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Abstract

For holomorphic maps of one variable with a parabolic fixed point, the parabolic renor-
malization R0 is defined in terms of Fatou coordinates and horn maps. A class F1 of such
maps is proposed so that it is invariant under R0, which acts as a uniform contraction with
respect to a certain metric. The near-parabolic renormalization R is also defined for the
perturbation of these maps, and it amounts to taking a first return map on a certain funda-
mental region. It is also shown that R is hyperbolic on the space of maps whose multiplier
is sufficiently close to 1 . These results will help us to analyze the behavior of orbits of near
the fixed points, especially irrationally indifferent ones. Buff and Chéritat [BC] used our
result as one of main tools in their construction of a quadratic polynomial with Julia set of
positive Lebesgue measure.
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Introduction

Let f(z) be a holomorphic function defined near z0 ∈ C and suppose z0 is a fixed point. Its
multiplier is λ = f ′(z0) and the fixed point z0 is called parabolic if λ is a root of unity. We will
mainly consider the case λ = 1. In this case, for simplicity we say z0 is 1-parabolic and we call
it non-degenerate if f ′′(z0) 6= 0.

Near a non-degenerate 1-parabolic point z0, the orbits are attracted towards z0 on one side
and repelled away on the other side. The parabolic basin

Basin(z0) = {z : {fn}∞n=0 converges uniformly to z0 in a neighborhood of z}

is an open set containing z0 on the boundary and occupies most of area near z0. So the local
dynamics is relatively simple. However, once perturbed, it becomes the source of rich and delicate
bifurcation phenomena. The points in the basin of unperturbed map can now escape through
the “gate” between the bifurcated fixed points, thus new recurrent orbits may be created. These
“new” orbits depend extremely sensitively on the perturbation, and this causes a drastic change
of dynamics or the discontinuity of Julia sets. Also the perturbation into certain direction, such
as z0 turning into irrationally indifferent fixed point (i.e. |λ| = 1 but λ is not a root of unity),
can create highly recurrent behavior, which leads into delicate questions, e.g. the linearizability
problem or Cremer Julia sets which are not locally connected.

The main tool to analyze such bifurcation is Fatou coordinates and horn maps, which were
developed by Douady–Hubbard [DH1, DH2] and Lavaurs [La]. In order to trace escaping or
recurrent orbits, a croissant-shaped “fundamental region” is defined near the fixed points and
the first return map to this region is described by the horn map. By gluing the boundary
curves by the dynamics, we obtain a cylinder which is isomorphic to C/Z, and the return map
induces a holomorphic map defined near the ends of the cylinder. A brief review on this theory
will be given in §§ 1 and 2. It was first used in the study of the landing of external rays at
the Mandelbrot set, the discontinuity of the Julia sets and the straightening of polynomial-like
maps, and the non-local connectivity of the connectedness locus of cubic polynomials. There
are subsequent applications of these techniques, for example, [Do], [Sh1], [So], [Hi], [Ou], [KN].

When we study irrationally indifferent fixed points whose rotation number has continued
fraction with large coefficients, it becomes important to carry out successive construction of
return maps. This leads to the definition of parabolic and near-parabolic renormalizations R0

and R which will be described in §3. In fact, in [Sh1], such a notion was already introduced
and its second iterate played a crucial role in the proof of the fact that a parabolic point can
be perturbed so that the Hausdorff dimension of the Julia set is arbitrarily close to 2. A class
F0 of 1-parabolic maps was introduced there and proved to be invariant under the parabolic
renormalization R0. However, in order to study their perturbation, for example, irrationally
indifferent fixed points, we need a class where near-parabolic renormalization R can be iterated
(with control) infinitely many times. It turns out that F0 cannot serve for this purpose, and the
main goal of this paper is to propose the class F1 (defined in §4) which fulfills the requirements.
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Maps in this class are written as f = P ◦ ϕ−1, where P (z) = z(1 + z)2, ϕ is a normalized
univalent function defined in a domain V .

Main results in this paper (stated in §4) are as follows: Main Theorem 1 states that F1 is
invariant under R0, and the renormalized map has a slightly better extension property. Main
Theorem 2 relates F1 to the Teichmüller space of a punctured disk and asserts that the induced
map is a uniform contraction with respect to the Teichmüller metric. In Main Theorem 3, we
obtain the invariance of F1 for the “fiber” renormalization Rα for small α, which implies the
hyperbolicity of near-parabolic renormalization R. Corollaries.

There is a remarkable application of our results:

Theorem (Buff–Chéritat [BC]). There exists an irrational number α such that f(z) = e2πiαz +
z2 has Julia set of positive Lebesgue measure.

There are two renormalization theories which are closely related to ours – Yoccoz’s and
McMullen’s. Yoccoz’s renormalization was used in his proof [Yo] of Siegel-Bruno Theorem on the
linearization of irrationally indifferent fixed points. His renormalization and our renormalization
produce sequences which are locally conjugate. Yoccoz’s renormalization is defined for any
univalent function with any rotation number and corresponds to taking the first return map
to a sector with a vertex at the fixed point. The renormalized map becomes again a univalent
function after cutting off the domain of definition, and in this sense, an upper bound on its
non-linearity is given. On the other hand, our renormalization is restricted to small rotation
number and the class F1, but it include the critical point in the domain of definition and gives
a lower bound as well as upper bound on the non-linearity. When the rotation number is small,
our domain of definition is substantially larger than Yoccoz’s.

McMullen’s renormalization [Mc1] deals with Siegel disks of quadratic polynomials for which
the rotation number is of bounded type. He shows the convergence of scaled return maps near
the critical point. This result can be recovered from our results when the rotation number has
large coefficients for the continued fraction expansion.

There is also a similar renormalization theory for critical circle maps by Epstein-Yampolsky
[Ya], [EY]. Their cylinder renormalization also uses the Ecalle-Voronin cylinder (see §1) to
induce the renormalization for parabolic or near-parabolic fixed points of critical circle maps. In
their setting, they do not encounter the difficulties discussed at the end of §3, therefore a class
similar to F0 was sufficient. For Feigenbaum-Coullet-Tresser type renormalizations, see Sullivan
[Su] (especially for the first attempt to use the Teichmüller theory for renormalizations), Lyubich
[Ly] and McMullen [Mc2].

Some words about the proof of Main Theorem 1: It is difficult to calculate R0f explicitly,
since the construction involves transcendental steps, such as constructing Fatou coordinates or
uniformizing the quotient cylinders. In order to define an invariant class, we need a way to
conclude that R0f belongs to this class. We will characterize a map in F1 (or FP

2 defined in
§5.A) by its covering property, i.e. regard its domain as an abstract Riemann surface and see how
it covers the range which is the complex plane. It is helpful to partition the range into several
domians, take the connected components of their inverse images and see how these components
are glued together along their boundary curves. This will be carried out for the horn map Ef

in §5.M.
We needed to check a number of inequalities, and some of them (26 inequalities) have been

checked numerically with computer. These inequalities are about elementary functions evaluated
at explicit values. Initial estimates were done using Maple, and rigorous checking was done using
MATLAB together with INTLAB. See [IS] for actual calculations.
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Another important ingredient is the theory of univalent functions. In particular, Theorem
5.12, which is a consequence of Golusin inequalities, allowed us to derive a sharp bounds on the
Fatou coordinates (Proposition 5.6).

Main Theorem 2 relates F1 to the Teichmüller space of C r V which is a punctured disk.
In fact, the quasiconformal extension of ϕ determines a point in the Teichmüller space, and
the induced renormalization there is holomorphic, therefore does not expand the Teichmüller
distance, by Royden-Gardiner Theorem. The extra extension property in Main Theorem 1
gives a contracting factor. We show that an inclusion map between punctured disks induces
a contraction between corresponding Teichmüller spaces (Theorem 6.3). This is shown via
the estimates in the cotangent space, which is the space of integrable holomorphic quadratic
differentials, and it is a consequence of the modulus-area inequality (Theorem 6.6) which in
turn follows from the isoperimetric inequality for quadratic differentials on a punctured disk
(Theorem 6.4).

Main Theorem 3 is derived from the continuity of the construction.

Organization of paper. This paper is organized as follows: In §§1 and 2, we review the theory
of Fatou coordinates and horn maps for a parabolic fixed point and its perturbation. In §3, we
will define the parabolic and near-parabolic renormalizations R0 and R, then discuss how these
renormalizations can be used in order to understand the dynamics of maps with irrationally
indifferent periodic points. We will also mention a previously known invariant class F0 for R0.
In §4, we state the main theorems and corollaries. The section §5 is devoted to the proof of Main
Theorem 1, whose outline is given in §5.A. In §6, we state the properties of the Teichmüller space
of punctured disk and prove Main Theorem 2. In §7, we prove Main Theorem 3 and corollaries.
Several facts on the Univalent functions are summarized in Appendix.

Acknowledgements. The authors would like to thank Adrien Douady, John H. Hubbard,
Xavier Buff, Arnaud Chéritat, Mikhail Lyubich and Michael Yampolsky for helpful and inspiring
discussions. They also thank Curtis T. McMullen for the information on the isoperimetric
inequality which lead to the reference [Ca]. The authors also would like thank Fields Institute
for its hospitality during the second author’s visit during 2005/2006, when this paper was written
(hopefully).

Notation. The sets of all natural numbers, integers, rational numbers, real numbers and com-
plex numbers are denoted by N, Z, Q, R and C, respectively. Denote the Riemann sphere by
Ĉ = C ∪ {∞}, the unit disk by D = {z ∈ C : |z| < 1}, a disk in general by D(a, r) = {z ∈ C :
|z − a| < r} and its closure by D(a, r). Let C∗ = C r {0}, D∗ = D r {0}. The set of positive
(resp. negative) real numbers is denoted by R+ (resp. R−). For a complex number z 6= 0, arg z
denotes its argument. In this paper, an inequality involving log or arg means that it holds for
a suitable chosen branch of log or arg. For a hyperbolic Riemann surface X, dX(·, ·) denotes
the Poincaré distance on X, which is induced from the Poincaré metric 2|dz|

1−|z|2 on D. We denote

DX(a, r) = {z ∈ X : dX(z, a) < r}. The spherical distance on Ĉ is denoted by d
bC(·, ·).

1 Parabolic fixed points, Fatou coordinates and horn maps

In this section and next section, we review the theory of Fatou coordinates and horn maps, which
was developed by Douady-Hubbard-Lavaurs [DH1, DH2, La]. For the proof of the statements
and more details, refer to [Sh1, Sh2].

Let f(z) be a holomorphic function with a non-degenerate 1-parabolic fixed point at z = 0,
i.e.

f(z) = z + a2z
2 + O(z3),
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with a2 6= 0. Introduce a coordinate change w = − 1
a2z , which sends the fixed point to ∞. The

dynamics in this coordinate is

F (w) = − 1
a2f(− 1

a2w )
= w + 1 +

b1

w
+ O(

1
w2

)

near ∞. See Figure 1.

f

0
Sattr Srep

attr rep

Cattr CrepEf

F

SattrSrep
attrrep

CattrCrep

EF
modZ modZ

Figure 1: Parabolic fixed point with nearby orbits, fundamental regions, Fatou coordinates,
Ecalle-Voronin cylinders and horn maps for f (left) and for F (right).

Theorem 1.1. (a) For a sufficiently large L, there exist injective holomorphic functions Φattr =
Φattr,F : {w : Re w > L} → C and Φrep = Φrep,F : {w : Re w < −L} → C such that they
satisfy the functional equation

Φs(F (w)) = Φs(w) + 1 (s = attr, rep) (1.1)

in the region where both sides are defined.

(b) Φattr and Φrep are unique up to addition of constant.

(c) Using (1.1), Φattr and Φrep can be extended to {w : Re w − L′ > −| Imw|} and {w :
Re w + L′ < | Imw|} respectively with large L′.

(d) In the above regions, Φattr and Φrep have asymptotic expansion w− b1 log w+ const+o(1)
as w → ∞.

Definition. The functions Φattr and Φrep are called attracting and repelling Fatou coordinates
respectively. They are considered to be coordinates for half-neignborhoods (“petals”) of the
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fixed point such that the dynamics is conjugated to the translation T : z 7→ z +1. In the regions
V± = {w : ± Imw > |w| + L′}, both Fatou coordinates are defined. Now define the horn map
EF on Φrep,F (V±) to be

EF = Φattr ◦ Φ−1
rep (1.2)

(which will be extended by Theorem 1.2 below).

Theorem 1.2. (a) There exists L′′ > 0 such that {z : −1 ≤ Re z ≤ 1, | Im z| ≥ L′′} is contained
in Φrep(V±) therefore EF is defined there.
(b) For −1 ≤ Re z ≤ 0, | Im z| ≥ L′′, EF satisfies

EF (z + 1) = EF (z) + 1, (1.3)

which implies that EF (z) − z is periodic with period 1. Therefore EF extends holomorphically
to {z : | Im z| ≥ L′′} and satisfies (1.3) there.
(c) There exist constants c

upper
and c

lower
such that

EF (z) − z → c
upper

as Im z → +∞ and EF (z) − z → c
lower

as Im z → −∞,

and c
lower

− c
upper

= 2πib1.

Interpretation via fundamental regions and quotient cylinders: Let ` = {w : Re w = ξ}
be a vertical line with sufficiently large |ξ|. Then ` and F (`) (which is on the right hand side
of `) bound an open region S and F is injective in a neighborhood of S. The closed strip S is
often called a fundamental region for F , because, when |ξ| > L + 2 with L large, any maximal
orbit of F within {w : Re w > L} (ξ > 0) or {w : Re w < −L} (ξ < 0), extended forward and
backward until they it leaves the half plane, passes S exactly once, except those which pass `
and F (`). The quotient S/ ∼, where ` 3 w ∼ F (w) ∈ F (`), is a topological cylinder and is called
attracting (resp. repelling) Ecalle-Voronin cylinder Cattr (resp. Crep) when ξ À 0 (resp. when
ξ ¿ 0). Since the identification F is analytic near `, the cylinder has a natural structure as a
Riemann surface. In fact, the Fatou coordinates induce isomorphisms from attracting/repelling
cylinders onto C/Z, via the natural projection mod Z : C → C/Z.

As for the horn map EF , it induces via mod Z a map on C/Z defined only in the neigh-
borhoods of both ends ±i∞. By abuse of notation, we also denote the induced map by EF .
This map allows the following interpretation (or an alternative definition). Let Sattr and Srep

be fundamental regions on attracting and repelling sides. If w ∈ Srep with | Im z| sufficiently
large, then its orbit will eventually land on Sattr. This induces a map from a neighborhood of
an upper or lower end of Crep to Cattr. It may appear that the map can be discontinuous when
w ∈ ∂Srep or its orbit arrives in ∂Sattr, however it is well-defined and continuous because of
the identification on the boundary. This map is exactly the one induced by EF via the Fatou
coordinates.

Normalization: The Fatou coordinates are only determined up to additive constant. It is
convenient to make a normalization for the Fatou coordinates. If there is a special point z∗ of
interest on the attracting side, we normalize Φattr so that Φattr(z∗) = 0. In this paper, we always
have a special point which is a specific critical point cp, so the normalization is Φattr(cp) = 0.
For Φrep, instead of choosing another special point, we will normalize it so that cupper = 0, i.e.

EF (z) = z + o(1) as Im z → +∞. (1.4)

Before the normalization, the horn map was determined up to pre- and post-composition
of translations (i.e. adding constants before and after EF ). In fact, the horn map modulo
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this ambiguity classifies completely the local analytic conjugacy class of F or f , and called
Ecalle-Voronin invariant (see [Vo]).

Global extension: The functional equation (1.1) allows us to extend the Fatou coordinates
by the dynamics. Suppose, for example, F is a rational map. Then Φattr extends to Φattr :
Basin(∞) → C by setting Φattr(w) = Φattr(Fm(w)) − m when Fm(w) ∈ {Re w > L} (such an
m ∈ N must exist for w ∈ Basin(∞)). After the extension, Φattr is not injective any more, but
is a branched covering map such that w is a critical point of Φattr if and only if the forward
orbit of w passes through a critical point of F . Similarly Φ−1

rep can be extended to a map from
C to Ĉ. The horn map EF will be extended to Φ−1

rep(Basin(∞)) so that it is also a branched
covering onto C, such that it is only branched over Φattr-image of critical orbits of F .

For the original map f , which has the parabolic fixed point at z = 0, we can define Fatou
coordinates Φattr,f , Φrep,f and horn map Ef through the coordinate change w = − 1

a2z . In
the original z-coordinate, the fundamental regions are “croissant-shaped” regions whose both
“horns” point at the fixed point 0. The horn map Ef is induced by the orbits going from the
horns of Srep,f to Sattr,f . See Figure 1.

To discuss the continuity, we need:

Definition. For a function f , its domain of definition is denoted by Dom(f). A neighborhood
of f is

N = N (f ; K, ε) =
{

g : Dom(g) → Ĉ
∣∣∣∣ K ⊂ Dom(g) and sup

z∈K
d

bC(g(z), f(z)) < ε

}
,

where K is a compact set contained in Dom(f) and ε > 0. We say a sequence {fn} (for which
fn are not necessarily defined on the same domain) converges to f uniformly on compact sets if
for any neighborhood N of f , there exists an n0 such that fn ∈ N for n ≥ n0.

The construction f Ã Ef is continuous and holomorphic in the following sense (see [Sh2] for
the proof?):

Theorem 1.3 (Continuity and holomorphic dependence). (a) Let f be a holomorphic map with
a non-degenerate 1-parabolic fixed point at z = 0. Given a neighborhgood Nof its horn map Ef ,
there exists a neighborhgood N ′of f such that if g ∈ N ′and g has a 1-parabolic fixed point at 0,
then its horn map Eg can be defined so that Eg ∈ N .

(b) Suppose fλ(z) is holomorphic in (λ, z) ∈ Λ × U , where Λ is a complex manifold and U =
Dom(fλ) ⊂ Ĉ. Assume that fλ always have a non-degenerate 1-parabolic fixed point at z = 0.
Then for λ∗ ∈ Λ and an open set V ⊂ C whose closure is compact and contained in Dom(Efλ∗

),
there exists a neighborhood Λ1 of λ∗ in Λ such that Efλ

(z) is defined and holomorphic in Λ1×V.

Here the normalization of the horn maps should be understood as follows: fix one point
in either attracting or repelling half neighborhood where one of Fatou coordinates is defined.
Normalize this Fatou coordinate so that the marked point is sent to 0 (or maybe 1). Adjust the
other Fatou coordinate so that the horn map satisfies (1.4). The marked point can be chosen so
that it depends continuously or holomorphically on f or λ.

2 Bifurcation of parabolic fixed points

Let f0 be a holomorphic function with a non-degenerate 1-parabolic fixed point at z = 0,
and consider its perturbation f which is close to f0 in a neighborhood of 0. Since z = 0 has
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multiplicity 2 as a solution of f0(z) − z = 0, f has two fixed points (or 1-parabolic fixed point)
near 0. After a small shift of coordinate, we may suppose that z = 0 is still a fixed point of f .
Its multiplier is close to 1, so it can be written as e2πiα with small α ∈ C. It is well known that
complicated and interesting bifurcation phenomena occur when α is in the tangential direction
to R. So we restrict our perturbation to the direction | arg α| < π

4 or | arg(−α)| < π
4 , and the

latter case reduces to the former by a complex conjugation.
Thus we will consider a perturbation f of the form:

f(z) = e2πiαz + O(z2) where α = α(f) is small and | arg α| < π
4 . (2.1)

Let σ = σ(f) be the other fixed point of f near 0 (set σ(f) = 0 if α(f) = 0). Then it can be
shown that σ(f) has asymptotic expansion σ(f) = −2πiα/a2 + o(α) when f converges to f0 in
a fixed neighborhood of 0 (and hence α(f) → 0), where a2 = f ′′

0 (0)/2.

Theorem 2.1. Suppose f0 has a non-degenerate 1-parabolic fixed point at z = 0. Then there
exists a neighborhood N = N (f0; K, ε) ( 0 should be contained in intK) such that if f ∈ N
and f satisfies (2.1), then the fundamental regions Sattr,f , Srep,f are defined near those of f0,
except that the horns of Sattr,f and Srep,f now point to distinct fixed points 0 and σ(f) (if
α(f) 6= 0). Moreover the Fatou coordinates Φattr,f and Φrep,f are also defined in a neighborhood
of Sattr,f r {0, σ(f)} and Srep,f r {0, σ(f)} so that they induce isomorphisms from the quotient
cylinders Cattr,f , Crep,f onto C/Z. The horn map Ef is similarly defined.

After a suitable normalization as in §1, Φattr,f , Φrep,f and Ef depend continuously and
holomorphically on f .

For more description of domains etc, see [Sh1]. See Figure 2 for the content of this theorem
and the next. For the perturbation with f ′(0) 6= 0, there are new type of global orbits.

f0

attr f0 rep f0

Ef0

0
Sattr Srep

Cattr Crep

Sattr Srep

Cattr Crep

f

0

attr f rep f

Ef

f

≃

f ◦ Ef

Figure 2: Perturbation of parabolic fixed point: before (left) and after (right)

Theorem 2.2. Let f be as in the previous theorem and assume f ′(0) 6= 1. Then for any orbit
starting from Sattr,f r {0, σ(f)} eventually lands on Srep,f r {0, σ(f)}. Such a correspondence
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induces an isomorphisim χf from Cattr,f onto Crep,f . By identifying these cylinders with C/Z by
the Fatou coordinates, χf can be expressed as

χf (z) = z − 1
α(f)

on C/Z, (2.2)

provided that the horn map Ef is normalized so that Ef (z) = z + o(1) as Im z → +∞.
The composition h = χf ◦Ef corresponds to the first return map of f to the region Srep,f r

{0, σ(f)} near the horns, i.e., if z ∈ Srep,f r({0, σ(f)}∪“inner boundary”) and w = Φrep,f (z) ∈
C/Z has sufficiently large | Imw|, then there is a smallest n ≥ 1 such that fn(z) ∈ Srep,f r
{0, σ(f)} such that Φrep,f (fn(z)) = h(w) = χf ◦ Ef (w) in C/Z.

We call h = χf ◦ Ef the return map of f . However, when we extend h to a larger region
by analytic continuation, h may not necessarily correspond to the “first” return map, but still
represents an orbit relation induced from f . The advantage of considering the return map is that
extremely high iterates of f near the fixed point can be replaced by a single iterate of h. The
above theorem enables us to decompose h into non-linear but stable part Ef and simple (linear)
but sensitive part χf . If α is an irrational real number, this suggests a successive construction
of return maps, which leads into the renormalization defined in the next section.

3 Parabolic and near-parabolic renormalizations

Now we define our main objects, the parabolic and near-parabolic renormalizations.

Definition. Denote Exp](z) = e2πiz and Exp[(z) = e−2πiz. Both functions induce isomorphisms
from C/Z onto C∗ = C r {0}; Exp] sends upper end +i∞ to 0 and lower end −i∞ to ∞, and
for Exp[, the role of the ends is interchanged.

Suppose f has a non-degenerate parabolic fixed point at 0. Its parabolic renormalization is
defined to be

R0f = R]
0f = Exp] ◦Ef ◦

(
Exp]

)−1
,

where Ef is the horn map of f , defined in §1 and normalized as Ef (z) = z+o(1) as Im z → +∞.
Then R0f extends holomorphically to 0 and R0f(0) = 0, (R0f)′(0) = 1. So 0 has again a
1-parabolic fixed point at 0. Similarly the parabolic renormalization for lower end is defined as

R[
0f = c Exp[ ◦Ef ◦

(
Exp[

)−1
,

where c ∈ C∗ is chosen so that (R[
0f)′(0) = 1.

