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Let the state space S be a weighted lp space, denoted by

lp(βi)
, such that, for some p ∈ [1,∞) and a weight (βi)i∈N

with βi ≥ 0, i ∈ N,

S = lp(βi)
≡

{
x = (x1, x2, . . . ) ∈ RN :

∥x∥lp
(βi)

≡ (

∞∑
i=1

βi|xi|p)
1
p < ∞

}
, (1)

or a weighted l∞ space, denoted by l∞(βi)
, such that for a

weight (βi)i∈N with βi ≥ 0, i ∈ N,

S = l∞(βi)
≡

{
x = (x1, x2, . . . ) ∈ RN :

∥x∥l∞
(βi)

≡ sup
i∈N

βi|xi| < ∞
}
, (2)
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or

S = RN, (3)

the direct product space with the metric d(·, ·) such that for

x, x′ ∈ RN, d(x, x′) ≡
∑∞

k=1(
1
2
)k ∥x−x′∥k

∥x−x′∥k+1
, with

∥x∥k = (
∑k

i=1(xi)
2)

1
2 , x = (x1, x2, . . . ) ∈ RN.

Denote by B(S) the Borel σ-field of S. Let µ be a given

Borel probability measure on (S,B(S)). For each i ∈ N, let
σic be the sub σ-field of B(S) that is generated by the

Borel sets

B =
{
x ∈ S

∣∣xj1 ∈ B1, . . . xjn ∈ Bn

}
, (4)

jk ̸= i, Bk ∈ B1, k = 1, . . . , n, n ∈ N, where B1 denotes

the Borel σ-field of R1,
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For each i ∈ N, let µ(·
∣∣σic) be the conditional probability, a

one-dimensional probability distribution-valued σic

measurable function, that is characterized by

µ
(
{x : xi ∈ A} ∩B

)
=

∫
B
µ(A

∣∣σic)µ(dx), (5)

∀A ∈ B1, ∀B ∈ σic. Define

L2(S;µ) ≡
{
f

∣∣∣ f : S → R, measurable and

∥f∥L2 =
(∫

S
|f(x)µ(dx)

)1
2
< ∞

}
, (6)

also define

FC∞
0 ≡ the µ equivalence class of{

f
∣∣∣ ∃n ∈ N, f ∈ C∞

0 (Rn → R)
}
⊂ L2(S;µ). (7)
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On L2(S;µ), for 0 < α < 2, define the Markovian

symmetric forms E(α) called individually adapted Markovian

symmetric form of index α to the measure µ:

Firstly, for each 0 < α < 2 and i ∈ N, and for the variables

yi, y
′
i ∈ R1, x = (x1, . . . , xi−1, xi, xi+1, . . . ) ∈ S and

x \ xi ≡ (x1, . . . , xi−1, xi+1, . . . ), let

Φα(u, v; yi, y
′
i, x \ xi)

≡
1

|yi − y′i|2α+1
×

{
u(x1, . . . , xi−1, yi, xi+1, . . . )

−u(x1, . . . , xi−1, y
′
i, xi+1, . . . )

}
×
{
v(x1, . . . , xi−1, yi, xi+1, . . . )

−v(x1, . . . , xi−1, y
′
i, xi+1, . . . )

}
, (8)
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then, for each 0 < α ≤ 1 and i ∈ N, define

E(i)
(α)(u, v)

≡
∫
S

{ ∫
R
I{yi ̸=xi}(yi)Φα(u, v; yi, xi, x \ xi)

×µ
(
dyi

∣∣σic
)}
µ(dx). (9)

and

E(α)(u, v) ≡
∑
i∈N

E(i)
(α)(u, v), (10)

where I{·} denotes the indicator function.
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For yi ̸= y′i, (8) is well defined for any real valued

B(S)-measurable functions u and v. For the Lipschiz

continuous functions ũ ∈ C∞
0 (Rn → R) ⊂ FC∞

0 resp.

ṽ ∈ C∞
0 (Rm → R) ⊂ FC∞

0 , n,m ∈ N which are

representations of u ∈ FC∞
0 resp. v ∈ FC∞

0 , n,m ∈ N,
(9) and (10) are well defined (the right hand side of (10) has

only a finite number of sums). In Theorem 1 given below we

see that (9) and (10) are well defined for FC∞
0 , the space of

µ-equivalent class.
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For 1 < α < 2, we suppose that for each i ∈ N, the
conditional distribution µ(·

∣∣σic) can be expressed by a

locally bounded probability density ρ(·
∣∣σic), µ-a.e..

