Introduction Setting Main results Example 00000 00 00 0000 00

Green-tight measure of Kato class and compact embedding theorem for symmetric Markov processes (joint work with Kazuhiro Kuwae)

> Kaneharu Tsuchida (National Defense Academy)

Stochastic Analysis and related topics at Tohoku University

November 18, 2019

Introduction	Setting	Main results	Example
00000	000000	00	00000
Motivation			

- In this talk, we would like to discuss compact embeddings for symmetric Markov processes.
- Let $(\mathcal{E}, \mathcal{F})$ be a Dirichlet form on $L^2(E; m)$ associated with a *m*-symmetric Markov process X.
- For a suitable measure μ , Stollmann-Voigt proved the following inequality: for $\alpha > 0$

$$\int u^2 d\mu \le \|R_{\alpha}\mu\|_{\infty} \mathcal{E}_{\alpha}(u,u), \quad u \in \mathcal{F},$$
(1)

where R_{α} is the α -resolvent of X and $\mathcal{E}_{\alpha}(u, u) = \mathcal{E}(u, u) + \alpha(u, u)$. Moreover, if X is transient, (1) holds for $\alpha = 0$ and $u \in \mathcal{F}_e$.

• Hence the embedding $(\mathcal{F}, \mathcal{E}_1) \hookrightarrow L^2(\mu)$ (or $(\mathcal{F}_e, \mathcal{E}) \hookrightarrow L^2(\mu)$ if X is transient) is continuous.

Introduction	Setting	Main results	Example
0000			
Motivation			

- Takeda introduced following conditions:
 - (I) X is irreducible:

If any Borel set B satisfies $P_t 1_B u = 1_B P_t u$ for all $u \in L^2(E;m)$ and t > 0, then m(B) = 0 or $m(B^c) = 0$ holds.

- (RSF) X has the resolvent strong Feller property: $R_{\alpha}(\mathcal{B}_b) \subset C_b$ for any $\alpha > 0$.
- (Tightness) X has a tightness property:

For any $\varepsilon > 0$, there exists a compact set $K(\subset E)$ such that

 $\|R_1(1_{K^c}m)\|_{\infty} < \varepsilon.$

If X satisfies conditions (I), (RSF) and (Tightness), X is called "class (T)".

Introduction	Setting	Main results	Example
00000			
Motivation			

Theorem 1 (Takeda ('19))

Suppose that X is class (T).

- (1) The Markov semigroup is compact on $L^2(E;m)$ and its every eigenfunction has a bounded continuous version.
- (2) The embedding $(\mathcal{F}, \mathcal{E}_1) \hookrightarrow L^2(E; m)$ is compact.
- (3) If X is transient and $\mu \in S^1_{CK_{\infty}}(X)$, then the embedding $(\mathcal{F}_e, \mathcal{E}) \hookrightarrow L^2(\mu)$ is compact.
- (4) There exists a bounded ground state uniquely up to sign, that is, the function ϕ_0 which attains the infimum:

$$\inf \left\{ \mathcal{E}(u,u): u \in \mathcal{F}, \; \int_E u^2 dm = 1
ight\}.$$

Moreover, ϕ_0 can be taken to be strictly positive.

Introduction	Setting	Main results	Example
00000			
Motivation			

Remark 2

- (1) In Theorem 1, (1) \iff (2).
- (2) If μ is a smooth measure, there exists a PCAF A_t^{μ} under Revuz correspondence.

For example, if $\mu(dx) = V(x)m(dx)$, its associated additive functional A_t^{μ} is $\int_0^t V(X_s)ds$. The statement (3) plays very important role to prove the

large deviation for additive functionals.

(3) For (3), Chen-T. proved by another method that this embedding is compact under the existence of Green function and gave examples from wide class of jump-type symmetric Markov processes including relativistic or truncated stable processes. (to appear)

Introduction	Setting	Main results	Example
00000			
Motivation			

- In proofs of compactness, we notice that Takeda does not use (RSF) essentially.
- He use (RSF) in proving that *m* belongs to the class of Green-tight Kato measure in the sense of Chen (in notation S¹_{CK∞}(X⁽¹⁾)).
 (X⁽¹⁾ means the 1-subprocess of X).
- We would like to clarify where these conditions are used, and generalize these results.

