Near-parabolic Renormalization and Rigidity

Mitsuhiro Shishikura
Kyoto University

Complex Dynamics and Related Topics
Research Institute for Mathematical Sciences, Kyoto University
September 3, 2007
Irrationally indifferent fixed points

We consider holomorphic functions of one variable with fixed point \(z=0 \).

\[
f(z) = \lambda z + a_2 z^2 + \ldots
\]

If \(|\lambda| = 1 \), \(z=0 \) is called \textit{indifferent fixed point}.

If \(\lambda \) is a root of unity, \textit{parabolic}; otherwise \textit{irrationally indifferent}.

\[
\lambda = e^{2\pi i \alpha} \quad \alpha \in \mathbb{R} \setminus \mathbb{Q}
\]

If conjugate to a rotation (linearizable), then it has a Siegel disk.

Otherwise, very complicated invariant sets (hedgehogs).

Earlier works: Siegel, Bruno, Herman, Yoccoz, Perez Marco, Petersen, McMullen, Buff, Chéritat, ...

Consider

\[
f_0(z) = z + a_2 z^2 + O(z^3) \quad a_2 \neq 0
\]

and its perturbation

\[
f(z) = e^{2\pi i \alpha} z + a_2 z^2 + \ldots
\]
Linearizability of irrationally indifferent fixed points

Siegel (under Diophantine cond.), Bruno (under Bruno condition),
Yoccoz (a new proof using renormalization and converse);
Cremer (nonlinearizable ex.)

Boundary of Siegel disks (Jordan curve in known cases)

Herman (quadratic polynomial, bounded type rotation number => J. curve)
Petersen (quad. poly., bounded type => locally connected J, measure 0)
Herman-Yoccoz, Petersen-Zackeri (weaker cond. for J. curve w. crit. pt.)
Herman (quadratic polynomial, no critical point on bdry)
Buff-Cheritat (various smoothness)

Universality/Rigidity at the boundary

Manton-Nauenberg (experiments, heuristic argument)
McMullen (quadratic-like map => rigidity and differentiability)
This talk (a new class, high type rotation number
 => rigidity and differentiability)
Physicists’ motivation

KAM torus \[\rightarrow\] Chaos

last KAM torus destroyed?

Physicists expect a “universal phenomenon” at critical parameter

Simpler model (no parameter, only in the phase space)

Irrationally indifferent fixed point

\[f(z) = e^{2\pi i \alpha} z + a_2 z^2 + \ldots\] holomorphic near 0

Boundary of Siegel Disk is the closure of critical orbit (for polynomials)

Physicists expect a “universal phenomenon” at the boundary of SD

Manton-Nauenberg (physicists), McMullen (for bounded type)

\[f(z) = e^{2\pi i \alpha} z + a_2 z^2 + \ldots\]
Theorem (McMullen). Let \(f \) and \(\hat{f} \) be quadratic-like maps with Siegel disks of period one with the same rotation number \(\alpha \) of bounded type. Then \(f \) and \(\hat{f} \) are conjugate by a quasiconformal mapping \(\varphi \) which is \(C^{1+\gamma} \)-conformal on the boundary of the Siegel disk, i.e.

\[
\varphi(z) = \varphi(z_0) + A(z - z_0) + O(|z - z_0|^{1+\gamma}) \text{ as } z \to z_0
\]

where \(z_0 \) is on the boundary of the Siegel disk and \(A \) is a non-zero constant.

Theorem. Let \(f = e^{2\pi i \alpha} h \) and \(\hat{f} = e^{2\pi i \alpha} \hat{h} \) where \(h \) and \(\hat{h} \) are in the class \(\mathcal{F}_1 \) which will be defined later, and the rotation number \(\alpha \) is of high type \((N) \) with sufficiently large \(N \) (also defined later). Then \(f \) and \(\hat{f} \) are asymptotically conformally conjugate on the closure of critical orbit. Moreover the conjugacy is \(C^{1+\gamma} \)-conformal on the critical orbit. Furthermore there exists \(0 < \lambda < 1 \) such that if the continued fraction coefficients of \(\alpha \) satisfies \(a_n \leq C \lambda^n \) with some \(C > 0 \) then the conjugacy is \(C^{1+\gamma'} \)-conformal on the closure of the critical orbit.

