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Introduction

• A Markov operator on a topological space E is said to satisfy
the strong Feller property if it maps all bounded measurable
functions on E into bounded continuous functions.

• Under the strong Feller property, measure theoretic
properties (of a process) are strengthened to topological
ones.

• Absorbing Brownian motions always possess the strong Feller
property.

• In this talk, we are concerned with the strong Feller property
of reflected Brownian motions (RBMs) on general domains
and continuity of the heat kernel.
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Introduction

Let D ⊂ Rd be a domain, and m the Leb. measure on D.
We define a Dirichlet form (E,H1(D)) by

H1(D) := {f ∈ L2(D,m) | |∇f | ∈ L2(D,m)},

E(f, g) :=
1

2

∫
D
(∇f,∇g) dm, f, g ∈ H1(D).

If (E,H1(D)) is regular on D (H1(D) ∩Cc(D) are dense in
H1(D) and Cc(D)), it generates an m-sym. diffusion
X = ({Xt}t≥0, {Px}x∈D) on D.

We call X a RBM on D, which may not be a semimartingale.

Question.

Under what conditions on D (or ∂D), does X have the
strong Feller property?
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Known results 1

• Bass and Hsu (1991) considered a RBM X on a bounded
Lipschitz domain D ⊂ Rd. The semigroup {PX

t }t>0 of X is
strong Feller: PX

t (Bb(D)) ⊂ Cb(D) for any t > 0.

• Fukushima and Tomisaki (1995, 1996) extended the work of
Bass and Hsu. They studied a RBM on a Lipschitz domain
D ⊂ Rd with cusps.



Known results 2

• Gyrya and Saloff-Coste (2011): RBMs on uniform domains.

(More precisely, they considered RBMs on inner uniform
domains. (E,H1(D′)) on an inner uniform domain D′

is not necessarily regular on D′.)

[Definition of uniform domains (Väisälä)]
D ⊂ Rd is unform domain if there exists C > 0 such that for
any x, y ∈ D, there is a rectifiable curve γ in D connecting
x and y with

length(γ) ≤ C|x − y|,

and
min{|x − z|, |z − y|} ≤ Cdist(z,Rd \ D)

for any z ∈ γ.
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• The Koch snowflake domain is a uniform domain.



Known results 2

D is a metric space under the shortest path metric ρ(x, y).

Gyrya and Saloff-Coste proved (VD) and (PI) for the
Dirichlet sp. (D, ρ,m, E,H1(D)).

As a result, X has a jointly conti. heat kernel pX
t (x, y).

∃c1, c2 ∈ (0,∞) s.t. ∀t > 0, ∀x, y ∈ D

pX
t (x, y) ≍ c1m(Bρ(x,

√
t))−1 exp(−c2ρ(x, y)

2/t).

∃α ∈ (0, 1] s.t. the map

D ∋ x 7−→ pX
t (x, y) ∈ (0,∞)

is α-Hölder continuous ∀y ∈ D and ∀t > 0.
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Summary of main results

• We prove the semigroup strong Feller property for RBMs on
a class of planar domains.

(1) The class consists of Jordan domains which are images of the
unit disk D under Hölder continuous conformal maps.

The class is studied in the potential theory

The class ∋ a non-inner uniform domain

The class ⊃ {bdd simply connected planar uniform domains}
∋ the Koch snowflake domain.

(2) On the bdd simply cnnctd planar uniform domains,
the HKs of RBMs are Hölder conti.
In this case, we give lower bounds for the Hölder exponents.
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Conformal invariance of planar RBM

In what follows, D ⊂ C is a Jordan domain.

Fix a conformal map ϕ : D → D, which is extended to a
homeo. D → D (D: the unit disk).

Let Y = ({Yt}t≥0, {P Y
y }y∈D) be the RBM on D.