Introduction	Setting	Main results	Example
00000	•••••	00	00000
Setting			

- E: a locally compact separable metric space
- m : a positive Radon measure on E with full support.

 $\mathbf{X} = (\mathbb{P}_x, X_t)$: *m*-symmetric special standard process on *E*. $\{P_t, t \geq 0\}$: the semigroup of X.

 $(\mathcal{E},\mathcal{F})$: the quasi-regular Dirichlet form generated by $X{:}$

$$egin{aligned} \mathcal{F} &= \left\{ u \in L^2(m): \lim_{t \downarrow 0} rac{1}{t} ((I-P_t)u,u)_{L^2(m)} < \infty
ight\} \ \mathcal{E}(u,v) &= \lim_{t \downarrow 0} rac{1}{t} ((I-P_t)u,v)_{L^2(m)}, \quad u,v \in \mathcal{F}. \end{aligned}$$

 $(\mathcal{F}_e, \mathcal{E})$: the extended Dirichlet space of $(\mathcal{E}, \mathcal{F})$. R_{α} : the α -resolvent of X.

 $S^{1}(X)$: the family of positive smooth measures in the strict sense under the absolute continuity condition (AC).

Introduction	Setting	Main results	Example
	00000		
(AC), (SF), (RSF)			

In this talk, we always assume that any measure belongs to $S^{1}(\mathbf{X})$.

Let $P_t(x, dy)$ be the transition function of X, that is,

$$P_t(x,B) = \mathbb{P}_x(X_t \in B).$$

In the sequel, we use the following notations:

(AC) : for any t > 0 and $x \in E$, $P_t(x, dy)$ is absolutely continuous with respect to m.

(SF) : for any t > 0, $P_t(\mathcal{B}_b(E)) \subset C_b(E)$. **(RSF)** : for any $\alpha > 0$, $R_\alpha(\mathcal{B}_b(E)) \subset C_b(E)$. It is known that

00000	000000	00	00000
Introduction	Setting	Main results	Example

We define α -potential of ν by

$$R_lpha
u(x) = \mathbb{E}_x \left[\int_0^\infty e^{-lpha t} dA_t^
u
ight], \quad x \in E$$

where A_t^{ν} is the PCAF associated to $\nu \in S^1(X)$.

Definition 3 (Kato class)

- (1) Suppose that X is transient. ν is said to be a Green-bounded $(S_{D_0}(X))$ if $\sup_{x \in E} R\nu(x) < \infty$.
- (2) u is said to be a smooth measure of Kato class $S^1_K({
 m X})$ if

$$\lim_{\alpha\to\infty}\sup_{x\in E}R_{\alpha}\nu(x)=0.$$

(3) The local Kato class $S_{LK}^1(\mathbf{X})$ is defined by

 $S_{LK} = \{ \nu \in S^1(\mathbf{X}) : 1_K \nu \in S^1_K(\mathbf{X}) \text{ for any } K \text{ cpt.} \}.$

ntroduction	Setting	Main results 00	Example 00000
roon tight Kata class			

Definition 4 (Two kinds of Green-tight measure)

Let $\nu \in S^1(\mathbf{X})$ and $\alpha \geq 0$. When $\alpha = 0$, we always assume the transience of \mathbf{X} .

(1) (Zhao) $\nu \in S^1_{K_{\infty}}(\mathbf{X}) \stackrel{\text{def.}}{\longleftrightarrow} \nu \in S^1_K(\mathbf{X})$ and for any $\varepsilon > 0$ there exists a compact subset $K = K(\varepsilon)$ of E such that

$$\sup_{x\in E}R_lpha(1_{K^c}
u)(x)$$

(2) (Chen) $\nu \in S^1_{CK_{\infty}}(\mathbf{X}) \stackrel{\text{def.}}{\longleftrightarrow}$ for any $\varepsilon > 0$ there exists a Borel subset $K = K(\varepsilon)$ of E with $\nu(K) < \infty$ and a constant $\delta > 0$ such that for all ν -measurable set $B \subset K$ with $\nu(B) < \delta$,

$$\sup_{x\in E}R_lpha(1_{B\cup K^c}
u)(x)$$

		() (1	()	
Green-tight Kato class				
Introduction 00000	Setting ○○○○●○	Main 00	results	Example 00000

If
$$\alpha > 0$$
, we rewrite $S^1_{K_{\infty}}(X)$ (resp. $S^1_{CK_{\infty}}(X)$) with $S^1_{K_{\infty}^+}(X)$ (resp. $S^1_{CK_{\infty}^+}(X)$).

