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Main Result (in this week)

F : a non-archimedean local field.

G: a connected reductive group over F .

Theorem (Chan-O., arXiv:2105.06341)

For any pair (S, θ) of

S ⊂ G: an unramified elliptic maximal torus over F ,

θ : S(F ) → C×: a toral character,

there uniquely exists a regular supercuspidal representation π of G(F ) whose
Harish-Chandra character Θπ is given by

Θπ(γ) = c ·
∑

w∈WG(F )(S)

θ(wγ) (wγ := wγw−1)

at any unramified very regular element γ ∈ S(F ) (c ∈ C× is a constant
independent of γ).

In fact, “the” representation π can be explicitly given via Yu–Kaletha theory.
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Why important?

In principle, any π is determined by its Harish-Chandra character Θπ.

Θπ is a C-valued function on (the regular semisimple locus of) G(F ).

It is often very difficult to compute Θπ(γ) at all γ ∈ G(F ).

It is sometimes possible to write Θπ(γ) in a simple form at some special γ.

In practice, we want π to be recovered by the behavior of Θπ on a small set of
such special elements.

Application (next week)

characterization of L-packets/LLC

(supplement to Kaletha’s construction for regular supercuspidals)

comparison of two representations having different origins

(Yu’s supercuspidal representations vs. Chan–Ivanov representations)
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Plan of today

(1) Review Yu’s supercuspidal representations and regular supercuspidal
representations.

J.-K. Yu, Construction of tame supercuspidal representations, J. Amer. Math.
Soc. 14 (2001), no. 3, 579–622.
T. Kaletha, Regular supercuspidal representations, J. Amer. Math. Soc. 32
(2019), no. 4, 1071–1170.

(2) Explain a character formula in a special case.

J. D. Adler and L. Spice, Supercuspidal characters of reductive p-adic groups,
Amer. J. Math. 131 (2009), no. 4, 1137–1210.
S. DeBacker and L. Spice, Stability of character sums for positive-depth,
supercuspidal representations, J. Reine Angew. Math. 742 (2018), 47–78.

(3) Explain the outline of the proof of our result.

C. Chan and M. Oi, Geometric L-packets of Howe-unramified toral
supercuspidal representations, preprint, arXiv:2105.06341, 2021.
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Yu’s supercuspidal representations

{supercuspidal representations}/∼

{Yu’s supercuspidal representations}/∼

∪

{regular supercuspidal representations}/∼

∪

Yu’s construction: to each Yu-datum (G⃗, r⃗,x, ρ0, ϕ⃗), associate a pair (K, ρ) of
an open compact-mod-center subgroup K ⊂ G(F ) and an irreducible smooth
representation of (ρ, V ) such that

c-Ind
G(F )
K ρ :=

ß
f : G→ V

∣∣∣∣ f is smooth, compact-mod-center supported,
f(kg) = ρ(k)f(g) for every k ∈ K, g ∈ G

™
is an irreducible supercuspidal representation of G(F ).

A key is Yu’s precise study of the structure of p-adic reductive groups
(based on Bruhat–Tits theory).
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Moy–Prasad filtrations of parahoric subgroups

B(G,F ): (reduced) Bruhat–Tits building (a simplicial set) ↶ G(F )
x ∈ B(G,F ) ⇝ Gx,0 ⊂ G(F ): a parahoric subgroup (open compact)
Gx,0 ⊂ Gx := StabG(F )({x})
Gx,0 has a descending filtration {Gx,r}r∈R≥0

(Moy–Prasad filtration)

Example: hyperspecial case

G = GLN , ZG:= center of G

x: (hyperspecial) vertex, i.e., facet of minimal dimension

Gx,0 = GLN (OF ) ⊂ Gx = ZG(F ) ·GLN (OF )

Gx,0+ = · · · = Gx,1 =

Ö
1 + pF pF

. . .

pF 1 + pF

è
,

Gx,1+ = · · · = Gx,2 =

Ö
1 + p2F p2F

. . .

p2F 1 + p2F

è
, . . .
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Moy–Prasad filtrations of parahoric subgroups

Example: Iwahori case

G = GLN

x: barycenter of an alcove (facet of maximal dimension)

Gx,0 =

Ö
O×
F OF

. . .

pF O×
F

è
Gx,0+ = · · · = Gx, 1

N
=

Ö
1 + pF OF

. . .

pF 1 + pF

è
,

Gx, 1
N + = · · · = Gx, 2

N
=

à
1 + pF pF OF

. . .
. . .

pF
. . . pF

p2F pF 1 + pF

í
, . . .
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Yu-datum and Yu’s pyramid

In the following, assume p 6= 2.

