Asymptotic behavior of the spectral functions for Schrödinger forms

Masaki Wada (Fukushima University)

October 31, 2019

1 Setting and the main result

Let $\{X_t\}$ be the rotationally invariant α -stable process on \mathbb{R}^d with $0 < \alpha < 2$ and denote by $(\mathcal{E}, \mathcal{F})$ the corresponding Dirichlet form on $L^2(\mathbb{R}^d)$. We assume $\alpha < d$, transience of $\{X_t\}$ and denote the Green kernel by G(x, y). Let μ and ν be positive Radon smooth measures satisfying three properties, i.e. Kato class, Green tightness and of finite 0-order energy integral. Define the Schrödinger form by

$$\mathcal{E}^{\lambda}(u,v) = \mathcal{E}(u,v) - \int_{\mathbb{R}^d} u(x)v(x)\mu(dx) - \lambda \int_{\mathbb{R}^d} u(x)v(x)\nu(dx) \qquad (\lambda \ge 0)$$

For simplicity, we also assume μ is critical, that is,

$$\inf \left\{ \mathcal{E}(u,u) \mid u \in \mathcal{F}_e, \quad \int_{\mathbb{R}^d} u^2(x)\mu(dx) = 1 \right\} = 1.$$

Here \mathcal{F}_e is the extended Dirichlet space. Define the spectral function by

$$C(\lambda) = -\left\{ \mathcal{E}^{\lambda}(u, u) \mid \int_{\mathbb{R}^d} u^2(x) dx = 1 \right\}.$$

There are several preceding results for the differentiability of the spectral functions. Takeda and Tsuchida [2] treated this problem in the framework of $\mu = \nu$. Nishimori [1] treated the differentiability of $C(\lambda)$. Both of them showed that the differentiability of the spectral function is equivalent to $d/\alpha \leq 2$. In this talk, we treat the precise asymptotic behavior of the spectral function and our main result is as follows:

Theorem 1. (W. 2018) As $\lambda \downarrow 0$, the spectral function $C(\lambda)$ satisfies the asymptotic behavior as follows:

$$\begin{split} C(\lambda) &\sim \left(\frac{\alpha \Gamma(\frac{d}{2}) |\sin(\frac{d}{\alpha}\pi)| \langle h_0, h_0 \rangle_{\nu}}{2^{1-d} \pi^{1-\frac{d}{2}} \langle \mu, h_0 \rangle^2} \lambda \right)^{\frac{\alpha}{d-\alpha}} \quad (1 < d/\alpha < 2) \\ C(\lambda) &\sim \frac{\Gamma(\alpha+1) \langle h_0, h_0 \rangle_{\nu}}{2^{1-d} \pi^{-\frac{d}{2}} \langle \mu, h_0 \rangle^2} \cdot \frac{\lambda}{\log \lambda^{-1}} \quad (d/\alpha = 2) \end{split}$$

$$C(\lambda) \sim \frac{\langle h_0, h_0 \rangle_{\nu}}{\langle h_0, h_0 \rangle_m} \cdot \lambda \quad (d/\alpha > 2)$$

Here $h_0(x)$ is the ground state of \mathcal{E}^0 and m stands for the Lebesgue measure of \mathbb{R}^d . Remark 2. For $\mu = \nu = V \cdot m$, this result is the same as in [3]

2 Outline of the proof

(1) Let $G_{\beta}(x,y)$ be the resolvent kernel of $\{X_t\}_{t\geq 0}$. Define the compact operators by

$$K_{\lambda}f(x) = \int_{\mathbb{R}^d} G_{C(\lambda)}(x, y)f(y)(\mu + \lambda\nu)(dy) \quad f \in L^2(\mu + \lambda\nu)$$
$$\tilde{K}_{\lambda}f(x) = \int_{\mathbb{R}^d} G_{C(\lambda)}(x, y)f(y)\mu(dy) \quad f \in L^2(\mu)$$

(2) Denote the principal eigenfunction of these operator by h_{λ} and \tilde{h}_{λ} . The principal eigenvalue of K_{λ} is 1, while the principal eigenvalue of \tilde{K}_{λ} admits the asymptotic behavior as follows.

$$\lim_{\lambda \to 0} \frac{1 - \gamma_{C(\lambda)}}{k(C(\lambda))} = \kappa(d, \alpha, \mu) \qquad k(\beta) = \begin{cases} \beta^{d/\alpha - 1} & (1 < d/\alpha < 2) \\ \beta \log \beta^{-1} & (d/\alpha = 2) \\ \beta & (d/\alpha > 2) \end{cases}$$

Here $\kappa(d, \alpha, \mu)$ is a unique positive constant.

(3) Considering the inner product of h_{λ} and \tilde{h}_{λ} , we have

$$(1 - \gamma_{C(\lambda)}) \langle h_{\lambda}, \tilde{h}_{\lambda} \rangle_{\mu} = \lambda \langle h_{\lambda}, \tilde{h}_{\lambda} \rangle_{\nu}.$$

Both h_{λ} and \tilde{h}_{λ} converges to the ground state h_0 in $L^2(\mu)$ and $L^2(\nu)$. Thus we obtain the desired result.

References

- Nishimori, Y.: Large deviations for symmetric stable processes with Feynman-Kac functionals and its application to pinned polymers, Tohoku Math. Journal 65, 467– 494, (2013).
- [2] Takeda, M. and Tsuchida, K.: Differentiability of spectral functions for symmetric α -stable processes, Trans. Amer. Math. 359, 4031–4054, (2007).
- [3] Wada, M.: Asymptotic expansion of resolvent kernels and behavior of spectral functions for symmetric stable processes, J. Math. Soc. Jpn. 69, 673–692, (2017).