Remark 5

- (1) Definition 4(1): Zhao originally introduced the class $S^1_{K_{\infty}}(\mathbf{X})$ in considering the gaugeability for *d*-dim. absorbing Brownian motions $(d \ge 3)$ on bounded open domains.
- (2) Definition 4(2): However, $S^1_{K_{\infty}}(\mathbf{X})$ is not enough to develop the gaugeability and subcriticality for symmetric Markov processes. To overcome some difficulty, Chen introduced the class $S^1_{CK_{\infty}}(\mathbf{X})$.
- (3) The Borel set $K = K(\varepsilon)$ in Definition 4(2) can be taken to be a compact set by the inner regularity of m. Hence $S_{CK_{\infty}^{(+)}}(\mathbf{X}) \subset S_{K_{\infty}^{(+)}}(\mathbf{X}).$

Introduction	Setting	Main results	Example
	000000		
Green-tight Kato class			

Remark (continued)

- (4) Chen proved that $S^1_{K^{(+)}_{\infty}}(X) = S^1_{CK^{(+)}_{\infty}}(X)$ under (SF). Later, Kim and Kuwae proved the coincidence under (RSF). Moreover, the equality holds under the ultracontractivity of X.
- (5) If $\alpha > 0$, $S^1_{K^+_{\infty}}(\mathbf{X})$ and $S^1_{CK^+_{\infty}}(\mathbf{X})$ are independent of the choice of $\alpha > 0$ by the resolvent equation.
- (6) Chen proved that $(S^1_{CK_{\infty}}(\mathbf{X}) \subset)S^1_{CK_{\infty}^+}(\mathbf{X}) \subset S^1_K(\mathbf{X}).$
- (7) Clearly, $S^1_{CK^+_{\infty}}(\mathbf{X}) = S^1_{CK_{\infty}}(\mathbf{X}^{(1)}).$
 - In the sequel, we only consider 0-order Green-tight measure by Remark 5(7).

Introduction	Setting	Main results	Example
		•0	
Main results			

Theorem 6

Suppose that X satisfies (AC) and $m \in S^1_{CK_{\infty}}(X^{(1)})$. Then the L^2 -semigroup P_t is a compact operator on $L^2(E;m)$ and its every eigenfunction has a finely continuous Borel measurable bounded *m*-version. Moreover, if X satisfies (RSF), then every eigenfunction has a bounded continuous *m*-version.

Theorem 7

Suppose that X satisfies (AC) and $m \in S^1_{CK_{\infty}}(\mathbf{X}^{(1)})$. Then the embedding $\mathcal{F} \hookrightarrow L^2(E;m)$ is compact.

Theorem 8

Suppose that X is transient and it satisfies (AC). Let $\nu \in S^1_{CK_{\infty}}(X)$. Then $(\mathcal{F}_e, \mathcal{E})$ is compactly embedded in $L^2(E; \nu)$.

Let λ_2 be the bottom of the spectrum:

$$\lambda_2:=\inf\left\{\mathcal{E}(f,f):f\in\mathcal{F},\;\int_Ef^2dm=1
ight\}.$$

A function ϕ_0 on E is called a ground state of the L^2 -generator for \mathcal{E} if $\phi_0 \in \mathcal{F}$, $\|\phi_0\|_2 = 1$ and $\mathcal{E}(\phi_0, \phi_0) = \lambda_2$.

Theorem 9

Suppose that X satisfies (AC), (I) and $m \in S^1_{CK_{\infty}}(X)$. Then there exists a bounded ground state ϕ_0 uniquely up to sign. Moreover, ϕ_0 can be taken to be strictly positive on E.

