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Abstract

Let R be a (reduced) root system in Rd and W be the associated reflection group. For given a
vector ξ ∈ Rd, the Dunkl operator Tξ on Rd associated with W are introduced by Dunkl [4] and
are differential-difference operators given by

Tξf(x) :=
∂f(x)

∂ξ
+
∑
α∈R+

k(α)〈α, ξ〉f(x)− f(σαx)

〈α, x〉
,

where ∂
∂ξ is the directional derivative with respect to ξ, and σα is the orthogonal reflection with

respect to α ∈ Rd \{0}, R+ is a positive subsystem of the root system R and k : R→ [1/2,∞) is a
multiplicity function. Dunkl operators have been widely studied in both mathematics and physics,
for example, there operators play a crucial role to the study special functions associated with root
systems and the Hamiltonian operators of some Calogero-Moser-Sutherland quantum mechanical
systems. Moreover, the Dunkl Laplacian defined by ∆kf(x) :=

∑d
i=1 T

2
ξi

, for any orthonormal

basis {ξ1, . . . , ξd} of Rd is an important, and it has the following explicit form

∆kf(x) = ∆f(x) + 2
∑
α∈R+

k(α)

{
〈∇f(x), α〉
〈α, x〉

+
f(σαx)− f(x)

〈α, x〉2

}
.

Rösler [7] studied Dunkl heat equation (∆k − ∂t)u, u(·, 0) = f ∈ Cb(Rd;R) and Rösler and Voit
[8] introduced Dunkl processes Y which are càdlàg Markov processes with infinitesimal generator
∆k/2 and is martingale with the scaling property. On the other hand, a radian Dunkl process
X = (X(t))t≥0 is a continuous Markov process with infinitesimal generator LWk /2 defined by

LWk f(x)

2
:=

∆f(x)

2
+
∑
α∈R+

k(α)
〈∇f(x), α〉
〈α, x〉

,

and is W -radial part of the Dunkl process Y , that is, for the canonical projection π : Rd → Rd/W ,
X = π(Y ), as identifying the space Rd/W to (fundamental) Weyl chamber W := {x ∈ Rd ; 〈α, x〉 >
0, α ∈ R+} of the root system R. Schapira [9] and Demini [2] proved that a radial Dunkl process
X satisfies the following W-valued stochastic differential equation (SDE)

dX(t) = dB(t) +
∑
α∈R+

k(α)
α

〈α,X(t)〉
dt, X(0) = x(0) ∈W, (1)

1



where B = (B(t))t≥0 is a d-dimensional standard Brownian motion. For example, if R := {±1}
then X is a Bessel process, and for type Ad−1 root system, that is, R := {ei − ej ∈ Rd ; i 6= j} ⊂
{x ∈ Rd;

∑d
i=1 xi = 0}, then X is a Dyson’s Brownian motion.

In this talks, inspired by [1, 3, 5, 6], we study a numerical analysis for radial Dunkl processes
corresponding to arbitrary (reduced) root systems in Rd, not only Bessel processes and Dyson’s
Brownian motions. We introduce an implicit Euler–Maruyama scheme for radial Dunkl processes
(1), which takes values in the domain Wely chamber W, and provide its rate of convergence in
Lp-sup norm and path-wise sense. The key idea of the proof is to use the change of measure based
on Girsanov theorem for radial Dunkl processes, which was proved in [10] for the Bessel case.
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