Green-tight measures of Kato class and compact embedding theorem for symmetric Markov processes (joint work with Kazuhiro Kuwae)

Kaneharu Tsuchida (National Defense Academy)

1 Introduction

Let E be a locally compact separable metric space and m a Radon measure on E with full support. Let \mathbf{X} be a *m*-symmetric Hunt process and $(\mathcal{E}, \mathcal{F})$ its regular Dirichlet form on $L^2(E; m)$. Takeda proved in [3] that the semigroup of \mathbf{X} is compact on $L^2(E; m)$ if \mathbf{X} satisfies that irreducibility (I), resolvent strong Feller property (**RSF**), and Green-tightness (**T**). As an application, the compactness of embedding from $(\mathcal{F}, \mathcal{E})$ to $L^2(E; m)$ can be proved. This compact embedding theorem plays important role in proving the large deviation principle for additive functionals generated by \mathbf{X} . In this talk, we extend this result to the Markov process which satisfies absolute continuity (**AC**) and $m \in S^1_{CK_{\infty}}(\mathbf{X})$, where $S^1_{CK_{\infty}}(\mathbf{X})$ is a class of Green-tight measures introduced by Chen ([1]). Finally, we present some examples that are (**AC**) but not (**RSF**).

2 Setting

Let $\mathbf{X} = (\mathbb{P}_x, X_t, \zeta)$ be a *m*-symmetric special standard process on *E*, where ζ is the life time of \mathbf{X} . Let $(\mathcal{E}, \mathcal{F})$ be the Dirichlet form associated with \mathbf{X} , which is known to be quasi-regular. $\mathbf{X}^{(1)}$ denotes the 1-subprocess of \mathbf{X} defined by $\mathbf{X}^{(1)} = (\mathbb{P}_x^{(1)}, X_t)$ with $\mathbb{P}_x^{(1)}(X_t \in A) = e^{-t}\mathbb{P}_x(X_t \in A)$ for all t > 0 and $A \in \mathcal{B}(E)$. Let $(P_t)_{t\geq 0}$ be the transition semigroup of \mathbf{X} . The transition kernel of \mathbf{X} is denoted by $P_t(x, dy), t > 0$, that is, for any $f \in \mathcal{B}_b(E)$,

$$P_t f(x) := \mathbb{E}_x[f(X_t) : t < \zeta] = \int_E f(y) P_t(x, dy), \quad x \in E, \ t > 0.$$

We assume that **X** has the absolute continuity condition, that is, for any Borel set B, m(B) = 0 implies $P_t(x, B) = \mathbb{P}_x(X_t \in B) = 0$ for all t > 0 and $x \in E$. Let $(R_\alpha)_{\alpha > 0}$ be the resolvent of **X**, that is, for any $f \in \mathcal{B}_b(E)$,

$$R_{\alpha}f(x) = \mathbb{E}_{x}\left[\int_{0}^{\infty} e^{-\alpha t} f(X_{t})dt\right] = \int_{0}^{\infty} e^{-\alpha t} P_{t}f(x)dt.$$

Here **X** is said to possess the resolvent strong Feller property (**RSF**) (resp. strong Feller property (**SF**)) if $R_{\alpha}(\mathcal{B}_b(E)) \subset C_b(E)$ for any $\alpha > 0$ (resp. $P_t(\mathcal{B}_b(E)) \subset C_b(E)$ for any t > 0). It is known that the implication (**SF**) \Longrightarrow (**RSF**) \Longrightarrow (**AC**) holds. Let $S_1(\mathbf{X})$ be the family of positive smooth measures in the strict sense under (**AC**). For $\nu \in S_1(\mathbf{X})$, we set

$$R_{\alpha}\nu(x) := \mathbb{E}_{x}\left[\int_{0}^{\infty} e^{-\alpha t} dA_{t}^{\nu}\right], \ x \in E,$$

where A_t^{ν} is the positive continuous additive functional associated to $\nu \in S_1(\mathbf{X})$.

Definition 2.1. A measure $\nu \in S_1(\mathbf{X})$ is said to be in the *Kato class* if $\lim_{\alpha \to \infty} \sup_{x \in E} R_\alpha \nu(x) = 0$. A measure $\nu \in S_1(\mathbf{X})$ is said to be in the *local Kato class* if for any compact subset K of E, $1_K \nu$ is of Kato class.

We denote by $S_K^1(\mathbf{X})$ (resp. $S_{LK}^1(\mathbf{X})$) the family of measures of Kato class (resp. local Kato class).