First three parts of a Yu-datum (G⃗, r⃗,x, ρ0, ϕ⃗):
G⃗ = (G0 ⊊ G1 ⊊ · · · ⊊ Gd = G): Gi tame Levi, ZG0/ZG is anisotropic,
r⃗ = (0 ≤ r0 < · · · < rd−1 ≤ rd): real numbers (0 < r0 when d > 0),
x ∈ B(G0, F ): a vertex.

Put
Ki := G0

x · (G0, G1, . . . , Gi)x,(s0,...,si−1) (si := ri/2).

0

s0

s1
...

sd−1

G0

G1 G1

G2 G2

. .
. . . .

Gd Gd
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Two particular properties of Yu’s pyramid

A finite connected reductive group G0
x(Fq) = G0

x,0/G
0
x,0+ lives in K0.

0
0+

G0

A Heisenberg group appears in each difference between Ki and Ki+1.
Put J i+1 := (Gi, Gi+1)x,(ri,si).
We have Ki+1 = KiJ i+1.
Each J i+1 has a Heisenberg group Hi (= “V i ⊠ Fp”) as its quotient.

si
si+

ri
ri+

Ki

J i+1

□: symplectic space part (“V i”) of the Heisenberg group

□: center part (“Fp”) of the Heisenberg group
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Construction of a supercuspidal representation

Remaining part of a Yu-datum (G⃗, r⃗,x, ρ0, ϕ⃗):

ρ0: irrep. of K
0 = G0

x such that ρ0|G0
x,0

⊃ κ: a cuspidal irrep. of G0
x(Fq)

ϕ⃗ = (ϕ0, . . . , ϕd): “generic” characters ϕi : G
i(F ) → C×;

- ϕi is “Gi+1-generic” of depth ri at x for 0 ≤ i < d,
- depthx(ϕd) = rd when rd−1 < rd, and ϕd = 1 when rd−1 = rd.

Construct a representation ρi+1 of Ki+1 from ρi of K
i inductively.

si
si+

ri
ri+

Ki

J i+1

ϕi ⇝ Hi ⊃ Fp → C×: a non-trivial character
Stone–von Neumann theorem: ∃! irrep. τϕi of Hi with cent. char. ϕi

τϕi extends to a rep. τ̃ϕi of Sp(V i)⋉Hi (Heisenberg–Weil representation)
ϕ̃i := pull back of τ̃ϕi via conjugate action map Ki ⋉ J i+1 → Sp(V i)⋉Hi

ϕ̃i ⊗
(
(ρi ⊗ ϕi|Ki)⋉ 1

)
��

Ki ⋉ J i+1

����
ρi+1 KiJ i+1 = Ki+1
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Regular supercuspidal representations

Fact (Yu + Fintzen): c-Ind
G(F )

Kd ρd ⊗ ϕd is irreducible supercuspidal.

Hakim–Murnaghan: studied the fibers of Yu’s construction (“G-equiv.”).

Kim, Fintzen: studied the image (surjective if p >> 0).

Kaletha defined the notion of regularity for Yu-data/Yu-supercuspidals and
parametrized them via tame elliptic regular pairs.

{Yu-data}/G-eq. 1:1 // {Yu-s.c. rep’ns of G}/∼

{regular Yu-data}/G-eq.

∪
1:1 // {regular s.c. rep’ns of G}/∼

∪

{“tame elliptic regular pairs”}/G-conj.
��

1:1 (Kaletha)

OO 33

Deligne–Lusztig theory plays a key role in this.
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Regular supercuspidal representations

Deligne–Lusztig theory: Let G be a connected reductive group over Fq.
Each pair (S, ϕ̄) of a maximal torus S of G and its character

ϕ̄ : S(Fq) → C×(∼= Q×
ℓ ) gives rise to a virtual representation RG

S (ϕ̄) of G(Fq):

RG
S (ϕ̄) :=

∑
i

(−1)iHi
c(X,Qℓ)[ϕ̄].

(G⃗, r⃗,x, ρ0, ϕ⃗): a Yu-datum (⇝ ρ0|G0
x,0

⊃ κ: a cusp. irrep. of G0
x(Fq)).

DL theory =⇒ κ ⊂ RG
S (ϕ̄) for some (S, ϕ̄) with elliptic S ⊂ G0

x.

∃ a “maximally unramified” elliptic maximal torus S ⊂ G0 s.t. S0/S0+
∼= S.

We say ρ0 is regular if the stabilizer of ϕ̄ in WG0(F )(S) is trivial.

