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Motivation

@ In this talk, we would like to discuss compact
embeddings for symmetric Markov processes.

e Let (£, F) be a Dirichlet form on L?(E;m) associated
with a m-symmetric Markov process X.

o For a suitable measure u, Stollmann-Voigt proved the
following inequality: for o > 0

/ w?dp < |Raptlloofal(usu), uweF, (1)

where R, is the a-resolvent of X and
Ea(u,u) = E(u,u) + a(u,u). Moreover, if X is
transient, (1) holds for « = 0 and u € F..

e Hence the embedding (F, &) — L2%(u)
(or (Fe, &) — L2(p) if X is transient) is continuous.
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o Takeda introduced following conditions:
(1) X is irreducible:
If any Borel set B satisfies P,1pu = 1gP,u
for all u € L2(E;m) and t > 0, then
m(B) = 0 or m(B¢) = 0 holds.
(RSF) X has the resolvent strong Feller property:
R, (By) C Cy for any a > 0.
(Tightness) X has a tightness property:
For any € > 0, there exists a compact set
K(C E) such that

[R1(1xem) oo < e

If X satisfies conditions (1), (RSF) and (Tightness), X is
called “class (T)”.
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Theorem 1 (Takeda ('19))
Suppose that X is class (T).

(1) The Markov semigroup is compact on L?(E;m) and its
every eigenfunction has a bounded continuous version.

(2) The embedding (F,&;) — L?(E;m) is compact.

(3) If X is transient and p € Six_ (X), then the
embedding (F., £) < L?(p) is compact.

(4) There exists a bounded ground state uniquely up to sign,
that is, the function ¢y which attains the infimum:

inf{é’(u,u):ue.’F, /u2dm:1}.
E

Moreover, ¢ can be taken to be strictly positive.
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(1) In Theorem 1, (1) <= (2).

(2) If p is a smooth measure, there exists a PCAF A." under
Revuz correspondence.
For example, if pu(dx) = V(x)m(dx), its associated
additive functional A} is [ V(X,)ds.
The statement (3) plays very important role to prove the
large deviation for additive functionals.

(3) For (3), Chen-T. proved by another method that this
embedding is compact under the existence of Green
function and gave examples from wide class of
jump-type symmetric Markov processes including

relativistic or truncated stable processes. (to appear)
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o In proofs of compactness, we notice that Takeda does
not use (RSF) essentially.

e He use (RSF) in proving that m belongs to the class of
Green-tight Kato measure in the sense of Chen (in
notation S{ . (X1)).

(X™ means the 1-subprocess of X).

@ We would like to clarify where these conditions are used,

and generalize these results.
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E : a locally compact separable metric space

m : a positive Radon measure on E with full support.

X = (P,, X¢) : m-symmetric special standard process on E.
{P;,t > 0}: the semigroup of X.

(€, F) : the quasi-regular Dirichlet form generated by X:

1
— 2 aH
F = {u € L*(m) : ltlf{)l ;((I — Pu,u)p2(m) < oo}
1
E(u,v) = ltii%l ;((I — P)u,v)r2(m), u,v € F.

(Fe, €) : the extended Dirichlet space of (£, F).

R, : the a-resolvent of X.

S1(X) : the family of positive smooth measures in the strict
sense under the absolute continuity condition (AC).
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(AC), (SF), (RSF)

In this talk, we always assume that any measure belongs to
S1(X).
Let P;(x,dy) be the transition function of X, that is,

Pt(a:, B) = ]P)m(Xt € B).

In the sequel, we use the following notations:

(AC) : forany t > 0 and = € E, P;(x,dy) is absolutely
continuous with respect to m.

(SF) : for any t > 0, P(By(E)) C Cp(E).

(RSF) : for any @ > 0, R, (Bp(E)) C Cu(E).

It is known that

(SF) — (RSF) = (AC)
—— ~——

Takeda’s results Our results
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We define a-potential of v by
R.v(z) =E, [/ e‘o‘tdAt”} , x€E
0

where A is the PCAF associated to v € S*(X).

Definition 3 (Kato class)

(1) Suppose that X is transient. v is said to be a
Green-bounded (Sp, (X)) if sup,cg Rv(z) < oo.

(2) v is said to be a smooth measure of Kato class S} (X) if

lim sup R,v(x) = 0.

(3) The local Kato class S}, (X) is defined by

Srx = {v € S*(X) : 1xv € Si(X) for any K cpt.}.




Setting
®00

Green-tight Kato class

Definition 4 (Two kinds of Green-tight measure)

Let v € S'(X) and a > 0. When a = 0, we always assume

the transience of X.

(1) (Zhao) v € Sg_(X) &L e S1.(X) and for any € > 0

there exists a compact subset K = K (e) of E such that
sup Ry (1kev)(x) < e.
zeFE
(2) (Chen) v € SEi_(X) £% for any € > 0 there exists a
Borel subset K = K (&) of E with v(K) < oo and a

constant 6 > 0 such that for all v-measurable set
B C K with v(B) < 4,

sup Ro(1Buk-v)(x) < €.
xzcFE
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Green-tight Kato class

If a > 0, we rewrite S (X) (resp. S&i_ (X)) with
S;{; (X) (resp. SéK;g (X)).