Precisely (cf. (2.5) of [AR91]), there exists a σic-measurable

function 0 ≤ ρ(·
∣∣σic) on R1 and

µ(dy
∣∣σic) = ρ(y

∣∣σic) dy, µ− a.e., (11)

holds, with ρ(·
∣∣σic) a function such that for any compact

K ⊂ R there exists an Li < ∞, which may depend on i,

and for any y ∈ K,

ess sup
y∈R1

ρ(y
∣∣σic) ≤ Li, µ− a.e., (12)

where ess supy∈R1 is taken with respect to the Lebesgue

measure on R1. Then define the non-local form E(α)(u, v),

for 1 < α < 2, by the same formula as (10).
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Remark 1. For the B(S) measurable function∫
R 1{yi ̸=xi}Φα(u, v; yi, xi, x \ xi)µ(dyi |σic) by taking the

expectation conditioned by the sub σ-field σic , it holds that

(cf.,[Fukushima, Uemura 2012]):

E(i)
(α)(u, v)

≡
∫
S

{ ∫
R
I{yi ̸=xi} Φα(u, v; yi, xi, x \ xi)µ

(
dyi

∣∣σic
)}
µ(dx)

=

∫
S

∫
R

{ ∫
R
I{yi ̸=xi} Φα(u, v; yi, xi, x \ xi)

×µ
(
dyi

∣∣σic
)}
µ
(
dxi

∣∣σic
)
µ(dx)

=

∫
S

{ ∫
R2

I{yi ̸=y′
i} Φα(u, v; yi, y

′
i, x \ xi)

×µ
(
dyi

∣∣σic
)
µ
(
dy′i

∣∣σic
)}
µ(dx)
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Theorem 1. The symmetric non-local forms E(α),

0 < α < 2 given by (10) (for 1 < α < 2 with the additional

assumption (11) with (12) ) are (cf. Remark 1-i),ii))

i) well-defined on FC∞
0 ;

ii) Markovian;

iii) closable in L2(S;µ).
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Remark 2. For 1 < α < 2 the assumption (11) with (12) can

be replaced by the following general one: for each compact

K ⊂ R, there exists an Li < ∞ and

sup
y∈R

IK(y)

∫
R

IK(y′)

|y − y′|2α−1
µ(dy′ |σic) ≤ Li, µ− a.e..
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To prove the theorem, we have to show that

i-1) for any Borel measurable u such that u = 0, µ− a.e.,

it holds that E(α)(u, u) = 0, and

i-2) for any u, v ∈ FC∞
0 , E(α)(u, v) ∈ R,

For the statement ii), we have to show that (cf.

[Fukushima]) for any ϵ > 0 there exists a real function φϵ(t),

−∞ < t < ∞, such that φϵ(t) = t, ∀t ∈ [0, 1],

−ϵ ≤ φϵ(t) ≤ 1 + ϵ, ∀t ∈ (−∞,∞), and

0 ≤ φϵ(t
′) − φϵ(t) ≤ t′ − t for t < t′, such that for any

u ∈ FC∞
0 it holds that φϵ(u) ∈ FC∞

0 and

E(α)(φϵ(u), φϵ(u)) ≤ E(α)(u, u). (13)
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For the statement iii), we have to show the following: For a

sequence {un}n∈N, un ∈ FC∞
0 , n ∈ N, if

lim
n→∞

∥un∥L2(S;µ) = 0, (14)

and

lim
n,m→∞

E(α)(un − um, un − um) = 0, (15)

then

lim
n→∞

E(α)(un, un) = 0. (16)
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Proof of i-1): For each i ∈ N and any real valued

B(S)-measurable function u, note that for each ϵ > 0,

I{ϵ<|xi−yi|}(yi) IK(yi)Φα(u, u; yi, xi, x \ xi)

defines a B(S × R)-measurable function. The function

Φα(u, u; yi, xi, x \ xi), is defined by setting v = u, x = xi,

in (2.8). B(S × R) is the Borel σ-field of S × R.
x = (xi, i ∈ N) ∈ S and yi ∈ R. Then, for any compact

subset K of R,
0 ≤ I{ϵ<|xi−yi|}(yi) IK(yi)Φα(u, u; yi, xi, x \ xi) converges

monotonically to I{yi ̸=xi}(yi)Φα(u, u; yi, xi, x \ xi) as

K ↑ R and ϵ ↓ 0, for every yi ∈ R, x ∈ S, and by the

Fatou’s Lemma, we have
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∫
S

{∫
R
I{yi ̸=xi}(yi)Φα(u, u; yi, xi, x \ xi)µ

(
dyi

∣∣σic
)}

×µ(dx)

