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In this talk, we consider an ODE

yt = ξ +

∫ t

0
σ(ys)dBs +

∫ t

0
b(ys)ds (1)

driven by the fractional Brownian motion(fBm) B with Hurst exponent H and numerical schemes ŷ(m)
·

of this equation. Then, we aim to calculate asymptotic error distributions G, defined by

lim
m→∞

2mR
(
ŷ(m)
· − y·

)
= ∃G· ,

of these schemes.

Equation (1) is defined in the context of a rough path of arbitrary dimension but can be defined using

symmetric integral[1] in one dimension.

Studies of error distributions belong to the central limit theorem, and Brownian motion independent

from the solution may appear in the error distributions.

The (k-)Milstein method
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(2)

and the Crank-Nicholson method
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have been particularly well studied. The Milstein method is the most standard numerical solution

method with good behavior, while the Milstein method is a numerical solution method with a simple

definition but special behavior.

In the one-dimensional case, for equations without drift terms, the error distributions for the Milstein

method for arbitrary Hurst exponents in [3], the Crank-Nicholson method for specific diffusion coeffi-

cients and H > 1/6 in [2], and the Crank-Nicholson method for H > 1/3 in [4] have been calculated.

On the other hand, [6] obtains error distributions in the range of the Hurst exponent H > 1/3 for both
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the Milstein and Crank-Nicholson schemes with drift coefficients. By contrast, in the multidimensional

case, [5][7] justifies the error distribution of the Milstein scheme with H > 1/3. This talk is an extension

of the method of [7].

We show the following result about one-dimensional SODE and numerical schemes.

• We have found and justified a method for computing error distributions in general iterative

schemes, except when the numerical solutions converge at an exceptionally low Hurst indices..

For example, the Crank-Nicholson method can calculate the error distribution when H > 1/4.

Also, the (k-)Milstein method can compute the numerical solution when H > 1/(2⌊k/2⌋).
• We proved the existence of schemes that converges faster than previously known numerical

solution methods and calculated their error distribution.

• We classified numerical schemes defined independently from the Hurst index, including Runge-

Kutta schemes, Milstein schemes, and Crank-Nicolson scheme, according to the qualitative form

of the error distribution.
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