Global well-posedness of stochastic complex Ginzburg-Landau equation on the 2D torus

Toyomu Matsuda Graduate School of Mathematics, Kyushu University Stochastic Analysis and Related Topics at Tohoku University November 18, 2019

Table of contents

1 Introduction

2 Ornstein-Uhlenbeck Processes

3 Solving the equation

4 Future work

Table of contents

1 Introduction

2 Ornstein-Uhlenbeck Processes

3 Solving the equation

4 Future work

Main theorem

In this talk, we consider the following stochastic complex Ginzburg-Landau(CGL) equation;

$$\begin{cases} \partial_t u = (i+\mu)\Delta u - \nu |u|^2 u + \lambda u + \xi \\ u(0,\cdot) = u_0. \end{cases}$$

■
$$u = u(t, x), t \in [0, \infty), x \in \mathbb{T}^2 := [-\frac{1}{2}, \frac{1}{2}]^2.$$

■ $i = \sqrt{-1}, \mu \in (0, \infty), \operatorname{Re} \nu > 0, \lambda \in \mathbb{C}.$

• ξ is a complex space-time white noise;

$$\mathbb{E}[\xi(t,x)\xi(s,y)] = 0, \ \mathbb{E}[\xi(t,x)\overline{\xi(s,y)}] = \delta(t-s)\delta(x-y).$$

Theorem

The above stochastic complex Ginzburg-Landau equation has a unique global solution for every $\mu \in (0, \infty)$.

Background: Singular SPDEs • KPZ equation:

$$\partial_t h = \Delta h + (\partial_x h)^2 + \xi.$$

Φ⁴ equation:

$$\partial_t \Phi = \Delta \Phi - \Phi^3 + \xi.$$

Recent theories (theory of regularity structures, paracontrolled calculus and etc) provide a **local well-posedness** of many important **singular SPDEs**.

Local well-posedness of 3D CGL.¹

► Further analysis is needed to gain more information about singular SPDEs.

¹M. Hoshino, Y. Inahama, and N. Naganuma. "Stochastic complex Ginzburg-Landau equation with space-time white noise". In: *Electron. J. Probab.* 22 (2017).

Global well-posedness:

- Φ₂⁴ equation (on the torus and in the plane).²
 Φ₃⁴ equation (on the torus).³
- 3D CGL (on the torus) for $\mu > \frac{1}{2\sqrt{2}}$.⁴
- Markov properties:
 - Strong Feller and exponential mixing of Φ⁴₂ (on the torus).⁵

Goal: apply and develop ideas from above papers to 2D CGL.

³J.-C. Mourrat and H. Weber. "The Dynamic Φ_3^4 Model Comes Down from Infinity". In: Commun. Math. Phys. 356 (2017).

⁴M. Hoshino. "Global well-posedness of complex Ginzburg-Landau equation with a space-time white noise". In: Ann. Inst. H. Poincaré Probab. Statist. 54 (2018).

⁵P. Tsatsoulis and H. Weber. "Spectral gap for the stochastic quantization equation on the 2-dimensional torus". In: Ann. Inst. H. Poincaré Probab. Statist. 54 (2018).

²J.-C. Mourrat and H. Weber. "Global well-posedness of the dynamic Φ^4 model in the plane". In: Ann. Probab. 45 (2017).

Table of contents

1 Introduction

2 Ornstein-Uhlenbeck Processes

3 Solving the equation

4 Future work

Besov spaces

We fix two radial, smooth functions $\chi_{-1}, \chi : \mathbb{R}^2 \to \mathbb{R}$ such that

(i) $\operatorname{supp}(\chi_{-1}) \subset B(0, \frac{4}{3})$ and $\operatorname{supp}(\chi) \subset B(0, \frac{8}{3}) \setminus B(0, \frac{3}{4}),$

(ii)
$$\sum_{k=-1}^{\infty} \chi_k \equiv 1$$
 where $\chi_k = \chi(\cdot/2^k)$ for $k \ge 0$.