Regular ρ0’s are parametrized by pairs (S, ϕ−1) of

S ⊂ G0: a “maximally unramified” elliptic maximal torus,
ϕ−1 : S(F ) → C×: a depth-zero character whose ϕ−1|S0 realizes ϕ̄.
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Kaletha’s parametrizing theorem

(G⃗, r⃗,x, ρ0, ϕ⃗): a regular Yu-datum ⇝ ϕ :=
∏d
i=−1 ϕi|S .

Fact (Kaletha)

When p >> 0, the association (G⃗, r⃗,x, ρ0, ϕ⃗) 7→ (S, ϕ) gives a bijection

{regular Yu-data}/G-eq. 1:1−−→ {tame elliptic regular pairs}/G-conj.
Hence we get a bijection (S, ϕ) 7→ π(S,ϕ);

{tame elliptic regular pairs}/G-conj. 1:1−−→ {regular s.c. rep’ns of G(F )}/∼

Converse procedure [(S, ϕ)⇝ (G⃗, r⃗,x, ρ0, ϕ⃗)] is called Howe factorization.

Group part of Howe factorization [(S, ϕ)⇝ G⃗] works for any character ϕ.

ϕ is toral ⇐⇒ ϕ gives rise to a sequence G⃗ with G0 = S.
ϕ is 0-toral ⇐⇒ ϕ gives rise to a sequence G⃗ = (G0 = S ⊊ G1 = G).

π(S,ϕ): a regular supercuspidal associated to (S, ϕ).
π(S,ϕ) is Howe-unramified ⇐⇒ S is unramified
π(S,ϕ) is toral ⇐⇒ ϕ is toral
π(S,ϕ) is 0-toral ⇐⇒ ϕ is 0-toral
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Character of Howe-unramified regular supercuspidal

π(S,ϕ): Howe-unramified regular supercuspidal of G(F ).

γ ∈ Gx,0 is unramified very regular ⇐⇒
regular semisimple (hence the connected centralizer Tγ is a maximal torus),
Tγ : unramified whose “apartment” A(Tγ , F ) ⊂ B(G,F ) contains x, and
for any absolute root α ∈ R(Tγ , G), α(γ) ̸≡ 1 (mod p).

Note. γ ∈ Gx,0: unramified very regular =⇒ γ̄ ∈ Gx(Fq): regular semisimple

Proposition (variant of a formula of Adler–DeBacker–Spice–Kaletha)

Let γ ∈ Gx,0 unramified very regular.

If γ is not G-conjugate to an element of S, Θπ(S,ϕ)
(γ) = 0.

If γ ∈ S, then we have

Θπ(S,ϕ)
(γ) = (−1)•

∑
w∈WG(F )(S)

(ϕ · ε[ϕ])(wγ),

where (−1)• ∈ {±1} and ε[ϕ] : S(F ) → C× is a sign character.
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Proof of character formula

(Consider only the case γ ∈ S)

Recall: π(S,ϕ) = c-Ind
G(F )

Kd ρd ⊗ ϕd.

Harish–Chandra integral formula:

Θπ(S,ϕ)
(γ) =

deg π(S,ϕ)

dim ρd
ϕd(γ)

∫
G(F )/ZG(F )

∫
K
Θ̇ρd(

gcγ) dc dg

deg π(S,ϕ): formal degree of π(S,ϕ) (w.r.t. a Haar measure dg),
K ⊂ G(F ): an open compact subgroup with dc(K) = 1,
Θ̇ρd : zero extension of Θρd from Kd to G(F ).

Kaletha’s trick on the support of G(F )/ZG(F ) → C : g 7→ Θ̇ρd(
gγ):

γ is unram. very reg. =⇒ [g 7→ Θ̇ρd(
gγ)] is supported on Gx/ZG(F ).

standard argument via Fubini’s theorem implies

Θπ(S,ϕ)
= ϕd(γ)

∑
g∈Kd\Gx

Θ̇ρd(
gγ).
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Proof of character formula

Θπ(S,ϕ)
= ϕd(γ)

∑
g∈Kd\Gx

Θ̇ρd(
gγ).

investigate the support of Θρd (Adler–Spice + Deligne–Lusztig):

⇝ unram. very reg. γ satisfies Θ̇ρd(
gγ) 6= 0 =⇒ gγ ∈ S.

⇝ index set = WG0(F )(S)\WG(F )(S).

Recall: ρd = ϕ̃d−1 ⊗
(
(ρd−1 ⊗ ϕd−1|Kd−1)⋉ 1

)
.

