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This talk is based on a joint work [1] with Ismaël Bailleul (Univ Brest).

In the past decade, singular stochastic PDEs (SSPDEs) have been one of the
hottest topics in the probability theory. An important example is the dynamical Φ4

3

model, which is a nonlinear heat equation of the form

∂tΦ(t, x) = ∆Φ(t, x)− Φ3(t, x) + ξ(t, x), t > 0, x ∈ R3

with a spacetime Gaussian white noise ξ(t, x). The main difficulty of this equation is
the irregularity of ξ. Because of this, the solution Φ cannot be realized as a measurable
function, but as a tempered distribution. Hence the cubic term Φ3 cannot be defined
in the classical sense. However, if we perform a transform involving divergence for the
nonlinear term, we happen to get a meaningful solution in some cases. (Of course, the
additional term should be of less degree than the original nonlinear term.) Indeed, given
an approximation {ξn}∞n=1 of the noise ξ by smooth functions, there is a deterministic
constant Cn which diverges as n → ∞ such that, the solution Φn to

∂tΦn(t, x) = ∆Φn(t, x)− Φ3
n(t, x) + CnΦn(t, x) + ξn(t, x)

(with the same initial value for all n) converges as n → ∞ in the space of distributions.
Such a transform is called a renormalization. The theory of regularity structures [4]
has developed as a basic tool for understanding renormalizations of SSPDEs.

The perturbative approach provides a heuristic picture of renormalization. Once we
regard ξ as an a “smooth” input function and perform a usual Picard iteration, we can
express the “solution” Φ as an infinite series of multilinear functionals of ξ. However,
since ξ is actually a distribution, we have to define each multilinear functional of ξ via
renormalization. This makes the work much easier than trying to renormalize the original
nonlinear term Φ3 of a completely unknown distribution Φ directly. BPHZ theorem
(named after Bogoliubov, Parasiuk, Hepp, and Zimmerman) is a statement that ensures
the convergences of such renormalized multilinear functionals of ξ under some assumptions.

In the study of SSPDEs, it has been a challenging problem to obtain a simple proof
of BPHZ theorem. Chandra and Hairer [3] proved BPHZ theorem in the most general
setting so far, but their proof is quite long (more than 120 pages) and tough reading.
On the other hand, Linares, Otto, Tempelmayr, and Tsatsoulis [6] recently proposed
an inductive proof based on the spectral gap inequality of ξ in the study of quasilinear
SSPDEs. Inspired by their approach, Hairer and Steele [5] also obtained an alternative
inductive proof of [3]. Their theorems are less general than [3], but relatively compact
and sufficient for Gaussian cases. In this talk, we introduce an extension of the regularity
structure including integrability exponents and provide a much simpler proof (less than
30 pages) than [6, 5].

The following is a rough explanation of our theorem. Let ξ(t, x) be a spacetime Gauss-
ian white noise on R × Rd. Starting from the symbol Ξ expressing ξ, we recursively
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construct abstract symbols by acting two kinds of operators: (i) multiplications of sym-
bols (τ, σ) 7→ τσ and (ii) linear operators τ 7→ Ikτ (k ∈ N1+d) expressing the convolution
with k-th derivative of heat kernel. To each symbol τ , we give an “expected regularity”
r(τ) ∈ R by the following rule.

r(Ξ) = −d+ 2

2
− ε, r(τσ) = r(τ) + r(σ), r(Ikτ) = r(τ) + 2− |k|s,

where ε > 0 is a fixed small constant and |(ki)di=0|s := 2k0 +
∑d

i=1 ki is the “parabolic
scale” of multiindex. For any smooth approximation {ξn} of ξ, we can naively define
the “interpreter” {Πn

x}x∈R1+d which translates the symbols τ into the smooth functions
(Πn

xτ)(·) by
(Πn

xΞ)(·) = ξn(·), Πn
x(τσ) = (Πn

xτ)(Π
n
xσ),

(Πn
xIkτ)(·) = ∂kI(Πn

xτ)(·)−
∑

ℓ∈Nd+1, r(Ik+ℓτ)>0

(· − x)ℓ

ℓ!
∂k+ℓI(Πn

xτ)(x) (k ∈ Nd+1),

where I(F ) :=
∫ t
−∞ e(t−s)(∆−1)F (s)ds denotes the convolution with heat kernel. In general,

the family of operators {Πx}x∈R1+d which interpret symbols to some distributions is called
amodel. As explained at the beginning of this abstract, we cannot expect the convergence
of naive models {Πn

x} as n → ∞ without renormalization. The algebraic procedure to get

the most appropriate renormalized version {Π̂n
x} (called the BPHZ model) is already

established in [2] without convergence results.

Theorem 1 ([5, 1]). If r(τ) > −d+2
2 for any symbol τ except Ξ, then the BPHZ model

{Π̂n
x} converges to a distribution-valued model as n → ∞.
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