Definition

Set $\delta_k f(x) := \sum_{m \in \mathbb{Z}^2} \chi_k(m) \hat{f}(m) e^{2\pi i m \cdot x}$. For $p \in [1, \infty]$ and $\alpha \in \mathbb{R}$,

$$\|f\|_{\mathcal{B}^{\alpha}_{p}} := \sup_{k \geq -1} 2^{\alpha k} \|\delta_{k} f\|_{L^{p}}.$$

- $\mathcal{B}^{\alpha}_{\rho} :=$ the completion of $\mathcal{C}^{\infty}(\mathbb{T}^2)$ under $\|\cdot\|_{\mathcal{B}^{\alpha}_{\rho}}$.
- $C^{\alpha} := \mathcal{B}^{\alpha}_{\infty}$ (generalizes the usual Hölder space).

• *p*: integrability α : regularity

Schauder's estimate:

$$\blacksquare \|e^{tA}f\|_{\mathcal{B}^{\beta}_{p}} \lesssim t^{-\frac{\beta-\alpha}{2}}\|f\|_{\mathcal{B}^{\alpha}_{p}}, A := (i+\mu)\Delta - 1.$$

In particular, if $f \in C^{\alpha}$ and $g(t) = \int_{-\infty}^{t} e^{(t-s)A} f ds$ (i.e., g is a solution of $\partial_t g = Ag + f$), we have $g(t) \in C^{\alpha+\delta}$ ($\delta \in (0, 2)$).

Products:

•
$$f, g \in C^{\alpha}, \alpha > 0 \implies fg$$
 is well-defined.

 $f \in \mathcal{C}^{\alpha}, g \in \mathcal{C}^{\beta}, \alpha < 0 < \beta, \alpha + \beta > 0 \implies fg \text{ is well-defined.}$

$$\partial_t u = (i + \mu)\Delta u - \nu |u|^2 u + \lambda u + \xi$$

The regularity of ξ is $-2 - \varepsilon$.

The expected regularity of *u* is 0 − ε.
 |*u*|²*u* is ill-defined.

Ornstein-Uhlenbeck processes $A := (i + \mu)\Delta - 1$. We first consider a linear SPDE

 $\partial_t Z = AZ + \xi.$

Heuristically, Duhamel's principle implies

$$Z(t,x) = \int_{-\infty}^{t} e^{(t-s)A} \xi(s,x) ds$$
$$= \int_{-\infty}^{t} \int_{\mathbb{T}^{2}} K(t-s,x-y) \xi(s,y) dy ds,$$

where
$$K(t, x) := \sum_{y \in \mathbb{Z}^2} \frac{e^{-t}}{4\pi(i+\mu)t} \exp\left(-\frac{|x-y|^2}{4(i+\mu)t}\right) \mathbbm{1}_{\{t \ge 0\}}.$$

► We interpret $\xi(s, y) dy ds$ by complex Itô-Wiener integral. However, $(s, y) \mapsto K(t - s, x - y)$ is not L^2 -function.

Ornstein-Uhlenbeck processes

Definition

We define $Z(t) = \{Z(t, \phi) \mid \phi \in L^2(\mathbb{R} \times \mathbb{T}^2)\}$ by

$$Z(t, arphi) := \int_{\mathbb{R} imes \mathbb{T}^2} \langle \mathsf{K}(t-s, \cdot-y), arphi
angle_{\mathbb{T}^2} \xi(dsdy).$$

- The integral is in the sense of complex Itô-Wiener integral.
- Z(t) has $C^{-\alpha}$ -valued modification($\forall \alpha > 0$) and $t \mapsto Z(t) \in C^{-\alpha}$ is continuous.
- \blacksquare *Z*(*t*) is a log-correlated field.
- The process $Z = \{Z(t)\}_{t \ge 0}$ is stationary ($A = (i + \mu)\Delta 1$).

Wick renormalization

- $\xi_{\delta}(t, x)$ be a space-time mollification of ξ .
- $H_{k,l}(z; c) = z^k \overline{z}^l + \cdots$ is the (k, l)-th order complex Hermite polynomial $(H_{1,1}(z; c) = |z|^2 c, H_{2,1}(z; c) = |z|^2 z 2cz$ and so on).
- Z_{δ} is the solution of $\partial_t Z_{\delta} = A Z_{\delta} + \xi_{\delta}$ with $Z_{\delta}(-\infty) = 0$.

