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This talk is based on [4]. Proving large deviation principle (LDP) for stochastic dif-
ferential equations is important from the point of view of its application to the field of
mathematical finance. In this talk, we will mainly consider the family stochastic differential
equations

dY ϵt = σ(Y ϵt ) f (X̂ϵt , t)dXϵt − 1
2
σ2(Y ϵt ) f 2(X̂ϵt , t)dt, t ∈ [0, 1] ϵ > 0, (0.1)

and will show how to prove the LDP for the solution of (0.1) on path spaces when ϵ ↘ 0.
Here σ ∈ C3

b , f is in C1 or α-Hölder spaces (α ∈ (0, 1)), (Xϵ, X̂ϵ ) :=
√
ϵ(X, X̂), and X is a

Brownian motion. X̂ is a stochastic process defined by

X̂t := KWt, t ≥ 0,

where for ζ, γ ∈ (0, 1), K : Cγ-Hld([0, 1]) → Cζ-Hld([0, 1]) is a generalized fractional
operator defined by

K f (t) := κ(t)( f (t) − f (0)) +
∫ t

0
( f (s) − f (t))κ′(t − s)ds, f ∈ Cγ-Hld([0, 1]),

κ : (0, 1] → R is given by

κ(t) := g(t)tζ−γ, g is a Lipschitz continuous function, (0.2)

and W is a Brownian motion correlated to X . It is well-known that the Hölder regularity
of X̂ is ζ . So if ζ ∈ (0, 1/3), then X̂ is not controlled by Y ϵ in the sense of controlled paths
theory, which means that one cannot apply the usual rough path theory.

In [1], the authors proved the LDP for (0.1) when σ = 1, f ∈ C∞ and κ(t) = tH−1/2

(H ∈ (0, 1/2)) by using the theory of regularity structures. In [2], the result obtained in [1]
was generalized in the sense that σ ∈ C3

b and κ is given by (0.2) by using a partial rough
path approach. However, it is essential to assume that f is a smooth function in these works,
and so one can not apply the result when f (s, t) =

√
|s | (see (0.3), for example)．

Although f (X̂ϵ, ·) is not controlled by Y ϵ as mention above, one can prove that the Itô
integral f (X̂ϵ, ·) · Xϵ is α-Hölder continuous for α ∈ (1/3, 1/3). Therefore it is possible to
use the usual rough path theory if we regard (0.1) as the equation driven by f (X̂ϵ, ·)·Xϵ . This
idea is actually useful because the proof of the LDP for (0.1) comes down to that of the LDP
for f (X̂ϵ, ·) · Xϵ on Hölder spaces. Now let us note that how to prove the LDP for (0.1). We
will first prove the LDP for stochastic integrals {Zϵ }ϵ>0 := {( f (X̂ϵ, ·) · Xϵ, f 2(X̂ϵ, ·) ·Λ)}ϵ>0
on Hölder spaces, where Λ(t) := t. Then we lift Zϵ to rough path spaces continuously by
using the Young pairing, and prove the LDP for (0.1) by using the contraction principle.



There are mainly two mathematical contributions for our work. Firstly, our approach
does not use advanced theory like a partial rough path approach or the theory of regularity
structures, just use the usual rough path theory and we are able to obtain more elementary
and direct proof. Moreover, our method allows for a unified treatment of pathwise LDP for
(0.1). There is the restriction for the assumption of f in [1, 2]. Nevertheless, the assumption
for f can be weakened to the case of C1 or Hölder. For example, one can treat the LDP for
a kind of rough Heston models discussed in [3]

dYt = −1
2

Vtdt +
√

VtdXt, Y0 = 0, (0.3)

Vt = |(KỸ )t |,

in our setting, while it does not in the setting in [1, 2]. To the best of the author’s knowledge,
no such pathwise LDP for these models is known in the literature. Furthermore, our
approach also works to prove the LDP for the solution of stochastic differential equation

dY ϵt = σ(Y ϵt )Aϵt dXϵt − 1
2
σ2(Y ϵt )(Aϵt )2dt, ϵ > 0,

under the suitable assumption, where Aϵ is an adapted continuous process.
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