=

∫
S
lim inf
K↑ R

lim inf
ϵ↓0

{ ∫
R
I{ϵ<|xi−yi|}(yi) IK(yi)

×Φα(u, u; yi, xi, x \ xi)µ
(
dyi

∣∣σic
)}
µ(dx)

≤ lim inf
K↑ R

lim inf
ϵ↓0

∫
S

{ ∫
R
I{ϵ<|xi−yi|}(yi) IK(yi)

×Φα(u, u; yi, xi, x \ xi)µ
(
dyi

∣∣σic
)}
µ(dx), (17)
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where K denotes a compact set of R. For any ϵ > 0,∫
S

{ ∫
R
I{ϵ<|xi−yi|}(yi) IK(yi)

1

|yi − xi|2α+1

×
(
u(x1, . . . )

)2
µ
(
dyi

∣∣σic
)}
µ(dx)

≤
1

ϵ2α+1

∫
S

{ ∫
R
I{ϵ<|xi−yi|}(yi) IK(yi)

×
(
u(x1, . . . )

)2
µ
(
dyi

∣∣σic
)}
µ(dx)

≤
1

ϵ2α+1

∫
S

{ ∫
R

(
u(x1, . . . )

)2
×µ

(
dyi

∣∣σic
)}
µ(dx) (18)

=
1

ϵ2α+1

∫
S

(
u(x1, . . . )

)2
µ(dx),
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also, ∫
S

(
u(x1, . . . )

)2{ ∫
R
I{ϵ<|xi−yi|}(yi) IK(yi)

×
1

|yi − xi|2α+1
µ
(
dyi

∣∣σic
)}
µ(dx)

≤
1

ϵ2α+1

∫
S

(
u(x1, . . . )

)2
µ(dx), (19)

and from (18), by the Cauchy Schwaz’s inequality∣∣∣ ∫
S
u(x1, . . . )

{ ∫
R
I{ϵ<|xi−yi|}(yi) IK(yi)

×
1

|yi − xi|2α+1
u(x1, . . . )µ

(
dyi

∣∣σic
)}
µ(dx)

∣∣∣
≤

1

ϵ2α+1

∫
S

(
u(x1, . . . )

)2
µ(dx). (20)
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By (8) and (17), from (18), (19) and (20), for any Borel

measurable function u on S such that

u(x1, . . . ) = 0, µ− a.e.,

it holds that

E(i)
(α)(u, u) = 0, ∀i ∈ N, E(α)(u, u) = 0.
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In order to show i-2), for 0 < α ≤ 1,

take any representation ũ ∈ C∞
0 (Rn) of u ∈ FC∞

0 , n ∈ N.
Using 0 < α+ 1 ≤ 2, it is easy to see from the definition

(8) that there exists an M < ∞ depending on ũ such that

0 ≤ Φα(ũ, ũ; yi, y
′
i, x\xi) ≤ M, ∀x ∈ S, and ∀yi, y′i ∈ R.

(21)

Since, u = ũ+ 0 for some real valued B(S)-measurable

function 0 such that 0 = 0, µ-a.e., by (21) together with

i-1) and the the Cauchy Schwarz’s inequality, for u ∈ FC∞
0 ,

E(α)(u, u) ∈ R, 0 < α ≤ 1, is identical with E(α)(ũ, ũ) and

well-defined (in fact, for only a finite number of i ∈ N. we

have E(i)
(α)(u, u) ̸= 0, cf. also (10)). Then by the Cauchy

Schwarz’s inequality i-2) follows.
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A proof of ii) is very similar to the one given in section 1 of

[Fukushima].
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Proof of iii): Suppose that a sequence {un}n∈N satisfies

(14) and (15). Then, by (14) there exists a measurable set

N ∈ B(S) and a sub sequence {unk} of {un} such that

µ(N ) = 0, lim
nk→∞

unk(x) = 0, ∀x ∈ S \ N .

Define

ũnk(x) = unk(x) for x ∈ S \ N , and ũnk(x) = 0 for x ∈ N .

Then,

ũnk(x) = unk(x), µ−a.e., lim
nk→∞

ũnk(x) = 0, ∀x ∈ S.