Define X = ({Xt}t≥0, {PX
x }x∈D) as

PX
x := P Y

ϕ−1(x), x ∈ D,

Xt := ϕ(Y
A

−1
t

), t ∈ [0.∞),

where

At :=

∫ t

0
|ϕ′(Ys)|21D(Ys) ds ↗ ∞ as t → ∞.

Then, the Dirichlet form of X is identified with (E,H1(D))
and is regular on D.

Hence, X is a RBM on D.
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Main results

Denote by {RX
α }α>0 the resolvent of X.

Theorem 1. (M.)

Suppose that ϕ : D → D is κ-Hölder conti.
Then, ∀α > 0, ∀ε ∈ (0, κ), ∃C = Cα,ε,κ > 0 s.t.

|RX
α f(x) − RX

α f(y)|
≤ C∥f∥∞|ϕ−1(x) − ϕ−1(y)|(κ−ε)

for ∀x, y ∈ D and ∀f ∈ Bb(D).

Denote by {PX
t }t>0 the semigroup of X.

Theorem 2. (M.)

Suppose that ϕ : D → D is Hölder conti. Then,
{PX

t }t>0 is strong Feller.
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{PX

t }t>0 is strong Feller.



Main results

• If D ⊂ R2 is uniform domain, it is known that

ϕ : D → D and ϕ−1 : D → D

are Hölder continuous. This means that {RX
α }α>0 is also

Hölder continuous.

• If D ⊂ R2 is uniform domain, {PX
t }t>0 is ultracontractive.

• By a result of Bass–Kassmann–Kumagai (2010), we know

PX
t f = RX

α h

for some α > 0 and h ∈ L∞(D,m).
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Main results

Corollary. (M.)

Let D be a bdd simply cnnctd planar uniform domain.
Assume that

ϕ : D → D is κ-Hölder continuous

and
ϕ−1 : D → D is λ-Hölder continuous.

Then, ∀ε ∈ (0, κ), ∀x ∈ D and ∀t > 0,

D ∋ y 7−→ pX
t (x, y)

is λ × (κ − ε)-Hölder continuous.

Näkki–Palka (1980) showed

κ ≥
2 arcsin2 k(∂D)

π(π − arcsin k(∂D))
, λ ≥

π

2(π − arcsin k(∂D))
(> 1/2).
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Estimates for κ and λ

k(∂D) = inf
|z1 − z3||z2 − z4|

|z1 − z2||z3 − z4| + |z1 − z4||z2 − z3|
∈ (0, 1],

where the infimum is extended over the quadruples
z1, z2, z3, z4 of finite points of Jordan arc ∂D with the
property that z1 and z3 separate z2 and z4.

For the Koch snowflake,

the optimal value of
k(∂D) is ...?



Outline of proof (mirror couplings of RBMs)

• Atar and Burdzy (2004) constructed mirror couplings of
RBMs on a class of Euclidean domains.

• Let ν be the inward unit normal vector on ∂D. The mirror
coupling of RBMs (Y, Z) on D is described as

Yt = y + Bt +

∫ t

0
ν(Ys) dL

Y
s ,

Zt = z + Wt +

∫ t

0
ν(Zs) dL

Z
s ,

Wt = Bt − 2

∫ t

0

Yt − Zt

|Yt − Zt|2
(Ys − Zs, dBs).

t < Tcpl := inf{t > 0 | Xt = Yt},

• Wt is the mirror image of the Brownian motion Bt w.r.t.
the hyperplane Mt between Yt and Zt.
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Mirror Mt moves up to Tcpl ∧ inf{t > 0 | |Xt| = |Yt|}.



• Recall that X = ({Xt}t≥0, {PX
x }x∈D) is described as

PX
x := P Y

ϕ−1(x), x ∈ D,

Xt := ϕ(Y
A

−1
t

), t ≥ 0,

where Y is a RBM on D, and At =
∫ t
0 |ϕ′(Ys)|21D(Ys) ds.

