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Main theorem

In this talk, we consider the following stochastic complex
Ginzburg-Landau(CGL) equation;
O = (i + WAU —v|ufPu+Au+ €&
u(0,-) = wp.

m u=u(tx),tel0,00),x €T?:=[-1 12

mi=+v-1,ue(0,00),Rer >0,A€ C.
m ¢ is a complex space-time white noise;

E[E(t, x)¢(s, ¥)] = 0, E[S(t, x)(s,y)] = 6(t — 8)5(x — y).

The above stochastic complex Ginzburg-Landau equation has
a unique global solution for every u € (0, 00).
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Background: Singular SPDEs

m KPZ equation:
Oth = Ah + (O,h)® + €.

m ®* equation:
0/d = Ad — % 4+ €&

Recent theories(theory of regularity structures, paracontrolled
calculus and etc) provide a local well-posedness of many
important singular SPDEs.

»Local well-posedness of 3D CGL.'

» Further analysis is needed to gain more information about
singular SPDEs.

M. Hoshino, Y. Inahama, and N. Naganuma. “Stochastic complex Ginzburg-Landau equation
with space-time white noise”. In: Electron. J. Probab. 22 (2017).
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m Global well-posedness:
m &3 equation (on the torus and in the plane).”
m &3 equation (on the torus).”
] 3D CGL (on the torus) for u >2\[

m Markov properties:
= Strong Feller and exponential mixing of 3 (on the torus).”

»Goal: apply and develop ideas from above papers to 2D CGL.

1

2J.-C. Mourrat and H. Weber. “Global well-posedness of the dynamic &* model in the plane”.
In: Ann. Probab. 45 (2017).

8J.-C. Mourrat and H. Weber. “The Dynamic ¢‘3‘ Model Comes Down from Infinity”. In:
Commun. Math. Phys. 356 (2017).

“M. Hoshino. “Global well-posedness of complex Ginzburg—Landau equation with a
space—time white noise”. In: Ann. Inst. H. Poincaré Probab. Statist. 54 (2018).

5P. Tsatsoulis and H. Weber. “Spectral gap for the stochastic quantization equation on the
2-dimensional torus”. In: Ann. Inst. H. Poincaré Probab. Statist. 54 (2018).
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Besov spaces

We fix two radial, smooth functionsy_1, x : R? — R such that
(i) supp(x—1) C B(0, %) and supp(x) C B(0,$)\ B(0, 2),
(i) S-pe 4 xx = 1 where xx = x(-/2) for k > 0.

Set 5xf(X) == 3 neye Xk(mM)F(mM)&2™™*. For p € [1,00] and o €
R,

= |fllsg = supks_1 2°K| 5k e

w % := the completion of C>*(T?2) under ||-||sz.

m C*:= BS (generalizes the usual Holder space).

» p: integrability a: regularity
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» Schauder’s estimate:
u (|6l St | fllig, A= (i + WA 1.
= In particular, if f € C* and g(t) = ['_ el"94fds (i.e., gis a
solution of ;g = Ag + f), we have g(t) € Co*® (6 € (0,2)).

» Products:
mf,geC* a>0 = fgis well-defined.
mfeC’gelCP,a<0<B,a+p>0 = fgiswell-defined.

O = (i + AU —v|ufPu+Au+€

m The regularity of £ is —2 — &.
m The expected regularity of uis 0 — «.
» |ul?u is ill-defined.
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Ornstein-Uhlenbeck processes
A= (i +u)A — 1. We first consider a linear SPDE

Heuristically, Duhamel’s principle implies
t
Z(t,x):/ elI=94&(s, x)ds

t
_ / K(t— s x — y)&(s, y)dyds,
oo J T2

|2

—t
Where K(t, X) = ZyEZZ m exp ( ‘lr(H-/J) ) 1{t>0}

» We interpret (s, y)dyds by complex [t6-Wiener integral.
However, (s, y) — K(t — s, x — y) is not L2-function.
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Ornstein-Uhlenbeck processes

We define Z(t) = {Z(t, ) | ¢ € L3(R x T?)} by
2(t9) = | (K(t= s = y).g)ref(dschy).

m The integral is in the sense of complex 1td-Wiener integral.

m Z(t) has C~“-valued modification(Va >0) and
t— Z(t) € C"%is continuous.

m Z(t) is a log-correlated field.
m The process Z = {Z(t)}+o is stationary (A= (i + u)A —1).
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Wick renormalization

m &5(t, x) be a space-time mollification of &.

m Hy/(z;¢) = z¥Z' + - - is the (k, I)-th order complex Hermite
polynomial (H; 1(z;¢) = |z]2 — ¢, Ha1(z; ¢) = |z[*Z — 2¢z
and so on).

m Zs is the solution of 0;Zs = AZs + &s with Zs(—o0) = 0.

There exists Z**/ such that for all a, T, p € (0, o)

lim E[ sup ||Hk/(Zs(t); Cs) — Z:k’l:(t)Hg_a =0,
6—0  o<i<T

where Cs ~ g log 5.
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Da Prato-Debussche trick

O = (i + WAU —v|ufPu+Au+ €&
u(0,-) = Wp.

We decompose u = Z + Y, where Z is the Ornstein-Uhlenbeck
process constructed before. Y then formally solves

&Y =(i+ WAY — Y+ (1 + )(Z+Y)
—W(|YRY +2Z|Y + ZY2 +2|1Z)2Y + Z2Y + |Z]2Z).

