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1 Introduction

We consider the following stochastic Volterra equation (SVE for short):

Xt = x(t) +

∫ t

0
K(t− s)b(Xs) ds+

∫ t

0
K(t− s)σ(Xs) dWs, t > 0, (1)

associated with a d-dimensional Brownian motion W . Here, the drift coefficient b : Rn → Rn,
the diffusion coefficient σ : Rn → Rn×d, the kernel K : (0,∞) → [0,∞) and the forcing term
x : (0,∞)→ Rn are given. If the kernel K and the forcing term x are constants, say K(t) = 1 and
x(t) = x0 for some x0 ∈ Rn, then the SVE (1) becomes a standard stochastic differential equation
(SDE for short). More generally, if K is the fractional kernel, i.e. K(t) = 1

Γ(α) t
α−1 with exponent

α ∈ (1
2 , 1], and if the forcing term x is of the form x(t) = 1

Γ(α) t
a−1x0 for some x0 ∈ Rn, then the

SVE (1) corresponds to a kind of time-fractional SDE. SVEs provide suitable models of dynamics
with hereditary properties, memory effects and roughness of the path, which cannot be described
by standard SDEs.

The analysis of SVEs is, however, much more difficult than that of standard SDEs since the
solutions are no longer Markovian or semimartingales in general. For these reasons, we cannot
apply fundamental tools established in the literature of Markov or semimartingale theory to SVEs
directly, and many important issues such as well-posedness of SVEs with non-Lipschitz coefficients
are remained open. A new framework to analyse SVEs is highly demanded in views of theory and
applications.

2 Main results

This talk is based on the preprints [1, 2]. In this talk, we introduce an infinite dimensional frame-
work which captures Markov and semimartingale structures behind the SVE (1). Assume that the
kernel K : (0,∞) → [0,∞) is completely monotone, i.e., K is infinitely differentiable and satisfies

(−1)k dk

dtk
K(t) ≥ 0 for any t ∈ (0,∞) and any nonnegative integers k. By Bernstein’s theorem, there

exists a unique Radon measure µ on [0,∞) such that K(t) =
∫

[0,∞) e
−θt µ(dθ), t > 0. Taking into

account this representation, we reformulate the SVE (1) into the following equation:{
dYt(θ) = −θYt(θ) dt+ b(µ[Yt]) dt+ σ(µ[Yt]) dWt, θ ∈ suppµ, t > 0,

Y0(θ) = y(θ), θ ∈ suppµ.
(2)
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Here, suppµ ⊂ [0,∞) is the support of the measure µ, and µ[y] :=
∫

suppµ y(θ)µ(dθ) for suitable

functions y : suppµ→ Rn. The above equation can be seen as a stochastic evolution equation (SEE
for short) on an infinite dimensional space consisting of functions y : suppµ→ Rn. We formulate a
state space of the SEE (2) as a separable Hilbert space Hµ (or a Gelfand triplet of Hilbert spaces
Vµ ↪→ Hµ ↪→ V∗µ), incorporating the singularity of the kernel K. The SEE (2) turns out to be an
“infinite dimensional Markovian lift” of the SVE (1).

In this talk, we explain the following three main results in details:

1. There is a one-to-one correspondence between solutions X of the SVE (1) and (mild) solutions
Y of the SEE (2); the correspondence is given by the representation formula Xt = µ[Yt].

2. Assume that the coefficients b and σ are uniformly continuous and that σ is non-degenerate (in
the sense that σ(x)σ(x)> ≥ cUEIn×n for any x ∈ Rn for some constant cUE > 0). Then, under
a “balance condition” between the modulus of continuity of σ and the singularity of the kernel
K, weak existence and uniqueness in law hold for the SVE (1) and the SEE (2). Furthermore,
every weak solution Y of the SEE (2) (which is unique in law) is a time-homogeneous Markov
process on the Hilbert space Hµ and satisfies the Feller property.

3. Assume that the coefficients b and σ are Lipschitz continuous and that σ is non-degenerate.
Then, the Markov semigroup {Pt}t≥0 (defined on the space Bb(Hµ) of real-valued bounded
Borel measurable functions on the Hilbert space Hµ) associated with the SEE (2) satisfies the
following asymptotic log-Harnack inequality:

Pt log f(ȳ) ≤ logPtf(y) +
cLip

2cUE
‖y − ȳ‖2Hµ + cLipe

−δt/2‖y − ȳ‖Hµ‖∇ log f‖∞

for any t ≥ 0, any y, ȳ ∈ Hµ and any f ∈ Bb(Hµ) with f ≥ 1 and ‖∇ log f‖∞ < ∞. Here,
δ := inf suppµ (≥ 0), and cLip > 1 is a constant depending on Lipschitz constants of b and σ.

Let us make some remarks on the above results.

• Concerning the second result, the idea of the proof is to show the weak well-posedness of the
SEE (2) using stochastic calculus in Hilbert spaces, and then to translate it into the original
SVE (1). Note that no additional conditions are assumed on the drift coefficient b other than
the uniform continuity. For example, although the (one-dimensional) deterministic fractional
Volterra equation Xt = 1

Γ(α)

∫ t
0 (t − s)α−1|Xs|βsign(Xs) ds with α ∈ (1

2 , 1] and β ∈ (0, 1) has
infinitely many solutions, the corresponding SVE with non-degenerate “Volterra noise” is
weakly well-posed in the sense of uniqueness in law. This reveals the regularization-by-noise
effect for Volterra equations.

• Concerning the third result, assuming in addition that δ := inf suppµ > 0, the asymptotic
log-Harnack inequality implies asymptotic properties for the Markov semigroup {Pt}t≥0 such
as asymptotic gradient estimate (hence, asymptotic strong Feller property), asymptotic heat
kernel estimate, asymptotic irreducibility, and uniqueness of the invariant probability measure.
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