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Introduction

Random obstacle problems

Reflected stochastic heat equation (RSHE)

The reflected stochastic heat equation driven by the space-time white
noise:

∂u

∂t
(t, θ) =

1

2

∂2u

∂θ2
(t, θ) + b(u(t, θ)) + Ẇ (t, θ) + η(dtdθ),

u(t, 0) = u(t, 1) = 0, t ≥ 0,

u(0, x) = h(θ) ≥ 0, θ ∈ (0, 1),

u(t, θ) ≥ 0, t ≥ 0, θ ∈ [0, 1] a.s.

(1.1)

{Ẇ (t, θ) : t ≥ 0, θ ∈ [0, 1]} denotes the space-time white noise.
η denotes the positive random reflecting measure on [0,∞)× [0, 1],
which forces u(t, θ) to be nonnegative.
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Introduction

Random obstacle problems

Stochastic Cahn-Hilliard equation with logarithmic free energy (SCH)

Let f denote the logarithmic type nonlinearity

f(u) =


+∞, u ≤ −1,

log

(
1− u

1 + u

)
+ λu, u ∈ (−1, 1),

−∞, u ≥ 1.

F denotes the primitive function of −f with F (0) = 0, that is,

F (u) = (1 + u) log(1 + u) + (1− u) log(1− u)− λ

2
u2, u ∈ (−1, 1).
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Introduction

SCH



∂u

∂t
(t, θ)

=− 1

2

∂2

∂θ2

(
∂2u

∂θ2
(t, θ) + f(u(t, θ)) + η−(t, θ)− η+(t, θ)

)
+BẆ (t, θ), t > 0, θ ∈ (0, 1),

u′(t, 0) = u′(t, 1) =
∂3u

∂x3
(t, 0) =

∂3u

∂x3
(t, 1) = 0, t ≥ 0,∫ 1

0

∫ 1

0
(1 + u(t, θ))η−(dtdθ)

=

∫ 1

0

∫ 1

0
(1− u(t, θ))η+(dtdθ) = 0,

u(0, θ) = x(θ), θ ∈ (0, 1), u(t, x) ∈ [−1, 1] a.s.,

(1.2)

where η−, η+ are two non-negative random measures and B denotes two
kinds of operators which will be specified later.
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Introduction

Figure: Graph of f．
Figure: Graph of F : Double-well
potential whenever λ > 2．

Consider the formal Hamiltonian called the logarithmic free energy or
(Ginzburg-Landau free energy)

H(u) =

∫ 1

0

(
1

2
|∇u(θ)|2 + F (u(θ))

)
dθ.

B. Xie (Shinshu Univ.) Asymptotic behavior of Reflected SPDEs Nov. 19th 6 / 32



Introduction

The SPDEs (1.1) can be formally written as

∂u

∂t
(t, θ) = −1

2
(−∆)γ

(
δH(u)

δu(θ)
(t, θ) + ξ(t, θ)

)
+ (−∆)γ/2BẆ (t, θ).

(1.3)

where ξ(t, θ) is a signed random measure, δH
δu(θ)(u) denotes the functional

derivative of H and equals to −∆u(θ) + F ′(u(θ)).

Remark

(1) If ξ = 0 ( and f is “good”), then (1.3) is called the time-dependent
Ginzburg-Landau equation. According to Hohenberg and Halperin (1977),
it is called the Model A (non-conservative one) for γ = 0 and the Model
B for (conservative one,

∫ 1
0 u(t, θ)dθ) for γ = 1.

(2) SPDEs (1.1) and (1.2) are called the Model A with reflection and
respectively Model B with reflection.
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Introduction

Remark

One dimensional Skorokhod equation:{
dB(t) = dw(t) + dℓ(t), t ≥ 0, B(0) = y, y ≥ 0,

B(t) ≥ 0,
∫∞
0 B(s) dℓ(s) = 0, ℓ(t) ↗, ℓ(0) = 0.