Proposition

There exists $Z^{:k,l}$: such that for all α , T, $p \in (0, \infty)$

$$\lim_{\delta\to 0} \mathbb{E}[\sup_{0\leq t\leq T} \|H_{k,l}(Z_{\delta}(t); c_{\delta}) - Z^{k,l}(t)\|_{\mathcal{C}^{-\alpha}}^p] = 0,$$

where
$$c_{\delta} \sim rac{1}{4\pi\mu} \log \delta^{-1}.$$

Table of contents

1 Introduction

2 Ornstein-Uhlenbeck Processes

3 Solving the equation

4 Future work

Da Prato-Debussche trick

$$\begin{cases} \partial_t u = (i+\mu)\Delta u - \nu |u|^2 u + \lambda u + \xi \\ u(0,\cdot) = u_0. \end{cases}$$

We decompose u = Z + Y, where Z is the Ornstein-Uhlenbeck process constructed before. Y then formally solves

$$\partial_t Y = (i+\mu)\Delta Y - Y + (1+\lambda)(Z+Y) -\nu(|Y|^2Y + 2Z|Y|^2 + \overline{Z}Y^2 + 2|Z|^2Y + Z^2\overline{Y} + |Z|^2Z).$$

▶ We interpret powers of *Z* as the corresponding Wick powers of *Z*.

▶ The expected regularity of Y is 2⁻ and hence the PDE for Y is well-defined.

Main theorem

We fix

$$\underline{Z}=(Z,Z^2,|Z|^2,|Z|^2Z)\in C([0,\infty);\mathcal{C}^{-lpha})^4.$$

and set $\Psi(Y, \underline{Z}) :=$ $(1+\lambda)(Z+Y) - \nu(|Y|^2Y + 2Z|Y|^2 + \overline{Z}Y^2 + 2|Z|^2Y + Z^2\overline{Y} + |Z|^2Z).$ We also fix some $\alpha_1 \in (0, 1)$ and $\gamma \in (0, \frac{1}{3}).$

▶ We say that *Y* is a solution of the shifted equation

$$\left\{ egin{aligned} &\partial_t Y = AY + \Psi(Y, \underline{Z}) \quad A = (i+\mu)\Delta - 1, \ &Y(0,\cdot) = Y_0 \in \mathcal{C}^{-lpha_0} \quad lpha_0 \in (0,2/3), \end{aligned}
ight.$$

if the following are satisfied;

(i)
$$\sup_{0 \le t \le T} t^{\gamma} || Y_t ||_{\mathcal{C}^{\alpha_1}} < \infty$$
 for every $T \in (0, \infty)$,
(ii) $Y_t = e^{tA} Y_0 + \int_0^t e^{(t-s)A} \Psi(Y_s, \underline{Z}_s) ds$ (mild solution).

Main theorem

We say that Y is a solution of

$$\begin{cases} \partial_t Y = AY + \Psi(Y, \underline{Z}) & A = (i + \mu)\Delta - 1, \\ Y(0, \cdot) = Y_0 \in \mathcal{C}^{-\alpha_0} & \alpha_0 \in (0, 2/3), \end{cases}$$

if the following are satisfied;

(i)
$$\sup_{0 < t \leq T} t^{\gamma} \| Y_t \|_{\mathcal{C}^{\alpha_1}} < \infty$$
 for every $T \in (0, \infty)$,

(ii) $Y_t = e^{tA}Y_0 + \int_0^t e^{(t-s)A}\Psi(Y_s, \underline{Z}_s)ds$ (mild solution).

Theorem

The shifted equation has exactly one solution over any time interval [0, T].

Local well-posedness

Proposition

There exists $T^* = T^*(||Y_0||_{\mathcal{C}^{-\alpha_0}}, \underline{Z}) \in (0, \infty)$ such that the shifted equation is well-posed in the interval $[0, T^*]$.

Proof.

Set

$$B_{\mathcal{T}} := \{ Y : (0, T] \to \mathcal{C}^{\alpha_1} \mid \sup_{0 < t \le T} t^{\gamma} \| Y_t \|_{\mathcal{C}^{\alpha_1}} \le 1 \}$$
$$\mathcal{M}_{\mathcal{T}} y(t) := e^{tA} Y_0 + \int_0^t e^{(t-s)A} \Psi(y(s), \underline{Z}_s) ds.$$

For small T^* , the map $\mathcal{M}_{T^*}: B_{T^*} \to B_{T^*}$ is a contraction.

