De Rham-Hodge-Kodaira decomposition for tamed Dirichlet space by signed measured curvature lower bounds

桑江一洋 (福岡大学)

1 被制御ディリクレ空間

M を位相的 Lusin 空間で $\mathcal{B}(M) = \sigma(C(M))$ を仮定する. \mathfrak{m} を M 上の Radon 測度で台が全体とする. $L^2(M;\mathfrak{m})$ 上のディリクレ形式 $(\mathscr{E},D(\mathscr{E}))$ と対応する $L^2(M;\mathfrak{m})$ -半群 $(P_t)_{t\geq 0}$ を考え、 $(\mathscr{E},D(\mathscr{E}))$ が準正則で carré-du-champ $\Gamma(u)$ を許容するとする. このとき、 $(\mathscr{E},D(\mathscr{E}))$ に基づいて \mathfrak{m} -a.e. の意味で一階の微分構造がはいる. 特に L^2 -ベクトル場の全体 $L^2(TM)$, L^2 -1-微分形式の全体 $L^2(T^*M)$, それらの (E) -心、ト空間の意味ではなく L^∞ -加群の意味での)テンソル積 $L^2(T^{k\otimes M}) := L^2(T^{(k-1)\otimes M}) \otimes L^2(TM)$, $L^2((T^*)^{k\otimes M}) := L^2((T^*)^{(k-1)\otimes M}) \otimes L^2(T^*M)$, 外積冪 $L^2(\Lambda^kT^*M) := \Lambda^kL^2(TM)$, $L^2(\Lambda^kT^*M) := \Lambda^kL^2T^*M$) などが [1,4] によって定式化された. 特に $f \in D(\mathscr{E})$ に対して、その微分 $\mathbf{d} f \in L^2(T^*M)$, 勾配ベクトル場 $\nabla f \in L^2(TM)$ がそれぞれ定義できる.

 $\mathbf{X}=(\Omega,X_t,\mathbf{P}_x)$ を $(\mathscr{E},D(\mathscr{E}))$ に対応する標準過程, $S_D(\mathbf{X})$ を滑らかな Dynkin class 測度の全体, $S_{E\!K}(\mathbf{X})$ を滑らかな拡張された加藤 class 測度の全体とする. $(\Delta,D(\Delta))$ を $(\mathscr{E},D(\mathscr{E}))$ に対応する L^2 -生成作用素, $(\Delta^{2\kappa},D(\Delta^{2\kappa}))$ をシュレディンガー形式 $(\mathscr{E}^{2\kappa},D(\mathscr{E}))$ に対応する L^2 -生成作用素とする. Δ は 具体例において必ずしもラプラシアンとは限らない (Wiener 空間では Ornstein-Uhlenbeck 作用素, 重み付き Riemann 多様体 $(M,g,e^{-f}\mathrm{vol}_g)$ では重み付きラプラシアン $\Delta_f:=\Delta-\langle\nabla f,\nabla\cdot\rangle$ になる).

定義 1.1 (Bakry-Émery 条件). $\kappa^+ \in S_D(\mathbf{X}), \ 2\kappa^- \in S_{E\!K}(\mathbf{X})$ とする. $(M,\mathscr{E},\mathfrak{m})$ または単に M が 2-Bakry-Émery 条件 (BE $_2(\kappa,\infty)$ と記す) を満たすとは以下のこととする: 任意の $\Delta f \in D(\mathscr{E})$ を満たす $f \in D(\Delta)$ と $\Delta^{2\kappa}\phi \in L^\infty(M;\mathfrak{m})$ を満たす非負 $\phi \in D(\Delta^{2\kappa}) \cap L^\infty(M;\mathfrak{m})$ に対し

$$\frac{1}{2} \int_{\mathcal{M}} \Delta^{2\kappa} \phi |\nabla f|^2 d\mathfrak{m} \ge \int_{\mathcal{M}} \phi \langle \nabla f, \nabla \Delta f \rangle d\mathfrak{m}.$$

仮定 1.2. 符号値測度 κ が $\kappa^+ \in S_D(\mathbf{X})$ と $2\kappa^- \in S_{EK}(\mathbf{X})$ を満たし, M が $\mathsf{BE}_2(\kappa,\infty)$ を満たす.

仮定 1.2 が成立するとき, $(M,\mathcal{E},\mathfrak{m})$ あるいは単に M を被制御 (tamed) と呼ぶ. さらに, $\mathsf{BE}_2(\kappa,\infty)$ は半群の勾配評価と呼ばれる $\mathsf{GE}_1(\kappa,\infty)$ という次の条件

$$|\nabla(P_t f)| \le P_t^{\kappa} |\nabla f| \quad \mathfrak{m}\text{-a.e. for any } f \in D(\mathscr{E}) \quad \text{and} \quad t \ge 0$$
 (1.1)

とも同値である ([2, Theorems 3.4 and 3.6, Proposition 3.7 and Theorem 6.10, Definition 3.3 and Theorem 3.4]). 試験関数の集合を

$$\operatorname{Test}(M) := \{ f \in D(\Delta) \cap L^{\infty}(M; \mathfrak{m}) \mid |\nabla f| \in L^{\infty}(M; \mathfrak{m}), \Delta f \in D(\mathscr{E}) \}$$

で定める. [2, Proposition 6.8] より、仮定 1.2 の下で、 $\mathsf{BE}_2(-\kappa^-,\infty)$ が成立する. さらに、任意の $f \in L^2(M;\mathfrak{m}) \cap L^\infty(M;\mathfrak{m})$ と t>0 に対して、

$$|\nabla P_t f|^2 \le \frac{1}{2t} \|P_t^{-2\kappa^-}\|_{\infty,\infty} \cdot \|f\|_{L^{\infty}(M;\mathfrak{m})}^2$$
(1.2)

が成立する. 特に $f \in L^2(M;\mathfrak{m}) \cap L^\infty(M;\mathfrak{m})$ なら, $P_t f \in \mathrm{Test}(M)$ となる. [2, Lemma 6.4] より $\mathrm{Test}(M)$ は**代数 (algebra)** になる: $f,g \in \mathrm{Test}(M)$ ならば $fg \in \mathrm{Test}(M)$.