(22)
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By the fact i-1), for each i,∫
S

{ ∫
R
I{yi ̸=xi}(yi)Φα(un, un; yi, xi, x\xi)µ

(
dyi

∣∣σic
)}
µ(dx)

=

∫
S

{ ∫
R
I{yi ̸=xi}(yi) lim

nk→∞
Φα(un−ũnk, un−ũnk; yi, xi, x\xi)

×µ
(
dyi

∣∣σic
)}
µ(dx)

≤ lim inf
nk→∞

∫
S

{ ∫
R
I{yi ̸=xi} Φα(un−ũnk, un−ũnk; yi, xi, x\xi)

×µ
(
dyi

∣∣σic
)}
µ(dx)

= lim inf
nk→∞

∫
S

{ ∫
R
I{yi ̸=xi} Φα(un−unk, un−unk; yi, xi, x\xi)

×µ
(
dyi

∣∣σic
)}
µ(dx)

≡ lim inf
nk→∞

E(i)
(α)(un − unk, un − unk). (23)
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Now, by using the assumption (15) to the right hand side of

(23), we get

lim
n→∞

E(i)
(α)(un, un) = 0, ∀i ∈ N. (24)

(24) together with i) shows that for each i ∈ N, E(i)
(α) with

the domain FC∞
0 is closable in L2(S;µ). Since,

E(α) ≡
∑

i∈N E(i)
(α), by using the Fatou’s Lemma, from (24)

and the assumption (15) we see that

E(α)(un, un) =
∑
i∈N

lim
m→∞

E(i)
(α)(un − um, un − um)

≤ lim inf
m→∞

E(α)(un − um, un − um) → 0 as n → ∞.

This proves (16) (cf. Proposition I-3.7 of [MR] for a general

argument). The proof of iii) is completed.
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The proof of Theorem 1, for 1 < α < 2

The proof of i-1), ii) and iii) can be carried out by the

completely same manner as the previous proof we have

provided for the case 0 < α ≤ 1. We only show that i-2),

i.e., E(α)(u, u) < ∞, ∀u ∈ FC∞
0 also holds when we make

use of the additional assumption (11) with (12),.

The detailed proof is omitted.
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For each i ∈ N, denote by Xi the random variable that

represents the coordinate xi of x = (x1, x2, . . . ):

Xi : S ∋ x 7−→ xi ∈ R. (25)

Then∫
S
1B(xi)µ(dx) = µ(Xi ∈ B), for B ∈ B(S). (26)
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Theorem 2 (Strictly Quasi-regularlity). Let 0 < α ≤ 1,

and (E(α),D(E(α))) be the closed Markovian symmetric form

defined through Theorem 1.

i) In case where S = lp(βi)
, 1 ≤ p < ∞, if there exists positive

lp sequence {γ−1
i }i∈N ( for e.g., γi = i

1+δ
p for some δ > 0),

and an M0 < ∞ and

∞∑
i=1

β
2
p

i γ
2
i · µ

(
|Xi| > M0 · β

− 1
p

i γ−1
i

)
< ∞, (27)

µ
( ∪

M∈N
{|Xi| ≤ M · β

− 1
p

i γ
− 1

p

i , ∀i ∈ N}
)
= 1, (28)

hold, then (E(α),D(E(α))) is a strictly quasi-regular Dirichlet

form.
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ii) In case where S = l∞(βi)
defined by (2), if there exist an

M0 < ∞ and a sequence {γi}i∈N such that

0 < γ1 ≤ γ2 ≤ · · · → ∞, and both

∞∑
i=1

β2
i γ

2
i · µ

(
|Xi| > M0 · β−1

i γ−1
i

)
< ∞, (29)

µ
( ∪

M∈N

{|Xi| ≤ M · β−1
i γ−1

i , ∀i ∈ N}
)
= 1, (30)

hold, then (E(α),D(E(α))) is a strictly quasi-regular Dirichlet form.

iii) In case where S = RN defined by (3), (E(α),D(E(α))) is a

strictly quasi-regular Dirichlet form.
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Proof of Theorem 2. We have to show that

(E(α),D(E(α))) satisfies

i) There exists an E(α)-nest (DM)M∈N consisting of

compact sets.

ii) There exists a subset of D(E(α)), that is dense with

respect to the norm ∥ · ∥L2(S;µ) +
√
E(α). And the elements

of the subset have E(α)-quasi continuous versions.

iii) There exists un ∈ D(E(α)), n ∈ N, having E(α)-quasi

continuous µ-versions ũn, n ∈ N, and an E(α)-exceptional

set N ⊂ S such that {ũn : n ∈ N} separates the points of

S \ N .

iv) For the strictly quasi-regularity, it suffices to show that

1 ∈ D(E(α)).
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For the case where S = lp(βi)
, for simplicity, let γ−1

i = i
−1+δ

p

for some δ > 0. A key point of the proof is the fact that for

each M ∈ N,

DM ≡
{
x ∈ lp(βi)

: β
1
p

i |xi| ≤ M · i−
1+δ
p , i ∈ N

}
, (31)

is a compact set in S = lp(βi)
.

