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1 Introduction
We consider the solution y· and some numerical solution ŷ(m)

· of the following stochastic differential
equation (SDE) driven by fractional Brownian motion with Hurst index H.yt = y0 +

∫ t

0
σ(yu)dBu +

∫ t

0
b(yu)du

y0 = α

If it follows that y· − ŷ(m)
· = O(R(m)) and it exists that limm→∞ R(m)−1(ŷ(m)

· − y·), then it is called that
error distribution. In this talk, we calculate error distributions of some numerical scheme.

The calculation of the error distribution is a kind of limit theorem, and since the error includes parts
that take the form of Riemann integrals, stochastic integrals with B, and Ito integrals, it behaves in a
complicated way depending on H.

This problem was studied in one-dimentional and multidimentional case. for instance, the latest
papers are Aida-Naganuma [1] and Liu-Tindel [2]. the former calculated the error disribution of Crank-
Nicolson scheme in one-dimenitional case and the latter calculated the error distribution of modified
Euler scheme in multidimenitonal case.

The stochastic integration by fBm is defined pathwisely in rough path theory, and while rough
paths are trivially constructed in the one-dimensional case, it is essential that rough paths can be
approximated by a dyadic approximation in order for numerical approximation methods to converge in
the multidimensional case. It is known that this is only true for H > 1/4, which indicates that ordinally
numerical methods diverge in the multidimensional case and for H ≤ 1/4. In addition, the rate of
convergence of the approximated rough path is a limit of the rate of convergence of numerical schemes.

In other words, in multidimentional case, calculation of error distribution is unsolved only if 1/4 <
H ≤ 1/3, but in one dimentional case and if 0 < H ≤ 1/3, error distribution of any numerical scheme is
left as unsolved problem.

2 Main result
Definition 1. In one-dimentional case, we set σ, b ∈ C∞b (R),Bs,t = Bt − Bs,B

(q)
s,t = (q!)−1Bq

s,t,D f = (σ f )′, p ≥ 2

and we define ŷ(m)
· as follows.ŷ(m)

t = ŷ(m)
τm

r
+
∑p

l=1D
l−1σ(ŷ(m)

τm
r

)B(q)
τm

r ,t
+ b(t − τm

r ) + 1
2 (σb′ + bσ′)(t − τm

r )Bτm
r ,t (τm

r < t ≤ τm
r+1)

ŷ(m)
0 = α

Then we got following result.
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Result.

• With any Hurst index 0 < H < 1, if p > 1/H − 1, then we have already proved that ŷ(m)
· converges true

solution y· as means on D[0,∞), so we calculated error distribution in all case.

lim
m→∞

2mq(ŷ(m)
· − y·) =

∫ ·

0
dϕ in D[0,∞) in distribution

Condition q dϕ
b ≡ 0;q:odd;1/(q + 1) < H < 1/2 (q + 1)H − 1 dϕ1

b ≡ 0;q:even;1/(q + 1) < H < 1/2 (q + 2)H − 1 dϕ2

b ≡ 0;q:even;H = 1/2 q/2 d(ϕ2 + ϕ3 + ϕ4)
b ≡ 0;q:even;1/2 < H < 1 qH dϕ4

b . 0;q:odd;1/(q + 1) < H < 1/(q − 1) (q + 1)H − 1 dϕ1

b . 0;q:even;1/(q + 1) < H < 1/q (q + 2)H − 1 dϕ2

b . 0;q:odd;H = 1/(q − 1) < 1/2 2H d(ϕ1 + ϕ5 + ϕ6)
b . 0;q:even;H = 1/q < 1/2 2H d(ϕ2 + ϕ5 + ϕ6)

b . 0;q:odd;1/(q − 1) < H < 1/2 2H d(ϕ5 + ϕ6)
b . 0;q:even;1/q < H < 1/2 2H d(ϕ5 + ϕ6)

b . 0;q ≥ 4;H = 1/2 1 d(ϕ6 + ϕ7)
b . 0;q = 3;H = 1/2 1 d(ϕ1 + ϕ6 + ϕ7)
b . 0;q = 2;H = 1/2 1 d(ϕ2 + ϕ6 + ϕ7)

bσ′ , σb′;q ≥ 2;1/2 < H < 1 H + 1/2 dϕ7

bσ′ = σb′ , 0;q = 2;1/2 < H < 1 2H d(ϕ4 + ϕ6)
bσ′ = σb′ , 0;q ≥ 3;1/2 < H < 1 2H dϕ6

dϕ1 =
µq+1

(q + 1)!
Dqσ(yu)du, dϕ2 = −

µq+2

2(q + 2)!
((q + 2)σ′Dqσ + qDq+1σ)(yu)du

dϕ3 =

√
µ2q+2

(q + 1)!
(Dqσ)(yu)dWu dϕ4 =

µq+2

(q + 1)!
Dqσ(yu) ◦ dBu, dϕ5 =

2H − 1
2 + 4H

((σb′ − σ′b)σ)′

dϕ6 = −
1

2 + 4H
((σ′σ)′b + (2H − 1)(σ′b)′σ + (b′σ)′σ)(yu)du dϕ7 =

1√
µ̃

(σb′ − σ′b)(yu)dW̃u

• Numerical solutions satisfying a certain condition, for instance Crank-Nicolson scheme, behave differently
from the Milsiten scheme if H < 1/2.
• We modified the Milstein scheme dependently on H and inproved convergence rate. Also, we calculated the

error distributons of modified schemes.

We used the technique in Aida-Naganuma [4], the preprint calculated the error distribution of the
Clank-Nicolson scheme in mutidimentional case and if H > 1/3.
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