See Figure 3.

Remark. (a) Both attracting and repelling Fatou coordinates are determined up to additive
constants. After the normalization of Ef , there still remains a degree of freedom, which amounts
to the conjugacy by a translation for Ef , or the conjugacy by a linear map z 7→ az for R0f .
Therefore we should consider that R0f is determined up to linear conjugacy ∼

linear
. From next

section, we will deal with the case where there is a unique (or preferred) critical value. In that
case, we can choose a representative of each linear conjugacy class by fixing the position of the
critical value.
(b) There is ambiguity on how far the domain of Ef should be extended. If we shrink the
domain of definition of f , the domain of Ef will also be shrunk. So R0 can be considered as
acting on germs of holomorphic function with 1-parabolic fixed points. On the other hand, in
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Srep

Crep
f

0
rep

f ◦ Ef

Exp♯

C
∗

Rf

0

Figure 3: Near-parabolic renormalization and first return map

Main Theorem 1 in next section, for f ∈ F1, we will associate a specific domain of definition to
R0f .

Note also that the parabolic renormalization of locally holomorphically conjugate germs will
give the same germ (up to linear conjugacy).

Definition. Suppose that f(z) = e2πiαz + O(z2) with α 6= 0 and has fundamental domains and
return map h = χf ◦Ef as in Theorems 2.1 and 2.2. Its near-parabolic renormalization (or also
called cylinder renormalization) is defined by

Rf = R]f = Exp] ◦χf ◦ Ef ◦
(
Exp]

)−1
.

Then Rf extends to 0 and Rf(0) = 0, (Rf)′(0) = e−2πi 1
α . For lower end, set R[f = Exp[ ◦χf ◦

Ef ◦
(
Exp[

)−1
.

Remark. The above remarks (a) and (b) apply to this case.
(c) Theorems 2.1 and 2.2 state that if f0 with a non-degenerate 1-parabolic point is given, then
the construction can be carried out for f sufficiently close to f0. However when f is given first
(i.e. not given as a perturbation of some f0), it is not clear whether Rf can be defined or not.
Main Theorem 3 will try to answer this question at least uniformly for class F1 and small α.

Continued fraction: Any irrational number α ∈ R r Q can be written as an accelerated
continued fraction of the form:

α = a0 +
ε0

a1 +
ε1

a2 +
ε2

. . .

, where an ∈ Z, εn = ±1 (n = 0, 1, 2, . . . ),
an ≥ 2 (n ≥ 1).

(3.1)

Denote ||x|| = min{|x − n| : n ∈ Z} and define α0 = ||α||, αn+1 =
∥∥∥ 1

αn

∥∥∥. Then αn ∈ (0, 1
2) and

an and εn are determined by 1
αn−1

= an + εnαn.

Successive renormalizations: Let f(z) = e2πiαz + O(z2) with α ∈ R r Q as above. We are
interested in the construction of successive renormalizations:

f0(z) =

{
f(z) (ε0 = +1)
f(z) (ε0 = −1)

fn(z) =

{
Rfn−1(z) (εn = −1)
Rfn−1(z) (εn = +1)

(n ≥ 1). (3.2)

Here the complex conjugation is taken so that f ′
n(0) = e2πiαn with αn ∈ (0, 1

2). If such a
construction is possible, we hope that the dynamics of f , whose irrationally indifferent fixed
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point causes recurrent behavior for nearby orbits, can be studied through the sequence {fn}. In
fact, problems involving high iterates of fn−1 often reduce to simpler problems on fewer iterates
of fn. The geometric structure near recurrent orbits may be “magnified” by the renormalization
process. Hence it is natural to ask:

Question. When is it possible to define the sequence (3.2)?

Main Theorem 3 gives an answer (a sufficient condition) to this question. It will be important
to find a space of maps where the renormalization can be iterated infinitely many times.

We will write f as f(z) = e2πiαh(z), where h(0) = 0 and h′(0) = 1, thus identifying f with
the pair (α, h). Under this identification, the near-parabolic renormalization can be expressed
as a skew product:

R : (α, h) 7−→
(
− 1

α
mod Z, Rαh

)
, (3.3)

where Rαh = E(e2πiαh) is the renormalization in fiber direction. In many renormalization theory,
we often expect to see hyperbolic behavior, which usually has consequences such as universality
in bifurcation structures. (See [Su].) In our case, α-direction is obviously expanding.

Conjecture. The renormalization R is hyperbolic on a certain space of maps. More specifically,
the fiber renormalization Rα is contracting.

Main Theorem 3 will also give an answer to this question.
See Figure 4.

0

h

R

0R

7→ −
1

mod Z

Figure 4: Hyperbolicity of renormalization and limit at α = 0

The renormalization R[ is associated to the fixed point σ(f). Infinite iteration of R[ corre-
sponds to infinite satellite renormalizations.

By the continuity of horn map, we have Rαh → R0h as α → 0. So we are led to the study
of the limiting case: the parabolic renormalization R0. For R0, an invariant class was already
known in [Sh1], to which we refer for the proofs of Lemma 3.1 and Theorem 3.2 below.

Definition (Class F0). Let

F0 =

f : Dom(f) → C

∣∣∣∣∣∣∣∣
0 ∈ Dom(f) open ⊂ C, f is holomorphic in Dom(f),
f(0) = 0, f ′(0) = 1, f : Dom(f) r {0} → C∗ is a branched
covering map with a unique critical value cv

f
, all critical

points are of local degree 2

 .

Examples: The quadratic polynomial z + z2 and the Koebe function fKoebe(z) = z/(1 − z)2

belong to F0.
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Lemma 3.1. For f ∈ F0, f ′′(0) 6= 0 and f has only one petal. The critical value belongs to the
immediate basin of the parabolic fixed point. The dynamics in the basin is conjugate to that of
z + z2.

Theorem 3.2. The class F0 is invariant under R0. Moreover any map in the image R0(F0) can
be expressed as gKoebe ◦ ϕ−1, where gKoebe = R0(fKoebe

), which is defined on D, and ϕ : D → C
is a univalent function with ϕ(0) = 0, ϕ′(0) = 1.

Remark. Since R0(F0) has one to one correspondence to S (see Appendix), which is compact
with respect to the topology of uniform convergence on compact sets (Koebe distortion theorem).

Unfortunately this class F0 cannot be invariant for the fiber renormalization Rα for α 6= 0.
As soon as f ∈ F0 is perturbed into near-parabolic e2πiαf , the simple covering structure of horn
map is destroyed, hence there may be infinitely many critical values, or it may not be a branched
covering at all.

4 A new class F1 and main results

In this section, we define our class F1 and state main results.

Definition (P and Class F1). Let P (z) = z(1 + z)2. The polynomial P has a parabolic fixed
point at 0 and critical points −1

3 and −1 with P (−1
3) = − 4

27 and P (−1) = 0. Let V be a domain
of C containing 0 and define

F1 =
{

f = P ◦ ϕ−1 : ϕ(V ) → C
∣∣∣∣ ϕ : V → C is univalent, ϕ(0) = 0, ϕ′(0) = 1

and ϕ has a quasiconformal extension to C

}
,

where univalent means holomorphic and injective. Note that if f ∈ F1, 0 is a 1-parabolic fixed
point of f . If −1

3 ∈ V , then cp
f

:= ϕ(−1
3) is a critical point and − 4

27 is a critical value of f .

Main Thorem 1 (Invariance of F1). There exist a Jordan domain V containing 0 and −1
3

with a smooth boundary and an open set V ′ containing V such that the above F1 satisfies the
following:

(a) f ′′(0) 6= 0 (in fact, |f ′′(0) − 4.91| ≤ 1.14). cp
f
∈ Basin(0).

(b) (F0 r {quadratic polynomial}) /∼
linear

can be naturally included into F1.

(c) R0(F1) ⊂ F1. That is, for f ∈ F1, the parabolic renormalization R0f is well-defined so
that R0f = P ◦ ψ−1 ∈ F1. Moreover ψ extends to a univalent function from V ′ to C.

(d) R0 is holomorphic in the following sense: Suppose a family fλ = P ◦ ϕ−1
λ is given by a

holomorphic function ϕλ(z) in two variables (λ, z) ∈ Λ×V , where Λ is a complex manifold.
Then the renormalization can be written as R0fλ = P ◦ ψ−1

λ with ψλ(z) holomorphic in
(λ, z) ∈ Λ × V ′.

Remark. When f is defined in a larger domain and its restriction f |U to a domain U belongs to
F1, the theorem asserts that its renormalization R0(f) = P ◦ ψ−1 : ψ(V ′) → C can be defined
only using the iterates of f within U .

This theorem is central in this paper and will be proved in §5. The outline of the proof
as well as the explicit definition of V and V ′ will be presented in §5.A. Here it is important
that V ⊂ V ′, i.e., the new domain for ψ is strictly larger than that of original ϕ (analyticity
improving), which was not achieved with class F0. This facts leads to Main Theorems 2 and 3.
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Main Thorem 2 (Contraction). There exists a one to one correspondence between F1 and
the Teichmüller space of C r V . Let d(·, ·) be the distance on F1 induced from the Teichmüller
distance, which is complete. Then R0 is a uniform contraction;

d(R0(f),R0(g)) ≤ λ d(f, g) for f, g ∈ F1

where λ = e−2π mod(V ′rV ) < 1. The convergence with respect to d implies the uniform conver-
gence on compact sets (but not vice versa).

The proof will be given in §6 and basic facts about the Teichmüller space is also summarized
there. An immediate consequence, together with Theorem 3.2, is the following:

Corollary 4.1. The parabolic renormalization R0 on F1 has a unique fixed point, which belongs
to F0. For any f ∈ F1, {Rn

0f}∞n=0 converges to the fixed point exponentially fast with respect
to the metric defined in Main Theorem 2. Moreoevr, if f ∈ F0, then the renormalizations Rn

0f
considered as elements of F0 converge to the fixed point uniformly on compact sets in the sense
of §1.

We can derive similar results for the near-parabolic renormalization R and the fiber renor-
malization Rα defined in the previous section, provided that α is small.

Definition. For α∗ > 0, denote

(0, α∗] ∗ F1 = {e2πiαh(z) | 0 < α ≤ α∗, h ∈ F1 }.

The distance on (0, α∗] ∗ F1 is defined by d(f, g) = d( 1
f ′(0)f, 1

g′(0)g) + |f ′(0) − g′(0)|, where d on
the right hand side is the one for F1 defined in Main Theorem 2.

For an integer N , let Irrat≥N be the set of irrational numbers α such that the continued
fraction expansion (3.1) has coefficients an ≥ N .

Main Thorem 3 (Invariance of F1 under Rα and hyperbolicity). There exists α∗ > 0 such
that if α ∈ C, | arg α| < π/4 and 0 < |α| ≤ α∗, then Rα can be defined in F1 so that (c) and (d)
of Main Theorem 1 hold for Rα. Moreover Rα is a contraction as in Main Theorem 2 with the
same λ. Hence R is hyperbolic in (0, α∗] ∗ F1.

In particular, there exists an integer N ≥ 2 for which the following holds:
If f(z) = e2πiαh(z) with h ∈ F1 and α ∈ Irrat≥N , then the sequence of renormalizations (3.2)
can be defined and fn’s belong to (0, α∗] ∗ F1. If g(z) is another map of the same type with the
same α, then d(Rnf,Rng) → 0 as n → ∞ exponentially fast.

The proof of this theorem and the corollaries below will be given in §7. We obtain these α∗
and N by a continuity argument, so we do not have explicit bounds. It will be important to
know how big α∗ can be.

Corollary 4.2. There exists an N (may be larger than the one in Main Theorem 3) such that
if f(z) = e2πiαh(z) with h ∈ F1 and α ∈ Irrat≥N , then the critical orbit of f stays in the domain
of definition of f and can be iterated infinitely many times. Moreover there exists an infinite
sequence of periodic orbits to which the critical orbit does not accumulate.

The same conclusion holds for f(z) = e2πiαz + z2 provided that α ∈ Irrat≥N and α itself is
sufficiently small. Hence the critical orbit is not dense in Jf .
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5 Proof of Main Theorem 1 – Invariance of F1

5.A Outline of the proof

Strategy: Our main goal is to prove (c) of Main Theorem 1, i.e., to find ψ such that R0f =
Ψ0 ◦ Ef ◦ Ψ−1

0 = P ◦ ψ−1, where Ψ0(z) = c Exp](z) with some constant c ∈ C∗. Then ψ should
be formally written as

ψ = Ψ0 ◦ Φrep ◦ Φattr
−1 ◦ Ψ−1

0 ◦ P = Ψ0 ◦ Φrep ◦ f−n ◦ Φattr
−1 ◦ Ψ−1

0 ◦ P. (5.1)

Here the equality on the right is a tautology, because Φrep(f(z)) = Φrep(z) + 1 and Ψ0(z +
1) = Ψ0(z). But the right hand side has following interpretation: Φattr and Φrep are first
defined in attracting and repelling half-neighborhoods of 0 (corresponding to {Re z > L} and
{Re z < −L} for F as in Theorem 1.1), then the inverse branch f−n “maps” part of attracting
half-neighborhood to repelling one. It is important that the multi-valuedness and branching of
f−n should be balanced by three-to-one map P at the beginning of composition.

In order to carry out various estimates, we move the fixed point to ∞ and reduce the problem
to a map F which have a parabolic fixed point at ∞ (FQ

1 defined below, cf. Propositions 5.2
and 5.3). On the repelling side of the fixed point, we construct a Riemann surface X with
a projection πX : X → C g : X → X so that g corresponds to an inverse branch of f and
the repelling Fatou coordinate is defined on X (Propositions 5.4 and 5.5). As for the attracting
Fatou coordinate, Proposition 5.6 gives an estimate on Φattr in the region ReΦattr(z) ≥ 1 (under
normalization Φattr(cv) = 1), especially it gives bounds on the location of D1 = Φ−1

attr({z : 1 <

Re z < 2 and | Im z| < η}) and D]
1 (corresponding to Im z > η). We trace specific inverse

images of D1 and D]
1 and obtain domains D0, D′

0, D−1, D′′
−1 and D]

0, which can be lifted to X

(Proposition 5.7). We partition the domain of P according to D1 and D]
1 and define ψ in each

component so that (5.1) is defined through one of the above domains (Proposition 5.8). The
resulting ψ is consistent on the boundary of the components and yields R0f = P ◦ ψ−1 ∈ FP

2 .

Now we move on to more details of the proof. To start with, the following proposition
explains why P (z) = z(1 + z)2 is important in our results.

Proposition 5.1 (Subcover like P ). Let f ∈ F0 and suppose that f is not a quadratic poly-
nomial. After a linear conjugacy, one may suppose that its unique critical value is − 4

27 . Then
there exists a confomal mapping ϕ from C r (−∞,−1] onto an open subset U ⊂ Dom(f) such
that ϕ(0) = 0, ϕ′(0) = 1 and

f = P ◦ ϕ−1 on U.

The proof of this proposition, given in §5.C, uses the idea that the maps are regarded as a
(partial) branched covering over the range, and this covering structure is common up to certain
“sheets”. This view motivates the definition of F1 (or FP

2 defined below), characterizing the
maps by their covering property over the range. (See Figure 9 there.)

Definition (Mapping Q). Define

Q(z) = z

(
1 + 1

z

)6(
1 − 1

z

)4 , ψ1(z) = − 4z

(1 + z)2
= 4fKoebe

(
− 1

z

)
, ψ0(z) = − 4

z
.

In §5.D, we will see that Q is related to P by Q = ψ−1
0 ◦ P ◦ ψ1 and ψ−1

1 “opens up” the slit
(−∞,−1] to the unit disk so that ψ1(Ĉ r D) = Ĉ r (−∞,−1] with ψ1(∞) = 0.
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Definition (V ′ = UP
η and UQ

η ). Let η > 0 and cv
P

= − 4
27 (which is a critical value of P ) and

define

V ′ = UP
η = P−1

(
D(0, |cv

P
| e2πη)

)
r

(
(−∞,−1] ∪

(
the component of P−1

(
D(0, |cv

P
| e−2πη)

)
containing − 1

))
.

Let UQ
η = ψ−1

1 (UP
η ) r D. See Figure 5.

0−

1

3
−

4

3
−1

U
P

0 4
V

0

V
′
= U

P

2

-1.8 -0.97

-1.005 -0.997

Figure 5: Left: UP
η for η = 0.4 (this η was chosen so that the deleted component around −1 is

visible); Middle: UP
η for η = 2 and V. The outer boundary of UP

η looks like a circle with radius
about 35; Right: successive blow-ups near −1.

Definition (Ellipse E and V ). Let xE = −0.18, aE = 1.24, bE = 1.04 and define

E =

{
x + iy ∈ C :

(
x − xE

aE

)2

+
(

y

bE

)2

≤ 1

}
and V = ψ1(Ĉ r E).

Proposition 5.2 (Relation between Ĉ r intE and UQ
η ). Let η = 2. Then we have

Ĉ r intE ⊂ UQ
η ⊂ Ĉ r D.

Hence
V ⊂ V ′ = UP

η ⊂ C r (−∞,−1].

The proof is given in §5.E. The constant η = 2 and the ellipse E will be used throughout
this paper.

Definition (Classes FP
2 , FQ

1 ). From now on, we denote the class F1 by FP
1 . We now define

two more classes of maps:

FP
2 =

{
f = P ◦ ϕ−1

∣∣ ϕ : V ′ → C is univalent, ϕ(0) = 0, ϕ′(0) = 1
}

FQ
1 =

{
f = Q ◦ ϕ−1

∣∣∣∣∣ ϕ : Ĉ r E → Ĉ r {0} is a normalized univalent mapping
and has a quasiconformal extension to Ĉ

}
Here a univalent mapping is a holomorphic and injective mapping (in general it is allowed to
take value ∞); it is called normalized if ϕ(0) = 0 and ϕ′(0) = 1 when 0 is in the domain, or if
ϕ(∞) = ∞ and limz→∞

ϕ(z)
z = 1 when ∞ is in the domain instead.
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Proposition 5.3 (Relation between FP
1 , FP

2 , FQ
1 and F0). We have the relation(

(F0 r {quadratic polynomials}) /∼
linear

)
⊂ FP

2 ⊂ FP
1

∼= FQ
1 .

More precisely it is formulated as follows:
(a) There is a natural injection

(
(F0 r {quadratic polynomials}) /∼

linear

)
↪→ FP

2 .

(b) There is a natural injection FP
2 ↪→ FP

1 , defined by the restriction of ϕ to V for f = P ◦ϕ−1 ∈
FP

2 .

(c) There exists a one to one correspondence between FP
1 and FQ

1 , defined by

FP
1 3 f = P ◦ ϕ−1 7−→ F = ψ0 ◦ f ◦ ψ−1

0 = ψ−1
0 ◦ P ◦ ψ1 ◦ ψ−1

1 ◦ ϕ−1 ◦ ψ0 = Q ◦ ϕ̂−1 ∈ FQ
1 ,

with associated correspondence ϕ 7−→ ϕ̂ = ψ−1
0 ◦ ϕ ◦ ψ1. In this case, if ϕ̂(z) = z + c

0
+ O(1

z )

near ∞, then f ′′(0) = 5 −
c
0

2 .

The proof will be given in §5.D.
The above (a) is implied by Proposition 5.1 and implies (b) of Main Theorem 1. The first

half of Main Theorem 1 (a) follows from the above (c) and |c
0
− 0.18| ≤ 2.28, which is proved

in Lemma 5.22 (a) in §5.G. In order to show (c) of Main Theorem 1, it suffices to prove that if
F = Q ◦ ϕ−1 ∈ FQ

1 (instead of FP
1 ), then the parabolic renormalization R0F (which is defined

similarly as in §3) belongs to FP
2 .

Assumption: Let F = Q◦ϕ−1 ∈ FQ
1 . Therefore ϕ : ĈrE → Ĉr{0} is a normalized univalent

mapping. We do not need to assume the existence of quasiconformal-extension. Basic estimates
on Q, ϕ and F will be given in §§5.E, 5.F, 5.G and 5.I.

Definition (Riemann surface X). Let cv = cv
Q

= 27 (which is a critical value of Q), R = 266
and ρ = 0.05. Define four “sheets” by

X1± = {z ∈ C : ± Im z ≥ 0, |z| > ρ and
π

6
< ± arg(z − cv) ≤ π},

X2± = {z ∈ C : z /∈ R−, ± Im z ≥ 0, ρ < |z| < R and
π

6
< ± arg(z − cv) ≤ π}.

Here these “sheets” are considered to be lying in disjoint copies of C and let πi± : Xi± → C
(i = 1, 2) be the natural projection. Now we glue them together to construct a Riemann surface
X as follows: X1+ and X1− are glued along negative real axis (i.e., for x < −ρ, π−1

1+(x) ∈ X1+

and π−1
1−(x) ∈ X1− are identified), X1+ and X2− are glued along positive real axis and X1− and

X2+ are also glued along positive real axis. The projection πX : X → C is defined as πX = πi±
on Xi±. The complex structure is given through the projection. See Figure 6.

Proposition 5.4 (Lifts of Q and ϕ to X). There exists an open subset Y ⊂ C r (E ∪R+) with
the following properties:
(a) There exists an isomorphism Q̃ : Y → X such that πX ◦ Q̃ = Q on Y and Q̃−1(z) =
πX(z) − 10 + o(1) as z ∈ X and πX(z) → ∞;
(b) The map ϕ restricted to Y can be lifted to a univalent holomorphic map ϕ̃ : Y → X so that
πX ◦ ϕ̃ = ϕ on Y .

This will be proved in §5.H. The Riemann surface X allows us to lift F−1 = ϕ ◦ Q−1 to a
single-valued branch, so that it is easy to iterate without falling out of the domain of definition
of ϕ. Therefore if some inverse images of a set arrives in X then it can be safely iterated by the
specific branch of F−1.
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X

X1+

X1−

X2+

X2−

cv

R

Y

Y1+

Y1−

Y2+

Y2−

E
cp

Figure 6: RiemannSurface X (left) and Domain Y (right)

Definition. Let g = ϕ̃ ◦ Q̃−1 : X → X.

Proposition 5.5 (Repelling Fatou coordinate on X). The map g satisfies F ◦ πX ◦ g = πX .
There exists an injective holomorphic mapping Φ̃rep : X → C such that Φ̃rep(g(z)) = Φ̃rep(z)−1.
Moreover in {z : Re z < −R}, Φ̃rep ◦ π−1

X is a repelling Fatou coordinate for F = Q ◦ ϕ−1.

This will be proved in §5.J.

Definition. For z0 ∈ C and θ > 0, denote V(z0, θ) = {z : z 6= z0, | arg(z − z0)| < θ}, V(z0, θ) =
the closure of V(z0, θ). Define

W1 = V(cv, 2π
3 ) r V(F (cv), π

3 ) = {z : | arg(z − cv)| < 2π
3 and | arg(z − F (cv)) − π| < 2π

3 }.

We will see in Lemma 5.28 that Re F (cv) > 30 hence W1 is connected. Finally, let u0 = 25√
3

(+
14.43 . . . ) and R1 = 239.

Proposition 5.6 (Attracting Fatou coordinate and shape of D1). (a) The F maps V(u0,
2π
3 )

into itself and V(u0,
2π
3 ) is contained in Basin(∞). There exists an attracting Fatou coordinate

Φattr : V(u0,
2π
3 ) → C such that Φattr(F (z)) = Φattr(z) + 1 and Φattr(cv) = 1.

