Estimates of the local spectral dimension of the Sierpinski gasket*
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Let K be the two-dimensional standard Sierpinski gasket and A the normalized Haus-
dorff measure. The transition density p;(z,y) of Brownian motion on K—which is asso-
ciated with the canonical Dirichlet form (€, F) on L?(K, \)—was extensively studied by
Barlow and Perkins [1]. In particular, the following sub-Gaussian estimate is known:
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where ¢; (j = 1,2,3,4) are positive constants, ds = 2logs3 = 1.36521--- is the spec-
tral dimension, and dy, = log, 5 = 2.32192--- > 2 is the walk dimension. On the other
hand, the transition density g;(z,y) of the time-changed Brownian motion by the Kusuoka
measure v—which is associated with the Dirichlet form (&£, F) on L?(K,v)—was studied
in [7, 5, 4]. The behavior of ¢/(x,y) is quite different from that of p;(x,y) and is some-
what Gaussian-like. Concerning the short-time asymptotics of the on-diagonal ¢;(z, x), in
particular, the following result is known.

Theorem 1 ([4, Theorem 1.3 (2) and Proposition 6.6]). There exists a constant d\°° €
(1,2loggs /3 5] such that
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Moreover, d'°° is described as
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Here, Wy, = {1,2,3}™ is the totality of words consisting of letters 1,2,3 with length m;
Ky is a cell of K corresponding the word w € W,.
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We call d'°° the local spectral dimension of K. From numerical computation of p,
with m = 16, a quantitative estimate of d'°° is given in [4, Remark 6.7 (1)] as
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It seems difficult to obtain a substantially sharper estimate of d'°¢ by using only the above
equations. Here, we discuss quantitative estimates of dlsOC by another approach. The
following are main results.

Theorem 2. It holds that
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(1.271650 - - - =) < de

(=1.300763 - - - ). (0.3)

In particular, d°°¢ < ds.
Numerical result. With the help of numerical calculation by Mathematica [8],
1.291008 - - - < d°° < 1.291026 - - -.

In particular, the first few digits of d\°° are 1.2910- - -, a value that happens to be close to

V/5/3 =1.290994 - - - .

The ingredients for the arguments are a result about a bias of the distribution ratios of
v in [3], which was firstly studied in [2], and an integral representation of p by an invariant
measure of some Markov chain on the space of distribution ratios of v.
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