Note that DM is not identical to but a proper subset of the

bounded set such that{
x ∈ lp(βi)

:
(∑

βi|xi|p
) 1

p ≤ M
}
.
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Let η(·) ∈ C∞
0 (R) be a function such that η(x) ≥ 0,

|
d

dx
η(x)| ≤ 1, ∀x ∈ R and

η(x) =

 1, |x| ≤ 1;

0, |x| ≥ 3.
(32)

For each M ∈ N and i ∈ N, let
ηM,i(x) ≡ η

(
M−1 · i

1+δ
p β

1
p

i · x
)
, x ∈ R,

then,
∏
i≥1

ηM,i ∈ lp(βi)
, supp

[∏
i≥1 ηM,i

]
⊂ D3M , M ∈ N.

For each f ∈ C∞
0 (Rn → R), n ∈ N, define

fM(x1, . . . , xn, xn+1, . . . ) ≡ f(x1, . . . , xn) ·
∏
i≥1

ηM,i(xi).

(33)
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Under the condition (27), it is possible to show that

fM ∈ D(E(α)). Also, by (28), it is possible to show that

there exists a subsequence {fMl}l∈N of {fM}M∈N such that

the Cesaro mean

wm ≡
1

m

m∑
l=1

fMl → u ≡ f ·
∏
i≥1

1R(xi)

in D(E(α)) as n → ∞. (34)

(34) shows that

the linear hull of
{
fM , M ∈ N : f ∈ C∞

0 (Rn → R), n ∈ N
}
.

can be taken as an D(E(α))-nest.
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Theorem 3 (Strictly Quasi-regularlity). Let 1 < α < 2.

Suppose that the assumption (11) with (12) hold. Let

(E(α),D(E(α))) be the closed Markovian symmetric form defined

at the beginning of this section through Theorem 1. Then the

following statements hold:

i) In the case where S = lp(βi)
, 1 ≤ p < ∞, as defined by (1),

if there exists a positive lp sequence {γ
− 1

p

i }i∈N and an

M0 < ∞, and both (28),
∞∑
i=1

(
β

1
p

i γ
1
p

i

)α+1 · µ
(
β

1
p

i |Xi| > M0 · γ
− 1

p

i

)
< ∞, (35)

lim
M→∞

M−α
∞∑
i=1

LM,i·
(
β

1
p

i γ
1
p

i

)α·µ(β 1
P
i |Xi| > M ·γ

− 1
p

i

)
< ∞,

(36)
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hold, then (E(α),D(E(α))) is a strictly quasi-regular Dirichlet form,

where for each M ∈ N and i ∈ N, LM,i is the bound of the

conditional probability density ρ for a given compact set

KM,i ≡
[
− 6M · β

− 1
p

i γ
− 1

p

i , 6M · β
− 1

p

i γ
− 1

p

i

]
⊂ R

in the assumption (12).
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ii) In the case where S = l∞(βi)
as defined by (2), if there exists a

sequence {γi}i∈N such that 0 < γ1 ≤ γ2 ≤ · · · → ∞, and both

∞∑
i=1

(
βiγi

)α+1 · µ
(
βi|Xi| > M0 · γ−1

i

)
< ∞, for some M0 < ∞,

(37)

lim
M→∞

M−α

∞∑
i=1

LM,i ·
(
βiγi

)α · µ
(
βi|Xi| > M · γ−1

i

)
< ∞, (38)

and (30) hold, then (E(α),D(E(α))) is a strictly quasi-regular

Dirichlet form, where for each M ∈ N and i ∈ N, LM,i is the bound

of the conditional probability density ρ for a given compact set

KM,i ≡
[
− 6M · β−1

i γ−1
i , 6M · β−1

i γ−1
i

]
⊂ R
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iii) In the case where S = RN as defined by (2.3), if there exists a

sequence {γi}i∈N such that 0 < γi, ∀i ∈ N, and

lim
M→∞

M−α

∞∑
i=1

LM,i · γ−α
i · µ

(
|Xi| > M · γi

)
< ∞, (39)

holds, then (E(α),D(E(α))) is a strictly quasi-regular Dirichlet form,

where for each M ∈ N and i ∈ N, LM,i is the bound of the

conditional probability density ρ for a given compact set

KM,i ≡
[
− 6M · γi, 6M · γi

]
⊂ R

in the assumption (2.12).
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Theorem 4. Let 0 < α < 2, and let E(α),D(E(α))) be a

strictly quasi-regular Dirichlet form on L2(S;µ) that is defined

through Theorem 2 or Theorem 3. Then for (E(α),D(E(α))),

there exists a properly associated µ-tight special standard process,

in short a strong Markov process taking values in S and having

right continuous trajectories with left limits up to the life time (cf.