(b) There are domains D1, D
]
1, D

[
1 ⊂ W1(⊂ V(u0,

2π
3 )) such that

Φattr(D1) = {z : 1 < Re z < 2, −η < Im z < η} and D1 ⊂ D(cv,R1);

Φattr(D
]
1) = {z : 1 < Re z < 2, Im z > η} and D]

1 ⊂ {z : π
6 < arg(z − cv) < 2π

3 };
Φattr(D[

1) = {z : 1 < Re z < 2, Im z < −η} and D[
1 ⊂ {z : −2π

3 < arg(z − cv) < −π
6 }.

This is the most delicate estimate and will be proved in 5.K. The key estimate in the proof is
Theorem 5.12. In fact, in this proposition, η can be replaced by 13.0 while still using the same R1.
The above (a) implies that cv and also cpF = ϕ(cp) are in Basin(∞), which is the second half
of Main Theorem 1(a). Normalize Φ̃rep by adding a constant so that Φ̃rep(z)−Φattr(πX(z)) → 0
when z ∈ X, πX(z) ∈ D]

1 and Im πX(z) → +∞.

Proposition 5.7 (Domains around critical point). There exist disjoint Jordan domains D0, D
′
0, D−1, D

′′
−1

and a domain D]
0 contained in Image(ϕ) = Dom(F ) such that

(a) F (D0) = F (D′
0) = D1, F (D−1) = F (D′′

−1) = D0, F (D]
0) = D]

1;
(b) F is injective on each of these domains;

(c) cpF = ϕ(cp
Q
) ∈ D0 ∩ D

′
0 ∩ D−1 ∩ D

′′
−1, D0 ∩ D1 6= ∅, D

]
0 ∩ D

]
1 6= ∅, D−1 ∩ D

]
0 6= ∅;
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(d) D0 ∪ D
′
0 ∪ D−1 ∪ D

′′
−1 r {cv} ⊂ πX(X2+) ∪ πX(X2−) = D(0, R) r (D(0, ρ) ∪ R− ∪ V(cv, π

6 ))

and D
]
0 ⊂ πX(X1+).

This will be proved in §5.L, by bounding the regions which contain inverse images of D1.
Much of efforts are put into proving (D0 ∪ D

′
0 ∪ D−1 ∪ D

′′
−1) ∩ R− = ∅. See Figure 7, for the

shape of these domains in the case of ϕ = id.

cp cv
f(cv)

D
1

D
♯
1

D
0

D′

0

D
♯
0

D
−1

D′

−1

D′′

−1

D
♯
−1

D
−2

D′

−2

D′′

−2

D
♯
−2

D
−3

D′

−3

D′′

−3

D
♯
−3

D
−4

D′

−4

D′′

−4

D
♯
−4

D
−5

D′′

−5

D
♯
−5

D′′

−6

D♭
1

0

Figure 7: D1, D0 etc. for F = Q (ϕ = id). Further inverse images are denoted by D−n = gn(D0),
D′

−n = gn(D′
0), D′′

−n = gn−1(D′′
−1), D]

−n = gn(D]
0).

Proposition 5.8 (Relating EF to P ). The parabolic renormalization R0F belongs to the class
FP

2 (possibly after a linear conjugacy). In fact, we prove the following.
Regard D0, D′

0, D′′
−1, D]

0 as subsets of X1+ ∪ X2− ⊂ X and let

U = the interior of
∞⋃

n=0

gn
(
D0 ∪ D

′
0 ∪ D

′′
−1 ∪ D

]
0

)
.

Then there exists a surjective holomorphic mapping Ψ1 : U → UP
η r {0} = V ′ r {0} such that

(a) P ◦ Ψ1 = Ψ0 ◦ Φ̃attr on U , where Ψ0 : C → C∗, Ψ0(z) = cv
P

e2πiz = cv
P

Exp](z), and

Φ̃attr : U → C is the natural extension of the attracting Fatou coordinate to U ;
(b) Ψ1(z) = Ψ1(z′) if and only if z′ = gn(z) or z = gn(z′) for some integer n ≥ 0;
(c) ψ = Ψ0 ◦ Φ̃rep ◦ Ψ−1

1 : V ′ r {0} → C∗ is well-defined and extends to a normalized univalent
function on V ′;
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(d) on ψ(V ′ r {0}), the following holds

P ◦ ψ−1 = P ◦ Ψ1 ◦ Φ̃−1
rep ◦ Ψ−1

0 = Ψ0 ◦ Φ̃attr ◦ Φ̃−1
rep ◦ Ψ−1

0 = Ψ0 ◦ EF ◦ Ψ−1
0 ;

(e) we have the holomorphic dependence as in Main Theorem 1 (d).

This will be proved in §5.M. The Ψ1 is defined by choosing an appropriate branch of P−1 ◦
Ψ0 ◦ Φ̃attr on each domain D−n = gn(D0) etc. Its consistency can be observed by comparing
Figure 7 and Figure 8. Thus, by setting

R0F = P ◦ ψ−1 ∈ FP
2 for F = Q ◦ ϕ−1 ∈ FQ

1 (' FP
1 ),

we have obtained (c) and (d) of Main Theorem 1. This concludes the proof of Main Theorem 1.

0−1

UP

U

U
′

U
′′

cpP

V ′ =

0

Range(P )

cvP

DD D

D
♯

D
♯

D
♯

D
′

D
′

D
′

D
′′

D
′′

D
′′

PExp♯

Figure 8: UP
η and its log lift (inverse image by Exp]). To emphasize the details, η = 0.4 for UP

η

and η = 0.2 for Range(P ) were used.

5.B Preparation

We prepare some lemmas and notation for the proof.

Lemma 5.9. (a) If a, b ∈ C and |a| > |b|, then | arg(a + b) − arg a| ≤ arcsin
(

|b|
|a|

)
.

(b) If 0 ≤ x ≤ 1
2 , then arcsinx ≤ π

3 x.

Proof. (a) The tangent from 0 to ∂D(a, |b|) has angle arcsin
(

|b|
|a|

)
with respect to the vector

−→
0a.

(b) This follows from the concavity of sin θ in 0 ≤ θ ≤ π
6 and sin π

6 = 1
2 .

Lemma 5.10. Let e
1

= 1.14, e
0

= −0.18 = xE , e−1
= 0.1 and define ζ(w) = e

1
w + e

0
+

e−1

w .

Then ζ is a conformal map from C r D onto C r E, and sends {w : |w| = r} onto ∂Er, where

Er =
{

x + iy :
( x−e

0

a
E

(r)

)2
+

( y

b
E

(r)

)2
≤ 1

}
with aE (r) = e

1
r +

e−1

r and bE (r) = e
1
r −

e−1

r . For

r = 1, we have aE (1) = aE , bE (1) = bE and E1 = E, which are defined in §5.A.

Proof. If w = reiθ, then ζ(w) = e
0
+ aE (r) cos θ + ibE (r) sin θ.
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Lemma 5.11. (a) If Re(ze−iθ) > t > 0 with θ ∈ R, then

1
z

∈ D
(

e−iθ

2t
,

1
2t

)
;

(b) If H = {z : Re(z e−iθ) > t} and z0 ∈ H with u = Re(z0e
−iθ) − t, then

DH(z0, s(r)) = D
(

z0 +
2ur2eiθ

1 − r2
,

2ur

1 − r2

)
,

where the right hand side is an Euclidean disk and s(r) = dD(0, r) = log 1+r
1−r .

Proof. (a) Immediate from the property of Möbius transformation 1
z or a simple calculation.

(b) When θ = 0, t = 0 and z0 = 1 (hence u = 1), D
(
z0 + 2ur2eiθ

1−r2 , 2ur
1−r2

)
is a disk with diameter[

1−r
1+r , 1+r

1−r

]
and mapped onto D(0, r) by z 7→ z−1

z+1 , which is an isomorphism from H onto D. We
obtain the equality by the invariance of Poincaré metric. The general case follows immediately
via a similarity.

The following theorem gives a sharp bound on the Fatou coordinate. It gave a substantial
improvement for the estimate in Proposition 5.6 compared to earlier methods the authors had
tried.

Theorem 5.12 (A general estimate on Fatou coordinate). Let Ω be a disk or a half plane and
f : Ω → C a holomorphic function with f(z) 6= z. Suppose f has a univalent Fatou coordinate
Φ : Ω → C, i.e., Φ(f(z)) = Φ(z) + 1 when z, f(z) ∈ Ω. If z ∈ Ω and f(z) ∈ Ω, then∣∣∣∣ log Φ′(z) + log(f(z) − z) − 1

2
log f ′(z)

∣∣∣∣ ≤ log cosh
dΩ(z, f(z))

2
=

1
2

log
1

1 − r2
,

where r is a real number such that 0 ≤ r < 1 and dD(0, r) = dΩ(z, f(z)).

Proof. Set g = Φ and ζ = f(z) in Theorem A.3 in Appendix and use Φ(f(z)) = Φ(z) + 1 and
Φ′(z) = Φ′(f(z))f ′(z). Use (A.2) for the equality on the right hand side.

Computer Checked Inequalities. In the following, the inequalities checked with computer
are denoted by <

∗
and >

∗
with * in the equation numbers. This was not applied to some simple

inequalities which only involve π or square roots such as
√

3,
√

6, because those values are well
known. For the convenience, approximate values are indicated as x + 1.2345 . . . , which means
x ∈ [1.2345, 1.2346] (we do not round up the next digit).

List of constants. cp = cp
Q

= 5 + 2
√

6 (+ 9.899 . . . ), cv = cv
Q

= 27, η = 2, xE = e
0

=

−0.18, aE = 1.24, bE = 1.04, e
1

= 1.14, e−1
= 0.1, R = 266, ρ = 0.05, u0 = 25√

3
(+ 14.43 . . . ), R1 =

167, ε1 = 0.057, ε2 = 0.406, ε3 = 2
3 , ε4 = 1.13, r1 = 1.25, r2 = 1.4, r3 = 1.54, θ2 = π

4 , θ3 =
0.4π, u1 = 12.5, u2 = cp, u3 = 27

√
3

2 (+ 23.38 . . . ), u4 = 20.8, u5 = u3 − u1.
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5.C Covering property of f ∈ F0 and P as “subcover”

Let f ∈ F0. After a linear conjugacy, we may suppose that its critical value cv = cvf is contained
in R−. A traditional way to consider f : Dom(f) → C is to regard Dom(f) as a Riemann surface
spread over C, consisting of “sheets” which are copies of the plane C, cut along several slits and
then glued together along pairs of slits, with f acting as the projection onto C. This view helps
us to understand the structure of Dom(f).

Definition. Denote Γa = (cv, 0), Γb = (−∞, cv],Γc = (0, +∞) ⊂ R. Define Cslit = C r ({0} ∪
Γb ∪ Γc), and Cslit± = Cslit ∩ {z : ± Im z > 0}.

Description of covering properties of f ∈ F0: Since Cslit is simply connected and does not
contain 0 and the critical value, f−1(Cslit) consists of connected components Ui (i ∈ I, where
I is an index set, say I = N or I = {1, . . . , n}), each of which is mapped by f isomorphically
onto Cslit. Denote Ui± = f−1(Cslit±) ∩ Ui, γ

ai
= f−1(Γa) ∩ Ui, γ

bi± = f−1(Γb) ∩ U i±, γ
ci± =

f−1(Γc) ∩ U i± (i ∈ I), where the closures are taken within Dom(f).
See Figure 9 (left).

f

Dom(f)

U4−

b c

0

0

cp

cv

U1

U2

U3+

Cslit

Dom(P )

U1+

U1−

U2+

U2−

U3+

U3−

a1a2a3

b1

b2

b3 c1

c2

c3

0−
1

3
−

4

3
−1

Figure 9: Dom(f) as a Riemann surface spread over C (left) and Dom(P ) (right)

The domain Dom(f) of f can be described as the union of U i’s, which are glued along
boundary curves γ

bi± and γ
ci±; each γ

ci+
is glued with some γ

cj− and vice versa, the same is
ture for γ

bi±. For γ
bi±, if γ

bi+
is glued with γ

bj−, then γ
bj+

must be glued with γ
bi−, because

the critical points are simple. Since f is homeomorphic near 0, there must be a component, say
U1, such that 0 ∈ U1 and γ

c1+
= γ

c1−.

Next consider boundary curves γ
b1+

and γ
b1−. If they were glued together, then U1 would

be already isomorphic to C and Dom(f) = U1. This would imply that f is isomorphic and
has no critical value (since Dom(f) is connected). This contradicts with the assumption that
f ∈ F0. So there must be another component, say U2, such that γ

b1+
= γ

b2− and γ
b2+

= γ
b1−.

Note that f−1(cv) ∩ γ
b1+

∩ γ
b2+

is a critical point, which we call the closest critical point and
denote by cp = cpf .

Denote U12 = U1 ∪ U2 ∪ γ
b1+

∪ γ
b2+

. Then f |U12 : U12 → Cslit ∪ Γb = C r {0} ∪ Γc is a
branched covering of degree 2 branched over cvf .
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Example 1. Let p(z) = z + z2, Dom(p) = C r {−1}. Then the critical point is cp = −1
2 and

the critical value is cv = −1
4 . U1 = {z : Re > −1

2} r [0, +∞), U2 = {z : Re < −1
2} r (−∞,−1].

Example 2. Let P (z) = z(1 + z)2, and restrict to Dom(P ) = C r {−1}. The critical points
are cp

P
= −1

3 and −1, and the critical values are cv
P

= P (−1
3) = − 4

27 and P (−1) = 0. It

is easy to see that γ
a1

= (−1
3 , 0), γ

a2
= (−1,−1

3), γ
a3

= (−4
3 ,−1), γ

c1+
= γ

c1− = (0, +∞),
γ

b3+
= γ

b3− = (−∞,−4
3 ]. Since other inverse images of Γb and Γc msut branch from −1

3 and
−1 and extend to ∞ within upper or lower half planes, it can be checked that γ

b1+
= γ

b2− and
γ

c3+
= γ

c2− divide the upper half plane into U1+, U2−, U3+; γ
b2+

= γ
b1− and γ

c2+
= γ

c3− divide
the lower half plane into U1−, U2+, U3−.

Figure 9 (right) illustrates the domains and curves for P . From now on, we denote γ
bi

= γ
bi+

and γ
ci

= γ
ci+

for simplicity.

Proof of Proposition 5.1. Now we further assume that cvf = 4
27 = cv

P
. We continue with the

above description of Dom(f) as the union of U i (i ∈ I). We already have two special components
U1 and U2 as before. Now consider γ

c2+
and γ

c2−. If they were glued together, after adding an
inverse image of 0 to U2, we would have a degree two branched cover onto C and this leads to
the case of a quadratic polynomial.

So if f is not a quadratic polynomial, there must be components U3 and U4 such that
γ

c2− = γ
c3+

and γ
c2+

= γ
c4−. Note here that U3 and U4 may or may not be distinct. Further

gluings for γ
c3− or γ

b3± etc. depend on particular f . So we have common structure up to
the half components U3+ and U4−, no matter whether U3 = U4 or not. Let us denote the
components and curves for P by UP

i , γP
ai

etc. as in Figure 9 (right). We can now define

ϕ : C r (−∞,−1] = C r (γP
b3

∪ γP
a3

) → Dom(f) by ϕ(z) =
(
f |Ui±

)−1 ◦ P on UP
i± for i = 1, 2, 3,

except on UP
3−, where

(
f |U4−

)−1◦P is used. This definition extends continuously to the boundary
curves γP

b1
, γP

b2
, γP

c1
, γP

c2
, γP

c3
, since the gluing relation is the same (if U3− is replaced by U4−).

The origin is mapped onto the origin and −1
3 is mapped to the closest critical point of f . It is

easy to see that ϕ is a homeomorphism from C r (−∞,−1] onto its image. At the points other
than 0 and the critical point, the map f is locally conformal, so ϕ is holomorphic there. By the
removable singularity theorem, ϕ is conformal from Cr(−∞,−1] onto its image. It follows from
the definition that f = P ◦ ϕ−1 and ϕ(0) = 0. By differentiation, we also have ϕ′(0) = 1.

Corollary 5.13. If f ∈ F0 and f is not a quadratic polynomial, then

∣∣f ′′(0) − 5
∣∣ ≤ 1 if cv = − 4

27
, or

∣∣∣∣f ′′(0) · cv +
20
27

∣∣∣∣ ≤ 4
27

in general.

Remark. For the quadratic polynomial f(z) = z + z2, we have f ′′(0) · cv = −1
2 , which does not

satisfy the inequality.

Proof. Since f ′′(0) · cv is invariant under the linear conjugacy, we only need to deal with the
case cv = − 4

27 . Therefore we may suppose that f = P ◦ ϕ−1 as in Proposition 5.1, where
ϕ : C r (−∞,−1] → U is a conformal map with ϕ(0) = 0, ϕ′(0) = 1. Let fKoebe(z) = z

(1−z)2

which is a conformal map from the unit disk onto Cr (−∞,−1/4]. Then ϕ̂(z) = 1
4ϕ(4fKoebe(z))

is a univalent function in the class S. Then by Theorem A.1 (a) in Appendix, |ϕ̂′′(0)| ≤ 4.
On the other hand, ϕ̂′′(0) = 4ϕ′′(0) (f ′

Koebe(0))2 + ϕ′(0)f ′′
Koebe(0) = 4ϕ′′(0) + 4 and ϕ′′(0) =

P ′′(0) − f ′′(0) = 4 − f ′′(0). Therefore we have |ϕ′′(0) + 1| ≤ 1 and |f ′′(0) − 5| ≤ 1, which was
the assertion.
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5.D Passing from P to Q

For various estimates, it is easier to work with a parabolic fixed point and with arbitrary uni-
valent functions defined in the complement of a disk (or an ellipse). This is why we introduced
Q (and ψ0, ψ1) on §5.A.

Lemma 5.14. (a) The P and Q are related by

Q = ψ−1
0 ◦ P ◦ ψ1.

The ψ1 maps Ĉ r D (and also D) conformally onto C r (−∞,−1] and ψ1(∞) = 0.
(b) The map Q has four critical points cp := 5+2

√
6(+ 9.8989 . . . ), cp′ := 5−2

√
6(+ 0.1010 . . . )

and ±1; the critical values are cv := Q(cp) = Q(cp′) = 27, Q(1) = ∞ and Q(−1) = 0; cp and
cp′ are simple critical points, whereas the local degree is 4 at z = 1 and 6 at z = −1.

Proof. (a) P (ψ1(z)) = − 4z
(1+z)2

(
1 − 4z

(1+z)2

)2
= −4z(1−z)4

(1+z)6
= ψ0(Q(z)).

The map ψ1 can be written as ψ1 = ψ1,2 ◦ ψ1,1, where ψ1,1 : z 7→ z−1
z+1 and ψ1,2 : w 7→ w2 − 1.

ψ1,1 maps Ĉ r D (resp. D) to the right half plane (resp. the left half plane), then ψ1,2 maps the
right half plane (or the left half plane) onto C r (−∞,−1].
(b) Left to the reader. See also Lemma 5.21 (a).

Definition. Define UQ
i± = ψ−1

1 (UP
i±) r D, ΓQ

a
= ψ−1

0 (ΓP
a
), γQ

ai
= ψ−1

1 (γP
ai

) r D etc. Then

ΓQ
a = (cv,+∞) = (27, +∞), ΓQ

b = (0, cv], ΓQ
c = (−∞, 0), γQ

a1
= (cp, +∞), γQ

a2
= (1, cp),

γQ

c1
= (−∞,−1). (Here UQ

3− is not connected with UQ
3+ and may rather be called UQ

4− as in the

previous subsection, but we name it to be consistent with P .) Note that ψ−1
1 split γP

a3
and γP

c3

into arcs on ∂D, γQ

a3+
= [1, ω]∂D, γQ

b3+
= [ω,−1]∂D, γQ

a3−
= [1, ω̄]∂D, γQ

b3−
= [ω̄,−1]∂D, where

[ζ, ζ ′]∂D denotes the arc between ζ and ζ ′ on ∂D and ω = 1+
√

3i
2 . See Figure 10.

D cp

U1+

U1−

U2+

U2−

U3+

U3−

a1

b2

c2

c3

b1

c1 a2 abc

cv0

Q

Figure 10: Domain of Q with partition by curves; Ĉ r UQ
η consists of D and two shaded regions

near +1 and −1, however the one near +1 is invisible.

It is clear that Q maps each U i± isomorphically onto {z : ± Im z > 0} = ψ−1
0 (Cslit±) and

γ
ai

homeomorphically onto Γa etc. Denote UQ
12 = UQ

1 ∪ UQ
2 ∪ γQ

b1+
∪ γQ

b2+
= ψ−1

1 (UP
12). Then

Q|UQ
12

: UQ
12 → C r {0} ∪ ΓQ

c is a branched covering of degree 2 branched over cv
Q
.
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Now we prove Proposition 5.3 assuming Proposition 5.2.

Proof of Proposition 5.3. (a) Suppose f ∈ F0. Then by Proposition 5.1, it can be expressed as
f = P ◦ ϕ−1 on U , where ϕ : C r (−∞,−] → U(⊂ Dom(f)) is a conformal map with ϕ(0) = 0,
ϕ′(0) = 1. Since V ′ = UP

η ⊂ C r (−∞,−1], we can further restrict f = P ◦ ϕ−1 to ϕ(V ′) and
obtain an element of FP

2 . This is obviously injective because we are restricting holomorphic
functions.
(b) By Proposition 5.2, we have V ⊂ V ′. Given f = P ◦ϕ−1 ∈ FP

2 , where ϕ is defined on V ′, we
can restrict ϕ to V . Since ∂E ⊂ C r D, the boundary of V is non-singular real-analytic Jordan
curve, hence ϕ|V has a quasiconformal extension to CrV . Thus we obtain f = P ◦(ϕ|V )−1 ∈ FP

1 .
(c) The statement on the one to one correspondence is easy to check. Note that ψ1 : ĈrE → V
is conformal and ϕ is normalized at 0 if and only if ϕ̂ = ψ−1

0 ◦ ϕ ◦ ψ1 is normalized at ∞.
The statement on f ′′(0) is immediate from calculation: F (z) = z + (10 − c

0
) + O(1

z ) and

f(z) = ψ−1
0 ◦ F ◦ ψ0(z) = −4/(−4/z + (10 − c

0
) + O(z)) = z +

10−c
0

4 z2 + O(z3).

The following lemma (used in Lemmas 5.17 and 5.26) shows that γQ

c2
and γQ

c3
go outside

D( i√
3
, 2√

3
) ∪ D(− i√

3
, 2√

3
).

Lemma 5.15. (a) {z ∈ C : z 6= −1, 2π
3 ≤ ± arg(z + 1) < π} ⊂ UP

3±.

(b) D(± i√
3
, 2√

3
) r D ⊂ UQ

3±. Hence UQ
12 ⊂ C r D( i√

3
, 2√

3
) ∪ D(− i√

3
, 2√

3
).