Hence, the reflected SPDE (1.1) and (1.2) are usually regarded as an
infinite-dimensional Skorokhod problem.
They are the special cases of the random parabolic obstacle problems, see
LNM, 2181(Zambotti, 2017).
Stochastic heat equation, stochastic Cahn-Hilliard equation, stochastic
Porous media equation, stochastic Burgers equation, · · · .

Main Topic

To study the ergodic property by establishing dimension-free Harnack
inequalities for the Markov simegroups relative to (1.1) and (1.2).
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Introduction

Prior Research of RSHE

The case of additive noise on bounded domain

Nualart and Pardoux (1992): Existence and uniqueness.
Funaki and Olla (2001), Zambotti (2001): Reversible measure.
Zambotti: Occupation densities (2004), Hitting property (2006).

Other cases

Multiplicative noises: Donati-Martin (1993) (Existence); Xu and Zhang
(2009, Uniqueness and LDP); Zhang et al. (2010, Strong Feller
property)
Double reflections: Otobe (2006), Zhang et al. (2011)· · · .

Prior Research of SCH

Cahn and Hilliard (1958): The phase separation in a binary alloy.

Material science, tumor growth, thin films, population dynamics, · · · .
For thermal fluctuation(Cook, 1970), the noise is required.

Da Prato, Debussche (1996), Cardon-Weber (2001), Antonopoulou,
G. Karali, A. Millet (2016): polynomial f and no restriction on u(t, θ).
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Introduction

Prior Research of SCH

One reflection (Comparison theorem fails): Debussche and Zambotti
(2007) for f = 0; Goudenège (2009) for f = u−α or − log u.

In applications, the solution of the Cahn-Hilliard equation is explained
as the rescaled density of atoms or concentration of one of material’s
components taking values in [−1, 1]. But, different from the
deterministic case, f is too weak.

Debussche and Goudenège (2011): (1.2) with B = d
dθ .

Goudenège and Manca (2015): (1.2) with the H-S operator B.

Applications

The fluctuations for ∇ϕ interface models on a hard wall.

Funaki and Olla (2001): without conservation of the area between the
interface and the wall.

Zambotti (2008): with conservation.
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Introduction

Definition (Dimension-free Harnack inequalities)

Let (Pt)t≥0 be a Markov semigroup on (E, d). We say that Pt

satisfies a classical dimension-free Harnack inequality is

ψ(PtΦ(x)) ≤ Pt(ψ(Φ)(y)) exp{Ψ(t, x, y)}, 0 ≤ Φ ∈ Bb(E), (1.4)

where ψ : [0,∞) → [0,∞) is convex, Ψ is a non-negative function
defined on [0,∞)× E × E with Ψ(t, x, x) = 0.

In particular,

When ψ(r) = rp, p > 1, (1.4) is called the Harnack inequality with
power p, i.e.,

|PtΦ(x)|p ≤ Pt|Φ|p(y) exp{Ψ(t, x, y)}

When ψ(r) = er, (1.4) is called the log-Harnack inequality(Log-HI).
It is equivalent to

Pt log Φ(x) ≤ logPtΦ(y) + Ψ(t, x, y), 0 ≤ Φ ∈ Bb(E), t > 0.

Harnack inequality with power p =⇒ Log-Harnack inequality.
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Introduction

Dimension-free Harnack inequalities

For a function ϕ on E, we denote by |∇ϕ|(x) its local Lipschitz constant
at x, that is,

|∇ϕ|(x) = lim sup
y→x

|ϕ(x)− ϕ(y)|
d(x, y)

.

In addition, here and in the sequel, ∥∇ϕ∥∞ = supx∈E |∇ϕ|(x).