Definitions IV-1.5, 1.8 and 1.13 of [MR] for its precise definition),

M ≡
(
Ω,F , (Xt)t≥0, (Px)x∈S△

)
,

where △ is an adjoined extra points, called as the cemetery, of S.
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Euclidean (scalar) quantum fields are expressed as random

fields on S′ ≡ S′(Rd → R), or, resp., S′(Td → R), the
Schwartz’s space of real tempered distributions on Rd, resp.,

the d-dimensional torus Td, with d ≥ 1 a given space time

dimension. Hence, each Euclidean quantum field is taken as

a probability space
(
S′,B(S′), ν

)
, where B(S′) is the Borel

σ-field of S′ and ν is a Borel probability measure on S′. One

of the standard theorem through which such ν are

constructed is the Bochner-Minlos’s theorem (cf. e.g.,

Section 3.2 of [Hida]), which is an existence theorem of

probability measures on Hilbert nuclear spaces. Since the

space S and its dual S′ is a Hilbert nuclear space, and by

making use of a Hilbert-Schmidt operators defined on it, we

can adapt our Theorems.
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Let

H0 ≡
{
f : ∥f∥H0 =

(
(f, f)H0

)1
2 < ∞, f : Rd → R,

measurable
}
⊃ S(Rd), (40)

where

(f, g)H0 ≡ (f, g)L2(Rd) =

∫
Rd

f(x)g(x) dx. (41)

Let

H ≡ (|x|2 + 1)
d+1
2 (−∆ + 1)

d+1
2 (|x|2 + 1)

d+1
2 , (42)

H−1 ≡ (|x|2 + 1)−
d+1
2 (−∆+ 1)−

d+1
2 (|x|2 + 1)−

d+1
2 , (43)

be the pseudo differential operators on

S′(Rd → R) ≡ S′(Rd) with the d-dimensional Laplace

operator ∆.
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For each n ∈ N, define

Hn ≡ the completion of S(Rd) with respect to the norm

∥f∥n =
√

(f, f)n with (f, g)n = (Hnf,Hng)H0, (44)

and

H−n ≡ the completion of S′(Rd) with respect to the norm

∥f∥−n =
√

(f, f)−n with (f, g)−n = ((H−1)nf, (H−1)ng)H0.

(45)

by taking an inductive limit H =
∩

n∈N Hn, then

H ⊂ · · · ⊂ Hn+1 ⊂ Hn ⊂ · · · ⊂ H0 ⊂ · · · ⊂ H−n ⊂ H−n−1

⊂ · · · ⊂ H∗. (46)
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For the positive self-adjoint operator H−1 on

H0 = L2(Rd → R),take the orthonormal base (O.N.B.)

{φi}i∈N of H0 such that

H−1φi = λi φi, i ∈ N, (47)

where {λi}i∈N is the corresponding eigenvalues such that

1 ≥ λ1 ≥ λ2 ≥ · · · > 0, which satisfies∑
i∈N

(λi)
2 < ∞, i.e., {λi}i∈N ∈ l2. (48)

Then,

{(λi)
nφi}i∈N is an O.N.B. of Hn (49)

and

{(λi)
−nφi}i∈N is an O.N.B. of H−n (50)
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Thus, by the Fourier series expansion for f ∈ Hm,

f =
∑
i∈N

ai(λ
m
i φi), with

ai ≡
(
f, (λm

i φi)
)
m

= λ−m
i (f, φi)L2, i ∈ N, (51)

we have an isometric isomorphism τm for each m ∈ Z such

that

τm : Hm ∋ f 7−→ (λm
1 a1, λ

m
2 a2, . . . ) ∈ l2

(λ
−2m
i )

, (52)

where l2
(λ

−2m
i )

is the weighted l2 space defined by (1) with

p = 2, and βi = λ−2m
i .