• Using the mirror coupling of RBMs (Y, Z), we have

|RX
α f(ϕ(y)) − RX

α f(ϕ(z))|

≤ 2Eyz

[(∫ Tcpl

0
|ϕ′(Ys)|21D(Ys) ds

)
∧

1

α

]
+ 2Eyz

[(∫ Tcpl

0
|ϕ′(Zs)|21D(Zs) ds

)
∧

1

α

]
, y, z ∈ D

Eyz is the expectation under Pyz.

Eyz

[(∫ Tcpl

0
|ϕ′(Ys)|21D(Ys) ds

)
∧

1

α

]
≤ Ey

[∫ τY
B(y,r)

0
|ϕ′(Ys)|21D(Ys) ds

]
+

1

α
× Pyz(Tcpl > τY

B(y,r)).
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Outline of proof

ϕ : D → D is κ-Höl. continuous.

It can be shown that

• EY
y

[∫ τY
B(y,r)

0
|ϕ′(Ys)|2 ds

]
≲ −r2κ log r, r ∈ (0, 1/32]

≤ (1/ε) × r2κ−ε, ε ∈ (0, 2κ).

• Py,z(Tcpl > t) ≲ |y − z|/t1/2,
y, z ∈ D

• P Y
y (τY

B(y,r) ≤ t)

≲ exp(−r2/128t), r ≥ 0, t > 0,

τY
B(y,r)

= inf{t | Yt /∈ D ∩ B(y, r)}.



Outline of proof

• Setting r = |y − z|1/2, we have

Iyz := Eyz
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∧
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0
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]
+

1

α
× Pyz(Tcpl > τY

B(y,r))

≲ |y − z|(κ−ε) + |y − z|1/2 ≲ |y − z|(κ−ε)∧(1/2).

• By the strong Markov property, we have

Iyz = Eyz

[(∫ Tcpl∧τY
B(y,r)

0
|ϕ′(Ys)|21D(Ys) ds

)
∧

1

α

]
(≲ r2κ−ε)

+ Eyz

[
IY

τY
B(y,r)

,Z
τY
B(y,r)

: Tcpl > τY
B(y,r)

]
(⋆⋆⋆)

≲ |y − z|(κ−ε) + Eyz

[
|YτY

B(y,r)
− ZτY

B(y,r)
|(κ−ε)∧(1/2) : Tcpl > τY

B(y,r)
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[(∫ Tcpl

0
|ϕ′(Ys)|21D(Ys) ds

)
∧

1

α

]
≤ Ey

[∫ τY
B(y,r)

0
|ϕ′(Ys)|21D(Ys) ds

]
+

1

α
× Pyz(Tcpl > τY

B(y,r))

≲ |y − z|(κ−ε) + |y − z|1/2 ≲ |y − z|(κ−ε)∧(1/2).

• By the strong Markov property, we have

Iyz = Eyz

[(∫ Tcpl∧τY
B(y,r)

0
|ϕ′(Ys)|21D(Ys) ds

)
∧

1

α

]
(≲ r2κ−ε)

+ Eyz

[
IY

τY
B(y,r)

,Z
τY
B(y,r)

: Tcpl > τY
B(y,r)

]
(⋆⋆⋆)

≲ |y − z|(κ−ε) + Eyz
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|YτY
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• By the Chebyshev’s inequality,

Iyz ≲ |y − z|(κ−ε)

+ Pyz

(
Tcpl > τY

B(y,r)

)1/q
× Eyz

[
|YTcpl∧τY

B(y,r)
− ZT

cpl∧τY
B(y,r)

|p{(κ−ε)∧(1/2)}
]1/p

(
1

p
+

1

q
= 1, p, q ∈ (1,∞)).

• By Itô’s formula and some geometric considerations,

Eyz

[
|YTcpl∧τY

B(y,r)
− ZTcpl∧τY

B(y,r)
|θ
]
≤ |y − z|θ, θ ∈ (0, 1].