Remark. The closure of critical orbit contains boundary of Siegel disk. The above theorem follows from Rigidity result (Theorem 5) via a differentiability result on quasiconformal mappings.
Differentiable functions

Graph looks like a line

In small scale...

- Homeomorphism: can do anything
- Quasi-symmetric, quasi-conformal: bounded ratio
- Asymptotically conformal: ratio -> 1

\[C^{1+\alpha} : \text{ratio} \to 1 \text{ "fast"} \]

For conjugacies between dynamical systems...

- Compare orbits
- To see details, need to iterate many times
Return map

\[\mathcal{R} f = (\text{first return map of } f) \text{ after rescaling} \]
\[= g \circ f^k \circ g^{-1} \quad (\text{if return time } \equiv k) \]

Renormalization

high iterates of \(f \) \quad \leftrightarrow \quad \text{fewer iterates of } \mathcal{R} f

fine orbit structure for \(f \) \quad \leftrightarrow \quad \text{large scale orbit structure for } \mathcal{R} f

Successive construction of \(\mathcal{R} f, \mathcal{R}^2 f, \ldots \), helps to understand the dynamics of \(f \) (orbits, invariant sets, rigidity, bifurcation, \ldots)

If \(\mathcal{R} f = f \) (fixed point of renormalization),
then \(f = g \circ f^k \circ g^{-1} \) (fixed point equation)
Renormalization and Rigidity (an oversimplified view)

Suppose f and \tilde{f} have “the same combinatorial type” and admit successive construction of renormalizations.

\[f_0 = f \]
\[f_1 = R f_0 \]
\[f_2 = R f_1 \]
\[f_3 = R f_2 \]
\[\tilde{f}_0 = \tilde{f} \]
\[\tilde{f}_1 = R \tilde{f}_0 \]
\[\tilde{f}_2 = R \tilde{f}_1 \]
\[\tilde{f}_3 = R \tilde{f}_2 \]

\{ h_n \} “bounded” \quad f and \tilde{f} quasi-conformally conjugate

\[d(f_n, \tilde{f}_n) \to 0 \quad \Rightarrow \quad h_n \to \text{linear} \quad \Rightarrow \quad \text{conjugacy is asymptotically conformal or smooth, etc.} \]
Yoccoz renormalization for Siegel-Bruno Theorem

\[f(z) = e^{2\pi i \alpha} z + \ldots, \quad \sum_n \frac{\log q_{n+1}}{q_n} < \infty \quad \text{where} \quad \frac{p_n}{q_n} \to \alpha \quad \text{(convergents)} \]

\[\implies \quad f \text{ is conjugate to } z \mapsto e^{2\pi i \alpha} z \]

Yoccoz’s proof: construct the sequence of renormalizations \(f_n \)

\[f_0 = f, \quad \alpha_0 = \alpha, \quad \alpha_{n+1} = \text{dist}\left(\frac{1}{\alpha_n}, \mathbb{Z}\right) \]

\[f_n(z) = e^{2\pi i \alpha_n} z + \ldots \quad \sim \quad f_{n+1}(z) = e^{2\pi i \alpha_{n+1}} z + \ldots \]
Yoccoz renormalization for Siegel-Bruno Theorem

\[f_n(z) = e^{2\pi i\alpha_n}z + \ldots \sim f_{n+1}(z) = e^{2\pi i\alpha_{n+1}}z + \ldots \]

Cylinder/Near-parabolic renormalization

\[\mathcal{R}f \] can be defined when \(f(z) = e^{2\pi i\alpha}z + \ldots \) is a small perturbation of \(z + a_2z^2 + \ldots \) (\(a_2 \neq 0 \)) and \(|\arg \alpha| < \pi/4 \).
Renormalization: The Picture

Write \(f(z) = e^{2\pi i\alpha}z + O(z^2) = e^{2\pi i\alpha}h(z) \) where \(h(z) = z + O(z^2) \).

\(f \leftrightarrow (\alpha, h) \)

Then \(\mathcal{R} f(z) = e^{-2\pi i \frac{1}{\alpha}} \mathcal{R}_\alpha h(z) \) where \(\mathcal{R}_\alpha h = \text{Exp}^\# \circ E(e^{2\pi i \alpha} h) \circ (\text{Exp}^\#)^{-1} \).