Introduction	Setting	Main results	Example
00000	000000		00000
Example			

Theorem 10

Suppose that X is transient which possesses (RSF). Take $\nu \in S_{D_0}(X)$ and assume $\nu \not\in S_{LK}(X)$.

- (1) If ν has the full quasi-support, then the time changed process (\check{X}, ν) does not possess (RSF), but satisfies (AC).
- (2) There exists a $\beta > 0$ such that the killed process $X^{-\beta\nu}$ does not possess (RSF), but satisfies (AC).

Is there a measure ν that satisfies this theorem? Yes! To construct examples, we can apply an example due to Aizenman-Simon (1982).

Introduction	Setting	Main results	Example
00000	000000	00	0●000
Example			

Example 1 (Brownian motion)

Let X be the *d*-dimensional BM on \mathbb{R}^d with $d \ge 3$ and mthe Lebesgue measure on \mathbb{R}^d . Set $x_n := (2^{-n}, 0, \dots, 0) \in \mathbb{R}^d$ and $r_n = 8^{-n}$. We set $V_n(x) = 8^{2n} \mathbb{1}_{B_{n-1}(x_n)}(x)$ and $V(x) := \sum_{n=2}^{\infty} V_n(x)$. Then we find that $Vm \in S_{D_0}(\mathbf{X}) \setminus S^1_{IK}(\mathbf{X})$ by Aizenman-Simon ('82). Since X is transient, there exists a function g such that 0 < q < 1 *m*-a.e. and $Rq \in \mathcal{B}_{h}(E)$. We put $\nu = (V+q)m$. Then we know that the time-changed processes \hat{X}^{ν} associated with ν and the killed process $X^{-\beta\nu}$ for some $\beta > 0$ do not possess (RSF) by Theorem 10, but satisfy (AC).

Introduction	Setting	Main results	Example
00000	000000	00	00●00
Example			

Example 2 (stable process)

Take $\alpha \in (0,2)$ and $m \geq 0$. Let $\mathrm{X} = (\Omega, X_t, \mathbb{P}_x)$ be a Lévy process on \mathbb{R}^d with

$$\mathbb{E}_0[e^{i\langle\xi,X_t
angle}] = \exp\left(-t((|\xi|^2+m^{2/lpha})^{lpha/2}-m)
ight)$$

If m > 0, it is called the relativistic α -stable process with mass m. We assume the transience of X, i.e. $d \ge 3$ with m > 0, or $d > \alpha$ with m = 0. Let x_n and r_n be the point and constant as in Example 1. We fix $G := B_1(0)$. We set $V_n(x) = 8^{\alpha n} 1_{B_{r_n}(x_n)}(x)$ and $V(x) := \sum_{n=2}^{\infty} V_n(x)$. Then $Vm \in S_{D_0}(X) \setminus S_{LK}^1(X)$. Hence the killed process $X^{-\beta \nu}$ for some $\beta > 0$ do not possess (RSF) by Theorem 10, but satisfy (AC).

Introduction	Setting	Main results	Example
00000	000000	00	000€0
Example			

Example 3 (BM on Riemannian manifold)

Let (M, q) be a *d*-dimensional complete smooth Riemannian manifold with $\operatorname{Ric}_q \geq \kappa(d-1)$ for some $\kappa \in \mathbb{R}$. Let $m = \operatorname{vol}_a$ be the volume measure of (M, g) and Δ_a the Laplace-Bertrami operator of (M, g). Let X be the diffusion process on (M,g) generated by $\frac{1}{2}\Delta_g$. It is known that X is transient if d > 3. We assume the transience of X. Fix a point $o \in M$. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in M such that $2d(x_{n+1}, o) = d(x_n, o), \ n \in \mathbb{N}.$ We define $V_n(x) := 8^{2n} 1_{B_{r_n}(x_n)}(x)$ and $V(x) := \sum_{n=2}^{\infty} V_n(x)$, where $r_n := 8^{-n}$. Then we find that $Vm \in S^1_{D_0}(\mathbf{X}) \setminus S_{LK}(\mathbf{X})$. Hence the killed process $X^{-\beta Vm}$ does not possess (RSF) for some $\beta > 0$, but satisfy (AC).

Introduction	Setting	Main results	Example
			00000
Thank you			

Thank you for your attention !!