Definition 2.2 ([1]). Let $\nu \in S_1(\mathbf{X})$ and take an $\alpha \ge 0$. When $\alpha = 0$, we always assume the transience of \mathbf{X} . ν is said to be an α -order Green-tight smooth measure of Kato class with respect to \mathbf{X} if for any

 $\varepsilon > 0$ there exists a Borel subset $K = K(\varepsilon)$ of E with $\nu(K) < \infty$ and a constant $\delta > 0$ such that for all ν -measurable set $B \subset K$ with $\nu(B) < \delta$,

$$\sup_{x \in E} R_{\alpha}(1_{B \cup K^c} \nu) < \varepsilon.$$

In view of the resolvent equation, for a positive constant α , the α -order Green-tightness of Kato class is independent of the choice of $\alpha > 0$. Let denote by $S_{CK_{\infty}}^{1}(\mathbf{X})$ (resp. $S_{CK_{\infty}^{+}}^{1}(\mathbf{X})$) the family of 0-order (resp. positive order) Green-tight smooth measure of Kato class. Clearly, $S_{CK_{\infty}^{+}}^{1}(\mathbf{X}) = S_{CK_{\infty}}^{1}(\mathbf{X}^{(1)})$. It can be proved as in [1] that $S_{CK_{\infty}^{+}}^{1}(\mathbf{X}) \subset S_{K}^{1}(\mathbf{X})$ and $S_{CK_{\infty}}^{1}(\mathbf{X}) \subset S_{K}^{1}(\mathbf{X})$. It is easy to see that $S_{CK_{\infty}}^{1}(\mathbf{X}) \subset S_{CK_{\infty}}^{1}(\mathbf{X}^{(1)})$ if **X** is transient.

3 Results

Theorem 3.1 ([2, Theorem 1.5]). Suppose that **X** satisfies (**AC**) and $m \in S^1_{CK_{\infty}}(\mathbf{X}^{(1)})$. Then the embedding $\mathcal{F} \to L^2(E;m)$ is compact.

Theorem 3.2 ([2, Theorem 1.6]). Suppose that **X** satisfies (**AC**) and $m \in S^1_{CK_{\infty}}(\mathbf{X}^{(1)})$. Then the L^2 -semigroup P_t is a compact operator on $L^2(E;m)$ and its every eigenfunction has a finely continuous Borel measurable bounded m-version. Moreover, if **X** satisfies (**RSF**), then every eigenfunction has a bounded continuous m-version.

Let $(\mathcal{F}_e, \mathcal{E})$ be the extended Dirichlet space of $(\mathcal{E}, \mathcal{F})$. For $\nu \in S^1_{CK_{\infty}}(\mathbf{X})$, the Stollmann-Voigt inequality tells us

$$\int_{E} f(x)^{2} \nu(dx) \le \|R_{0}\nu\|_{\infty} \mathcal{E}(f, f), \quad f \in \mathcal{F}_{e}$$

if **X** is transient. This means that $(\mathcal{F}_e, \mathcal{E})$ is continuously embedded in $L^2(E; \nu)$.

Corollary 3.3 ([2, Corollary 1.7]). Suppose that **X** is transient and it satisfies (**AC**). Let $\nu \in S^1_{CK_{\infty}}(\mathbf{X})$. Then $(\mathcal{F}_e, \mathcal{E})$ is compactly embedded in $L^2(E; \nu)$.

Let λ_2 be the bottom of the spectrum:

$$\lambda_2 := \inf \left\{ \mathcal{E}(f, f) : f \in \mathcal{F}, \int_E f^2 dm = 1 \right\}.$$

A function ϕ_0 on E is called a *ground state* of the L^2 -generator for \mathcal{E} if $\phi_0 \in \mathcal{F}$, $\|\phi_0\|_2 = 1$ and $\mathcal{E}(\phi_0, \phi_0) = \lambda_2$.

Theorem 3.4 ([2, Theorem 1.8]). Suppose that **X** satisfies (**AC**), (**I**) and $m \in S^1_{CK_{\infty}}(\mathbf{X}^{(1)})$. Then there exists a bounded ground state ϕ_0 uniquely up to sign. Moreover, ϕ_0 can be taken to be strictly positive on E.

Finally, we state the following general theorem to construct examples which do not possess (**RSF**), but satisfy (**AC**).

Theorem 3.5 ([2, Theorem 4.1, 4.2]). Suppose that **X** is transient and possesses (**RSF**). Take $\nu \in S_1(\mathbf{X})$ with $||R_0\nu||_{\infty} < \infty$ and assume $\nu \notin S_{LK}^1(\mathbf{X})$. If ν has the full quasi-support, then the time-changed process (\mathbf{X}, ν) does not possess (**RSF**), but satisfies (**AC**). Under same assumptions on ν , there exists an $\alpha > 0$ such that the killed process $\mathbf{X}^{-\alpha\nu}$ does not possess (**RSF**), but satisfies (**AC**).

We will give concrete examples during the talk.

References

- Z.-Q. Chen: Gaugeability and conditional gaugeability, Trans. Amer. Math. Soc. 354 (2002), 4639–4679.
- [2] K. Kuwae and K. Tsuchida: Green-tight measures of Kato class and compact embedding theorem for symmetric Markov processes, preprint, 2019.
- [3] M. Takeda: Compactness of symmetric Markov semi-groups and boundedness of eigenfunctions, Trans. Amer. Math. Soc. 372 (2019), 3905–3920.