Minoru W. Yoshida, (Dept. Information Systems Kanagawa Univ. ) with Sergio Albeverio , Toshinao Kagawa, Yumi Yahagi

Applications of non-local Dirichlet forms defined on infinite dimensional spaces



H2 ⊂ H1 ⊂ H0 = L2(Rd) ⊂ H−1 ⊂ H−2, (53)

l2
(λ

−4
i )

⊂ l2
(λ

−2
i )

⊂ l2 ⊂ l2(λ2
i )

⊂ l2(λ4
i )
. (54)
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Example 1. (The Euclidean free fields)

Let ν0 be the Euclidean free field measure on

S′ ≡ S′(Rd), precisely, the the corresponding (generalized)

characteristic function, in the sense the Bochner Minlos’s

theorem, C(φ) ≡
∫
S′ e

i<ϕ,φ>ν0(dϕ) is given by

C(φ) = exp(−
1

2
(φ, (−∆ +m2

0)
−1φ)L2(Rd)), φ ∈ S(Rd → R),

(55)

Equivalently, ν0 is a centered Gaussian probability measure

on S′, the covariance of which is , for φ1, φ2 ∈ S(Rd → R),∫
S′
< ϕ,φ1 > · < ϕ,φ1 > ν0(dϕ) =

(
φ1, (−∆+m2

0)
−1φ2

)
,

(56)

where ∆ is the d-dimensional Laplace operator and m0 > 0.
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By (55), the functional C(φ) is continuous with respect to

the norm of the space H0 = L2(Rd), and the kernel of

(−∆ +m2
0)

−1, which is the Fourier inverse transform of

(|ξ|2 +m2
0)

−1, ξ ∈ Rd, is explicitly given by Bessel

functions. By the Bochner Minlos’s theorem, the support of

ν0 can be taken to be in the wider Hilbert spaces H−n,

n ≥ 1. We take ν0 as a Borel probability measure on H−2.

By (52), by taking m = −2, τ−2 defines an isometric

isomorphism such that

τ−2 : H−2 ∋ f 7−→ (a1, a2, . . . ) ∈ l2(λ4
i )
, (57)

with ai ≡ (f, λ−2
i φi)−2, i ∈ N.

Minoru W. Yoshida, (Dept. Information Systems Kanagawa Univ. ) with Sergio Albeverio , Toshinao Kagawa, Yumi Yahagi

Applications of non-local Dirichlet forms defined on infinite dimensional spaces



Define a probability measure µ on l2
(λ4

i )
such that

µ(B) ≡ ν0 ◦ τ−1
−2 (B) for B ∈ B(l2(λ4

i )
).

We set S = l2
(λ4

i )
in Theorems 2 and 4, then it follows that

the weight βi satisfies βi = λ4
i . We can take γi

−1
2 = λi in

Theorem 2-i) with p = 2, then, from (48) we have

∞∑
i=1

βiγi ·µ
(
β

1
2
i |Xi| > M ·γ−1

2
i

)
≤

∞∑
i=1

βiγi =

∞∑
i=1

(λi)
2 < ∞

(58)

(58) shows that the condition (27) holds.
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Also, as has been mentioned above, since ν0(H−n) = 1, for

any n ≥ 1, we have

1 = ν0(H−1) = µ(l2(λ2
i )
) = µ

( ∪
M∈N

{|Xi| ≤ Mβ
−1

2
i γ

−1
2

i , ∀i ∈ N}
)
,

for βi = λ4
i , γ

−1
2

i = λi.

This shows that the condition (28) is satisfied.

Thus, by Theorem 2-i) and Theorem 4, for each 0 < α ≤ 1,

there exists an l2((λi)4)
-valued Hunt process

M ≡
(
Ω,F , (Xt)t≥0, (Px)x∈S△

)
, associated to the non-local

Dirichlet form (E(α),D(E(α))).
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We can define an H−2-valued process (Yt)t≥0 such that

(Yt)t≥0 ≡
(
τ−1
−2 (Xt)

)
t≥0

.

Equivalently, by (57) for Xt = (X1(t), X2(t), . . . ) ∈ l2
(λ4

i )
,

Px − a.e., by setting Ai(t) such that Ai(t) ≡ λiXi(t), we

see that Yt is also given by

Yt =
∑
i∈N

Ai(t)(λ
−2
i φi) =

∑
i∈N

Xi(t)φi ∈ H−2, ∀t ≥ 0, Px−a.e..

(59)

Yt is an H−2-valued Hunt process that is a stochastic

quantization with respect to the non-local Dirichlet form

(Ẽ(α),D(Ẽ(α))) on L2(H−2, ν0), that is defined through

(E(α),D(E(α))), by making use of τ−2. This holds for all

0 < α ≤ 1.
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Example 2. (The Euclidean Φ4
3 fields)

By making use of the results in [Brydges,Fröhlich,Sokal 83],

through the Bochner-Minlos’s theorem, the prorability

measure ν of the Φ4
3 Euclidean field on R3 has the

(generalized) characteristic function

C(φ) ≡
∞∑

n=0

(−1)n

(2n)!