⇝ Θρd(
gγ) = Θϕ̃d−1

(gγ) ·Θρd−1
(gγ) · ϕd−1(

gγ)

Do this inductively:

ϕd(γ)Θ̇ρd(
gγ) =

d∏
i=0

Θϕ̃i
(gγ) ·Θρ0(gγ) ·

d∏
i=0

ϕi(
gγ)

Deligne–Lusztig: Θρ0(
gγ) =

∑
w∈W

G0(F )
(S) ϕ−1(

wgγ).

Adler–DeBacker–Spice: Θϕ̃i
(gγ) = (−1)•ε[ϕi](

gγ).

Get

Θπ(S,ϕ)
(γ) = (−1)•

∑
w∈WG(F )(S)

(ϕ · ε[ϕ])(wγ), ε[ϕ] :=

d∏
i=0

ε[ϕi].
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Proof of main theorem

Theorem (Chan-O., arXiv:2105.06341)

For any unramified toral pair (S, θ), ∃! a regular supercuspidal π such that

Θπ(γ) = c ·
∑

w∈WG(F )(S)

θ(wγ)

at any unramified very regular element γ ∈ S(F ).

∃-part: guaranteed by the previous character formula (even for non-toral).

π = π(S,ϕ) for ϕ such that θ = ϕ · ε[ϕ] (ϕ := θ · ε[θ]−1).
c = (−1)•: an explicit sign.

Need the torality assumption on θ for !-part.

Suppose: π′ = π(S′,ϕ′): another such regular supercuspidal of G(F ).

Note: At this point we do not know whether S′ is unramified (or also ϕ′ is toral).
(However we suppose π′ is regular supercuspidal from the beginning.)
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Proof of main theorem

Key lemma

For any toral character θ : S(F ) → C×, there exists γ ∈ Svreg(F ) such that∑
w∈WG(F )(S)

θ(wγ) 6= 0.

Proof.

Suppose (for a contradiction):
∑
w∈WG(F )(S)

θ(w−) ≡ 0 on γS0+ ⊂ Svreg.

Since θ(γ) · θ|S0+
= −

∑
w ̸=1 θ(

wγ) · θw|S0+
, we have

θ(γ) · 〈θ|S0+ , θ|S0+〉S0+ = −
∑
w ̸=1

θ(wγ) · 〈θw|S0+ , θ|S0+〉S0+ .

LHS = θ(γ) 6= 0.

Kaletha: StabWG(F )(S)(θ|S0+) = StabWG0(F )(S)
(θ−1|S0+) (when p >> 0).

θ: toral =⇒ StabWG(F )(S)(θ|S0+) = {1} =⇒ RHS = 0 (contradiction).
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Proof of main theorem

By Key lemma, take γ such that Θπ′(γ) = c ·
∑
w∈WG(F )(S)

θ(wγ) 6= 0.

Again by the “support part” of the character formula, we must have
γ ∈ S′(F ) (up to G(F )-conjugate). =⇒ S′ = S

Again by the character formula, for any Svreg(F ), we have

(−1)•
∑

w∈WG(F )(S)

(ϕ′ · ε[ϕ′])(wγ) = c ·
∑

w∈WG(F )(S)

θ(wγ).

Q. Does this implies: ϕ′ · ε[ϕ′] = θw for some w?

By a similar argument to Key lemma, we get ϕ′ · ε[ϕ′] ≡ θw on Svreg(F ).

So that this holds on S(F ), we need enough many unram. very reg. elements.

Gx(Fq) ⊃ Svreg(Fq):= the image of Svreg(F ) under the reduction map.

⇝ a sufficient condition is:

(⋆)
|Svreg(Fq)|
|S(Fq)|

≥ 1

2
.
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Remark on the inequality (⋆)

Claim. inequality (⋆) holds whenever q >> 0.

well-known: this is true for Sreg(Fq) instead of Svreg(Fq).
However, in general, we might have Svreg(Fq) ⊊ Sreg(Fq).
x ∈ B(G,F ): characterized as the unique point in A(S, F ).

⇝ x: Chevalley valuation =⇒ Svreg(Fq) = Sreg(Fq).
∃ an inner twist ψ : G→ G∗ transferring S to S∗ whose associated point
x∗ ∈ B(G∗, F ) is Chevalley (Kaletha’s study of “superspecial” points).

Svreg
// //

ψ ∼=
��

Svreg(Fq) �
� //

ψ ∼=
��

Sreg(Fq) := Gx,reg(Fq) ∩ S(Fq) �
� // Gx(Fq)

S∗
vreg

// // S∗vreg(Fq) S∗reg(Fq) := G∗
x,reg(Fq) ∩ S∗(Fq) �

� // G∗
x(Fq)

We get the claim by estimating S∗reg(Fq) ⊂ S∗(Fq).
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