Proof. (a) If z ∈ C with z 6= −1 and 2π
3 ≤ arg(z+1) < π, then it is easy to see that 2π

3 < arg z < π
and therefore 2π < arg P (z) = arg z + 2arg(z + 1) < 3π and ImP (z) > 0. This implies that
{z ∈ C : z 6= −1, 2π

3 ≤ arg(z + 1) < π} is contained in a connected component of P−1(Cslit+).
This component must be U3+, since points near (−∞,−1) are contained in U3. It can be proved
similarly for U3−.
(b) First we conseider the image ψ1(D( i√

3
, 2√

3
) r D). Write ψ1 = ψ1,2 ◦ ψ1,1 as in the proof of

the previous lemma. Note that ∂D( i√
3
, 2√

3
) is a circle intersecting the unit circle at 1, −1 with

angle π
6 . The Möbius transformation ψ1,1(z) = z−1

z+1 maps the unit circle to the imaginary axis,
1 to 0, −1 to ∞, hence it must map ∂D( i√

3
, 2√

3
)r D onto a half line from 0 to ∞ that intersects

the imaginary axis at 0 and ∞ with angle π
6 , and contains ψ1,1(i

√
3) = 1+

√
3i

2 . So we conclude
that ψ1,1(∂D( i√

3
, 2√

3
) r D) = {w : w = 0,∞ or arg w = π

3 } and ψ1,1(D( i√
3
, 2√

3
) r D) = {w :

w 6= 0, π
3 < arg w < π

2 }. Then the latter is mapped to {z : z 6= −1, 2π
3 < arg(z + 1) < π} by

ψ1,2(w) = w2 − 1. Hence we proved ψ1(D( i√
3
, 2√

3
) r D) = {z ∈ C : z 6= −1, 2π

3 ≤ arg(z + 1) <

π} ⊂ UP
3+. This implies D( i√

3
, 2√

3
) r D ⊂ UQ

3+. The same conclusion holds for D(− i√
3
, 2√

3
). It

follows that UQ
12 ∩ D(± i√

3
, 2√

3
) = ∅.

From the following subsection, when there is no confusion, we will drop Q in the notation
UQ

i , γQ

ai
etc and denote Ui, γ

ai
etc.

5.E Estimates on Q: Part 1

Now we embark on the estimates which are needed for Main Theorem 1(c). From now on,
throughout this section, we assume that F = Q ◦ ϕ−1 ∈ FQ

1 . Therefore ϕ : Ĉ r E → Ĉ r {0} is
a normalized univalent mapping. For convenience, we usually use variable z for the ranges of Q
and ϕ (which are the domain and range of F ), whereas variable ζ is used for their domains.
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Lemma 5.16. Let η = 2, ε1 = 0.057, ε2 = 0.406.
(a) Ĉ r UQ

η ∪ D is covered by the disks D(1, ε1) and D(−1, ε2).
(b) The disks D(1, ε1), D(−1, ε2) and D are contained in the interior of the ellipse E.

Proof. (a) By the description of UP
η in previous subsection and the relation between P and Q, it

is easy to see that ĈrUQ
η ∪D consists of two connected components W and W ′ such that W (resp.

W ′) contains 1 (resp. −1) in its boundary and |Q(ζ)| ≥ cv e2πη in W (resp. |Q(ζ)| ≤ cv e−2πη

in W ′). If we know that |Q(ζ)| < cv e2πη on ∂D(1, ε1) (resp. |Q(ζ)| > cv e−2πη) on ∂D(−1, ε2)),
this will mean that W ⊂ D(1, ε1) (resp. W ′ ⊂ D(−1, ε2)), since W (resp. W ′) is connected.

Since Q(ζ) = (ζ+1)6

ζ(ζ−1)4
, if |ζ − 1| = ε1, then we have a numerical estimate

|Q(ζ)| ≤ (2 + ε1)6

(1 − ε1)ε4
1

(+ 7.61 · · · × 106) <
∗

27e2πη(+ 7.74 · · · × 106). (5.2*)

Similarly if |ζ + 1| = ε2, then

|Q(ζ)| ≥ ε6
2

(1 + ε2)(2 + ε2)4
(+ 9.50 · · · × 10−5) >

∗
27e−2πη(+ 9.41 · · · × 10−5). (5.3*)

Thus it follows that Ĉ r UQ
η ∪ D ⊂ D(1, ε1) ∪ D(−1, ε2).

(b) In order to prove D, D(1, ε1), D(−1, ε2) ⊂ intE, parameterize ∂E by x = −0.18+1.24 t, y =
±1.04

√
1 − t2 (−1 ≤ t ≤ 1). Let

h1(t) := x2 + y2 − 1 = 0.456 t2 − 0.4464 t + 0.114, (5.4)

h2(t) := (x − 1)2 + y2 − ε2
1 = 0.456 t2 − 2.9264 t + 2.470751, (5.5)

h3(t) := (x + 1)2 + y2 − ε2
2 = 0.456 t2 + 2.0336 t + 1.589164. (5.6)

The quadratic polynomial h1 has discriminant

(0.4464)2 − 4 × 0.456 × 0.114 = −0.00866304 < 0. (5.7)

Therefore h1(t) > 0 for all t and this implies D ⊂ intE. Next, h2(t) has minimum at t =
2.9264

2×0.456 > 1, and the minimum within [−1, 1] will be attained by

h2(1) = 0.000351 > 0. (5.8)

Hence h2(t) > 0 (t ∈ [−1, 1]), which implies D(1, ε1) ⊂ intE. Finally, h3(t) has minimum at
t = − 2.0336

2×0.456 < −1, and the minimum within [−1, 1] will be attained by

h3(−1) = 0.011564 > 0. (5.9)

Hence h3(t) > 0 (t ∈ [−1, 1]) and D(−1, ε2) ⊂ intE.

Proof of Proposition 5.2. By Lemma 5.16, we have

UQ
η ⊃ Ĉ r D ∪ D(1, ε1) ∪ D(−1, ε2) ⊃ Ĉ r intE,

and also
V = ψ1(Ĉ r intE) ⊂ ψ1(UQ

η ) = UP
η = V ′.
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In order to determine the shape of Y for Proposition 5.4 (b), we will need the following
lemma.

Lemma 5.17. Let R = 266, ρ = 0.05, ε3 = 2
3 , ε4 = 1.13 and r1 = 1.25.

(a) If ζ ∈ C r D
(

i√
3
, 2√

3

)
∪ D

(
− i√

3
, 2√

3

)
and |ζ − 1| ≤ ε3, then |Q(ζ)| > R = 266.

(b) If ζ ∈ C r D
(

i√
3
, 2√

3

)
∪ D

(
− i√

3
, 2√

3

)
and |ζ + 1| ≤ ε4, then |Q(ζ)| < ρ = 0.05.

(c) Er1 is covered by D
(

i√
3
, 2√

3

)
, D

(
− i√

3
, 2√

3

)
, D (1, ε3) and D (−1, ε4). Hence

C r D
(

i√
3
, 2√

3

)
∪ D

(
− i√

3
, 2√

3

)
∪ D (1, ε3) ∪ D (−1, ε4) ⊂ C r Er1 .

(d) If ζ ∈ U12 and ρ ≤ |Q(ζ)| ≤ R, then ζ ∈ C r Er1. Moreover if ζ ∈ U1 and |Q(ζ)| > R, then
ζ is also in C r Er1.

Proof. (a) It is easy to see that D
(
1, 2√

3

)
∩ {ζ : Re ζ ≤ 1} is covered by D

(
i√
3
, 2√

3

)
∪

D
(
− i√

3
, 2√

3

)
. Hence under the assumption of (a), we have Re ζ > 1 and |ζ + 1| ≥

√
4 + r2,

where r = |ζ − 1| ≤ ε3. So

|Q(ζ)| ≥ h4(r) :=

(√
4 + r2

)6

(1 + r)r4
=

(4 + r2)3

(1 + r)r4
(5.10)

Since (log h4(r))′ = 6r
4+r2 − 1

1+r − 4
r ≤ 6

4 − 0 − 4 < 0 for 0 < r < 1,

|Q(ζ)| ≥ h4(r) ≥ h4(ε3) =
(4 + ε2

3)
3

(1 + ε3)ε4
3

=
800
3

> R. (5.11)

(b) Similarly, under the assumption of (b), since ε4 < 2√
3
(+ 1.154 . . . ), we have Re ζ < −1,

hence |ζ| ≥
√

1 + r2, |ζ − 1| ≥
√

4 + r2, where r = |ζ + 1| ≤ ε4. Therefore

|Q(ζ)| ≤ r6

√
1 + r2

(√
4 + r2

)4 . (5.12)

Take function h5(s) := s3
√

1+s (4+s)2
for s > 0, then (log h5(s))′ = 3

s −
1

2(1+s) −
2

4+s ≥ 3
s −

1
2s −

2
s =

1
2s > 0. Hence (5.12) is bounded by

|Q(ζ)| ≤ h5(r2) ≤ h5(ε2
4) =

ε6
4√

1 + ε2
4

(
4 + ε2

4

)2 (+ 0.0495 . . . ) <
∗

ρ. (5.13*)

(c) It is enough to show that the upper part of Er1 is covered by D
(

i√
3
, 2√

3

)
, D (1, ε3) and

D (−1, ε4). We prepare an elementary lemma:

Sublemma 5.18. Let Γ =
{

x + iy :
(

x
a

)2 +
(y

b

)2 = 1, y ≥ 0
}

with a > b > 0. If two points
z1, z2 ∈ Γ are contained in a disk D(ζ0, r) with Im ζ0 ≥ 0, then so is the subarc of Γ between z1

and z2.

Proof. The Γ is the graph of y(x) = b
√

1 −
(

x
a

)2. Define h(x) = (x − ξ0)
2 + (y(x) − η0)

2 − r2,
where ζ0 = ξ0 + iη0 with η0 ≥ 0. If zj = xj + iy(xj) ∈ Γ (j = 1, 2) are contained in D(ζ0),

then h(xj) < 0. It follows that h(x) < 0 for x between x1 and x2, since h(x) =
(
1 −

(
b
a

)2
)

x2 −

2bη0

√
1 −

(
x
a

)2 + cx + d is obviously a convex function.
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Now we continue the proof of (c) of Lemma 5.17. After shifting the origin, we will ap-

ply this lemma to Γ = ∂Er1 ∩ {ζ : Im ζ ≥ 0} and y(x) = bE (1.25)

√
1 −

(
x−x

E
a

E
(1.25)

)2
=

1.345
√

1 −
(

x+0.18
1.505

)2. Let z1 = −1.01 + iy(−1.01) and z2 = 1.145 + iy(1.145) and these
points divide Γ into three subsrcs Γ1, Γ2 and Γ3, from left to right. The end points of Γ1,
xE − aE (1.25) = −1.685 and z1, are contained in D(−1, ε4), since

| − 1.685 + 1| = 0.685 < ε4 and (−1.01 + 1)2 + y(−1.01)2 − ε2
4 (+ −0.01798 . . . ) <

∗
0. (5.14*)

The end points of Γ2, z1 and z2, are contained in D
(

i√
3
, 2√

3

)
, since

(−1.01)2 +
(
y(−1.01) − 1√

3

)2
−

(
2√
3

)2
(+ −0.0166 . . . ) <

∗
0 and (5.15*)

(1.145)2 +
(
y(1.145) − 1√

3

)2
−

(
2√
3

)2
(+ −0.0186 . . . ) <

∗
0. (5.16*)

The end points of Γ3, z2 and xE + aE (1.25) = 1.325, are contained in D(1, ε3), since

|1.325 − 1| = 0.325 < ε3 and (1.145 − 1)2 + y(1.145)2 − ε2
3 (+ −0.016 . . . ) <

∗
0. (5.17*)

Therefore we conclude that the convex hull of Γ1 ∪ {−1} is contained in D(−1, ε4), the convex
hull of Γ2∪ [−1, 1] is contained in D

(
i√
3
, 2√

3

)
∪{±1} and the convex hull of Γ3∪{1} is contained

in D(1, ε3). Since the upper half of Er1 is the union of these three convex hulls, we have proved
(c).
(d) Let ζ ∈ U12 and suppose ρ ≤ |Q(ζ)| ≤ R. By Lemma 5.15 (b), ζ ∈ C r D

(
i√
3
, 2√

3

)
∪

D
(
− i√

3
, 2√

3

)
. By (a) and (b), ζ cannot be in D (1, ε3) ∪ D (−1, ε4). It follows from (c) that

ζ ∈ C r Er1 .
For the last statement, consider the inverse image of CrD(0, R) by Q|CrD. Form the relation

between P and Q (Lemma 5.14, considering the inverse image of a neighborhood of 0 by P ), one
can show that (Q|CrD)−1(C r D(0, R)) = U ∪ U ′, where U and U ′ are connected components
contained in U1 ∪ γc1 and U2 ∪ U3 ∪ γc2 ∪ γc3, respectively. Moreover ∞ ∈ U and −1 ∈ U

′.
It follows from (a) that W = D(1, ε3) r D

(
i√
3
, 2√

3

)
∪ D

(
− i√

3
, 2√

3

)
must be contained in the

component U ′. Therefore we conclude that W ∩U1 = ∅. The rest is similar to the previous case.
This ends the proof of Lemma 5.17.

5.F Estimates on Q: Part 2

Lemma 5.19. One can write

Q(ζ) = ζ + 10 +
49
ζ

+ Q2(ζ), where Q2(ζ) =
160

(ζ − 1)2
+

80 ζ + 32 − 48
ζ

(ζ − 1)4

and

|Q2(ζ)| ≤ Q2,max(r) :=
160

(r − 1)2
+

80 r + 32 + 48
r

(r − 1)4
for |ζ| ≥ r > 1.

Proof. This is immediate by a calculation and left to the reader.

Lemma 5.20. Q
(
V

(
21, π

6

))
⊂ V

(
30, π

6

)
⊂ V

(
cv, π

6

)
.
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Proof. Suppose ζ ∈ V
(
21, π

6

)
and let ζ ′ = ζ + 9. Since ζ ′ ∈ V

(
30, π

6

)
, it suffices to show

that | arg(Q(ζ) − ζ ′)| =
∣∣∣arg

(
49
ζ + (1 + Q2(ζ))

)∣∣∣ < π
6 . If ζ ∈ V

(
21, π

6

)
, then | arg ζ| < π

6 and∣∣∣arg 49
ζ

∣∣∣ < π
6 . On the other hand, by Lemma 5.9 (a) and Lemma 5.19, |arg (1 + Q2(ζ))| ≤

arcsinQ2,max(21) = arcsin 23
56 < arcsin 1

2 = π
6 . Since both 49

ζ and 1 + Q2(ζ) are in V(0, π
6 ), so is

their sum. Therefore Q (ζ) ∈ V
(
30, π

6

)
⊂ V

(
cv, π

6

)
.

Lemma 5.21. (a)

Q′(ζ) =
(
1 − 10

ζ + 1
ζ2

) (
1 + 1

ζ

1 − 1
ζ

)5

=
(
1 − 5+2

√
6

ζ

)(
1 − 5−2

√
6

ζ

) (
1 + 1

ζ

1 − 1
ζ

)5

.

(b) If |ζ| ≥ r > cp
Q

= 5 + 2
√

6 (+ 9.899 . . . ), then

∣∣log Q′(ζ)
∣∣ ≤ LogDQmax(r) :=

49
r2

+
320
r3

+
1
4


(

5+2
√

6
r

)4

1 − 5+2
√

6
r

+

(
5−2

√
6

r

)4

1 − 5−2
√

6
r

 +
2
r5

1 − 1
r2

.

(c) If |ζ| > 5 + 2
√

6, then ReQ′(ζ) > 0. For any θ ∈ R, Q is injective in {ζ : Re(ζ e−iθ) >
5 + 2

√
6}.

Proof. (a) This can be checked by a calculation.
(b) Using − log(1 − x) =

∑∞
n=1

xn

n = x + x2

2 + x3

3 +
∑∞

n=4
xn

n , we have

log Q′(ζ) = log
(
1 − 5+2

√
6

ζ

)
+ log

(
1 − 5−2

√
6

ζ

)
+ 5 log

(
1 + 1

ζ

)
− 5 log

(
1 − 1

ζ

)
= −49

ζ2 − 320
ζ3 −

∞∑
n=4

(
(5+2

√
6)n

nζn + (5−2
√

6)n

nζn

)
+

∞∑
m=2

10
(2m+1)ζ2m+1 .

The inequality follows easily.
(c) Consider arg Q′(ζ) = Im log Q′(ζ) in |ζ| > 5 + 2

√
6. First note that Q′ has no zeroes there.

Suppose now that Im ζ ≥ 0. Since Im 1
ζ ≤ 0 and

∣∣∣5+2
√

6
ζ

∣∣∣ < 1, it is easy to see that

arg
(
1 + 1

ζ

)
≤ 0 ≤ arg

(
1 − 5−2

√
6

ζ

)
≤ arg

(
1 − 1

ζ

)
≤ arg

(
1 − 5+2

√
6

ζ

)
<

π

2
.

Therefore

arg Q′(ζ) ≤ arg
(
1 − 5+2

√
6

ζ

)
+

(
arg

(
1 − 5−2

√
6

ζ

)
− arg

(
1 − 1

ζ

))
<

π

2
.

On the other hand, by Lemma 5.9,

arg Q′(ζ) ≥ 5 arg
(
1 + 1

ζ

)
−5 arg

(
1 − 1

ζ

)
≥ −10 arcsin

1
5 + 2

√
6
≥ −π

3
· 10
5 + 2

√
6

> −π

2
. (5.18)

Thus we have ReQ′(ζ) > 0. The same conclusion holds when Im ζ < 0.
If two distinct points ζ0 and ζ1 can be joined by a segment within {ζ : |ζ| > 5 + 2

√
6}, then

by

Q(ζ1) − Q(ζ0)
ζ1 − ζ0

=
1

ζ1 − ζ0

∫ 1

0

d

dt
Q(ζ0 + t(ζ1 − ζ0))dt =

∫ 1

0
Q′(ζ0 + t(ζ1 − ζ0))dt, (5.19)

we have Re Q(ζ1)−Q(ζ0)
ζ1−ζ0

> 0. Hence Q(ζ0) 6= Q(ζ1). This proves that Q is injective in {ζ :
Re(ζe−iθ) > r}.
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5.G Estimates on ϕ

Lemma 5.22. Suppose ϕ : Ĉ r E → Ĉ r {0} is a normalized univalent map. It can be written
as

ϕ(ζ) = ζ + c
0
+ ϕ1(ζ)

with c
0
∈ C and limζ→∞ ϕ1(ζ) = 0. Then we have the following estimates:

(a) |c
0
− c

00
| ≤ c

01,max
, where c

00
:= 0.18 = −xE , c

01,max
:= 2.28 = 2e

1
.

(b) Image(ϕ) ⊃ {z : |z − (c
0
+ xE )| > 2e

1
} ⊃ {z : |z| > 4e

1
= 4.56}.

(c) e
1
|w|

(
1 − 1

|w|

)2
≤ |ϕ(ζ(w))| ≤ e

1
|w|

(
1 + 1

|w|

)2
for |w| > 1.

(d)
∣∣∣arg ϕ(ζ(w))

w

∣∣∣ ≤ log |w|+1
|w|−1 for |w| > 1.

(e) |ϕ1(ζ)| ≤ ϕ
1,max

(r) := aE

√
− log

(
1 −

(
a

E
r−|x

E
|

)2
)

for |ζ| ≥ r > aE + |xE | = 1.42.

(f) |log ϕ′(ζ)| ≤ LogDϕmax(r) := − log
(

1 −
(

a
E

r−|x
E
|

)2
)

for |ζ| ≥ r > aE + |xE | = 1.42.

Proof. Let ϕ̂(w) = 1
e
1
ϕ(ζ(w)). Then it can be checked that ϕ̂ belongs to Σ∗. Since

ϕ̂(w) = w +
c
0
+ xE

e
1

+
1
e
1

(
ϕ1(ζ(w)) +

e−1

w

)
= w +

c
0
+ xE

e
1

+ O

(
1
w

)
,

it follows from Theorem A.2 (a) that for ĉ0 =
c
0
+x

E

e
1

, |ĉ0| ≤ 2 and {z : |z| > 4} ⊂ {z : |z − ĉ0| >

2} ⊂ Image(ϕ̂). They imply (a) and (b). Applying Theorem A.2 (d) to ϕ̂, we also obtain (c)
and (d).

Let ζ̃ = ζ−x
E

a
E

. If |ζ̃| > 1 then ζ = xE + aE ζ̃ ∈ C r E and ϕ̃(ζ̃) = 1
a

E
ϕ(xE + aE ζ̃) is defined.

Applying Theorem A.2 (b) and (c) to ϕ̃ which belongs to Σ∗, we obtain (e) and (f).

Lemma 5.23. If ζ ∈ C r intEr1, then |ϕ(ζ)| > ρ and | arg ϕ(ζ)
ζ | < π.

Proof. Suppose ζ ∈ C r intEr1 , then we can write ζ = ζ(w) with |w| ≥ 1.25. By Lemma 5.22
(c), using the fact that r(1 − 1

r )2 is increasing in r > 1, we have

|ϕ(ζ)| = |ϕ(ζ(w))| ≥ e
1
|w|

(
1 − 1

|w|

)2

≥ 1.14 × 1.25
(

1 − 1
1.25

)2

= 0.057 > ρ = 0.05.

Also by Lemma 5.22 (d),∣∣∣∣arg
ϕ(ζ(w))

w

∣∣∣∣ ≤ log
1.25 + 1
1.25 − 1

= 2 log 3 (+ 2.1972 . . . ) <
∗

0.7π (+ 2.1991 . . . ). (5.20*)

On the other hand, by Lemma 5.9,∣∣∣∣arg
ζ(w)
w

∣∣∣∣ =

∣∣∣∣∣arg

(
1 +

xE

e
1
w

+
e−1

e
1
w2

)∣∣∣∣∣ ≤ arcsin
(
|xE | + |e−1

|
)

= arcsin(0.28) ≤ π

3
· 0.28 < 0.1π.

Therefore we have
∣∣∣arg ϕ(ζ)

ζ

∣∣∣ ≤ ∣∣∣arg ϕ(ζ(w))
w

∣∣∣ +
∣∣∣arg ζ(w)

w

∣∣∣ ≤ 0.7π + 0.1π < π.
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We will need the following for Lemma 5.33 in §5.L.

Lemma 5.24. If ζ ∈ C r D
(

i√
3
, 2√

3

)
∪D

(
− i√

3
, 2√

3

)
∪ intEr1 and Re ζ ≥ xE , then ϕ(ζ) 6∈ R−.

Proof. By Lemma 5.22 (d), we have for |w| > 1,

| arg(ϕ(ζ(w))| ≤ | arg w| +
∣∣∣∣arg

ϕ(ζ(w))
w

∣∣∣∣ ≤ | arg w| + log
|w| + 1
|w| − 1

.

Suppose ζ ∈ C r Er1 and Re ζ ≥ xE . Then we can write as ζ = ζ(w) with r = |w| > r1 = 1.25
and θ = arg w ∈ [−π

2 , π
2 ]. So in order to prove the lemma, it suffices to show that

if r ≥ r1 and 0 ≤ θ ≤ π

2
, then either θ + log

r + 1
r − 1

< π or ζ(reiθ) ∈ D
(

i√
3
, 2√

3

)
. (5.21)

We cover by 5 cases:
(a) r > r1 = 1.25 and 0 ≤ θ ≤ 0.3π; (b) r ≥ r3 = 1.54 and 0.3π ≤ θ ≤ π

2 ; (c) r2 = 1.4 ≤
r ≤ r3 = 1.54 and 0.3π ≤ θ ≤ 0.4π; (d) r2 = 1.4 ≤ r ≤ r3 = 1.54 and 0.4π ≤ θ ≤ π

2 ; (e)
r1 = 1.25 ≤ r ≤ r2 = 1.4 and 0.3π ≤ θ ≤ π

2 .
In case (a), we have θ + log r+1

r−1 < 0.3π + 0.7π = π by (5.20*). We also have θ + log r+1
r−1 < π in

cases (b) and (c) by

log
1.54 + 1
1.54 − 1

(+ 1.548 . . . ) <
∗

π

2
(+ 1.570 . . . ), (5.22*)

log
1.4 + 1
1.4 − 1

(+ 1.791 . . . ) <
∗

0.6π (+ 1.884 . . . ). (5.23*)

In order to show ζ(reiθ) ∈ D
(

i√
3
, 2√

3

)
for cases (d) and (e), we need the following:

Sublemma 5.25. Let 1 ≤ s1 < s2 and 0 < θ1 < π
2 . If ζ(s2i) and ζ(s2e

iθ1) are contained in

D
(

i√
3
, 2√

3

)
, then

Z(s1, s2, θ1) := {ζ(w) : s1 ≤ |w| ≤ s2 and θ1 ≤ θ ≤ π

2
}.

is also contained in D
(

i√
3
, 2√

3

)
.