⟨
S2n, φ

⊗2n
⟩
. (60)

It is possible to show that

|C(φ) − 1| ≤ e
1
2
K∥φ∥H1 − 1, ∀φ ∈ H1. (61)

Thus, for any n ≥ 2

ν is the probability measure on H−n corresponding to C(φ).

(62)
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By taking n = −3, τ−3 defines an isometric isomorphism

such that

τ−3 : H−3 ∋ f 7−→ (a1, a2, . . . ) ∈ l2(λ6
i )
, with

ai ≡ (f, λ−3
i φi)−3, i ∈ N. (63)

Define µ on l2
(λ6

i )
such that

µ(B) ≡ ν ◦ τ−1
−3 (B) for B ∈ B(l2(λ6

i )
). (64)

Set S = l2
(λ6

i )
. We can take βi = λ6

i , γi
−1

2 = λi in Theorem

2-i) with p = 2, then,

∞∑
i=1

βiγi ·µ
(
β

1
2
i |Xi| > M ·γ−1

2
i

)
≤

∞∑
i=1

βiγi =

∞∑
i=1

(λi)
4 < ∞.

(65)
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This shows that (27) holds, also, it is possible to see that

(28) holds.

Thus, by Theorem 2-i) and Theorem 4, for each 0 < α ≤ 1,

there exists an l2
(λ6

i )
-valued Hunt process

M ≡
(
Ω,F , (Xt)t≥0, (Px)x∈S△

)
, (66)

associated to the non-local Dirichlet form (E(α),D(E(α))).

Then define an H−3-valued process (Yt)t≥0 such that

(Yt)t≥0 ≡
(
τ−1
−2 (Xt)

)
t≥0

.
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Equivalently, by (44) for Xt = (X1(t), X2(t), . . . ) ∈ l2
(λ6

i )
,

Px − a.e., by setting Ai(t) such that Xi(t) = λ−3
i Ai(t),

then Yt is given by

Yt =
∑
i∈N

Ai(t)(λ
−3
i φi) =

∑
i∈N

Xi(t)φi ∈ H−3,

∀t ≥ 0, Px − a.e.. (67)

It is an H−3-valued Hunt process that is a stochastic

quantization with respect to the non-local Dirichlet form

(Ẽ(α),D(Ẽ(α))) on L2(H−3, ν), that is defined through

(E(α),D(E(α))), by making use of τ−3.
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Example 1. (The Høegh-Krohn model with d = 2)

For |a0| <
√
4π and g ∈ L2(R2 → R) ∩ L1(R2 → R), on

the measure space (S′,B(S′), ν0), define a random variable

Vexp(ϕ) ≡
∞∑

n=0

(a0)
n

n!
< g, : ϕn :>, (68)

and define a probability measure νexp on S′ such that

νexp(dϕ) ≡ Z−1e−Vexp(ϕ)ν0(dϕ), (69)

where ν0 is the 2-dimensional Euclidean free field measure

and S′ ≡ S′(R2 → R), Z is the normalizing constant.
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It is known that (cf., e.g., [A,H72], [Simon])

Vexp ∈ ∩r≥1L
r(S′, ν0), Vexp(ϕ) ≥ 0, ν0 − a.e., (70)

0 ≤ e−Vexp(ϕ) ≤ 1, ν0 − a.e.. (71)

Through simple calculations, by making use of the Hölder’s

inequality, and the Gaussian inequality, it is possible to see

that for Cexp(φ), the characteristic function of νexp,

|Cexp(φ) − 1| ≤ Z−1{(e
1
2
|φ|2 − 1)|φ|2 + |φ|2}, ∀φ ∈ S′,

(72)

where |φ|2 ≡ ((−∆ + 1)φ,φ)L2.
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(72) shows that the characteristic function of νexp possesses

the same continuity (in a neighbourhood of the origin) as the

one of the Euclidean free field (cf. Example 1). Hence,

through the same arguments as were done in the previous

examples, for the random field (S′,B(S′), νexp) the same

results on the non-local type stochastic quantizations as the

one for the Euclidean free field with d = 2 holds.
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Example 1. (The P (ϕ)2 and the Albeverio, Høegh-Krohn

trigonometric model with d = 2)

For the 2-dimensional, (d = 2), Euclidean fields with the

(truncated) potential term P (ϕ)2 and the Albeverio,

Høegh-Krohn trigonometric functions, passing through the

similar arguments as were performed in the previous

examples, with a little indirect way, we see that theses fields

can be treated same as the Euclidean free field with d = 2.
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