Definition (Asymptotic log-Harnack inequality)

We say (Pt)t≥0 satisfies an asymptotic log-Harnack inequality if there exist
two non-negative functions Φ(·, ·) on E × E and Ψ(·, ·, ·) on
[0,∞)× E × E satisfying Ψ(·, ·, ·) → 0 as t→ ∞ such that

Pt log ϕ(y) ≤ logPtϕ(x) + Φ(x, y) + Ψ(t, x, y)∥∇ log ϕ∥∞, t > 0 (1.5)

holds for any x, y ∈ E and any positive ϕ ∈ Bb(E) with ∥∇ log ϕ∥∞ <∞.
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Introduction

Dimension-free Harnack inequalities

It is first introduced by F.-Y. Wang (1997) to study the log-Sobolev
inequality for diffusion processes on Riemannian manifolds.

Very powerful tool to the study of various important properties of
diffusion semigroups.
Strong Feller property, asymptotic strong Feller property,
irreducibility, uniqueness of invariant measure.
Hypercontractivity, ultracontractivity, estimates on the heat kernels,
Varadhan type small time asymptotics, entropy-cost inequality.

Harnack inequality with power: Kawabi (2005), Wang (2007), Liu
(2009), Es-Sarhir, von Renesse, Scheutzow (2009), Da Prato,
Röckner and Wang (2009), Wang (2013), Xie (2019), · · ·
The log-HI: Röckner and Wang (2010), Wang-Wu-Xu (2011) (Stoc.
Burgers equation), Wang-Zhang (2014), Xie (2018).

Asy log-HI : implies asymptotical strong Feller property, Xu (2011),
Li-Liu-Y.C. Xie (2019), Bao-Wang-Yuan (2019).
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Introduction

For a pseudo-metric dp on E and probability measure µ1, µ2 on E,
let∥µ1 − µ2∥dp = infµ∈C(µ1,µ2)

∫
E×E dp(x, y)µ(dx, dy), where C(µ1, µ2)

denotes the collection of probability measures on E ×E with marginals µ1
and µ2. Let {dn}∞n=1 be a totally separating systems of pseudo-metrics for
E, that is, for any m < n and x, y ∈ E, dm(x, y) ≤ dn(x, y), and for any
x ̸= y limn→∞ dn(x, y) = 1.

Definition (Definition 3.1, Hairer and Mattingly (2006))

(Pt)t≥0 on (E, d) is said to be asymptotically strong Feller at point x ∈ E
if there exists a totally separating systems of pseudo-metrics {dn}∞n=1 on
E and a positive sequence {tn}∞n=1 such that

inf
B∈Bx

lim sup
n→∞

sup
y∈B

∥Ptn1B(x)− Ptn1B(y)∥dn = 0.

Furthermore, if this property holds for any x ∈ E, then (Pt)t≥0 is called
asymptotically strong Feller.

B. Xie (Shinshu Univ.) Asymptotic behavior of Reflected SPDEs Nov. 19th 14 / 32



Stochastic heat equation with reflection

Stochastic heat equation with reflection

Definition (Definition of the solution to (1.1))

Let h ≥ 0. A pair (u, η) is said to be a solution of (1.1) if
(i) (u(t, ·))t≥0 is Ft-adapted and u(t, θ) ≥ 0, t ≥ 0, θ ∈ [0, 1] a.s.
(ii) η is a positive random measure on [0,∞)× [0, 1] such that

(a) η({t} × (0, 1)) = 0, t ≥ 0,
∫ t
0

∫ 1
0 θ(1− θ)η(dsdθ) <∞, t ≥ 0;

(b) η is Ft-adapted.
(iii) For any t ≥ 0 and ϕ ∈ C2

0 (0, 1),

⟨u(t), ϕ⟩ =⟨h, ϕ⟩+ 1

2

∫ t

0
⟨u(s), ϕ′′⟩ds+

∫ t

0
⟨b(u(s)), ϕ⟩ds

+

∫ t

0

∫ 1

0
ϕ(θ)W (dsdθ) +

∫ t

0

∫ 1

0
ϕ(θ)η(dsdθ)

(iv) η is supported on {(t, θ) : u(t, θ) = 0}, that is,∫∞
0

∫ 1
0 u(t, θ)η(dtdθ) = 0 a.s.
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Stochastic heat equation with reflection

Let K0 := {h ∈ H : h(θ) ≥ 0, θ ∈ [0, 1]} and let Pt denote the Markov
semigroup acting on Bb(K0) associated with the reflected SPDE (1.1),
that is, PtΦ(h) = E[Φ(u(t;h))], t ≥ 0,Φ ∈ Bb(K0).

