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Abstract

Let R be a (reduced) root system in Rd, that is, R is a finite set of nonzero vectors in Rd such that
(R1) R ∩ {cα ; c ∈ R} = {α,−α}, for any α ∈ R; (R2) σα(R) = R for any α ∈ R. Here σα is the
orthogonal reflection with respect to α ∈ Rd \ {0} defined by

σαx = x− 2〈α, x〉
|α|2

α =

(
Id −

2

|α|2
αα>

)
x, x ∈ Rd.

For a total ordering < of Rd, a positive subsystem of the root system R is denoted by R+. A
sub-group W = W (R) of O(d) is called the Weyl group generated by a root system R, if it is
generated by the reflections {σα ; α ∈ R}, that is, W = 〈σα | α ∈ R〉.

The Dunkl operator Ti on Rd associated with W are introduced by Dunkl [5] and are differential-
difference operators given by

Tif(x) :=
∂f(x)

∂xi
+
∑
α∈R+

kαi
f(x)− f(σαx)

〈α, x〉
.

Dunkl operators have been widely studied in both mathematics and physics, for example, there
operators play a crucial role to the study special functions associated with root systems and the
Hamiltonian operators of some Calogero-Moser-Sutherland quantum mechanical systems. More-
over, Rösler [8] studied Dunkl heat equation (∆k − ∂t)u, u(·, 0) = f ∈ Cb(Rd;R) where the Dunkl

Laplacian defined by ∆kf(x) :=
∑d
i=1 T

2
i and has the following explicit form

∆kf(x) = ∆f(x) + 2
∑
α∈R+

k

{
〈∇f(x), α〉
〈α, x〉

+
f(σαx)− f(x)

〈α, x〉2

}
.

Rösler and Voit [9] introduced Dunkl processes Y which are càdlàg Markov processes with infinites-
imal generator ∆k/2 and is martingale with the scaling property. On the other hand, a radian
Dunkl process X = (X(t))t≥0 is a continuous Markov process with infinitesimal generator LWk /2
defined by

LWk f(x)

2
:=

∆f(x)

2
+
∑
α∈R+

k
〈∇f(x), α〉
〈α, x〉

,

and is a W -radial part of the Dunkl process Y , that is, for the canonical projection π : Rd →
Rd/W , X = π(Y ), as identifying the space Rd/W to the (fundamental) Weyl chamber W := {x ∈

1



Rd ; 〈α, x〉 > 0, α ∈ R+} of the root system R. Schapira [10] and Demini [3] proved that a radial
Dunkl process X satisfies the following W-valued stochastic differential equation (SDE)

dX(t) = dB(t) +
∑
α∈R+

k
α

〈α,X(t)〉
dt, X(0) = x(0) ∈W, (1)

where B = (B(t))t≥0 is a d-dimensional standard Brownian motion. For example, if R := {±1}
then X is a Bessel process, and for a type Ad−1 root system, that is, R := {ei− ej ∈ Rd ; i 6= j} ⊂
{x ∈ Rd;

∑d
i=1 xi = 0}, then X is a Dyson’s Brownian motion.

In this talk, inspired by [1, 4, 6, 7], we introduce a W-valuded numerical scheme for a class of
radial Dunkl processes (1) corresponding to arbitrary (reduced) root systems. It is worth noting
that the numerical scheme can be implemented on a computer. We also study its rate of convergence
in Lp-norm. The key idea of the proof is to use the change of measure based on Girsanov theorem
for radial Dunkl processes, which was proved in [2] for general radial Dunkl processes, and [11] for
the Bessel case.
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