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Abstract

Let X be a real-valued random variable with bounded density px with respect to Lebesgue mea-
sure. Then Avikainen proved [I] that for any real-valued random variable X, function of bounded
variation f: R — R and p,q € [1,00), it holds that
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where V(f) is the total variation of f. Here, there is no relationship between p and ¢. Note that
this estimate is optimal, that is, there exist some random variables X, X and function f such
that the equality holds in (see, Theorem 2.4 (ii) in [I]). Moreover, it can be applied to the
numerical analysis on irregular functions of SDEs based on the Euler—-Maruyama scheme and the
multilevel Monte Carlo method [2]. The proof of this estimate is based on Skorokhod’s “explicit”
representation to embed the distribution of X in the probability space ([0,1], %([0,1]), Leb) (see
also, Proposition 5.3 in [3] for a simple proof). For multi-dimensional random variables, this
representation is known as Skorokhod’s embedding theorem. However, it might be difficult to
apply it to the multi-dimensional case since it is not explicit.

In this talk, we will propose some versions of Avikainen’s estimate for multi-dimensional
random variables. As mentioned above, it might be difficult to apply the approach in [I] for multi-
dimensional random variables. Instead, we propose a new approach based on the Hardy—Littlewood
maximal operator M for locally finite vector valued measures v, which is defined by
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where |v| is the total variation of v and B(x;r) is the closed ball in R? with center 2 and radius
r. The operator M is well-studied in the fields of harmonic analysis. As an application of Vitali’s
covering lemma, it satisfies the following Hardy—Littlewood maximal weak type estimate

Leb({z € RY ; Mv(z) > \}) < Ai[y|(ROATE, A >0, (2)

where the constant A; depends only on d (e.g. A; = 5%). Using this estimate, we will prove
that for any random variables X ,X’ : QO — R? with density functions px and pg with respect to
Lebesgue measure, respectively, and for any f € BV (R%) N L>(R?), p € (0,00) and q € [1,00), if
px and pg are bounded, then it holds that
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Here, BV (R) is the class of functions f of bounded variation in R, which is a subset of L!(R?)
such that the total variation |D f|(R?) = [p. |Df] of the Radon measure D f defined by
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is finite, where the Radon measure D f is defined as the generalized derivative formulated by the
integration by parts for functions of bounded variations. For example, a Sobolev space W1 (R?) is
subset of BV (R?), and for a bounded subset E of R? with C? boundary, 1z € BV (R4)\ W(R?).

The most important property of f € BV (RY) which we use in this talk is the following pointwise
estimate

|f(I) - f(y)| < K0|1‘ - y| {M2\acfu|(Df)(x) + M2|:E7y\(Df)(y)} , Leb-a.e. T,y € Rd’ (3)

where for R > 0, Mgy is the restricted Hardy—Littlewood maximal function defined by

Mgv(x) := sup ][ dv|(z), = € R4
0<s<RJ B(x;s)

It is worth noting that Hajlasz [4] [5] characterized Sobolev spaces W1P(R%), 1 < p < oo by us-
ing the pointwise estimate (3]), and defined Sobolev spaces on metric spaces using this pointwise
estimate. Moreover, Lahti and Tuominen [6] generalized this characterization to BV (R) and de-
fined BV on metric measure space (x, d, u) with “doubling” property : u(B(x,2r)) < Cu(B(x,r)).
Note that the Hardy-Littlewood maximal weak type estimate is also valid on separable metric
spaces, and thus we can generalize Avikainens estimates on separable metric measure spaces with
doubling property.
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