Theorem (Xie [7])

For any 0 ≤ Φ ∈ Bb(K0), for all h, h̃ ∈ K0 and t > 0(
PtΦ(h̃)

)p
≤PtΦ

p(h) exp

{
p∗|h− h̃|2

(
L2(eπ

2t + 1) + π4

π2(eπ2t − 1)
− 2L2teπ

2t

(eπ2t − 1)2

)}

The Markov semigroup (Pt)t≥0 has a unique invariant probability
measure µ such that µ

(
exp (δ| · |2)

)
<∞ holds for for some δ > 0.

Pt is hypercontractive with respect to µ.
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Stochastic heat equation with reflection

Theorem (Xie [7])

In particular, for large enough t, Pt is compact in L2(µ) and
∥Pt∥Lp(µ)→Lq(µ) <∞, which implies that (Pt) is hyperbounded.

Definition

Markov semigroup (Pt)t≥0 is said to be hypercontractive if it has an
invariant probability measure µ and for some t > 0

∥Pt∥L2(µ)→L4(µ) := sup{∥PtΦ∥L4(µ) : µ(Φ
2) ≤ 1} = 1.

If ∥Pt∥L2(µ)→L4(µ) <∞ for some t > 0, then (Pt) is hyperbounded.

The equival. of the hypercontra. and the LSI is known (L. Gross (1975)).
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Stochastic heat equation with reflection

Theorem (Xie [7])

(i) (Exponential convergence of entropy)
There exist two constants C, λ > 0 such that for all t ≥ 0 and positive
Φ ∈ Bb(K0) with µ(Φ) = 1

µ((PtΦ) log(PtΦ)) ≤ C exp(−λt)µ(Φ log Φ).

(ii) (Exponential convergence to µ in L2(µ))
There exists a constant C > 0 such that for all t ≥ 0 and Φ ∈ L2(µ)

∥PtΦ− µ(Φ)∥L2(µ) ≤ C exp(−κt)∥Φ− µ(Φ)∥L2(µ).

(iii) (Exponential convergence in total variation norm)
There exist two constants T,C > 0 such that for all t ≥ T

∥µht − µh̃t ∥TV ≤ C exp(−κt)|h− h̃|, h, h̃ ∈ K0.
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Stochastic Cahn-Hilliard equation with log potentials

Stochastic Cahn-Hilliard equation

Example

(1) (Example 3.14 (Hairer and Mattingly 2006))

dX(t) = (X(t)−X3(t))dt+ dB(t), dY (t) = −Y (t)dt.

(2) (Example 3.15 (Hairer and Mattingly 2006)) Consider the
Ornstein-Uhlenbeck process u(t, x) =

∑
û(t, k)exp(ikx) with

dû(t, k) = −(1 + |k|2)û(t, k)dt+ exp(−|k|3)dBc(t).

The Markov semigroups above are not strong Feller, but are asymptotic
strong Feller.
Strong Feller property depends on the random effects.
Asymptotic strong Feller depends on the contraction of dynamics.
Two kinds of noises will be considered in the following.
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Stochastic Cahn-Hilliard equation with log potentials The case of non-degenerate noise

Notation

Au = ∂2u
∂θ2

with D(A) := {u ∈ H2(0, 1) : u′(0) = u′(1) = 0}.
(−A)

γ
2 u =

∑∞
n=1(nπ)

2γunen for any u =
∑∞

n=0 unen,

Vγ = D
(
(−A)

γ
2

)
:=
{
u =

∑∞
n=0 unen :

∑∞
n=0(nπ)

2γu2n <∞
}

H = V−1 and the affine space Hc = {u ∈ H : ū = c}.