(1) Definition 4(1): Zhao originally introduced the class
S}<w (X) in considering the gaugeability for d-dim.
absorbing Brownian motions (d > 3) on bounded open
domains.

(2) Definition 4(2): However, Sg.(X) is not enough to
develop the gaugeability and subcriticality for symmetric
Markov processes. To overcome some difficulty, Chen
introduced the class S{ . (X).

(3) The Borel set K = K (&) in Definition 4(2) can be taken
to be a compact set by the inner regularity of m. Hence
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Remark (continued)

(4) Chen proved that S! (+)(X) KD (X) under (SF).
Later, Kim and Kuwae proved the comadence under
(RSF). Moreover, the equality holds under the
ultracontractivity of X.

(5) If a > 0, S1 + (X) and 51 + (X) are independent of
the choice of a > 0 by the resolvent equation.

(6) Chen proved that (S{_(X) C )S - (X) C Sk (X).
(7) Clearly, S L (X) = Stk (XM,

@ In the sequel, we only consider 0-order Green-tight
measure by Remark 5(7).
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Theorem 6

Suppose that X satisfies (AC) and m € Sy (X™). Then
the L?-semigroup P, is a compact operator on L?(E;m)

and its every eigenfunction has a finely continuous Borel
measurable bounded m-version. Moreover, if X satisfies
(RSF), then every eigenfunction has a bounded continuous
m-version.

Suppose that X satisfies (AC) and m € S{ . (X(M). Then
the embedding F — L?(E;m) is compact.
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Theorem 8

Suppose that X is transient and it satisfies (AC). Let
IS Sé?Koo (X). Then (F, &) is compactly embedded in
L2(E;v).

Let A2 be the bottom of the spectrum:

A2 ::inf{é’(f,f):fe}', /Efzdmzl}.

A function ¢y on FE is called a ground state of the
L2-generator for £ if ¢g € F, ||poll2 = 1 and
E(po, Po) = Az.

Theorem 9

Suppose that X satisfies (AC), (1) and m € S{ . (X).
Then there exists a bounded ground state ¢¢ uniquely up to
sign. Moreover, ¢ can be taken to be strictly positive on E.
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Theorem 10

Suppose that X is transient which possesses (RSF). Take

v € Sp,(X) and assume v € Sk (X).

(1) If v has the full quasi-support, then the time changed
process (X, v) does not possess (RSF), but satisfies
(AC).

(2) There exists a 3 > 0 such that the killed process X%
does not possess (RSF), but satisfies (AC).

Is there a measure v that satisfies this theorem? Yes!

To construct examples, we can apply an example due to
Aizenman-Simon (1982).
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Example 1 (Brownian motion)

Let X be the d-dimensional BM on R? with d > 3 and m
the Lebesgue measure on R<,

Set x,, := (27",0,---,0) € R? and r,, = 8 ™. We set
Va(z) = 82"1p, (z,)(x) and V(z) := > 72, V(). Then
we find that Vm € Sp,(X) \ S} ;- (X) by Aizenman-Simon
(’82). Since X is transient, there exists a function g such
that 0 < g < 1 m-a.e. and Rg € B,(FE). We put

v = (V + g)m. Then we know that the time-changed
processes X¥ associated with v and the killed process X A
for some 8 > 0 do not possess (RSF) by Theorem 10, but
satisfy (AC).




Example

Example 2 (stable process)
Take a € (0,2) and m > 0. Let X = (2, X¢,P,) be a Lévy
process on R? with

Eo[ei(ﬁaxt)] = exp (—t((|£|2 + m2/a)a/2 _ m))

If m > 0, it is called the relativistic a-stable process with
mass m. We assume the transience of X, i.e. d > 3 with
m > 0, or d > o with m = 0. Let x,, and r,, be the point
and constant as in Example 1. We fix G := B1(0). We set
Vi(x) = 8*"1p, (,)(x) and V(z) :=>"7>° , Vi, (x). Then
Vm € Sp,(X) \ Si,(X). Hence the killed process X A
for some 3 > 0 do not possess (RSF) by Theorem 10, but

satisfy (AC).
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Example 3 (BM on Riemannian manifold)

Let (M, g) be a d-dimensional complete smooth Riemannian
manifold with Ricy > x(d — 1) for some « € R.

Let m = vol, be the volume measure of (M, g) and Ay the
Laplace-Bertrami operator of (M, g). Let X be the diffusion
process on (M, g) generated by %Ag. It is known that X is
transient if d > 3. We assume the transience of X. Fix a
point o € M. Let {x,}5° ; be a sequence in M such that
2d(xn+1,0) = d(xp,0), n € N.

We define V,,(z) := 82"1p,_(,,)(x) and

V(x) := Y o2, Va(xz), where ry, := 87",

Then we find that Vm € ST, (X) \ Spx(X). Hence the
killed process X V™ does not possess (RSF) for some

B > 0, but satisfy (AC).
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Thank you

Thank you for your attention !!
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