Hence \(\mathcal{R} : (\alpha, h) \mapsto (-\frac{1}{\alpha}, \mathcal{R}_\alpha h) \) (skew product)

\(\mathcal{R} \) hyperbolic?

(\(\mathcal{R}_\alpha \) contracting?)

\(\mathcal{R}_\alpha h \to \mathcal{R}_0 h \) \((\alpha \to 0)\)

\(\mathcal{R}_0 \) contracting?

YES for \(\alpha \) small
Horn map and Parabolic Renormalization

\[f_0(z) = z + a_2 z^2 + \ldots \]
\[a_2 \neq 0 \]

Horn map
\[E_{f_0} = \Phi_{\text{attr}} \circ \Phi_{\text{rep}}^{-1} \]

Parabolic Renormalization
\[R_0 f_0 = \text{Exp}^\# \circ E_{f_0} \circ (\text{Exp}^\#)^{-1} \]
\[\text{Exp}^\#(z) = e^{2\pi i z} : \mathbb{C}/\mathbb{Z} \xrightarrow{\sim} \mathbb{C}^* \]

\[R_0 f_0(z) = z + \ldots \]
by normalization
\[E_{f_0}(z) = z + o(1) \quad (\text{Im } z \rightarrow +\infty) \]
Perturbation (Douady-Hubbard-Lavaurs) $f'(0) = e^{2\pi i \alpha}$, α small $\mid \arg \alpha \mid < \frac{\pi}{4}$

E_f depends continuously on f

(after a suitable normalization)

$\chi_f(z) = z - \frac{1}{\alpha}$

$\tilde{R}_f = \chi_f \circ E_f$

first return map
Main Theorems 1-4 (with H. Inou)

We define a class of functions \mathcal{F}_1, (and $\mathcal{F}'_1 \subset \mathcal{F}_1$) such that if $f \in \mathcal{F}_1$, then f is holomorphic, $f(0) = 0$, $f'(0) = 1$, f has a unique critical point c_f in its domain of definition and the critical value $f(c_f) = -\frac{4}{27}$ (fixed). Moreover $f''(0) \neq 0$.

Theorem 1. $\mathcal{F}_1 \xrightarrow{\mathcal{R}_0} \mathcal{F}'_1 \subset \mathcal{F}_1$.

Moreover \mathcal{R}_0 is “holomorphic” and $\mathcal{R}_0(z + z^2) \in \mathcal{F}'_1$.

Theorem 2. For small $\alpha \in \mathbb{R}$, $\mathcal{F}_1 \xrightarrow{\mathcal{R}_\alpha} \mathcal{F}'_1 \subset \mathcal{F}_1$.

Hence there exists a large N such that if $f = e^{2\pi i \alpha} h$ with α of high type (N) and $h \in \mathcal{F}_1$, then the sequence of renormalizations

$$f = f_0 \xrightarrow{\mathcal{R}} f_1 \xrightarrow{\mathcal{R}} f_2 \xrightarrow{\mathcal{R}} f_3 \xrightarrow{\mathcal{R}} \ldots$$

is defined so that $f_n = e^{2\pi i \alpha_n} h_n(z)$, $h_n \in \mathcal{F}_1$. (Here $\alpha_{n+1} = ||\frac{1}{\alpha_n}||$ and $h_{n+1} = \mathcal{R}_{\alpha_n} h_n$, possibly after complex conjugation.)
“Irrational numbers of high type” (N)

\[\alpha = \frac{1}{a_1 \pm \frac{1}{a_2 \pm \frac{1}{a_3 \pm \ldots}}} \text{ where } a_i \geq N \]
Definition of \mathcal{F}_1 and \mathcal{F}_1'

Let $P(z) = z(1 + z)^2$. We take specific simply connected open sets V and V' with $0 \in V \subset \overline{V} \subset V' \subset \mathbb{C}$.

$$\mathcal{F}_1 = \left\{ f = P \circ \varphi^{-1} : \varphi(V) \to \mathbb{C} \middle| \varphi : V \to \mathbb{C} \text{ is univalent} \right\}$$

$$\varphi(0) = 0, \quad \varphi'(0) = 1$$

Define \mathcal{F}_1' with V replaced by V'.