Definition (Definition of the solution of (1.2))

(1) The quadruplet (u, η+, η−,W ) defined on a filtered complete
probability space (Ω,F , (Ft)t≥0;P) is said to be a weak solution of (1.2) if
(i) u ∈ C((0,∞)× [0, 1]; [−1, 1]) ∩ C([0, 1];H) a.s. and
f(u) ∈ L1([0, T ]× [0, 1]) a.s. for any T > 0.
(ii) η+ and η− are two positive random measure on [0,∞)× [0, 1]
satisfying η±([δ, T ]× [0, 1]) <∞ a.s. for all δ ∈ (0, T ] and T > 0.
(iii) (W (t))t≥0 is a cylindrical Wiener process on L2(0, 1) and the
stochastic process (u(t),W (t))t≥0 is (Ft)-adapted.
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Stochastic Cahn-Hilliard equation with log potentials The case of non-degenerate noise

Definition

(iv) For all ϕ ∈ D(A2) and 0 < δ ≤ t,

⟨u(t), ϕ⟩ (3.1)

=⟨u(δ), ϕ⟩ − 1

2

∫ t

δ
⟨u(s), A2ϕ⟩ds− 1

2

∫ t

δ
⟨f(u(s)), Aϕ⟩ds

− 1

2

∫ t

δ

∫ 1

0
Aϕ(θ) (η+(dsdθ)− η−(dsdθ))−

∫ t

δ
⟨ϕ′, dW (s)⟩ a.s.

(v) The contact properties
supp(η+) ⊂ {(t, x) ∈ [0,∞)× [0, 1] : u(t, θ) = +1} and
supp(η−) ⊂ {(t, x) ∈ [0,∞)× [0, 1] : u(t, θ) = −1} a.s.,∫ ∞

0

∫ 1

0
(1 + u(t, θ))η−(dtdθ) =

∫ ∞

0

∫ 1

0
(1− u(t, θ))η+(dtdθ) = 0 a.s.

(2) (u, η+, η−,W ) is said to be a strong one if the stochastic process
(u(t))t≥0 is adapted to the filtration (FW

t )t≥0.
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Stochastic Cahn-Hilliard equation with log potentials The case of non-degenerate noise

Theorem (Debussche and Goudenège (2011))

For any c ∈ (−1, 1) and x ∈ K := {x ∈ L2(0, 1) : x ∈ [−1, 1]} with x̄ = c,
the SPDE (1.2) has a unique strong solution (u(t;x); η+, η−,W ).
(i) The average of u(t;x) is conservative in t, that is, ū(t;x) = x̄.
(ii) (u(t;x); t ≥ 0, x ∈ K ∩Hc) is a K ∩Hc-valued continuous Markov
process and its associated Markov transition semigroup P c

t is strong Feller.
(iii) For each c ∈ (−1, 1),

νc(dx) =
1

Zc
exp

(
−
∫ 1

0
F (x(θ))dθ

)
1K(x)µc(dx)

is the unique invariant measure of P c
t , where µ

c denotes the Gaussian
measure N(ce0, (−A)−1) and Zc denotes the normalization constant.
(iv) For any k ∈ N and 0 = t0 < t1 < t2 < · · · < tk, (u

n(ti;x))
k
i=1

converges weakly to (u(ti;x))
k
i=1. For any ϕ ∈ Bb(H

c) and t ≥ 0, we have
limn→∞ Pn,c

t ϕ(x) = P c
t ϕ(x).
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Stochastic Cahn-Hilliard equation with log potentials The case of non-degenerate noise

Theorem (Goudenège, Xie (2019))