Proof. By the assumption and Lemma 5.18, the subarc ∂Es2 ∩ Z(s1, s2, θ1) is contained in
D

(
i√
3
, 2√

3

)
. Since Z(s1, s2, θ1) is the region bounded by {ζ : Re ζ = xE}, ∂Es1 , ∂Es2 and the

upper right part of a hyperbola(
x − xE

cos θ1

)2

−
(

y

sin θ1

)2

= 4e
1
e−1

, x ≥ xE + 2
√

e
1
e−1

cos θ1 and y ≥ 0,

which is concave, it is easy to see that the region Z(s1, s2, θ1) is contained in the convex hull of
(∂Es2 ∩ Z(s1, s2, θ1)) ∪ [xE , xE + 2

√
e
1
e−1

cos θ1]. Since xE + 2
√

e
1
e−1

cos θ1 < 2
√

0.114 < 1,

this convex hull is contained in D
(

i√
3
, 2√

3

)
.
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We apply this to r2 = 1.4, θ2 = π
4 < 0.3π and r3 = 1.54 and θ3 = 0.4π. It can be checked

that∣∣∣ζ(r2e
iθ2) − i√

3

∣∣∣2 =
(
1.14 r2 cos θ2 − 0.18 + 0.1 cos θ2

r2

)2
+

(
1.14 r2 sin θ2 − 0.1 sin θ2

r2
− 1√

3

)2

(+ 1.248 . . . ) <
∗

(
2√
3

)2
(+ 1.333 . . . ), (5.24*)∣∣∣ζ(r3e

iθ3) − i√
3

∣∣∣2 =
(
1.14 r3 cos θ3 − 0.18 + 0.1 cos θ3

r3

)2
+

(
1.14 r3 sin θ3 − 0.1 sin θ3

r3
− 1√

3

)2

(+ 1.208 . . . ) <
∗

(
2√
3

)2
, (5.25*)∣∣∣ζ(r3i) − i√

3

∣∣∣2 = (−0.18)2 +
(
1.14 r3 − 0.1

r3
− 1√

3

)2
(+ 1.27 . . . ) <

∗

(
2√
3

)2
. (5.26*)

From (5.26*), ζ(r2i) is also in D
(

i√
3
, 2√

3

)
. Hence, by the above lemma, Z(r1, r2, θ2) and

Z(r1, r3, θ3) are contained in D
(

i√
3
, 2√

3

)
. Therefore (5.21) is proved for cases (d) and (e).

This completes the proof of Lemma 5.24.

5.H Lifting Q and ϕ to X

Definition. Denote Yj± =
(
Q|Uj±

)−1
(πX(Xj±)) (j = 1, 2). Let

Y = Y1+ ∪ Y1− ∪ Y2+ ∪ Y2−.

which is a subset of U12 ∪R− ⊂ C. Define Q̃ : Y → X (whose well-definedness is to be verified)
by

Q̃(ζ) =
(
π|Xj±

)−1 (Q(ζ)) ∈ Xj± for ζ ∈ Yj±.

Also define
Ỹ = C r

(
Er1 ∪ R+ ∪ V

(
21, π

6

))
.

Proof of Prop 5.4 (a). Since Q maps Uj± isomorphically onto {z : ± Im z > 0}, Q̃ maps Yj±
homeorphically onto Xj± (j = 1, 2). Hence, in order to see that Q̃ is well-defined and isomorphic,
it suffices to check its consistency along their boundaries.

First note that among U1+, U1−, U2+ and U2−, the pairs whose intersections are more than
{cp,−1} are: U1+ ∩ U1− = γ

a1
∪ γ

c1
, U1+ ∩ U2− = γ

b1
, U1− ∩ U2+ = γ

b2
, U2+ ∩ U2− = γ

a2
.

Moreover [cv, +∞) = {cv} ∪ Γa does not intersect with Xi± (i = 1, 2), so γ
ai

’s do not affect the

intersection of Yi±(⊂ Ui±). Neither does −1, since Q(−1) = 0 /∈ Xi±. Hence among Y i±’s, the
pairs having intersections are: Y1+ ∩ Y1− ⊂ γ

c1
⊂ R−, Y1+ ∩ Y2− ⊂ γ

b1
, Y1− ∩ Y2+ ⊂ γ

b2
.

First consider the pair Y1+ and Y1−. In the construction of X, X1+ and X1− are glued
along the negative real axis Γc, but on the positive side of real axis, they are disjoint, i.e.
they are considered to be on different sheets. Accordingly, Y1+ and Y1− intersect only along
γ

c1
⊂ Q−1(Γc). So this gluing is consistent for Y1+ and Y1−, and defines a continuous map Q̃

there. As for X1+ and X2−, they are glued along (ρ, cv) ⊂ Γb, but not along negative real axis.
On the other hand, Y1+ and Y2− intersect along γ

b1
. So the gluing is also consistent here. The

same is true for the pair X1− and X2+. Thus all the gluings along the boundaries are consistent
and Q̃ : Y → X is an isomorphisim.

The construction implies that πX ◦ Q̃ = Q on Y . If z ∈ X and |πX(z)| > R, z must
be on X1+ ∪ X1−, therefore Q̃−1(z) ∈ Y1+ ∪ Y1− ⊂ U1+ ∪ U1−. When πX(z) → ∞, Q̃−1(z)
corresponds to the inverse branch of Q near ∞, hence it has asymptotic expansion Q̃−1(z) =
πX(z) − 10 + o(1).
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Lemma 5.26. Y ⊂ Ỹ .

Proof. Suppose ζ ∈ Y . If ζ ∈ Y1±(⊂ U1), then |Q(ζ)| > ρ. If ζ ∈ Y2±(⊂ U12), then ρ < |Q(ζ)| <
R. Therefore in either case, by Lemma 5.17 (d), we have ζ ∈ CrEr1 . Since πX(X)∩V

(
cv, π

6

)
=

∅, we have Q(ζ) /∈ V
(
cv, π

6

)
. It follows from Lemma 5.20 that ζ /∈ V

(
21, π

6

)
. Finally since

Q((1, +∞)) = [cv,+∞) ⊂ V
(
cv, π

6

)
and Y ⊂ C r D, we have ζ /∈ R+. Thus we proved that

ζ ∈ Ỹ .

Proof of Proposition 5.4 (b). We prove that ϕ|
eY

can be lifted to ϕ̃ : Ỹ → X which is well-defined
and holomorphic. Then by Lemma 5.26, Y ⊂ Ỹ , so the assertion will follow.

First note that

if |ζ| ≥ 7, |ϕ(ζ) − ζ| ≤ c
00

+ c
01,max

+ ϕ
1,max

(7) (+ 2.687 . . . ) <
∗

3; (5.27*)

if ζ ∈ C r E and |ζ| ≤ 7, |ϕ(ζ)| ≤ 7 + c
00

+ c
01,max

+ ϕ
1,max

(7) < 7 + 3 = 10. (5.28)

The latter holds because the image ϕ({ζ ∈ C r E : |ζ| < 7}) is surrounded by the Jordan curve
ϕ({ζ : |ζ| = 7}). Therefore if ζ ∈ C r V(21, π

6 ) (in particular if ζ ∈ Ỹ ), then ϕ(ζ) cannot be in
V(cv, π

6 ), since the distance between ∂V(21, π
6 ) and V(cv, π

6 ) is 3.

Take ζ ∈ Ỹ . By Lemma 5.23, we have
∣∣∣arg ϕ(ζ)

ζ

∣∣∣ < π and |ϕ(ζ)| > ρ for ζ ∈ Ỹ . Define
ϕ̃(ζ) ∈ X so that π(ϕ̃(ζ)) = ϕ(ζ) and

ϕ̃(ζ) ∈ X1+ ∪ X2− if Im ζ ≥ 0 and − π < arg ϕ(ζ)
ζ ≤ 0;

ϕ̃(ζ) ∈ X1− ∪ X2+ if Im ζ ≤ 0 and 0 ≤ arg ϕ(ζ)
ζ < π;

ϕ̃(ζ) ∈ X1+ ∪ X1− otherwise.

A possible problem with this definition is that when ϕ̃(ζ) was defined to be in X2± (first and
second case), it might happen that |ϕ(ζ)| ≥ R. But this cannot happen because, for example,
for the first case of the definition, ϕ(ζ) lies in the half plane H = {w : arg ζ−π < arg w < arg ζ}
and not in V(21, π

6 ), and the distance between ζ and H r D(0, R) ∪ V(21, π
6 ) (if not empty) is

large (bounded below by the distance between ∂D(0, R) ∪ ∂V(21, π
6 ) and the real axis, which is

greater than (R − 21) sin π
6 > 3). This concludes that ϕ̃ : Ỹ → X is well-defined.

Now we check the continuity. Possible discontinuities occur when the definition above
switches the cases, i.e., when Im ζ = 0 or arg ϕ(ζ)

ζ = 0. If ζ ∈ Ỹ and Im ζ = 0, then ζ ∈ R−
hence ϕ̃(ζ) is in X1+ ∪ X1− even when the first or second case of the definition is applied. If
Im ζ 6= 0 and arg ϕ(ζ)

ζ = 0, then ϕ̃(ζ) is also in X1+ ∪ X1−. Therefore around the switching,
ϕ̃(ζ) should be in X1+ ∪ X1− and this does not cause a discontinuity. Once the continuity is
obtained, it is obviously holomorphic.

5.I Estimates on F

Lemma 5.27. Suppose r > cp = 5 + 2
√

6, θ ∈ R and Re(ζ e−iθ) > r. Then the following
estimates hold for z = ϕ(ζ) :

(a) F (z) − z ∈ D
(
10 − c

00
+ 49e−iθ

2r , βmax(r)
)

, where

βmax(r) := c
01,max

+
49
2r

+ Q2,max(r) + ϕ
1,max

(r);
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(b) Arg∆Fmin(r, θ) ≤ arg (F (z) − z) ≤ Arg∆Fmax(r, θ), where

Arg∆F{max
min }(r, θ) := − arctan

(
49 sin θ

2r

10 − c
00

+ 49 cos θ
2r

)

± arcsin

 βmax(r)√(
10 − c

00

)2
+

(
49
2r

)2 + 2
(
10 − c

00

) (
49
2r

)
cos θ

 ;

(c) Abs∆Fmin(r, θ) ≤ |F (z) − z| ≤ Abs∆Fmax(r, θ), where

Abs∆F{max
min }(r, θ) :=

√(
10 − c

00

)2
+

(
49
2r

)2 + 2
(
10 − c

00

) (
49
2r

)
cos θ ± βmax(r);

(d) |log F ′(z)| ≤ LogDFmax(r) := LogDQmax(r) + LogDϕmax(r).

Proof. (a) For z = ϕ(ζ), we can write ϕ(ζ) = ζ + (c
00

+ c
01

) + ϕ1(ζ) and

F (z) − z = Q(ζ) − ϕ(ζ) = 10 + 49
ζ + Q2(ζ) − (c

00
+ c

01
) − ϕ1(ζ) = α + β = α

(
1 + β

α

)
,

where α = 10 − c
00

+ 49e−iθ

2r and β = −c
01

+
(

49
ζ − 49e−iθ

2r

)
+ Q2(ζ) − ϕ1(ζ). Note that∣∣∣49

ζ − 49e−iθ

2r

∣∣∣ ≤ 49
2r by Lemma 5.11 (a). Therefore we have |β| ≤ c

01,max
+ 49

2r + Q2,max(r) +
ϕ

1,max
(r) = βmax(r), for r > 1.42. This implies (a).

When r > cp, α and β can be estimated as

|α| ≥ 10 − c
00

− 49
2cp

(+ 7.34 . . . ) >
∗

βmax(cp) (+ 7.06 . . . ) ≥ |β|. (5.29*)

(The estimates (b) and (c) hold whenever |α| > |β|.)
(b) It follows that

|arg(F (z) − z) − arg α| ≤
∣∣∣arg

(
1 + β

α

)∣∣∣ ≤ arcsin
∣∣∣β
α

∣∣∣ .

Since

arg α = − arctan

(
49 sin θ

2r

10 − c
00

+ 49 cos θ
2r

)
and |α| =

√(
10 − c

00

)2
+

(
49
2r

)2 + 2
(
10 − c

00

) (
49
2r

)
cos θ,

we have the inequality.
(c) Similarly we have |α| − |β| ≤ |F (z) − z| ≤ |α| + |β|.
(d) This is immediate from definitions in Lemmas 5.21 (b) and 5.22 (f).

Lemma 5.28. F
(
V(cv, π

6 )
)
⊂ V(30, π

6 ) ⊂ V (cv, π
6 ).

Proof. In the proof of Proposition 5.4 (b), we showed that ϕ(C r V(21, π
6 )) ∩ V(cv, π

6 ) = ∅.
Therefore ϕ−1(V(cv, π

6 )) ⊂ V(21, π
6 ). By Lemma 5.20, we have F (V(cv, π

6 )) ⊂ Q(V(21, π
6 )) ⊂

V(30, π
6 ).
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5.J Repelling Fatou coordinate Φ̃rep on X

Proof of Proposition 5.5. First it is easy to see that on X, F ◦πX ◦ g = Q◦ϕ−1 ◦πX ◦ ϕ̃◦ Q̃−1 =
Q ◦ Q̃−1 = πX .

Near ∞, F has an inverse branch ḡ(z) = z − (10 − c
0
) + o(1) as z → ∞. By Lemma 5.9,∣∣∣arg(10 − c

0
)
∣∣∣ ≤ arcsin

(
c
01,max

10−c
00

)
≤ π

3 · 2.28
9.82 < π

10 . If we take a large L > 0, then ḡ exists and

injective in W = CrV(−L, π
10) and satisfies | arg(ḡ(z)−z)−π| < π

10 , hence ḡ(W ) ⊂ W , and also
Re ḡ(z) < Re z−(10−c

00
)+c

01,max
+1 < Re z−6. By the behavior of Q̃−1 near ∞ (Proposition

5.4 (a)), we have πX(g(π−1
X (z))) → ∞ as z ∈ πX(X) and z → ∞. Therefore it must coincide

with g(z) as the only inverse of z by F near ∞, hence πX(g(z)) = ḡ(πX(z)) if πX(z) is large.
By a general theory of Fatou coordinates (see Theorem 1.1), there exists a Fatou coordinate

Φrep(z) holomorphic and injective in {z : Re z < −L′} for large L′ > L and satisfies Φrep(ḡ(z)) =
Φrep(z) − 1. Then it can be extended to W , and the extension is still injective, because of the
injectivity of the original Φrep and ḡ|W . This is a repelling Fatou coordinate for F .

Let W ′ = π−1
X (W ∩πX(X)), then πX |W ′ is injective if L is large. Define Φ̃rep = Φrep ◦πX on

W ′. It naturally satisfies Φ̃rep(g(z)) = Φ̃rep(z) − 1 in W ′. Now we want to extend this function
to the whole X via the functional equation. We need the following:

Lemma 5.29. For any point z ∈ X, there exists an n ∈ N such that gn(z) ∈ W ′.

Proof. Pick a point z0 ∈ W ′. Let ∂W ′ be the boundary of W ′ within X. Then πX(∂W ′)
is a union of two finite segments. Note that X is hyperbolic as a Riemann surface, since it
is isomorphic to Y which is a proper subdomain of C. Since ∂W ′ is relatively compact within
CrD(0, ρ), in which gn(z0) tend to the boundary, the Poincaré distance dCrD(0,ρ)(g

n(z0), ∂W ′) →
∞ as n → ∞. The same holds with respect to the Poincaré distance dX of X, since by Schwarz-
Pick theorem (see [A2]), the projection πX : X → C r D(0, ρ) does not expand the Poincaré
distance. It follows that for any other point z ∈ X,

dX(gn(z), gn(z0)) ≤ dX(z, z0) < dX(gn(z0), ∂W ′)

for sufficiently large n, where the left inequality is also given by Schwarz-Pick theorem applied
to gn. Hence gn(z) ∈ W ′ for these n.

Thus the Fatou coordinate Φ̃rep can be extended to X by Φ̃rep(z) = Φ̃rep(gn(z))+n, where n is
chosen so that gn(z) ∈ W ′. It is well defined and satisfies the functional equation. Moreover it is
injective on X, because of the injectivity of the original Φrep and g. We also have ReπX(gn(z)) →
−∞ as n → ∞ for any point z ∈ X. Proposition 5.5 is proved.

5.K Attracting Fatou coordinate Φattr and domains D1, D]
1

Definition. Denote pr+(z) = Re(z e−iπ/6) and pr−(z) = Re(z e+iπ/6), which correspond to the
orthogonal projection to the line with angle ±π

6 to the real axis. Let

H±
1 = {z : pr±(z) > u1 := 12.5}, H±

2 = {ζ : pr±(ζ) > u2 := cp},

H±
3 = {z : pr±(z) ≥ u3 := pr+(cv) = 27

√
3

2 (+ 23.38 . . . )}, H±
4 = {ζ : pr±(ζ) ≥ u4 := 20.8}.

Lemma 5.30 (Attracting Fatou coordinate Φattr). (a) ϕ(H±
2 ) ⊃ H±

1 , ϕ(H±
4 ) ⊃ H±

3 . Hence F
is defined on H+

1 ∪ H−
1 .

(b) Q is injective in H±
2 . Therefore F is injective in H±

1 .



Parabolic Renormalization May 5, 2006 35

(c) If z ∈ H±
1 , then | arg(F (z)− z)| < π

3 , hence F (H±
1 ) ⊂ H±

1 . Therefore the sector H+
1 ∪H−

1 =
V

(
u0,

2π
3

)
is forward invariant under F and contained in Basin(∞), where u0 = 25√

3
.

(d) An attracting Fatou coordinate Φattr for F exists in V
(
u0,

2π
3

)
and is injective in each of

H±
1 .

We normalize the Fatou coordinate Φattr so that Φattr(cv) = 1.

Proof. (a) By Lemma 5.22 (b), H±
1 is contained in Image(ϕ). If ζ ∈ ∂H±

2 , then By Lemma 5.22
(e),

pr±(ϕ(ζ)) = pr±(ζ) + pr±(c
00

) + pr±(c
0
− c

00
) + pr±(ϕ1(ζ))

≤ cp +
c
00

√
3

2
+ c

01,max
+ ϕ

1,max
(cp) (+ 12.493 . . . ) <

∗
12.5. (5.30*)

Hence ϕ(ζ) /∈ H±
1 . Thus ϕ−1(H±

1 ) must be contained in one side of ∂H±
2 . However if we take

a point ζ in H±
2 far from ∂H±

2 , then ϕ(ζ) ∈ H±
1 , therefore ϕ−1(H±

1 ) must be contained in H±
2 ,

i.e., ϕ(H±
2 ) ⊃ H±

1 .
If ζ ∈ ∂H±

4 , then

pr±(ϕ(ζ)) = pr±(ζ) + pr±(c
00

) + pr±(c
0
− c

00
) + pr±(ϕ1(ζ))

≤ 20.8 +
c
00

√
3

2
+ c

01,max
+ ϕ

1,max
(20.8) (+ 23.31 . . . )

<
∗

pr±(cv)(+ 23.38 . . . ). (5.31*)

As before, we conclude that ϕ(H±
4 ) ⊃ H±

3 .
(b) The injectivity of Q in H±

2 follows from Lemma 5.21 (c). The injectivity of F in H±
1 follows

immediately.
(c) If z ∈ H±

1 , then ζ = ϕ−1(z) ∈ H±
2 by (a). By Lemma 5.27 (b),

|arg(F (z) − z)| ≤ max{Arg∆Fmax(cp,±π
6 ), −Arg∆Fmin(cp,±π

6 )}

(+ max{0.524 . . . , 0.731 . . . }) <
∗

1 <
π

3
. (5.32*)

This implies the forward invariance of H±
1 and also H+

1 ∪ H−
1 , which can be shown to coincide

with V
(
u0,

2π
3

)
. The fact that H±

1 is contained in Basin(∞) and (d) can be proven as in the
proof of Proposition 5.5.

Lemma 5.31 (Estimates on Φattr). (a) The attracting Fatou coordinate Φattr satisfies the fol-
lowing inequalities:

−π

6
< arg Φ′

attr(z) <
π

5
for z ∈ H+

3 and − π

5
< arg Φ′

attr(z) <
π

6
for z ∈ H−

3 ; (5.33)

0.055 < |Φ′
attr(z)| < 0.176 for z ∈ H+

3 ∪ H−
3 = V

(
cv, 2π

3

)
. (5.34)

(b) Φattr is injective in H+
3 ∪ H−

3 = V
(
cv, 2π

3

)
. There exists a domain H1 such that Φattr is a

homeomorphism from H1 onto {z : Re z ≥ 1}, and H1 satisfies V
(
cv, π

3

)
⊂ H1 ∪ {cv} ⊂ H1 ⊂

V
(
cv, 2π

3

)
∪ {cv} and cv ∈ ∂H1.
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Proof. (a) Suppose z ∈ H+
3 . Then ζ = ϕ−1(z) ∈ H+

4 , i.e., Re(ζe−iπ/6) ≥ u4 = 20.8. We will
derive the estimates from Theorem 5.12. First we claim that

F (z) ∈ DH+
1
(z, s(r4)), (5.35)

with r4 = 0.43, where s(·) is defined in Lemma 5.11 (b). According to Lemma 5.11 (b) with
H = H+

1 , t = u1, u = pr+(z) − u1, r = r4, θ = π
6 , this is equivalent to

F (z) − z ∈ D

(
2ur2

4e
iπ/6

1 − r2
4

,
2ur4

1 − r2
4

)
. (5.36)

Note that this disk contains 0, so it is increasing with u. Therefore we only need to check when
u is the smallest, i.e. u5 = u3−u1 = pr+(cv)−12.5. According to Lemma 5.27 (a), we can write

F (z) − z = α + β with α = 10 − c
00

+
49e−iπ/6

2u4
, u4 = 20.8 and |β| ≤ βmax(u4). By a numerical

estimate, we have∣∣∣∣∣α − 2u5r
2
4e

iπ/6

1 − r2
4

∣∣∣∣∣ + βmax − 2u5r4

1 − r2
4

=

√√√√(
10 − c

00
+

49
√

3
4u4

−
√

3u5r2
4

1 − r2
4

)2

+
(

49
4u4

+
u5r2

4

1 − r2
4

)2

+ βmax(u4) −
2u5r4

1 − r2
4

(+ −0.289 . . . ) <
∗

0, (5.37*)

which implies (5.36) and (5.35).
Applying Theorem 5.12 to Φattr with Ω = H+

1 , r = r4 and using Lemma 5.27, we obtain

arg Φ′
attr(z) ≤ − arg (F (z) − z) +

1
2

∣∣log F ′(z)
∣∣ +

1
2

log
1

1 − r2
4

≤ −Arg∆Fmin(u4,
π
6 ) +

1
2
LogDFmax(u4) −

1
2

log(1 − r2
4)

(+ 0.6175 . . . ) <
π

5
(+ 0.6283 . . . ), (5.38*)

arg Φ′
attr(z) ≥ − arg (F (z) − z) +

1
2

∣∣log F ′(z)
∣∣ − 1

2
log

1
1 − r2

4

≥ −Arg∆Fmax(u4,
π
6 ) − 1

2
LogDFmax(u4) +

1
2

log(1 − r2
4)

(+ −0.5089 . . . ) > −π

6
(+ −0.5235 . . . ). (5.39*)

A similar estimate can be given for z ∈ H−
3 .