仮定 1.2 の下で、 $\operatorname{Test}(M)$ は古典的な枠組みにおける $C_c^\infty(M)$ の代用物の役割を果たす。さらに $\operatorname{m-a.e.}$ の意味で二階の微分構造がはいる。例えば、ソボレフ空間としてのヘシアン(Hess, $D(\operatorname{Hess})$)の概念、ソボレフ空間 $W^{1,2}(TM)$, $H^{1,2}(TM)$:= $\overline{\operatorname{Reg}(TM)}^{\|\cdot\|_{W^{1,2}}}$, $\operatorname{Reg}(TM)$:= $\{\sum_{i=0}^n g_i \nabla f_i \mid \exists n \in \mathbb{N}, f_i \in \operatorname{Test}(M), g_i \in \operatorname{Test}(M) \cup \mathbb{R}1_M (0 \leq i \leq n)\}$, $H^{1,2}(TM)$ に対応する Bochner Laplacian \Box , L^2 -k-微分形式 $\omega \in L^2(\Lambda^k T^*M)$ に作用するソボレフ空間としての外微分作用素(d_*^k , $D(d_*^k)$)、ソボレフ空間 $W^{1,2}(\Lambda^k T^*M)$:= $D(d_*^k) \cap D(d_*^k)$, $D(d_*^k)$, $D(d_*^k)$, $D(d_*^k)$:= $\overline{\operatorname{Reg}(\Lambda^k T^*M)}^{\|\cdot\|_{W^{1,2}}}$, $\overline{\operatorname{Reg}(\Lambda^k T^*M)}^{\|\cdot\|_{W^{1,2}}}$, $\overline{\operatorname{Reg}(\Lambda^k T^*M)}$ に対応する \overline{L}^2 -生成作用素としての $\overline{\operatorname{Leg}(\Lambda^k T^*M)}$ - $\overline{\operatorname$

定理 1.3 (L^2 -de Rham-Hodge-Kodaira 分解). ($\Delta_k^{HK}, \operatorname{Reg}(\Lambda^k T^*M)$) が $L^2(\Lambda^k T^*M)$ 上本質的自己 共役とする.

- (1) $\omega \in L^2(\Lambda^k T^*M)$ に対して、調和射影 $H\omega := \lim_{N \to \infty} P_N^{HK} \omega$ in $L^2(\Lambda^k T^*M)$ が存在する.
- (2) $\omega \in L^2(\Lambda^k T^*M)$ に対して、以下の特異積分が $L^2(\Lambda^k T^*M)$ での収束の意味で存在する:

$$\mathrm{dd}_*(-\Delta_k^{\mathrm{HK}})^{-1}\omega := \lim_{N \to \infty} \int_0^N \mathrm{dd}_* P_t^{\mathrm{HK}}\omega \, \mathrm{d}t, \qquad \mathrm{d}_*\mathrm{d}(-\Delta_k^{\mathrm{HK}})^{-1}\omega := \lim_{N \to \infty} \int_0^N \mathrm{d}_*\mathrm{d}P_t^{\mathrm{HK}}\omega \, \mathrm{d}t.$$

(3) L^2 -de Rham-Hodge-Kodaira 直交分解が成立する: $\omega \in L^2(\Lambda^k T^*M)$ に対し

$$\begin{split} \omega &= H\omega + \mathrm{dd}_*(-\Delta_k^{\mathrm{HK}})^{-1}\omega + \mathrm{d}_*\mathrm{d}(-\Delta_k^{\mathrm{HK}})^{-1}\omega, \\ \|\omega\|_{L^2(\Lambda^kT^*M)}^2 &= \|H\omega\|_{L^2(\Lambda^kT^*M)}^2 + \|\mathrm{dd}_*(-\Delta_k^{\mathrm{HK}})^{-1}\omega\|_{L^2(\Lambda^kT^*M)}^2 + \|\mathrm{d}_*\mathrm{d}(-\Delta_k^{\mathrm{HK}})^{-1}\omega\|_{L^2(\Lambda^kT^*M)}^2. \end{split}$$

参考文献

- [1] M. Braun, Vector calculus for tamed Dirichlet spaces, Mem. Amer. Math. Soc. **303** (2024), no. 1522.
- [2] M. Erbar, C. Rigoni, K.-T. Sturm and L. Tamanini, Tamed spaces Dirichlet spaces with distribution-valued Ricci bounds, J. Math. Pures Appl. (9) 161 (2022), 1–69.
- [3] S. Esaki, K. Kuwae and Z. Xu, Riesz transforms for Dirichlet spaces tamed by signed measured curvature lower bounds, (2023) preprint, arXiv:2308.12728v2
- [4] N. Gigli, Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below, Mem. Amer. Math. Soc. 251 (2018), no. 1196.
- [5] K. Kuwae, De Rham-Hodge-Kodaira decomposition for tamed Dirichlet space by signed measured curvature lower bounds, in preparation, 2025.
- [6] X.-D. Li, On the weak L^p-Hodge decomposition and Beurling-Ahlfors transforms on complete Riemannian manifolds, Probab. Theory Relat. Fields 150 (2011), no. 1-2, 111-144.
- [7] I. Shigekawa, De Rham-Hodge-Kodaira's decomposition on an abstract Wiener space, J. Math. Kyoto Univ. 26 (1986), no. 2, 191–202.