• Setting p = q = 2, θ = p{(κ − ε) ∧ (1/2)} ≤ 1, we have

Iyz ≲ |y − z|(κ−ε) + Pyz

(
Tcpl > τY

B(y,r)

)1/2
× |y − z|(κ−ε)∧(1/2)

≲ |y − z|(κ−ε)∧(3/4) (Go back to (⋆⋆⋆)!).
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• By Itô’s formula and some geometric considerations,

Eyz

[
|YTcpl∧τY

B(y,r)
− ZTcpl∧τY

B(y,r)
|θ
]
≤ |y − z|θ, θ ∈ (0, 1].

• Setting p = q = 2, θ = p{(κ − ε) ∧ (1/2)} ≤ 1, we have

Iyz ≲ |y − z|(κ−ε) + Pyz

(
Tcpl > τY

B(y,r)

)1/2
× |y − z|(κ−ε)∧(1/2)

≲ |y − z|(κ−ε)∧(3/4) (Go back to (⋆⋆⋆)!).



Remark

Theorem 1. (M.)

Suppose that ϕ : D → D is κ-Hölder continuous.
Then, ∀α > 0, ∀ε ∈ (0, κ), ∃C = Cα,ε,κ > 0 s.t.

|RX
α f(x) − RX

α f(y)|
≤ C∥f∥∞|ϕ−1(x) − ϕ−1(y)|(κ−ε)

for ∀x, y ∈ D and ∀f ∈ Bb(D).

• The semigroup PX
t of X is strong Feller?

• If PX
t is ultracontractive, there is no problem.

• There exists a non-inner uniform Jordan domain with the
condition in Thm 1. It is not an extension domain.
E ⊂ Rd is said to be an extension domain if

H1(E) ⊂ Lp(E,m) for some p > 2.



Example by Becker and Pommerenke (1982)

Define a Jordan domain D (which is not inner uniform) by

D = {(u, v) ∈ R2 | |u| < 1, |v| < 1} ∪
∞∪

n=1

Rn,

Rn = {(u, v) ∈ R2 | 0 ≤ u − 1 ≤
n log 2

2n
, |v − (1/n)| ≤ 2−n}.

For n ≥ 5, Rn ∩ Rn+1 = ∅.



A Refinement of Theorem 1.

• D is a domain with the condition in Theorem 1.

• Let U be an open subset of D such that U ⊂ D \B, where
B ⊂ D is a closed disk such that ϕ(B(0, ε)) ⊂ B
LU : the Laplacian on U with the Dirichlet bdry. cond. on
red line and the Neumann bdry. cond. on blue line.



A Refinement of Theorem 1.

• GD\ϕ−1(B)(x, y) ≤ 2 log(1 + ε−1) − 2 log |x − y| .

• LU has discrete spectrum, and ∃C1, C2 ∈ (0,∞) s.t.

(the first eigenvalue of −LU) ≥
C1{2 log(1 + ε−1) + C2}−1

m(U) log (2 + m(U)−1)

for any ε ∈ (0, 1) and any closed disk B ⊂ D such that
φ(B(ε)) ⊂ B, and any open subset U of D such that
U ⊂ D \ B

Lemma.

The semigroup of the part process XD\B of X on D \ B
has a ultracontractivity.
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A Refinement of Theorem 1.

Denote by {PD\B
t }t>0 the

semigroup of the part process
XD\B of X on D \ B.

• XD\B is smgrp strong Feller.

• limx→z∈∂B P
D\B
t f(x) = 0

for any t > 0 and any
f ∈ Bb(D \ B).

By shrinking the radius of B,
we have

Theorem 2. (M.)

Suppose that ϕ : D → D is Hölder continuous.
Then, the semigroup {PX

t }t>0 of X is strong Feller:
PX
t (Bb(D)) ⊂ Cb(D).