As for |Φ′
attr(z)| on H+

3 or H−
3 , again by Theorem 5.12 and Lemma 5.27, we have

|Φ′
attr(z)| ≤ exp

(
− log |F (z) − z| + 1

2
| log F ′(z)| + 1

2
log

1
1 − r2

4

)
≤

exp
(

1
2LogDFmax(u4)

)
Abs∆Fmin(u4,

π
6 )

√
1 − r2

4

(+ 0.1752 . . . ) <
∗

0.176, (5.40*)

|Φ′
attr(z)| ≥ exp

(
− log |F (z) − z| − 1

2
| log F ′(z)| − 1

2
log

1
1 − r2

4

)
≥

√
1 − r2

4

Abs∆Fmax(u4,
π
6 ) exp

(
1
2LogDFmax(u4)

) (+ 0.0558 . . . ) >
∗

0.055. (5.41*)
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It is easy to check that H+
3 ∪ H−

3 = V(cv, 2π
3 ).

(b) Suppose that [z1, z2] is a non-trivial segment within V(cv, 2π
3 ). It is easy to see that

if θ < arg Φ′
attr(z) < θ′ ≤ θ + π on [z1, z2], then θ < arg

Φattr(z2) − Φattr(z1)
z2 − z1

< θ′. (5.42)

(Apply (5.19) to e−iθ−iπ/2Φattr(z) and e−iθ′+iπ/2Φattr(z) and consider the real part.) In partic-
ular, taking θ = −π

5 and θ′ = π
5 , we have Re Φattr(z2)−Φattr(z1)

z2−z1
> 0 and Φattr(z1) 6= Φattr(z2).

If two points z1, z2 ∈ V(cv, 2π
3 ) cannot be joined by one segment in V(cv, 2π

3 ), then one can
choose z3 so that [z1, z3] and [z3, z2] are contained in V(cv, 2π

3 ) and π
3 ≤ arg(z3 − z1) ≤ 2π

3
and π

3 ≤ arg(z2 − z3) ≤ 2π
3 (interchanging z1 and z2 if necessary). By (5.42), 0 < π

3 − π
5 <

arg(Φattr(z2) − Φattr(z1)) < 2π
3 + π

5 < π. The same estimates holds for z2 − z3 and therefore
Im(Φattr(z2) − Φattr(z1)) > 0. Thus Φattr is injective in V(cv, 2π

3 ).
Similarly if z1, z2 ∈ H+

3 and z1 6= z2, then

arg(z2 − z1) −
π

6
< arg(Φattr(z2) − Φattr(z1)) < arg(z2 − z1) +

π

5
. (5.43)

In particular, if arg(z − cv) = 2π
3 (z is on the upper boundary of V(cv, 2π

3 )), π
2 = 2π

3 − π
6 <

arg(Φattr(z) − 1) < 2π
3 + π

5 < π (note here that Φattr(cv) = 1), i.e., Re(Φattr(z) − 1) < 0 and
Im(Φattr(z) − 1) > 0. A similar result holds for H−

3 . By (5.19) and (a), we also have∣∣∣∣Φattr(z) − 1
z − cv

∣∣∣∣ ≥ ∫ 1

0
ReΦ′

attr(cv + t(z − cv))dt ≥ 0.055 cos(π
5 ) > 0.

So as z → ∞ in V(cv, 2π
3 ), Φattr(z) → ∞.

Given any R′ > 0, take R′′ > 0.055 cos(π
5 ) × R′ and denote G = V(cv, 2π

3 ) ∩ D(cv,R′′). The
above results imply that Φattr(∂G) does not intersect {z : Re z ≥ 1} ∩ D(1, R′) except cv. Since
{z : Re z ≥ 0} ∩D(1, R′) contains at least one point of Φattr(G) (such as cv + t with small t > 0
by (5.43)), the Jordan curve Φattr(∂G) has winding number 1 around this point. Therefore this
is true around any point in {z : Re z ≥ 0} ∩ D(1, R′) except cv. Hence by Argument Principle,
{z : Re z ≥ 1} ∩ D(1, R′) ⊂ Φattr(G) ∪ {cv}. Since R′ > 0 was arbitrary, {z : Re z ≥ 1}
is contained in the image of V(cv, 2π

3 ) ∪ {cv} by Φattr. Define H1 = Φ−1
attr({z : Re z > 1}).

If z ∈ V(cv, π
3 ) = z ∈ H+

3 ∩ H−
3 , again by (5.43), where π

5 can be replaced by π
6 in this

case, we have | arg(Φattr(z) − 1)| < π
3 + π

6 = π
2 . Hence Φattr(V(cv, π

3 )) should be contained in
{z : Re z > 1} ∪ {cv}. Therefore we have V

(
cv, π

3

)
⊂ H1 ∪ {cv} ⊂ H1 ⊂ V

(
cv, 2π

3

)
∪ {cv}.

Proof of Proposition 5.6. Lemma 5.30 already proved (a). For (b), simply define D1 = Φ−1
attr({z :

1 < Re z < 2, −η < Im z < η}), D]
1 = Φ−1

attr({z : 1 < Re z < 2, Im z > η}), D[
1 = Φ−1

attr({z : 1 <
Re z < 2, Im z < −η}), where the inverse image is taken only within V(cv, 2π

3 ). Suppose | arg(z−
F (cv))| ≤ π

3 (on the right of W1). Then z ∈ V(cv, π
3 ), since by Lemma 5.28, F (cv) ∈ V(cv, π

6 ). So
as before we obtain | arg(Φattr(z)−Φattr(F (cv)))| < π

2 . Hence ReΦattr(z) > ReΦattr(F (cv)) = 2.
This shows that D1, D]

1, D[
1 must be contained in W1. Similarly if | arg(z − cv)| ≤ π

6 , then
| arg(Φattr(z)−1)| < π

6 + π
6 = π

3 , and Φattr(z) cannot be in {z : 1 < Re z < 2, | Im z| > η} because
tan π

3 =
√

3
2 < η = 2. This implies that D]

1 and D[
1 are contained in {z : π

6 < ± arg(z−cv) < 2π
3 }.

Finally it remains to show D1 ⊂ D(cv,R1). Since the derivative of Φ−1
attr is bounded by 1

0.055 by (a)
and {z : 1 < Re z < 2, −η < Im z < η} ⊂ D(1,

√
1 + η2), we have D1 ⊂ D(cv,

√
1 + η2/0.055).

We only need to check that
√

1 + η2/0.055 < R1 = 239. In fact, this inequality is true even for
a much bigger η such as η = 13.0 because√

1 + 13.02/0.055 (+ 237.06 . . . ) <
∗

239. (5.44*)
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5.L Locating domains D0, D′
0, D−1 and D′′

−1

Lemma 5.32. (a) Let W̃0 := {ζ : Re ζ > cp or pr+(ζ) > 2cp√
3

or pr−(ζ) > 2cp√
3
}. Then

V(cv, 2π
3 ) ⊂ Q(W̃0) ⊂ C r (−∞, cv] and W̃0 ⊂ U1.

(b) ϕ(W̃0) ⊂ W0 := {z : Re z > 7.6 or pr+(z) > 9.1 or pr−(z) > 9.1}.
(c) Q−1(W0) r D ⊂ W̃−1 := V(0, 2π

3 ) r (D ∪ {ζ : Re ζ ≤ 0 and |ζ| ≤ 7}).

We postpone the proof until later in this subsection.

Definition/Construction. Note that Q maps both U1 and U2 homeomorphically onto C r
(−∞, cv]. Define

H̃0 = (Q|U1)
−1 (H1), D̃0 = (Q|U1)

−1 (D1), D̃]
0 = (Q|U1)

−1 (D]
1), D̃′

0 = (Q|U2)
−1 (D1).

These domains are contained in CrEr1 , because of Lemma 5.17 (d) and H0∪D]
1 ⊂ V(cv, 2π

3 ) ⊂
C r D(0, ρ), D1 ⊂ D(0, R) r D(0, ρ). Hence we can define

H0 = ϕ(H̃0), D0 = ϕ(D̃0), D]
0 = ϕ(D̃]

0), D′
0 = ϕ(D̃′

0).

It is easy to see that F (H0) = H1 and Φattr naturally extends to H0 so that it is a home-
omorphism onto {z : Re z ≥ 0}. Moreover Φattr(D0) = {z : 0 < Re z < 1, | Im z| < η}
and D0 ⊂ H0 r H1, in particular D0 does not intersect V(cv, π

3 )(⊂ H1). By Lemma 5.32
(a), (b), D0 must be contained in W0, since D1 ⊂ V(cv, 2π

3 ). So D0 must be contained in
C r (−∞, 0] ∪ [cv,+∞).

Since Q maps (U1+∪ U2−∪γ
b1

) and (U1−∪ U2+∪γ
b2

) homeomorphically onto Cr (−∞, 0]∪
(cv,+∞), we can define

D̃−1 =
(
Q|(U1+∪U2−∪γb1)

)−1 (D0) and D̃′′
−1 =

(
Q|(U1−∪U2+∪γb2)

)−1 (D0).

These domains are contained in C r Er1 by the lemma below. So finally define

D−1 = ϕ(D̃−1) and D′′
−1 = ϕ(D̃′′

−1).

It is clear from the construction that F maps D0, D′
0, D−1 and D′′

−1 homeomorphically on to
D1, D1, D0 and D0 respectively. Recall that R = 266, R1 = 239.

Lemma 5.33. (a) D̃0 ⊂ W̃0 ∩ D(17, R1 + 1); D0 ⊂ W0 ∩ D(17, R1 + 4).

(b) D̃0 ∪ D̃′
0 ∪ D̃−1 ∪ D̃′′

−1 ⊂ W̃−1 ∩ D(0, R1 + 18) ∩ U12 ∩ (C r Er1).
(c) D0 ∪ D′

0 ∪ D−1 ∪ D′′
−1 ⊂ D(0, R1 + 21).

Proof. (a) If |ζ| ≥ 100, then

|Q(ζ) − (ζ + 10)| ≤ 49
100

+ Q2,max(100) <
49
100

+
160
992

+
80 × 100 + 48 + 1

994
< 1.

Hence if |ζ−17| ≥ R1+1, then |ζ| > 100 and we have |Q(ζ)−27| = |(Q(ζ) − (ζ + 10)) + (ζ − 17)| ≥
|ζ − 17| − |Q(ζ) − (ζ + 10)| > R1. So

D̃0 ∪ D̃′
0 ⊂ Q−1(D(cv,R1)) ⊂ D(17, R1 + 1).

On the other hand, if ζ ∈ C rE and |ζ − 17| < R1 +1, then its image ϕ(ζ) is surrounded by the
Jordan curve ϕ({ζ ′ : |ζ ′ − 17| = R1 + 1}) which is contained in D(17, R1 + 4) by (5.27*). Hence
D0 ∪ D′

0 ⊂ D(17, R1 + 4). It follows from Lemma 5.32 (a), (b) that D̃0 ⊂ W̃0 and D0 ⊂ W0.
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(b) Proceeding similarly, we have D̃−1 ∪ D̃′′
−1 ⊂ Q−1(D(17, R1 + 4)) ⊂ D(7, R1 + 5), and D−1 ∪

D′′
−1 ⊂ D(7, R1 + 8). Let ζ ∈ D̃0 ∪ D̃′

0 ∪ D̃−1 ∪ D̃′′
−1. By the above, we have ζ ∈ D(17, R1 + 1) ∪

D(7, R1 +5) ⊂ D(0, R1 +18). It is also contained in Q−1(D0 ∪D1) ⊂ Q−1(W0). By Lemma 5.32
(c), it is in W̃−1. The definition shows that ζ ∈ U12. Since D0 ∪ D1 ⊂ W0 ∩ (D(17, R1 + 4) ∪
D(27, R2)) ⊂ D(0, R) r D(0, ρ), it follows from Lemma 5.17 (d) that ζ ∈ C r Er1 .
(c) It was already shown that he left hand side is contained in D(17, R1 +4)∪D(7, R1 +8) which
is in D(0, R1 + 21).

Proof of Proposition 5.7. The above construction and the previous lemma show that statements
(a), (b) and (c) of Proposition 5.7 hold. We now need to check D0 ∪D

′
0 ∪D−1 ∪D

′′
−1 r {cv} ⊂

D(0, R) r
(
D(0, ρ) ∪ R− ∪ V(cv, π

6 )
)

= πX(X2+)∪πX(X2−). Lemma 5.33 (c) shows that the left
hand side is contained in D(0, 27).

Let ζ ∈ closure(D̃0 ∪ D̃′
0 ∪ D̃−1 ∪ D̃′′

−1). Lemma 5.33 (b) implies that ζ ∈ intEr1 . Hence by
Lemma 5.23 |ϕ(ζ)| > ρ. Furthermore, by Lemma 5.24, if Re ζ ≥ 0, ϕ(ζ) /∈ R−. If Re ζ ≤ 0, then
ζ ∈ closure(W̃−1) hence | Im ζ| ≥ 7 sin 2π

3 > 3. However, since |ζ| ≥ 7, we have |ϕ(ζ) − ζ| < 3
by (5.27*). Therefore ϕ(ζ) /∈ R−.

Finally let z ∈ D0 ∪ D
′
0 ∪ D−1 ∪ D

′′
−1. Then F (z) ∈ H0 and 0 ≤ ReΦattr(F (z)) ≤ 2. On

the other hand, by Lemma 5.31 (b), for z′ ∈ V(cv, π
6 ) with z′ 6= cv, we have ReΦattr(z′) > 1

hence ReΦattr(F (z′)) > 2. So z cannot be in V(cv, π
6 ) r {cv}. Altogether, we have proved (d)

of Proposition 5.7.

The rest of this subsection is devoted to the proof of Lemma 5.32.

Proof of Lemma 5.32. (a) Note that the boundary ∂W̃0 consists of `±0 : ζ = cp ±it (0 ≤ t ≤ cp√
3
)

and `±1 : ζ =
(
1 ± i√

3

)
cp + s e±

2πi
3 (s ≥ 0). We first show that Q(`±0 ), Q(`±1 ) ⊂ {z : 2π

3 <

± arg(z − cv) < π} ∪ {cv}.
By an easy computation, we have

Q(ζ) − cv =
(ζ2 − ζ + 1)(ζ − 5 − 2

√
6)2(ζ − 5 + 2

√
6)2

ζ(ζ − 1)4
. (5.45)

Take ζ = cp + it (0 < t ≤ cp√
3
) on `+

0 r {cv}. We give bounds on

arg(Q(ζ) − cv) = π − arg ζ + arg
(

1 +
ζ

(ζ − 1)2

)
+ 2arg

(
1 +

1 − cp′

ζ − 1

)
.

Note that 0 < arg ζ ≤ π
6 . Since Re (ζ−1)2

ζ = Re
(
ζ − 2 + 1

ζ

)
> cp − 2 and Im (ζ−1)2

ζ =(
1 − 1

|ζ|2

)
t > 0, we have by Lemma 5.9,

0 < − arg
(

1 +
ζ

(ζ − 1)2

)
≤ arcsin

∣∣∣∣ ζ

(ζ − 1)2

∣∣∣∣ ≤ arcsin
1

cp − 2
≤ π

3
· 1
cp − 2

<
π

18
.

We also have 0 < − arg
(
1 + 1−cp′

ζ−1

)
≤ arcsin 1

cp−2 < π
18 . Hence it follows that

π > arg(Q(ζ) − cv) > π − π

6
− π

18
− 2π

18
=

2π

3
.

This implies Q(`+
0 ) ⊂ {z : 2π

3 < arg(z − cv) < π} ∪ {cv}.
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Next assume ζ ∈ `+
1 , i.e., ζ =

(
1 + i√

3

)
cp + s e+ 2πi

3 (s ≥ 0). We now want to show that
pr+(Q(ζ)) < pr+(cv). We write as in Lemma 5.19,

Q(ζ) = ζ + 10 +
49
ζ

+
160

(ζ − 1)2
+ Q3(ζ)

with |Q3(ζ)| ≤ Q3,max(r) :=
80r + 32 + 48

r

(r − 1)4
for |ζ| ≥ r > 1.

It is easy to check that pr+(ζ) = 2cp√
3
, pr+(10) = 10

√
3

2 , π
6 ≤ arg ζ ≤ 2π

3 , hence −5π
6 ≤

arg
(

e−iπ/6

ζ

)
≤ −π

3 , which implies pr+

(
1
ζ

)
≤ cos π

3
|ζ| ≤ 1/2

2cp/
√

3
. Also π

6 ≤ arg(ζ − 1) ≤ 2π
3 , hence

−3π
2 ≤ arg

(
e−iπ/6

(ζ−1)2

)
≤ −π

2 , and pr+

(
1

(ζ−1)2

)
≤ 0. Thus we have

pr+(Q(ζ)) ≤ 2cp√
3

+
10
√

3
2

+
49/2

2cp/
√

3
+ 0 + Q3,max

(2cp√
3

)
(+ 22.3 . . . ) <

∗
pr+(cv) (+ 23.3 . . . ). (5.46*)

Finally we want to show ImQ(ζ) > 0. Since `+
1 is a half line which intersect orthogonally

{ζ ′ : arg ζ ′ = π
6 } at distance 2cp√

3
from the origin, its image by ζ 7→ 1

ζ is on the circle that passes

through 0 and intersects orthogonally {ζ ′ : arg ζ ′ = −π
6 } at distance

√
3

2cp from the origin. The

imaginary part on this circle is at least −3
4 ·

√
3

2cp . Hence we have Im 1
ζ ≥ −3

4 ·
√

3
2cp for ζ ∈ `+

1 .
Hence

ImQ(ζ) ≥ cp√
3
− 49 · 3

4
·
√

3
2cp

− Q2,max

(2cp√
3

)
(+ 0.94 . . . ) >

∗
0. (5.47*)

Thus we have proved that Q(`+
1 ) ⊂ {z : 2π

3 < arg(z − cv) < π}. Similar estimates hold for for
Q(`−0 ), Q(`−1 ).

By an argument similar to the proof of Lemma 5.31 (b), it is easy to show that V(cv, 2π
3 ) ⊂

Q(W̃0). Since Q(∂W̃0) does not intersect ΓQ
b = (0, cv] except at cv, ∂W̃0 does not intersect the

Jordan curve γb1 ∪ γb2 ∪ {−1} except at cp. Since ∂W̃0 is unbounded, it (except cp) must be
contained in the unbounded component of C r γb1 ∪ γb2 ∪ {−1}, which is U1 ∪ (−∞, 0). The
Jordan curve must be on left hand side of ∂W̃0 and W̃0 is on the right. So it follows that W̃0

must be contained in U1. Therefore Q(W̃0) ⊂ C r (−∞, cv].

(b) Suppose ζ ∈ W̃0. Hence Re ζ ≥ cp or pr±(ζ) ≥ 2cp√
3
. If Re ζ ≥ cp, then

Re ϕ(ζ) ≥ cp + c
00

− c
01,max

− ϕ
1,max

(cp) (+ 7.6401 . . . ) >
∗

7.6. (5.48*)

If pr±(ζ) ≥ 2cp√
3
, then

pr±(ϕ(ζ)) ≥ 2cp√
3

+

√
3c

00

2
− c

01,max
− ϕ

1,max

(2cp√
3

)
(+ 9.169 . . . ) >

∗
9.1. (5.49*)

Therefore in either case, ϕ(ζ) ∈ W0.

(c) Note that Cr(W̃−1∪D) = {ζ : Re ζ ≤ 0 and 1 < |ζ| ≤ 7}∪{ζ : |ζ| ≥ 7 and 2π
3 ≤ arg ζ ≤ 4π

3 }.
We need to show that if ζ is in this set, then Q(ζ) /∈ W0.
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First suppose that Re ζ ≤ 0 and 1 < |ζ| ≤ 7. Then |ζ + 1| ≤ |ζ − 1|. Therefore

|Q(ζ)| =

∣∣∣∣∣
(

ζ − 1
ζ

)(
ζ + 1
ζ − 1

)5
∣∣∣∣∣ ≤ |ζ| + 1

|ζ|
.

Hence |Q(ζ)| ≤ 7 + 1
7 < 7.6, which implies Q(ζ) ∈ D(0, 7.6) ⊂ C r W0.

Next assume that r = |ζ| ≥ 7 and 2π
3 ≤ arg ζ ≤ π. Note that |ζ − 1| ≥ |ζ| = r ≥ 7, hence

Q2(ζ) has an estimate:

|ζ Q2(ζ)| ≤ 160
7

+
80 × 7 + 32 + 48

7

73
<

160
7

+
80 × 7 + 32 + 143

73
= 25.

Thus we have

Re(Q(ζ)) ≤ r cos
(2π

3

)
+ 10 +

49 cos(2π
3 )

r
+ Re

ζ Q2(ζ)
ζ

≤ −r

2
+ 10 − 49

2r
+

25
r

≤ −7
2

+ 10 +
1
14

< 7.6. (5.50)

As for pr+(Q(ζ)), we have pr+(ζ) ≤ 0 and −7π
6 ≤ arg

(
e−iπ/6

ζ

)
≤ −5π

6 . Hence we have

pr+(Q(ζ)) ≤ 0 + pr+(10) +
49 cos(5π

6 )
r

+ pr+

(ζ Q2(ζ)
ζ

)
≤ 10

√
3

2
+

1
r

(
−49

√
3

2
+ 25

)
<

10
√

3
2

<
10 × 1.8

2
< 9.1. (5.51)

Now for pr−(Q(ζ)), we have pr−(ζ) ≤ −7 cos(π
6 ) and −5π

6 ≤ arg
(

eiπ/6

ζ

)
≤ −π

2 , so pr−(1
ζ ) ≤ 0.

Hence

pr−(Q(ζ)) ≤ −7 cos
(π

6

)
+ pr−(10) + 0 + pr−

(ζ Q2(ζ)
ζ

)
≤ −7

√
3

2
+

10
√

3
2

+
25
7

=
3
√

3
2

+
25
7

< 3 + 4 < 9.1. (5.52)

These three inequalities imply that Q(ζ) /∈ W0. The same conclusion holds when π ≤ arg ζ ≤ 4π
3 .

This ends the proof of Lemma 5.32.

5.M Construction of Ψ1 – Relating Dn’s to P

Proof of Proposition 5.8. The sets D0, D′
0, D−1, D′′

−1, D]
0, and D]

1 are contained in πX(X1+ ∪
X2−), so we regard them as subsets of X1+ ∪ X2−. (However sometimes we will abuse the
notation to mean their projection.) Define for n = 1, 2, . . . ,

D−n−1 := gn(D−1); D′
−n := gn(D′

0); D′′
−n−1 = gn(D′′

−1); D]
−n := gn(D]

0).

