Global solvability of a quasilinear SPDE

Bin Xie

Department of Mathematical Sciences, Shinshu University

This talk is based on the joint work [2] with T. Funaki, Waseda University. Let $g \in C^4(\mathbb{R})$ such that $c_- \leq g'(v) \leq c_+$ holds for some $c_-, c_+ > 0$ and a = g'. We mainly study the global-in-time solvability and establish the convergence of the solution to the stationary solution as $t \to \infty$ for the following quasilinear stochastic partial differential equation (SPDE) defined in paracontrolled sense:

$$\partial_t u = a(\nabla u)\Delta u + g(\nabla u) \cdot \xi, \tag{1.1}$$

on one dimensional torus $\mathbb{T} \simeq [0,1)$ having the spatial noise $\xi \in C^{\alpha-2}, \alpha \in (\frac{13}{9}, \frac{3}{2})$, where $\nabla = \partial_x$, $\Delta = \partial_x^2$ and $C^{\alpha} \equiv C^{\alpha}(\mathbb{T})$ denotes the Hölder-Besov space on \mathbb{T} with regularity exponent $\alpha \in \mathbb{R}$ equipped with the norm $\|\cdot\|_{C^{\alpha}}$. The SPDE (1.1) can be derived from a microscopic particle system in random environment on 1-d discrete lattice and the local-in-time solvability of (1.1) without restriction a = g'was recently studied in [1].

For our purpose, it turns out to be more convenient to study the SPDE in the form of

$$\partial_t v = \Delta\{\varphi(v)\} + \nabla\{\varphi(v)\xi\},\tag{1.2}$$

on \mathbb{T} , where $\varphi \in C^4(\mathbb{R})$ such that $c_- \leq \varphi'(v) \leq c_+$ for some $c_-, c_+ > 0$. In fact, roughly speaking, we have $v = \nabla u$ for $\varphi = g$. Note that (1.2) has a mass conservation law:

$$\int_{\mathbb{T}} v(t, x) dx = m \in \mathbb{R}.$$
(1.3)

To describe stationary solutions of (1.2), for a given ξ , we define its integral $\eta(x) := \langle \xi, 1_{[0,x]} \rangle \equiv \int_0^x \xi(y) dy, x \in \mathbb{T}$. Note that η is not periodic, but $\tilde{\eta}(x) := \langle \xi - \sigma, 1_{[0,x]} \rangle = \eta(x) - \sigma x$ is periodic, where

$$\sigma \equiv \sigma_{\xi} := \xi(\mathbb{T}) = \langle \xi, 1 \rangle = \eta(1) \in \mathbb{R}.$$

It is known that $\eta \in C^{\alpha-1}(\mathbb{R})$. Typically, we can take $\xi = \dot{w}(x) + \sigma$ with a periodic Brownian motion $w(x), x \in \mathbb{T}$ and $\sigma \in \mathbb{R}$. The most interesting noise is $\xi = \dot{w}$ and, in this case, $\sigma_{\xi} = 0$ holds.

Then, from η , we define a function $\theta(x) = \theta_{\xi}(x)$ on \mathbb{T} and a constant $\mu_{\xi} \in \mathbb{R}$, respectively, by

$$\begin{aligned} \theta(x) &\equiv \theta(x) := e^{-\eta(x)} \Big\{ \mu \int_0^x e^{\eta(y)} dy + 1 \Big\}, \quad x \in \mathbb{T}, \\ \mu_{\xi} &:= \frac{e^{\eta(1)} - 1}{\int_0^1 e^{\eta(y)} dy}. \end{aligned}$$

By the definition of $\theta(x)$, one has that $\Delta(z\theta) + \nabla(z\theta \cdot \xi) = 0$ holds for every $z \in \mathbb{R}$ at least if $\xi \in C(\mathbb{T})$. In particular, $v = \varphi^{-1}(z\theta)$ are stationary solutions of (1.2), where φ^{-1} is the inverse function of φ .

For each conserved mass $m \in \mathbb{R}$ given as in (1.3), determine $z = z_m \in \mathbb{R}$ uniquely by the relation

$$m = \int_{\mathbb{T}} \varphi^{-1}(z\theta(x))dx.$$
 (1.4)

Since φ is strictly increasing, (1.4) determines a one to one relation between z and m. Then, one has that

$$\bar{v}_m(x) := \varphi^{-1}(z_m \theta(x))$$

is a stationary solution of (1.2) satisfying $\int_{\mathbb{T}} v dx = m$ in distributional sense.

Let us now state the first main result.

Theorem 1.1. For every initial value $v_0 \in C^{\alpha-1}$, the SPDE (1.2) has a global-intime solution $v(t) \in C^{\alpha-1}$ for all $t \ge 0$. Moreover, if $|\mu_{\xi}|$ is sufficiently small, v(t)converges exponentially fast to \bar{v}_m in $C^{\alpha-1}$ as $t \to \infty$:

$$||v(t) - \bar{v}_m||_{C^{\alpha-1}} \le Ce^{-ct}$$

for some c, C > 0, where m is determined from v_0 as $m = \int_{\mathbb{T}} v_0(x) dx$.

This theorem for the slope $v(t) = \nabla u(t)$ of u(t) implies the following result for u(t) itself.

Theorem 1.2. The SPDE (1.1) has a global-in-time solution $u(t) \in C^{\alpha}$ for all $t \geq 0$. Moreover, if $|\mu_{\xi}|$ is sufficiently small as in Theorem 1.1, u(t) has the following uniform bound in t:

$$\sup_{t\geq 0} \|u(t) - z_0\mu_{\xi}t\|_{C^{\alpha}} < \infty,$$

where z_0 is defined by (1.4) with m = 0. In particular, we have $\frac{1}{t}u(t,x)$ converges uniformly on \mathbb{T} to $z_0\mu_{\xi}$ as $t \to \infty$.

References

- T. FUNAKI, M. HOSHINO, S. SETHURAMAN AND B. XIE, Asymptotics of PDE in random environment by paracontrolled calculus, Annales de l'Institut Henri Poincaré-Probabilités et Statistiques 57 (2021), No. 3, 1702– 1735. doi.org/10.1214/20-AIHP1129.
- [2] T. FUNAKI AND B. XIE, Global solvability and convergence to stationary solutions in singular quasilinear stochastic PDEs, arXiv:2106.01102.