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Abstract

Let R be a (reduced) root system in R? and W be the associated reflection group. For given a
vector ¢ € R, the Dunkl operator T on R? associated with W are introduced by Dunkl [4] and
are differential-difference operators given by

Tef(x) ==

acRy

where a% is the directional derivative with respect to &, and o, is the orthogonal reflection with
respect to a € R?\ {0}, R, is a positive subsystem of the root system R and k : R — [1/2,00) is a
multiplicity function. Dunkl operators have been widely studied in both mathematics and physics,
for example, there operators play a crucial role to the study special functions associated with root
systems and the Hamiltonian operators of some Calogero-Moser-Sutherland quantum mechanical
systems. Moreover, the Dunkl Laplacian defined by Agf(x) := Zle Tgi , for any orthonormal

basis {¢1,...,&4} of R? is an important, and it has the following explicit form
(@), )  [floaz) — f(2)
Apf(z) = )+2 k(o { + .
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Rosler [7] studied Dunkl heat equation (Ag — 0;)u, u(-,0) = f € Cp(R%R) and Rosler and Voit
[8] introduced Dunkl processes Y which are cadlag Markov processes with infinitesimal generator
Ag/2 and is martingale with the scaling property. On the other hand, a radian Dunkl process
X = (X(t))t>0 is a continuous Markov process with infinitesimal generator L}V /2 defined by

LY f(z) _ (Vf(z),a)
k2 2: k > ,

and is TW-radial part of the Dunkl process Y, that is, for the canonical projection 7 : R — R¢ /W,
X = 7(Y), as identifying the space R?/W to (fundamental) Weyl chamber W := {z € R?; (a,z) >
0, a € Ry} of the root system R. Schapira [9] and Demini [2] proved that a radial Dunkl process
X satisfies the following W-valued stochastic differential equation (SDE)

dX(t) + ) k(e )>dt X(0) =z(0) e W, (1)
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where B = (B(t))i>0 is a d-dimensional standard Brownian motion. For example, if R := {+1}
then X is a Bessel process, and for type A4_; root system, that is, R := {e; —e; € Re; i # 5} C

{z € R Zle x; = 0}, then X is a Dyson’s Brownian motion.

In this talks, inspired by [T}, B 5] 6], we study a numerical analysis for radial Dunkl processes

corresponding to arbitrary (reduced) root systems in R?, not only Bessel processes and Dyson’s
Brownian motions. We introduce an implicit Euler—-Maruyama scheme for radial Dunkl processes
, which takes values in the domain Wely chamber W, and provide its rate of convergence in
LP-sup norm and path-wise sense. The key idea of the proof is to use the change of measure based
on Girsanov theorem for radial Dunkl processes, which was proved in [10] for the Bessel case.
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