Note here that our definition does not automatically guarantee that g(D0) = D−1 and g(D]
1) =

D]
0 (see lemma below). (For example, if we lifted D0 etc. to πX(X1− ∪X2+), then we would get

g(D0) = D′′
−1.) The Fatou coordinate Φattr extends naturally to Φ̃attr on these domains together

with their closure. Let

D = {z : 0 < Re z < 1 and | Im z| < η} and D] = {z : 0 < Re z < 1 and η < Im z}.
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We name their boundary segments by

∂l
+D = 0 + i[0, η]; ∂l

−D = 0 + i[0,−η]; ∂r
+D = 1 + i[0, η]; ∂r

−D = 1 + i[0,−η];

∂h
+D = ∂hD] = iη + [0, 1]; ∂h

−D = −iη + [0, 1]; ∂lD] = 0 + i[η,+∞]; ∂rD] = 1 + i[η, +∞].

Here l, r and h stand for left, right and horizontal. Since Φattr(z) − 1 maps homeomorphically
D1 and D]

1 onto D and D] including the boundaries, we name the boundary segments of D1

and D]
1 by ∂l

+D1, ∂hD]
1, etc according to their images by Φattr(z) − 1. We will apply the same

naming convention to domains (such as Dn, D′
n, D′′

n, D]
n, D̃0 etc. with n ≤ 0) which are mapped

homeomorphically onto D1 and D]
1 by iterates of F or by Q.

Lemma 5.34. (a) g(D0) = D−1 and g(D]
1) = D]

0.

(b) Among closed domains {Dn, D
′
n, D

′′
n−1, D

]
n|n = 0,−1,−2, . . . }, intersecting pairs are exactly

as follows:

Dn ∩ Dn−1 = ∂l
+Dn = ∂r

+Dn−1, Dn−1 ∩ D
′
n = ∂r

−Dn−1 = ∂l
−D′

n,

D
′
n ∩ D

′′
n−1 = ∂l

+D′
n = ∂r

+D′′
n−1, D

′′
n−1 ∩ Dn = ∂r

−D′′
n−1 = ∂l

−Dn,

Dn ∩ D
′
n = Dn−1 ∩ D

′′
n−1 = a point,

Dn ∩ D
]
n = ∂h

+Dn = ∂hD]
n, D

]
n ∩ D

]
n−1 = ∂lD]

n = ∂rD]
n−1,

Dn ∩ D
]
n−1 = Dn−1 ∩ D

]
n = a point.

(5.53)

Proof. First consider four domains D0, D′
0, D−1, D′′

−1. They are defined through D̃0, D̃′
0, D̃−1,

D̃′′
−1, which are inverse images of D1, D0 by two-fold branched covering Q : U12 → C r (−∞, 0],

branched only over cv. Since D1 and D0 meet at cv along ∂l
+D1 = ∂r

+D0 and ∂l
−D1 = ∂r

−D0,
we have the three lines of (5.53) first for D̃0 etc., then for D0 = ϕ(D̃0) etc.

Let us show (a) now. Since g corresponds to the unique branch of F−1 taking value near ∞,
near ∞ we have g(∂rD]

1) = ∂lD]
1. By the construction, we also have ∂lD]

1 = ∂rD]
0. This means

that g maps the left side of ∂rD]
1 to the left side ∂rD]

0, therefore we conclude g(D]
1) = D]

0. So
g(∂rD]

0) = g(∂lD]
1) = ∂lD]

0. Note that D0 and D]
0 are defined so that ∂rD]

0∪∂r
+D0 is a single arc

joining ∞ to cv. Continuing the branch g along this curve up to cv, we obtain g(∂r
+D0) = ∂l

+D0

which coincides with ∂r
+D−1 by the above. Considering the left side of the curves, we conclude

g(D0) = D−1.
A similar lifting argument can be used to conclude the last two line of (5.53) from the

intersection of D
]
0 ∪ D

]
1 with D0 ∪ D1. Since this intersection is lifted to ∂h

+D−1 ∪ ∂h
+D0, the

other lift D
′
0 ∪D

′′
−1 cannot intersect with D

]
−1 ∪D

]
0. Thus we conclude that among the domains

with indices 0 and −1, all intersections are listed in (5.53).
By applying g (and using (a)), we obtain the intersection relations between two domains

whose indices are the same or differ by one. If the indices differ by two or more, two domains
cannot intersect, because they (or their projection) will be mapped to disjoint sets by iterates
of F .

Now let

U = UP
1+ ∪ UP

1− ∪ γP
c1

, U ′ = UP
2− ∪ UP

3+ ∪ γP
c3

, U ′′ = UP
2+ ∪ UP

3− ∪ γP
c2

.

Each domain is mapped homeomorphically by P onto Cr(−∞, 0]. The map Ψ0(z) = cv
P
e2πiz =

− 4
27e2πiz defined in Proposition 5.8 maps D onto (C r (−∞, 0]) ∩ {z : e−2πη < |z| < e2πη} and
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D] onto (C r (−∞, 0])∩ {z : 0 < |z| < e−2πη}. Define Ψ1 first in the interior of the domains Dn

etc by

Ψ1 =


(P |U )−1 ◦ Ψ0 ◦ Φ̃attr on Dn ∪ D]

n

(P |U ′)−1 ◦ Ψ0 ◦ Φ̃attr on D′
n

(P |U ′′)−1 ◦ Ψ0 ◦ Φ̃attr on D′′
n.

Then Ψ1 on each domain is a homeomorphism onto its image, and extends continuously to the
closure. We need to know that, on a common boundary on two domains, the two extensions
are consistent. Since Ψ1 is defined as a branch of P−1 ◦ Ψ0 ◦ Φ̃attr, as soon as these extensions
match, Ψ1 will be holomorphic. (In fact, for the points corresponding to the critical value of P ,
use the removable singularity theorem.)

Let us check the matching conditions according to the intersection relation (5.53). If z ∈ Dn

tends to ∂l
+Dn, then Ψ0 ◦ Φ̃attr(z) tends to [cv

P
, 0) = ΓP

a from lower side, hence Ψ1(z) ∈ U tends

to [cp
P
, 0) = γP

a1 from lower side. If z ∈ Dn−1 tends to the same boundary curve ∂l
+Dn = ∂r

+Dn−1

from the other side, then Ψ0 ◦ Φ̃attr(z) tends to ΓP
a from upper side, hence Ψ1(z) ∈ U tends to

γP
a1 from upper side. Since P is homeomorphic in a neighborhood of γP

ai, Ψ1 matches completely
along Dn ∩ Dn−1 = ∂l

+Dn = ∂r
+Dn−1, and is holomorphic there. Similarly if z ∈ Dn−1 tends

to ∂r
−Dn−1, then hence Ψ1(z) ∈ U tends to γP

b1 = γP
b1+, while if z ∈ D′

n tends to ∂l
−D′

n, then
Ψ1(z) ∈ U ′ tends to γP

b2− = γP
b1+. Hence Ψ1 matches along Dn−1 ∩ D

′
n = ∂r

−Dn−1 = ∂l
−D′

n. It
is easy to check the matching for the rest of (5.53), for example, ∂l

+D′
n = ∂r

+D′′
n−1 corresponds

to γP
a2− = γP

a2+ and ∂r
−D′′

n−1 = ∂l
−Dn to γP

b2+ = γP
b1−. Thus we obtained Ψ1 defined on

U = the interior of
⋃0

n=−∞

(
Dn ∪ D

′
n ∪ D

′′
n−1 ∪ D

]
n

)
. It is easy to to see that P ◦Ψ1 = Ψ0◦Φ̃attr

and it is surjective onto UP
η = V ′. By the description of the images U , U ′, U ′′ and matching

relations, we can conclude (b) of Proposition 5.8. By (b), ψ = Ψ0 ◦ Φ̃rep ◦ Ψ−1
1 : V ′ r {0} → C∗

is well-defined and injective. The relation in (c)

P ◦ ψ−1 = P ◦ Ψ1 ◦ Φ̃−1
rep ◦ Ψ−1

0 = Ψ0 ◦ Φ̃attr ◦ Φ̃−1
rep ◦ Ψ−1

0 = Ψ0 ◦ EF ◦ Ψ−1
0 ;

is self-explanatory. Here Φ̃attr, Φ̃rep are the lifted versions of Φattr, Φrep hence we have Φ̃attr ◦
Φ̃−1

rep = EF . From this and the normalization EF (z) = z + o(1) at Im z → +i∞, we conclude
that ψ extends holomorphically to z = 0 and ψ(0) = 0, ψ′(0) = 1.

It remains to show the holomorphic dependence (e). Recall the formal expression (5.1) at
the beginning of §5.A, where Φrep ◦ F−n ◦ Φattr

−1 should be understood as follows: first take
inverse image of Φattr in the right half plane {Re z > L} where we know that it is injective,
next take inverse orbits along an appropriate inverse branches of F−1, finally apply Φrep in
the left half plane {Re z < −L} where we know it is well-defined. The choice of the inverse
branches was made precise in the above construction. This involves local branching only when
it is related to the critical orbit of F , which corresponds to cp

P
in the domain of definition of

ψ. Given a holomorphic family ϕλ, the Fatou coordinates (on the right/left half planes) and
local branches of F−n can be constructed so that they depend holomorphically on λ (restricting
to a smaller parameter region if necessary), except along the critical orbit. Hence the resulting
ψλ(z) depends holomorphically on λ, except at cp

P
. But the exception can be removed by the

removable singularity theorem and we have the holomorphic dependence for all of V ′.
The proof of Proposition 5.8 is complete.



Parabolic Renormalization May 5, 2006 44

5.N Remarks

(a) As we commented at the end of proof of Proposition 5.6, we can take η to be 13.0 there and
the rest of proof works for this η. Therefore the resulting ψ in Main Theorem 1 (c) has univalent
extension to UP

13.0.
(b) Notice that in the proof, the horn map EF was constructed by taking inverse orbits which
only go through ϕ(U12rEr1). So even though the class F1 was defined using the cubic polynomial
P , we only use the degree 2 part of the map. The remainder U3± provides a valuable “space”
for estimates for univalent functions.
(c) Among the constants that appeared in the proof, important ones are η, ρ, R and r1. Here is
a brief account on their relation. The choice of η affects the ellipse E via Lemma 5.16 and hence
the class F1 itself. The ρ and R are related to r1 via Lemma 5.17 and also via Lemma 5.23. If ρ
and R are given, Lemma 5.17 (c) suggests that r1 cannot be too large and Lemma 5.23 suggests
that r1 cannot be too small (cannot be too close to 1). In fact, Lemmas 5.23 (angle estimate)
and 5.24 indicate that r1 cannot be too small in any case. The η is related to R1 = R − 27 by
Proposition 5.6 (b) (see (5.44*)). It was crucial to choose appropriate values for these constants.

6 Proof of Main Theorem 2 – Teichmüller contraction

We now make a connection between our F1 and the Teichmüller space of a punctured disk.
Refer [A1], [GL], [IT], [Le] for the theory of Teichmüller spaces.

6.A Teichmüller space of a punctured disk

Definition (Teichmüller space). Let W1 be a Jordan domain in Ĉ. Fix a point p ∈ W1 and define
W = W1 r {p} (which is isomorphic to D r {0}). We say that ϕ : W → Ĉ is a quasiconformal
map if ϕ : W → ϕ(W )(⊂ Ĉ) is a homeomorphism and ϕ : W → ϕ(W ) is quasiconformal in the
usual sense. The Teichmüller space of W is

Teich(W ) = {ϕ : W → Ĉ quasiconformal map}/ ∼,

where ϕ ∼ ψ if and only if there exists a conformal map h : ϕ(W ) → ψ(W ) (automatically
extending homeomorphically to the closure) which coincides with ψ ◦ϕ−1 on the boundary. Do
not forget that the boundary ∂W includes the puncture p.

This definition is equivalent to the standard definition of the Teichmüller space with marked
boundary. The equivalence ∼ for the standard one involves an isotopy between h and ψ ◦ ϕ−1.
But we do not need the isotopy condition, since two homeomorphisms between Jordan domains
are isotopic relative to the boundary if they agree on the boundary, and the isotopy can be
adjusted so that it does not move the puncture. The Teichmüller space can also be regarded
as the quotient space of measurable Beltrami differentials µ = µ(z)dz̄

dz with ‖µ‖∞ < 1, where

‖µ‖∞ = ess sup |µ(z)| is L∞-norm. Two definitions are related by ϕ 7−→ µϕ :=
(

∂ϕ
∂z̄

/
∂ϕ
∂z

)
dz̄
dz .

The Teichmüller distance of [ϕ], [ψ] ∈ Teich(W ) is defined to be

dTeich([ϕ], [ψ]) = inf
{

log K

∣∣∣∣ there is a K-quasiconformal map h : ϕ(W ) → ψ(W )
which coincides with ψ ◦ ϕ−1 on the boundary

}
.

It is known that this is a complete metric on Teich(W ).

We have another equivalent formulation of Teich(W ).
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Lemma 6.1. Let W be as above with the puncture at p = ∞ and assume that V := C r W
contains 0 and ∂W is smooth and non-singular Jordan curve. Define

Sqc(V ) :=
{

ϕ : V → C
∣∣∣∣ univalent with ϕ(0) = 0, ϕ′(0) = 1

and has a quasiconformal extension to C

}
.

Then there exists a bijection ρ : Sqc(V ) → Teich(W ) defined by ρ(ϕ) = [ϕ̂|W ], where ϕ̂ : C → C
is a quasiconformal extension of ϕ. If ϕn, ϕ ∈ Sqc(V ) and dTeich(ρ(ϕn), ρ(ϕ)) → 0(n → ∞), then
{ϕn} converges to ϕ uniformly on compact sets in V . A mapping τ(λ) from a complex manifold
Λ to Teich(W ) is holomorphic if and only if there exists a holomorphic function ϕ : Λ×V → C
such that ϕλ := ϕ(λ, ·) ∈ Sqc(V ) and ρ(ϕλ) = τ(λ).

Proof. The map ρ(ϕ) = [ϕ̂|W ] is well-defined, since the ambiguity of the extension ϕ̂ to W
is absorbed by ∼ for Teich(W ). It is surjective; given any quasiconfomal map ψ : W → Ĉ,
measurable Riemann mapping theorem yields a quasiconfomal map ϕ : C → C such that ϕ
is conformal (univalent) in V and ϕ ◦ ψ−1 is also conformal on ψ(W ), then after a proper
normalization, we have ρ(ϕ) = [ϕ|W ] = [ψ]. This also justifies the statement on the convergence.

To injectivity, let ϕ,ϕ1 ∈ Sqc(V ) and suppose ρ(ϕ) = ρ(ϕ1). This means that for extensions
ϕ̂, ϕ̂1, there exists a conformal map h : ϕ̂(W ) → ϕ̂1(W ) with h = ϕ̂1 ◦ ϕ̂−1 on ∂ϕ̂(W ). Extend
h to ϕ(V ) by h = ϕ1 ◦ ϕ−1 which is conformal there. Then h is quasiconformal either by by
Rickman’s theorem ([Ri], see also Lemma 2 in Chap. 1 of [DH1]) or because two conformal maps
are glued along quasicircle. Since h is conformal in ϕ(V ) and ϕ̂(W ) = C r ϕ(V ) and ϕ̂(∂V )
has Lebesgue measure 0, h is conformal on all C, therefore affine. By the normalization at 0,
h(z) ≡ z, hence ϕ1 = ϕ. Thus ρ is injective.

In order to discuss the complex structure on Teich(W ), we review the Bers embedding
in this setting (see the above references). Fix a quasicoformal map ψ0 : C → C such that
ψ0(C r D) = W , ψ0(D) = V , ψ0(0) = 0, and ψ0 is conformal in D. For any ϕ ∈ Sqc(V ), ϕ ◦ ψ0

can be lifted to ϕ̃ : C → C such that Exp] ◦ϕ̃ = ϕ ◦ ψ0 ◦ Exp]. Let Sϕ̃ be the Schwarzian
derivative of ϕ̃. Then it can be checked that the map ϕ 7→ Sϕ̃ corresponds to

Sqc(V )
ρ−→ Teich(W )

(ψ0)∗−−−→ Teich(C r D) Bers−−−→ Q∞
Z (H),

where (ψ0)∗ is the isomorphism induced by ψ0, Bers is Bers embedding of Teich(C r D) into
the space Q∞

Z (H) of Z-invariant holomorphic quadratic differentials q = q(z)dz2 with norm
‖q‖Q∞ = sup{(Im z)2|q(z)| : z ∈ H} < ∞. Here Z-invariance is required because the deck
transformations of Exp] : H → D∗ are the translations by Z. The image of Bers embedding is
a bounded open set in Q∞

Z (H), and this define the structure of complex Banach manifold for
Teich(CrD) and Teich(W ). Any holomorphic function Λ 3 λ 7→ τ(λ) ∈ Teich(W ) is represented
by holomorphic family of quadratic differentials qλ = qλ(z)dz2 which are holomorphic in (λ, z)
with qλ ∈ Q∞

Z (H), and vice versa. (To see the converse, we need to check that ∂qλ
∂λ ∈ Q∞

Z (H),
when Λ is 1-dimensional. But this follows from Cauchy formula applied to λ-variable.) From
this description and the construction ϕ 7→ Sϕ̃, the last statement is obvious. (Remark that
the Schwarzian derivative taken directly from ϕ ∈ Sqc(V ) does not determine the position of
puncture, therefore insufficient for the embedding.)

6.B Proof of Main Theorem 2

Now we turn to our class F1 and prove Main Theorem 2.

Proof of Main Theorem 2. Let V , V ′ be as in Main Theorem 1. Take a domain V ′′ so that
V ⊂ V ′′ ⊂ V ′′ ⊂ V ′ and ∂V ′′ is a non-singular real-analytic Jordan curve. We denote W := CrV
and U := C r V ′′. They have a puncture at p = ∞.
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If f = P ◦ ϕ−1 ∈ F1, then by definition ϕ ∈ Sqc(V ) and ρ(ϕ) defines a point in Teich(W ).
The above lemma shows that this is one to one correspondence. Let RTeich

0 denote the induced
map on Teich(W ) from the parabolic renormalization R0. In fact, R0 induces a map R̂Teich

0 :
Teich(W ) → Teich(U), defined by ρ(ϕ) 7→ ρ(ψ) where R0(P ◦ ϕ−1) = P ◦ ψ−1, and this map is
holomorphic by Main Theorem (e) and the above lemma. Hence it satisfies

dTeich(U)(R̂Teich
0 (τ1), R̂Teich

0 (τ2)) ≤ dTeich(W )(τ1, τ2) for τ1, τ2 ∈ Teich(W ),

due to Royden-Gardiner Theorem.

Theorem 6.2 (Royden-Gardiner). Any holomorphic map between Teichmüller spaces does not
expand the Teichmüller distance.

Now we can write RTeich
0 = Ξ◦R̂Teich

0 , where Ξ : Teich(U) → Teich(W ) is defined as follows:
if ψ ∈ Sqc(V ′′) with quasiconformal extension ψ̂ to C, then Ξ(ρ(ψ)) = ρ(ψ|V ), or equivalently
Ξ([ψ̂|U ]) = [ψ̂|W ]. It follows from Theorem 6.3 below that Ξ is well-defined with relatively
compact image and satisfies

dTeich(W )(Ξ(τ1), Ξ(τ2)) ≤ e−2π mod(V ′′rV ) dTeich(U)(τ1, τ2) for τ1, τ2 ∈ Teich(U).

The estimate in Main Theorem 2 follows immediately, by letting V ′′ tend to V ′.

6.C Extension map and contraction

Theorem 6.3 (Extension map). Let W1 and U1 be Jordan domains in Ĉ such that U1 ⊂ W1.
Fix a point p ∈ U1 and define W = W1 r {p} and U = U1 r {p}. There exists a canonical map

Ξ : Teich(U) → Teich(W )

such that Ξ(τ) = τ ′ if and only if there is a quasiconformal map ψ : W → Ĉ satisfying [ψ] = τ ′

in Teich(W ), [ψ|U ] = τ in Teich(U) and ∂ψ
∂z̄ = 0 a.e. in W r U . The image of Ξ is relatively

compact (hence bounded) with respect to dTeich(W ). Moreover it is a uniform contraction with
an explicit bound:

dTeich(W )(Ξ(τ1), Ξ(τ2)) ≤ λ dTeich(U)(τ1, τ2) for τ1, τ2 ∈ Teich(U),

where λ = e−2π mod(WrU) < 1.
As for the Teichmüller spaces without removing the puncture p (universal Teichmüller space),

the same conclusion holds for the map Teich(U1) → Teich(W1) is a contraction with the factor
e−4π mod(W1rU1).

Proof. In terms of definition of Teich(W )’s by Beltrami differentials, Ξ is defined to be the
0-extension map [µ] 7→ [µ̂], where µ is defined on U and µ̂ = µ on U and µ̂ = 0 on W r U . In
terms of quasiconformal maps, it can be expressed as follows: Let ϕ : U → Ĉ be a quasiconformal
map, then take its Beltrami differential µϕ. Then by measurable Riemann mapping theorem,
there exists a quasiconformal map ψ : W → Ĉ such that µψ = µϕ a.e. on U and µψ = 0
a.e. on W r U . Then ψ ◦ ϕ−1 is conformal in ϕ(W ), hence [ψ|U ] = [ϕ] in Teich(U). Define
Ξ([ϕ]) = [ψ] ∈ Teich(W ).

Let us check that this is well-defined. This can follow from Lemma 6.1 if ∂U is smooth or
quasicircle. But we prove without this assumption. Take another representative ϕ1 of [ϕ] in
Teich(U), hence there exists a conformal map h : ϕ(U) → ϕ1(U) which coincides with ϕ1 ◦ ϕ−1

on the boundary. Let ψ1 be the result of the above construction for ϕ1. Now define the map
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ĥ : ψ(W ) → ψ1(W ) by ĥ = ψ1 ◦ ϕ−1
1 ◦ h ◦ ϕ ◦ ψ−1 on ψ(U) and ĥ = ψ1 ◦ ψ−1 on ψ(U) r ψ(U).

Since ϕ−1
1 ◦ h ◦ ϕ = id on ∂U , ĥ is continuous on ∂ψ(U), then by Rickman’s theorem (quoted

above), it is a quasiconformal map. Moreover, ĥ is conformal in ψ(U) because ψ1 ◦ ϕ−1
1 , h,

ϕ ◦ ψ−1 are so in corresponding domains. We also have ∂ĥ
∂z̄ = 0 a.e. in ψ(W ) r ψ(U) because

µψ = µψ1
= 0 a.e. on W r U . Hence ĥ is a conformal map coinciding with ψ1 ◦ ψ−1 on the

boundary. Therefore ψ1 ∼ ψ and Ξ is well-defined.
Next we prove the relative compactness of the image of Ξ. We may suppose that W = D∗.

Let [ψn] be a sequence in Ξ(Teich(D∗)). The representative ψn can be chosen so that ∂ψ
∂z̄ = 0

a.e. in W r U and that ψn(1) = 1, ψn(D∗) = D∗ (which correspond to Beltrami differentials
symmetric with respect to ∂D). Even in the case of the universal Teichmüller space Teich(D),
ψn can be adjusted so that ψn(0) = 0 by composing a Möbius transformation of D. Lift ψn

to ψ̃n by Exp] so that ψn ◦ Exp] = Exp] ◦ψ̃n with normalization ψ̃n(0) = 0, ψ̃n(1) = 1. By
Schwarz reflection principle, we obtain a conformal map ψ̃n defined on Ω, where Ω is the union
of R, Exp]−1(D r U) and its reflection. Applying Koebe distortion theorem to ψ̃n with the
above normalization, we obtain a subsequence {ψ̃nk

} which converges to a limit ψ̃ uniformly
near R. Ahlfors-Beurling Theorem gives a new quasiconformal extension ψ̃′

nk
: C → C such

that ψ̃′
nk

= ψ̃nk
on R and ψ̃′

nk
(z + 1) = ψ̃′

nk
(z) + 1. Moreover their Beltrami differentials µψ̃′

nk

are uniformly bounded from 1 and converge uniformly to µψ̃. This implies that the maximal
dilatation of ψ̃′

nk
◦ ψ̃−1 tends to 0. Therefore {[ψnk

]} converges to ψ induced from ψ̃. This proves
the relative compactness of Ξ(Teich(D∗)).

