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Abstract

Let X be a real-valued random variable with bounded density pX with respect to Lebesgue mea-
sure. Then Avikainen proved [1] that for any real-valued random variable X̂, function of bounded
variation f : R→ R and p, q ∈ [1,∞), it holds that
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where V (f) is the total variation of f . Here, there is no relationship between p and q. Note that

this estimate is optimal, that is, there exist some random variables X, X̂ and function f such
that the equality holds in (1) (see, Theorem 2.4 (ii) in [1]). Moreover, it can be applied to the
numerical analysis on irregular functions of SDEs based on the Euler–Maruyama scheme and the
multilevel Monte Carlo method [2]. The proof of this estimate is based on Skorokhod’s “explicit”
representation to embed the distribution of X in the probability space ([0, 1],B([0, 1]),Leb) (see
also, Proposition 5.3 in [3] for a simple proof). For multi-dimensional random variables, this
representation is known as Skorokhod’s embedding theorem. However, it might be difficult to
apply it to the multi-dimensional case since it is not explicit.

In this talk, we will propose some versions of Avikainen’s estimate (1) for multi-dimensional
random variables. As mentioned above, it might be difficult to apply the approach in [1] for multi-
dimensional random variables. Instead, we propose a new approach based on the Hardy–Littlewood
maximal operator M for locally finite vector valued measures ν, which is defined by

Mν(x) := sup
s>0
−
∫
B(x;s)

d|ν|(z), −
∫
B(x;s)

d|ν|(z) :=
|ν|(B(x; s))

Leb(B(x; s))
, x ∈ Rd,

where |ν| is the total variation of ν and B(x; r) is the closed ball in Rd with center x and radius
r. The operator M is well-studied in the fields of harmonic analysis. As an application of Vitali’s
covering lemma, it satisfies the following Hardy–Littlewood maximal weak type estimate

Leb({x ∈ Rd ; Mν(x) > λ}) ≤ A1|ν|(Rd)λ−1, λ > 0, (2)

where the constant A1 depends only on d (e.g. A1 = 5d). Using this estimate, we will prove

that for any random variables X, X̂ : Ω → Rd with density functions pX and pX̂ with respect to
Lebesgue measure, respectively, and for any f ∈ BV (Rd) ∩ L∞(Rd), p ∈ (0,∞) and q ∈ [1,∞), if
pX and pX̂ are bounded, then it holds that
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Here, BV (Rd) is the class of functions f of bounded variation in Rd, which is a subset of L1(Rd)
such that the total variation |Df |(Rd) =

∫
Rd |Df | of the Radon measure Df defined by∫

Rd

|Df | := sup

{∫
Rd

f(x)divg(x)dx ; g ∈ C1
c (Rd;Rd) and sup

x∈Rd

|g(x)| ≤ 1

}
is finite, where the Radon measure Df is defined as the generalized derivative formulated by the
integration by parts for functions of bounded variations. For example, a Sobolev space W 1,1(Rd) is
subset of BV (Rd), and for a bounded subset E of Rd with C2 boundary, 1E ∈ BV (Rd)\W 1,1(Rd).
The most important property of f ∈ BV (Rd) which we use in this talk is the following pointwise
estimate

|f(x)− f(y)| ≤ K0|x− y|
{
M2|x−y|(Df)(x) +M2|x−y|(Df)(y)

}
, Leb-a.e. x, y ∈ Rd, (3)

where for R > 0, MRν is the restricted Hardy–Littlewood maximal function defined by

MRν(x) := sup
0<s≤R

−
∫
B(x;s)

d|ν|(z), x ∈ Rd.

It is worth noting that Haj lasz [4, 5] characterized Sobolev spaces W 1,p(Rd), 1 ≤ p < ∞ by us-
ing the pointwise estimate (3), and defined Sobolev spaces on metric spaces using this pointwise
estimate. Moreover, Lahti and Tuominen [6] generalized this characterization to BV (Rd) and de-
fined BV on metric measure space (χ, d, µ) with “doubling” property : µ(B(x, 2r)) ≤ Cµ(B(x, r)).
Note that the Hardy–Littlewood maximal weak type estimate (2) is also valid on separable metric
spaces, and thus we can generalize Avikainens estimates on separable metric measure spaces with
doubling property.
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