Suppose π2 > λ. Then the Harnack inequality with power p > 1

|P c
t ϕ|p(y) ≤

1

2
P c
t |ϕ|p(x) exp

{
p(π2 − λ)π2|x− y|2−1

(p− 1)(e(π2−λ)π2t − 1)

}
holds for any ϕ ∈ Bb(H

c), x, y ∈ K ∩Hc and t > 0. In particular, the
log-Harnack inequality

P c
t log ϕ(y) ≤

(π2 − λ)π2|x− y|2−1

2(e(π2−λ)π2t − 1)
+ logP c

t ϕ(x)

holds for any 0 < ϕ ∈ Bb(H
c), x, y ∈ K ∩Hc and t > 0.
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Stochastic Cahn-Hilliard equation with log potentials The case of non-degenerate noise

Remark

Let B = (−A)
1
2 . Then B is reversible on span{ei : i = 1, 2, · · · } and

|B−1z|2 = |z|2−1, z ∈ H0.

If we consider B = d
dθ with Dom(B) = H1(0, 1), then we can show

the following equation

|B∗(BB∗)−1z|2 = |z|2−1, z ∈ H0.

The method can be applied to the SPDE (1.2) with more general B

instead of B = d
dθ or B = (−A)

1
2 . In fact, if BB∗ is reversible

restricted on span{en : n = 1, 2, · · · } with
|B∗BB∗z| ≤ C|z|−1, z ∈ H for some C > 0 and (1.2) has a unique
solution, then the Harnarck equalities can be established. For
example, if there exists a strictly positive sequence {bn}∞n=1 such that
Ben = bnen, n = 1, 2, · · · and the sequence {nb−1

n }∞n=1 is bounded,
then B satisfies the assumptions stated above.
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Stochastic Cahn-Hilliard equation with log potentials The case of highly degenerate noise

The case of highly degenerate noise

Assumption H

B is a Hilbert-Schmidt operator from L2(0, 1) to H, which it is
equivalent to the fact that B(−A)−1B∗ is a trace class on L2(0, 1).

B∗e0 = 0.

There exists a non-negative sequence {bi}∞i=1 such that
Bu =

∑∞
i=1 bi⟨u, ei⟩ and there exists a big enough integer N such

that bi > 0, i = 1, 2, · · · , N and (N + 1)2π2 > λ.
It is known as the essentially elliptic condition introduced by Hairer
and Mattingly (2006).

Let pn(u) = 2
∑n

i=0
u2i+1

2i+1 , u ∈ R. Then it is a non-decreasing
(2n+ 1)-degree polynomial and −pn(u) + λu converges to f(u) for
u ∈ (−1, 1).
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Stochastic Cahn-Hilliard equation with log potentials The case of highly degenerate noise

Let {un} be the solution of the SPDE

∂un

∂t
(t, θ) =− 1

2

∂2

∂θ2

(
∂2un

∂θ2
(t, θ)− pn(u

n(t, θ)) + λun(t, θ)

)
+BẆ (t, θ), t > 0, θ ∈ (0, 1),

∂un

∂θ
(t, 0) =

∂un

∂θ
(t, 1) =

∂3un

∂θ3
(t, 0) =

∂3un

∂θ3
(t, 1) = 0, t ≥ 0,

un(0, θ) =x(θ), θ ∈ (0, 1).

(3.2)

Theorem (Goudenège, Manca (2015))

For any c ∈ (−1, 1), the following hold:
(i) There exists a subsequence nk and a Markov semigroup (P c

t )t≥0 such
that limk→∞ P c,nk

t ϕ(x) = P c
t ϕ(x) holds for any x ∈ Hc and any

ϕ ∈ Bb(H
c).

(ii) (P c
t )t≥0 has an invariant probability measure µ̃c.
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Stochastic Cahn-Hilliard equation with log potentials The case of highly degenerate noise

Remark

We will fix a converging subsequence Pnk,c
t . For simplicity, we will

still use Pn,c
t and un(t) instead of Pnk,c

t and unk(t).

