
Invariance of Brownian motion associated with
exponential functionals

Yuu Hariya* (Tohoku University)

It is well known that Brownian motion enjoys several distributional invariances such as

the scaling property and the time reversal. In this talk, we provide another invariance

of Brownian motion that is compatible with the time reversal. The invariance, which

seems to be new to our best knowledge, is described in terms of an anticipative path

transformation involving exponential functionals as anticipating factors.

Let B = {Bt}t≥0 be a one-dimensional standard Brownian motion. Fix t > 0 below

and denote by C([0, t];R) the space of real-valued continuous functions over [0, t], on

which we define an anticipative path transformation T by

T (ϕ)(s) := ϕs − log

{
1 +

As(ϕ)

At(ϕ)

(
e2ϕt − 1

)}
, 0 ≤ s ≤ t, ϕ ∈ C([0, t];R).

Here As(ϕ) :=
∫ s

0
e2ϕu du. One of the main results of this talk is

Theorem 1 ([4, Theorem 1.1 and Corollary 1.1]). It holds that{(
T (B)(s), Bs

)}
0≤s≤t

(d)
=

{(
Bs, T (B)(s)

)}
0≤s≤t

.

In particular, the Wiener measure on C([0, t];R) is invariant under T .

Related results such as an invariance of Brownian motion with drift will also be

discussed. This talk is based on [4] and [5]; other references will be referred to in the

talk.
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