単な習熟度テストを行 う(この提出を持って出席とする)
- 3. 各内容終了ごとに演習問題をWeb上に公開する (全8回:解答の上レポートとして提出してもよい)
- 4. 講義情報はホームページアドレス http://www.math.sci.hokudai.ac.jp/~sakajo/lect ures/H17/Calc 3.html

を随時参照すること.

Department of Mathematics, Hokkaido University Mathematics of Nonlinear Structure via Singularit

評価の方法

- 2. 中間テストを5月24日に行う.
- 3. 期末テストを8月(期末テスト期間中)に行う.
- 評価は 習熟度テスト20% 中間テスト40% 期末テスト40% で行う
- 5. 演習問題をレポートした場合は加点要素として加 味する

Department of Mathematics, Hokkaido University

Mathematics of Nonlinear Structure via Singulari

限られた時間での勉強の仕方

- とにかく講義時間内は集中する。
- 2. ノートはきちんととる
- 3. 習熟度テストは「自分で理解する」ことを目 的として取り組む、ノートを見ても参考書を 見てもよい。
- 4. 演習問題だけは時間外で少しずつ解(...
- 5. 質問は随時する.わからないことを残したま まではいけない.

Department of Mathematics, Hokkaido University Mathematics of Nonlinear Structure via Singularit