Let u(t;x) denote the Markov process associated with (P c
t )t≥0.

Formally speaking, the sequence {un}∞n=1 converges to the solution of
(1.2). But any limit of {un}∞n=1 can not be characterized as a
solution of SPDEs.

Theorem (Goudenège, Xie (2019))

Let c ∈ (−1, 1). For any ς > 0 satisfying π4 > 2ς∥B∗∥2, the invariant
measure µ̃c satisfies the exponential integrability µ̃c

(
exp(ς| · |2−1)

)
<∞,

where ∥B∗∥ denotes the operator norm of B∗.
If further π4 > λ, then µ̃c is the unique invariant measure and for any
Lipschitz continuous function ϕ ∈ Bb(H

c),

|P c
t ϕ(x)− µ̃c(ϕ)| ≤ ∥∇ϕ∥∞ exp−(π4−λ)t (|x|−1 + µ̃(| · |−1)) , x ∈ Hc.
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Since we are considering the degenerate noise, the strong Feller can not be
expected. So we study the asymptotic log-HL.

Theorem (Goudenège, Xie (2019))

Suppose Assumption H is satisfied. Then, for any c ∈ (−1, 1), the Markov
semigroup (P c

t )t≥0 satisfies the asymptotic log-Harnack inequality. More
precisely, we have that

P c
t log ϕ(y) ≤ logP c

t ϕ(x) +
λ

8α
(1− exp(−2αt))∥B−1AΠl∥2op|x− y|2−1

+ exp(−αt)∥∇ log ϕ∥∞|x− y|−1, t > 0

holds for any x, y ∈ Hc and any positive ϕ ∈ Bb(H
c) with

∥∇ log ϕ∥∞ <∞, where ∥B−1AΠl∥op denotes the operator norm of
B−1AΠl from Hc to the N -dimensional space span{e1, e2, · · · , eN} and

α =
1

2
min

{
π4,
(
(N + 1)2π2 − λ

)
(N + 1)2π2

}
.
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Corollary

(i) (P c
t )t≥0 is asymptotically strong Feller.

(ii) For any Lipschitz continuous function ϕ ∈ Bb(H
c),

|∇P c
t ϕ| ≤

(
λ

4α

) 1
2

∥B−1AΠl∥op
√
P c
t ϕ

2 − (P c
t ϕ)

2 + ∥∇ϕ∥∞ exp(−αt).

(iii) For any non-negative ϕ ∈ Bb(H
c) with ∥ϕ∥∞ <∞ and all x ∈ Hc,

lim sup
t→∞

P c
t ϕ(x) ≤ log

(
µ̃c(expϕ)∫

Hc exp(− λ
8α∥B−1AΠl∥2op|x− y|2−1)µ̃

c(dy)

)
,

where µ̃c the invariant measure of P c
t .

(iv) If for some x ∈ Hc and A ⊂ Hc, lim inft→∞ P c
t (x,A) > 0 holds,

then, for any y ∈ Hc and ϵ > 0, lim inft→∞ P c
t (y,Aϵ) > 0.
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Remark

(i) From the asymptotical strong Feller property, it follows that any two
different ergodic invariant measures must have disjoint topological
supports, see Theorem 3.16 (Hairer and Mattingly (2006)).
Moreover, combining with weakly topological irreducibility, we have the
uniqueness of invariant measure.
(ii) We can also show that for any Lipschitz continuous function
ϕ ∈ Bb(H

c),

|∇P c
t ϕ|(x) ≤

(
λ

4α

) 1
2

∥B−1AΠl∥op∥ϕ∥∞ + 2∥∇ϕ∥∞ exp(−αt),

which is a sufficient condition for the asymptotical strong Feller property
(Hairer and Mattingly (2006)).

B. Xie (Shinshu Univ.) Asymptotic behavior of Reflected SPDEs Nov. 19th 30 / 32



Stochastic Cahn-Hilliard equation with log potentials The case of highly degenerate noise

References I
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