» We interpret powers of Z as the corresponding Wick powers

of Z.
» The expected regularity of Y is 2= and hence the PDE for Y is

well-defined.
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Main theorem

We fix
Z=(Z Z?, |Z|2, |Z|22) € C([O,oo);C‘“)“.

andsetV(Y,Z) = B o
(1+A(Z+Y)—v(|YRY+2Z| Y2+ ZY2+2|Z]2Y + Z2Y +|Z|22).
We also fix some a; € (0,1) and y € (0, 1).

» We say that Y is a solution of the shifted equation

XY =AY +V¥(Y,Z2) A=(i+uA -1,
Y(O,) = Yo e (C % ap € (0, 2/3),

if the following are satisfied;
(i) supgg<t 1| Yllcer <oo forevery T e (0, 00),
(i) Yy=e"Yy + fot elt=9Ay (Y, Z,)ds ( mild solution).
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Main theorem

» We say that Y is a solution of

OY =AY +W(Y,2) A=(i+uwh -1,
Y(0,)= Yo eC aq € (0,2/3),

if the following are satisfied;
(i) supgy<t 1| Yillcer <o forevery T e (0, 00),

(i) Yr=e"Yo+ [; e=94W(Y,, Z,)ds ( mild solution).

The shifted equation has exactly one solution over any time in-
terval [0, T].
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Local well-posedness

Proposition
There exists T* = T*(|| Yollc-«0,Z) € (0, ) such that the shifted
equation is well-posed in the interval [0, T*].

Set
Br={Y:(0,T] = C¥| sup t"|Ytllcer < 1}
0<t<T
t
Mry(t) = Y, + / =94 (y(s), Z,)ds.
0
For small T*, the map M- : By« — By« is a contraction. [ |

Toyomu Matsuda (Kyushu University) 16/24



Strategy for a global solution

There exists T* = T*(||Ysl/o-«,Z) € (0,00) such that the
shifted equation is well-posed in the interval [0, T*].

How to construct a global solution?

m We repeatedly use fixed point arguments to extend the local
solution.

m Then we have to take T* uniformly.

m A prior bound on || Y;||c-«-
» We need to exploit the nonlinear damping.
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A priori L” estimate
Proposition

Letp € [2,2(1 + u? + u\/1 + u2)) and Y solve the shifted equa-
tion. Then we have

1
1Yille Sz t72

uniformly for the initial condition Yj.

The proof is similar to Mourrat and Weber(2017). We need the
upper bound on p to "beat /A by uA". [

» We need p >3 to have the inclusion LP < C~%. This is not the
case for small u.
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Bootstrap arguments

= We obtained || V;|?, < t2.
m Actually, the previous analysis also yields

t
IYilEs+ [ 1¥els20s + / IV YelEads <
fo

= We want to exploit the bound on the integral terms.

t
Y, = elm0AY, 1 [ e=94(Y,, Z,)ds
fo
» Upgrade the bounds on Y by Shauder’s estimate.
» Key tools: Young’s convolution inequality and Besov
embedding.
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Bootstrap arguments
We need to upgrade the LP-bound on Y;.

t _
1||Yt||%f at st . P SUPy <<t ”Yt”BE Sh
HYtIIBzedf SHT e supparan | Villsr S 86

K2

» We continue this process to obtain the next theorem;

LetB € (0,2). If Y solves the shifted equation, then

sup || Yilles Szp o "
fh<t<ty

uniformly for the initial value Y.
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Markov process

The solution u of the CGL equation defines a Markov process on
C~% (the space of the initia value).
m Pd(x) = E[®(u(t))|u(0) = x] defines a semigroup.
m dJinvariant measure by Krylov-Bogoliubov method.
m Furthermore P; is strong Feller as the next theorem
suggests.

If]|x — y|lo-0 <1, we have
1P£8x — Pidyllrv S (1 + [IX[lee0)[1X = ¥l[¢-<
for some k € (0,00) and a € (0,1).

Key idea: Bismut-Elworthy-Li formula
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Exponential mixing

As we add a space-time white noise, it is natural to expect
exponential mixing of the CGL dynamics.

m Tsatsoulis and Weber® proved the exponential mixing of the
$3 equation by combining the support theorem and an
estimate independent of the initial condition.

m Can we extend their result to 2D CGL? (supprt theorem)

6P, Tsatsoulis and H. Weber. “Spectral gap for the stochastic quantization equation on the
2-dimensional torus”. In: Ann. Inst. H. Poincaré Probab. Statist. 54 (2018).
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Well-posedness in the plane

m |s it possible to prove global well-posedness in the plane?

m Difficulty: We have to use weighted Besov spaces.
» The work by Gubinelli and Hofmanova’ seems useful.

’M. Gubinelli and M. Hofmanova. “Global Solutions to Elliptic and Parabolic * Models in
Euclidean Space”. In: Communications in Mathematical Physics 368 (2019).
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Well-posedness in the plane

m |s it possible to prove global well-posedness in the plane?

m Difficulty: We have to use weighted Besov spaces.
» The work by Gubinelli and Hofmanova’ seems useful.

Thank you for listening!

’M. Gubinelli and M. Hofmanova. “Global Solutions to Elliptic and Parabolic * Models in
Euclidean Space”. In: Communications in Mathematical Physics 368 (2019).
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