Before proving the contraction, let us recall the infinitesimal definition of Teichmüller met-
ric. For a point τ = [ψ] ∈ Teich(W ), the tangent space TτTeich(W ), the cotangent space
T ∗

τ Teich(W ), the pairing (q,µ) and Teichmüller norm ‖ · ‖Teich are defined by

TτTeich(W ) =
{
µ = µ(z)

dz̄

dz
measurable Beltrami differential on ψ(W ) with ‖µ‖∞ < ∞

}
/ ∼

T ∗
τ Teich(W ) =

{
q = q(z)dz2 holomorphic quadratic differential on ψ(W ) with ‖q‖1 < ∞

}
(q, µ) =

∫∫
ψ(W )

q(z)µ(z)dx dy for q ∈ T ∗
τ Teich(W ) and µ ∈ TτTeich(W )

‖µ‖Teich = sup {|(q, µ)| : q ∈ T ∗
τ Teich(W ) with ‖q‖1 = 1} ,

where ‖q‖1 =
∫∫

|q(z)|dx dy is L1-norm on the domain of definition and the equivalence relation
for TτTeich(W ) is defined as µ ∼ ν if and only if ‖µ−ν‖Teich = 0. A different representative of
the class τ = [ψ] will give canonically isomorphic tangent and cotangent spaces. The Teichmüller
distance coincides with the distance (a Finsler metric) defined as the infimum of the length of
paths joining the two points, where the length is defined by integrating Teichmüller norm ‖·‖Teich

along the path. Note that the finiteness of ‖q‖1 forces that q can have a simple pole at the
puncture.

Now according to the description of Ξ in terms of Beltrami differentials, the derivative
DτΞ at τ = [ψ] ∈ TτTeich(W ) is the 0-extension operator [µ] 7→ [µ̂], where µ is defined on
ψ(U) and µ̂ = µ on ψ(U) and µ̂ = 0 on ψ(W ) r ψ(U). Therefore its adjoint (coderivative)
D∗

τΞ : T ∗
τ Teich(W ) → T ∗

τ Teich(U) is defined by the restriction operator q 7→ q|ψ(U). In view
of the definition of Teichmüller norm, in order to prove the contraction inequality, it suffices to
prove the following infinitesimal contraction inequality on the coderivative

‖D∗
τΞ(q)‖1 = ‖q|ψ(U)‖1 ≤ λ ‖q‖1 for q ∈ T ∗

τ Teich(W ).

This is exactly the content of Theorem 6.6 below.
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We need a preparation:

Theorem 6.4 (Isoperimetric Inequality for quadratic differential with a simple pole). If D is
a Jordan domain with real-analytic boundary and q(z) is meromorphic in a neighborhood of D
with at most one simple pole which is in D, then(∫

∂D

√
|q(z)| |dz|

)2

≥ 2π

∫∫
D
|q(z)|dx dy.

If q(z) has no pole, then 2π can be replaced by 4π.

Proof. This is a modified version of Carleman’s inequality (see [Ca]). It is enough to prove the
inequality when D is the unit disk D and the pole is at 0. In fact, if ψ : D → D is a conformal map
(which extends conformally to a neighborhood of D), the inequality for ψ∗q(z) = q(ψ(z))(ψ′(z))2

on D yields the inequality for q(z). Now we need a lemma:

Lemma 6.5. If ϕ1(z) and ϕ2(z) are holomorphic in the neighborhood of D, then for s > −2∫∫
D
|ϕ1(z)ϕ2(z)|2 |z|sdx dy ≤ 1

2π
max

{
1

s + 2
,
1
2

}(∫
∂D

|ϕ1(z)|2 |dz|
)(∫

∂D
|ϕ2(z)|2 |dz|

)
.

Proof. Expand ϕ1(z), ϕ2(z) and ϕ1(z)ϕ2(z) as

ϕ1(z) =
∞∑

ν=0

aνz
ν , ϕ2(z) =

∞∑
ν=0

bνz
ν , ϕ1(z)ϕ2(z) =

∞∑
ν=0

cνz
ν , where cν =

ν∑
µ=0

aµbν−µ.

Then ∫
∂D

|ϕ1(z)|2 |dz| =
∫ 2π

0

( ∞∑
ν=0

aνe
iνθ

)( ∞∑
ν=0

āνe
−iνθ

)
dθ = 2π

∞∑
ν=0

|aν |2.

A similar equality holds for ϕ2(z). We also have∫∫
D
|ϕ1(z)ϕ2(z)|2 |z|sdx dy =

∫ 1

0

∫ 2π

0

( ∞∑
ν=0

cνr
νeiνθ

)( ∞∑
ν=0

c̄νr
νe−iνθ

)
rs+1dr dθ

= 2π

∞∑
ν=0

|cν |2

2ν + s + 2
.

It can be checked (using 2|a0bν ā1b̄ν−1| ≤ |a0bν |2 + |a1bν−1|2 etc) that

|cν |2 ≤ (ν + 1)
(
|a0bν |2 + |a1bν−1|2 + · · · + |aνb0|2

)
.

Hence, using ν+1
2ν+s+2 ≤ 1

2 (s ≥ 0), ν+1
2ν+s+2 ≤ 1

s+2 (−2 < s < 0), we have

∞∑
ν=0

|cν |2

2ν + s + 2
≤ max

{
1

s + 2
,
1
2

} ∞∑
ν=0

ν∑
µ=0

|aµ|2|bν−µ|2

= max
{

1
s + 2

,
1
2

} ( ∞∑
ν=0

|aν |2
)( ∞∑

ν=0

|bν |2
)

.

The desired inequality follows.
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Now we continue the proof of Theorem 6.4. Suppose q(z) is holomorphic in a neighborhood
of D except at z = 0, which is at most a simple pole. Let α1, . . . , αm be zeroes of q(z) within
D. By shifting the boundary a little bit, we may suppose that they are all in D. Factoring out
Blaschke factors for the zeroes, we can write

q(z) = zsq∗(z)
m∏

ν=1

(
z − αν

1 − ᾱνz

)
,

where s = −1 or 0 depending on whether 0 is a pole or not, and q∗(z) has no zeroes in D. Hence
there exists a holomorphic function ϕ(z) in a neighborhood of D such that q∗(z) = (ϕ(z))4.
Since

|q(z)| ≤ |z|s |ϕ(z)|4 in D and
√

|q(z)| = |ϕ(z)|2 on ∂D,

Lemma 6.5 with ϕ1 = ϕ2 = ϕ yields the isoperimetric inequality.

Now we can prove the following, which completes the proof of Theorem 6.3.

Theorem 6.6 (Modulus-Area Inequality for quadratic differential with a simple pole). Let A
be an annulus in C with finite modulus mod A, and K the bounded component of C−A. If q(z)
is a meromorphic function in A∪K such that q(z) has at most one simple pole, the pole (if any)
is in K and

∫∫
A∪K |q(z)|dx dy < ∞, then∫∫

K
|q(z)|dx dy ≤ e−2π mod(A)

∫∫
A∪K

|q(z)|dx dy.

If q(z) has no pole, then 2π can be replaced by 4π.

Proof. This is a word-to-word translation of Modulus-Area Inequality (see Milnor [Mi] Appendix
B, Corollary B.9, McMullen Inequality) with Euclidean metric replaced by the conformal met-
ric

√
|q(z)| |dz| induced from quadratic differential q(z)dz2. We include the proof for reader’s

convenience.
By previous lemma, for any smooth Jordan curve γ which is not null-homotopic in A (hence

surrounds K), (∫
γ

√
|q(z)| |dz|

)2

≥ 2π

∫∫
K
|q(z)|dx dy.

Since mod(A) can be defined as the inverse of extremal length of real-analytic Jordan curves
that are not null-homotopic in A (see [A2]), by considering

√
|q(z)| |dz| as a conformal metric

on A, we have

1
mod(A)

≥

(
inf

∫
γ

√
|q(z)| |dz|

)2∫∫
A |q(z)|dx dy

≥
2π

∫∫
K |q(z)|dx dy∫∫

A |q(z)|dx dy
,

where the infimum is taken over all Jordan curve γ as above. Therefore∫∫
A∪K

|q(z)|dx dy ≥ (1 + 2π mod(A))
∫∫

K
|q(z)|dx dy.

Now divide A into nested subannuli (n annuli with modulus 1
n mod(A)), and apply the above

inequality repeatedly. We obtain, by letting n → ∞,∫∫
A∪K

|q(z)|dx dy ≥
(
1 + 2π 1

n mod(A)
)n

∫∫
K
|q(z)|dx dy → e2π mod(A)

∫∫
K
|q(z)|dx dy.
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7 Proof of Main Theorem 3 and Corollaries

In order to prove Main Theorem 3, we first show the following:

Lemma 7.1. Given any f0 ∈ F1, there exist a neighborhood Nf0 of f0 and α∗(f0) > 0 such that
if f ∈ Nf0 satisfies f(0) = 0, f ′(0) = e2πiα with | arg α| ≤ π

4 and 0 < |α| < α∗(f0), then the horn
map Ef for f is defined and Ψ0 ◦ Ef ◦ Ψ−1

0 belongs to FP
2 .

Proof. This claim follows from the continuity of horn maps (Theorem 2.1) if we allow ourselves
to take a slightly smaller V ′ than UP

η . (Note here that the uniform convergence of Efn on
{x + iy : 0 ≤ x ≤ 1, y0 ≤ y ≤ y1} implies that of Ψ0 ◦ Efn ◦ Ψ−1

0 on {z : e−2πy1 ≤ |z| ≤ e−2πy0}
then they are also uniformly convergent on {z : |z| ≤ e−2πy0} by the maximum value principle.)

If we want to keep the same V ′ = UP
η , it can be proved as follows. As in [Sh2], we can

construct the “pre-Fatou coordinate” z = τf (w) := σ(f)

1−e−2πiα(f)w for f near f0 with | arg α(f)| ≤
π
4 . Then f(z) in z-plane lifts to Ff (w) on C r ∪n∈ZD( n

α(f) , R2) with some large R2 > 0 and
when f tends to f0, Ff converges to F0 = Ff0 = τ−1

0 ◦ f0 ◦ τ0 uniformly on {w : |Re(α(f) w)| ≤
1
2 and |w| ≥ R2}, where τ0(w) = − 1

w . Therefore the Fatou coordinates Φ+,f and Φ−,f exist in
Ω+,f = {w : |α(f)|R2 < Re(α(f) w) < 1

2} and Ω−,f = {w : −1
2 < Re(α(f) w) < −|α(f)|R2}

and they converge to Φattr,F0 and Φrep,F0 respectively, when f tends to f0 (taking larger R2 if
necessary).

Let Dn,0, D′
n,0, D′′

n,0, D]
n,0 (n = 1, 0,−1, . . . ) denote the domains for F0 corresponding to

Dn, D′
n, D′′

n, D]
n in §5. Define Dn,0 = Fn−1

0 (D1,0) for n = 2, 3, . . . . If we take sufficiently large
`,m > 0, then D`,0 ⊂ {w : |w| > R2, | arg w| < π

4 } and D−m,0, D
′
−m,0, D

′′
−m,0, D

]
−m,0 ⊂ {w :

|w| > R2,
3π
4 < arg w < 5π

4 }. If f is sufficiently close to f with | arg α(f)| ≤ π
4 , then these domains

are also contained in Ω+,f and Ω−,f . Note that Φattr,F0 ◦ Fm+`
0 maps D−m,0 homeomorphically

onto D` = {z : ` ≤ Re z ≤ ` + 1, | Im z| ≤ η}. Consider D`(r) = D` r D(`, r) ∪ D(` + 1, r) for a

small r > 0 and define D−m,0(r) = D−m,0 ∩
(
Φattr,F0 ◦ Fm+`

0

)−1
(D`(r)). Since Φattr,F0 ◦ Fm+`

0

is diffeomorphic on D−m,0(r), there exists a neighborhood W of D−m,0(r) such that if f is
sufficiently close to f0, then Φ+,f ◦ Fm+`

f is defined and diffeomorphic on W and the image

contains D`(r) (by Rouché’s theorem). This defines D−m,f (r) = W ∩
(
Φ+,f ◦ Fm+`

f

)−1
(D`(r)).

Similarly D
′
−m,f (r) and D

′′
−m,f (r) are defined. Also for {w−m} = D−m,0 ∩ D

′
−m,0 ∩ D−m−1,0 ∩

D
′′
−m−1,0, there is a neighborhood W ′ such that Φ+,f ◦ Fm+`

f on W ′ covers D(`, r) twice with
branching over `. Adding proper portion of W ′ to Dn,f (r) etc, we obtain Dn,f , D′

n,f , D′′
n,f for

n = −m,−m − 1, which are similar to Dn, D′
n, D′′

n in §5.M.
The same argument works for D]

n,f except that for the part corresponding to ImΦattr(z) ≥ R3

with large R3, we already have a uniform control by the above convergence Ff → F0.
Thus we have obtained domains Dn,f , D′

n,f , D′′
n,f , D]

n,f with the same intersection relation as
(5.53) for f close to f0. This is enough to construct ψ = ψf so that Ψ0◦Ef ◦Ψ−1

0 = P ◦ψ−1 ∈ FP
2

as in §5.M.

Proof of Main Theorem 3. By Koebe Distortion theorem (see References in Appendix), the
space of normalized univalent functions in V is sequentially compact with respect to the topol-
ogy of uniform convergence on compact sets. Hence the above lemma implies that there must
be a uniform α∗ > 0 such that if h ∈ F1, | arg α| ≤ π

4 and 0 < |α| < α∗, then Rf is defined
for f(z) = e2πiαh(z) and Rαh = Ψ0 ◦ Ef ◦ Ψ−1

0 ∈ FP
2 . This proves the invariance part of Main

theorem 3.
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The statements on the holomorphic dependence and the contraction are proved exactly as
in §5.M and in §6.

Proof of Corollary 4.1. The existence of the unique fixed point and the convergence are imme-
diate from Main Theorem 2 and the completeness of the Teichmüller distance. For f ∈ F0,
Theorem 3.2 guarantees that Rn

0fisinF0 therefore can be represented as Rn
0f = gKoebe ◦ ψ−1

n

with ψn ∈ S. So we can choose a subsequence nk ↗ ∞ such that {ψnk
} converges uniformly on

compact sets in D. By the convergence to the fixed point in F1, we know that we always have
the same limit function in a neighborhood of 0 for any convergent subsequence. Therefore the
whole sequence {ψn} must converge to a limit function. This implies that Rn

0f considered as
elements in F0 converge to a fixed point and the fixed point must be in F0.

Proof of Corollary 4.2. Let f(z) = e2πiαh(z), where h ∈ F1 and | arg α| ≤ π
4 and |α| small.

Take the fundamental region Sattr,f such that Sattr,f = D1,f ∪ D
]
1,f ∪ D

[
1,f (corresponding to

1 ≤ ReΦattr,f (z) ≤ 2). Consider g(z) = Rαh(e−2πi 1
α z), which is linear conjugate to Rf(z) =

e−2πi 1
αRαh(z). It can be shown as in [Sh1], [Sh2] that there exists α∗∗ > 0 and C > 0 such that

if |α| < α∗∗, z1, z2 ∈ Sattr,f , wi = Ψ0(Φattr,f (zi)) (i = 1, 2), w1 ∈ Dom(g) and g(w1) = w2, then
there exists an integer m > 0 such that fm(z1) = z2 with Re 1

α −C ≤ m ≤ Re 1
α + C. So taking

α∗∗ small so that Re 1
α∗∗

− C ≥ 2, this implies that if w1 can be iterated n times under g, then
the corresponding point z1 (in Sattr,f ) can be iterated at least 2n times under f .

Let f be as in the assumption of Corollary, with N ≥ 1
α∗∗

+ 1. Then the sequence {fn} as
in (3.2) is defined so that fn ∈ (0, α∗∗] ∗ F1. Since for each fn, the critical value can be iterated
once, by the above, we conclude that the critical orbit can be iterated infinitely many times.
Moreover the estimates show that the orbit cannot accumulate to the lower end of the Ecalle-
Voronin cylinder, where the lower end corresponds to the fixed point σ(fn) in the construction in
§2. Therefore there exists a sequence of periodic orbits (corresponding to σ(fn)) for the original
f , and the critical orbit does not accumulate to any of these periodic orbits.

When f(z) = e2πiαz+z2 is a quadratic polynomial, f itself is not in F1. But R0(z+z2) ∈ FP
2 ,

so for sufficiently small α we have Rα(z + z2) ∈ F1, therefore we have the above sequence fn

with fn ∈ F1 for n = 1, 2, . . . . The rest is similar.

A Univalent functions

In this appendix, we prepare some estimates on univalent functions. Refer to [Po], [Du] for the
theory of univalent functions.

Definition. A complex valued function is called univalent if it is holomorphic and injective.
Important classes of univalent functions are:

S = {f : D → C | f is univalent and f(0) = 0, f ′(0) = 1},

Σ = {g : C r D → C | g is univalent and lim
z→∞

g(z)
z

= 1}.

For g ∈ Σ, we can consider that g is a holomorphic map from Ĉ r D to Ĉ with g(∞) = ∞.
It can be written as g(z) = z + c

0
+ g1(z), where c

0
∈ C and g1 is holomophic in Ĉ r D with

limz→∞ g1(z) = 0. We define subclasses of Σ by

Σ0 = {g ∈ Σ | c
0

= lim
z→∞

(g(z) − z) = 0}, Σ∗ = {g ∈ Σ | 0 /∈ Image(g)}.

Theorem A.1. For f ∈ S, we have
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(a) |f ′′(0)| ≤ 4.

(b)
∣∣∣∣log

(
z

f ′(z)
f(z)

)∣∣∣∣ ≤ log
1 + |z|
1 − |z|

for |z| < 1.

(c)
∣∣∣∣log

f(z)
z

+ log(1 − |z|2)
∣∣∣∣ ≤ log

1 + |z|
1 − |z|

.

Here the branches log on the left hand side in (a) and in (b) are (well-defined and) taken so that
it has value 0 at z = 0

Proof. (a) This is well-known. See [Po] Chap. 1, Theorem 1.5. [Du] Theorem 2.2. For (b), see
[Po] Corollary 3.5, page 66, or [Du], Corollary 3, page 126.

To prove (c), fix f ∈ S and z1 ∈ D. Define A(z) = − z−z1
1−z̄1z and f1(z) = c(f ◦ A(z) − f(z1)),

where c is determined so that f ′
1(0) = 1. Then f1 ∈ S. Since f ′

1(z) = −cf ′(A(z)) 1−|z1|2
(1−z̄1z)2

, we
have

z1
f ′
1(z1)

f1(z1)
= −z1

cf ′(0) 1−|z1|2
(1−z̄1z1)2

c(f(0) − f(z1))
=

z1

f(z1)(1 − |z1|2)
.

The assertion follows from (b) applied to f1 at z1. See also [Du], Exercise 2, page 141.

Theorem A.2. Let g(z) = z + c
0
+ g1(z) ∈ Σ. Then the following estimates hold:

(a) {z ∈ C : |z − c
0
| > 2} ⊂ Image(g). In particular, if g ∈ Σ∗, then |c

0
| ≤ 2.

(b) |g1(z)| ≤

√
log

1
1 − |z|−2

.

(c)
∣∣log g′(z)

∣∣ ≤ log
1

1 − |z|−2
.

(d) If g ∈ Σ∗, then ∣∣∣∣log
g(z)
z

− log
(

1 − 1
|z|2

)∣∣∣∣ ≤ log
|z| + 1
|z| − 1

.

In particular,

|z|
(

1 − 1
|z|

)2

≤ |g(z)| ≤ |z|
(

1 +
1
|z|

)2

and
∣∣∣∣arg

g(z)
z

∣∣∣∣ ≤ log
|z| + 1
|z| − 1

.

Proof. (a) See [Po], Theorem 1.4, page 19. If ω /∈ Image(g), then let f(z) = 1
g( 1

z
)−ω

. We have

f(z) = z − (c
0
− ω)z2 + O(z3) ∈ S. It follows from Theorem A.2 that |c

0
− ω| ≤ 2.

(b) If we write g(z) = z+c
0
+

∑∞
n=1

cn
zn , the coefficients satisfy the Area Inequality ([Po] Theorem

1.3, or [Du] Theorem 2.1, )
∞∑

n=1

n|cn|2 ≤ 1.

By Cauchy-Schwarz inequality and the expansion − log(1 − x) =
∑∞

n=1
xn

n (|x| < 1)

|g1(z)| ≤
∞∑

n=1

|cn|
|z|n

=

√√√√ ∞∑
n=1

n|cn|2

√√√√ ∞∑
n=1

1
n|z|2n

≤

√
log

1
1 − |z|−2

.
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(c) This follows from Theorem A.3 below. Or see [Po], Chap. 3.2, (5), page 65, or [Du] Chap.4,
Exercise 1, page 140.
(d) Let f(z) = 1

g( 1
z
)
. Then it is easy to see that f ∈ S. The first inequality follows from Theorem

A.1. The rest follows from the first. (In fact, the one for |g(z)| follows from a standard estimate
for |f(z)|.)

Theorem A.3 (A consequence of Golusin inequalities). Let Ω be a disk or a half plane in Ĉ
(including the case of the complement of a closed disk). If g : Ω → Ĉ is a univalent holomorphic
mapping, then for z, ζ ∈ Ω with z, ζ, g(z), g(ζ) 6= ∞ and z 6= ζ,∣∣∣∣ log

g′(z)g′(ζ)(z − ζ)2

(g(z) − g(ζ))2

∣∣∣∣ ≤ 2 log cosh
dΩ(z, ζ)

2
. (A.1)

Remark. There exists a Möbius transformation which sends Ω to D, z to 0 and ζ to r ∈ [0, 1).
In this case, s = dΩ(z, ζ) = log 1+r

1−r , therefore it is easy to check that

2 log cosh
dΩ(z, ζ)

2
= log

(
es + 2 + e−s

4

)
= log

1
1 − r2

. (A.2)

Proof. Notice that the both sides of the inequality is invariant under pre- and post-composition
of Möbius transformations, provided that the domain of definition Ω is transformed accordingly.
In fact, for the left hand side, one can express in terms of cross ratios:

g′(z)g′(ζ)(z − ζ)2

(g(z) − g(ζ))2
= lim

z′→z
ζ′→ζ

(g(z′) − g(z))(g(ζ ′) − g(ζ))
(g(z) − g(ζ))(g(z′) − g(ζ ′))

· (z − ζ)(z′ − ζ ′)
(z′ − z)(ζ ′ − ζ)

. (A.3)

Therefore this also has a meaning even when z, ζ, g(z) or g(ζ) is equal to ∞, as long as z 6= ζ.
When Ω = Ĉ r D, g(∞) = ∞, limz→∞

g(z)
z = 1, z, ζ 6= ∞ and z 6= ζ, the inequality (A.1)

is known as a consequence of Golusin inequalities (see [Po], Chap. 3.2, (6), page 65, or [Du]
Chap.4, proof of Corollary 2, page 126), where the right hand side becomes (cf. (A.2))

2 log cosh
dΩ(z, ζ)

2
= log

|zζ̄ − 1|2

(|z|2 − 1)(|ζ|2 − 1)
. (A.4)

By the Möbius invariance, it also holds in general cases.
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