$P(0) = 0, \quad P'(0) = 1$ critical points: $\frac{-1}{3}$ and -1 critical values: $P(-\frac{1}{3}) = -\frac{4}{27}$ and $P(-1) = 0$

$V' \quad V \text{ slightly smaller domain than } V'$

$\eta = 2$
Theorem 3. After modifying the definition slightly, \mathcal{F}_1 is in one to one correspondence with the Teichmüller space of a punctured disk. With respect to the Teichmüller distance (which is complete), \mathcal{R}_0 is a uniform contraction.

Theorem 4. The same statement for small $\alpha (\in \mathbb{R})$. Hence when restricted to the subset where $|\alpha|$ is small, the renormalization \mathcal{R} is hyperbolic.

Teichmüller space is like the unit disk with Poincaré metric. holomorphic self map does not expand the distance.

(Royden-Gardiner Theorem: Teichmüller distance = Kobayashi distance)

\[
\mathcal{F}_1 \xrightarrow{\mathcal{R}_0} \mathcal{F}'_1 \subset \mathcal{F}_1
\]

Estimate of contraction of $\mathcal{F}'_1 \hookrightarrow \mathcal{F}_1$ via cotangent space which is the space of integrable holomorphic quadratic differentials. + modulus-area inequality
Applications

Theorem. Under the assumption of Theorem 2, the critical orbit stays in the domain of f and can be iterated infinitely many times. Moreover if f is (a part of) a rational map, then the critical orbit is not dense.

Theorem (Buff-Chéritat). There exists an irrational number α such that the Julia set of the quadratic polynomial $P_{\alpha}(z) = e^{2\pi i \alpha}z + z^2$ has positive Lebesgue measure.

Theorem. Suppose f and f' satisfy the assumption of Theorem 2, with the same rotation number α. Then they have small periodic cycles ζ_n and ζ'_n around 0 with period q_n. Let $\lambda(\zeta_n)$, $\lambda(\zeta'_n)$ be their multipliers. The differences

$$|\lambda(\zeta_n) - \lambda(\zeta'_n)|$$

and

$$\left|\frac{1}{1 - \lambda(\zeta_n)} - \frac{1}{1 - \lambda(\zeta'_n)}\right|$$

tends to 0 exponentially fast as $n \to \infty$ with a uniform rate.
Application 2: Rigidity

Theorem 5 (Rigidity). If $h, \tilde{h} \in \mathcal{F}_1$ and α satisfies the hypothesis of Theorem 2, then there exists a quasiconformal homeomorphism φ which conjugates $f = e^{2\pi i \alpha}h$ and $\tilde{f} = e^{2\pi i \alpha}\tilde{h}$ along their critical orbits, and asymptotically conformal on the closure of critical orbits.

Within this class of maps, the same rotation number implies a better conjugacy.

g_n’s, \tilde{g}_n’s are “exponential-like” (very expanding).
Various Renormalizations

Feigenbaum

- Proper subintervals
- Cantor set

Circle map

- Partition of interval

Near-parabolic

- Covering by sector or croissant-like domains
- Gluing/identification needed to define the renormalization
Return to Theorem 5

Theorem 5 (Rigidity). If \(h, \tilde{h} \in \mathcal{F}_1 \) and \(\alpha \) satisfies the hypothesis of Theorem 2, then there exists a quasiconformal homeomorphism \(\varphi \) which conjugates \(f = e^{2\pi i \alpha} h \) and \(\tilde{f} = e^{2\pi i \alpha} \tilde{h} \) along their critical orbits, and asymptotically conformal on the closure of critical orbits.

\[g_n \text{'s, } \tilde{g}_n \text{'s are "exponential-like" (very expanding).} \]

Need to *reconstruct* the dynamics of \(f \) in subdomains (with control on geometry) from \(f_n = \mathcal{R}^n f \). Because the relation between \(f \) and \(f_n = \mathcal{R}^n f \) is less obvious.
Difficulty in proving rigidity for irrationally indifferent fixed pts.

Knowing $\mathcal{R}f$, what can be said about f?

How to transfer information (e.g. geometry) on $\mathcal{R}^n f$ to previous generations of renormalizations $\mathcal{R}^{n-1} f, \mathcal{R}^{n-2} f, \ldots, f$?

Fundamental domains (and their boundary curves) are not unique.

Need to cover previous fundamental regions with next generation fundamental regions WITH OVERLAP. (not partition)

Need to reconstruct the dynamics of f from that of $\mathcal{R}f$ so that one can understand f better.

this is like ...
Thank you!