Strategy for a global solution

Proposition

There exists $T^* = T^*(||\mathbf{Y}_0||_{\mathcal{C}^{-\alpha_0}}, \underline{Z}) \in (0, \infty)$ such that the shifted equation is well-posed in the interval $[0, T^*]$.

How to construct a global solution?

- We repeatedly use fixed point arguments to extend the local solution.
- Then we have to take T^* uniformly.
- A prior bound on $\|Y_t\|_{\mathcal{C}^{-\alpha_0}}$.
 - ▶ We need to exploit the nonlinear damping.

A priori L^p estimate

Proposition

Let $p \in [2, 2(1 + \mu^2 + \mu\sqrt{1 + \mu^2}))$ and Y solve the shifted equation. Then we have $\|Y_t\|_{L^p} \lesssim_Z t^{-\frac{1}{2}}$

uniformly for the initial condition Y_0 .

Proof.

The proof is similar to Mourrat and Weber(2017). We need the upper bound on *p* to "beat $i\Delta$ by $\mu\Delta$ ".

▶ We need p > 3 to have the inclusion $L^p \hookrightarrow C^{-\alpha_0}$. This is not the case for small μ .

Bootstrap arguments

• We obtained $||Y_t||_{L^p}^p \lesssim t^{-\frac{p}{2}}$.

Actually, the previous analysis also yields

$$\|Y_t\|_{L^p}^p + \int_{t_0}^t \|Y_s\|_{L^{p+2}}^{p+2} ds + \int_{t_0}^t \|\nabla Y_s\|_{L^2}^2 ds \lesssim_{\underline{Z}} t_0^{-\frac{p}{2}}.$$

We want to exploit the bound on the integral terms.

$$Y_t = e^{(t-t_0)A}Y_{t_0} + \int_{t_0}^t e^{(t-s)A}\Psi(Y_s,\underline{Z}_s)ds$$

Upgrade the bounds on Y by Shauder's estimate.
 Key tools: Young's convolution inequality and Besov embedding.

Bootstrap arguments

We need to upgrade the L^{p} -bound on Y_{t} .

$$\begin{split} & \quad \mathsf{h}_{t_0}^{t_1} \| \, Y_t \|_{\mathcal{B}^{\varepsilon}_{3\rho}}^3} dt \lesssim t_0^{-\kappa_1}. \qquad \mathsf{h}_{sup}_{t_0 \le t \le t_1} \| \, Y_t \|_{\mathcal{B}^{\varepsilon}_{\rho}} \lesssim t_0^{-\kappa_2}. \\ & \quad \mathsf{h}_{t_0}^{t_1} \| \, Y_t \|_{\mathcal{B}^{2\varepsilon}_{3\rho}}^3 dt \lesssim t_0^{-\kappa_3}. \qquad \mathsf{h}_{sup}_{t_0 \le t \le t_1} \| \, Y_t \|_{\mathcal{B}^{2\varepsilon}_{\rho}} \lesssim t_0^{-\kappa_4}. \end{split}$$

We continue this process to obtain the next theorem;

Theorem

Let $\beta \in (0, 2)$. If Y solves the shifted equation, then

$$\sup_{t_0 \leq t \leq t_1} \| Y_t \|_{\mathcal{C}^{\beta}} \lesssim_{\underline{Z},\beta} t_0^{-\kappa}$$

uniformly for the initial value Y_0 .

Table of contents

1 Introduction

2 Ornstein-Uhlenbeck Processes

3 Solving the equation

4 Future work

Markov process

The solution *u* of the CGL equation defines a Markov process on $C^{-\alpha_0}$ (the space of the initia value).

- $P_t \Phi(x) := \mathbb{E}[\Phi(u(t))|u(0) = x]$ defines a semigroup.
- \blacksquare \exists invariant measure by Krylov-Bogoliubov method.
- Furthermore *P_t* is strong Feller as the next theorem suggests.

Theorem

If
$$\| x - y \|_{\mathcal{C}^{-lpha_0}} \leq 1$$
 , we have

$$\| oldsymbol{P}_t^* \delta_x - oldsymbol{P}_t^* \delta_y \|_{\mathsf{TV}} \lesssim (1 + \| x \|_{\mathcal{C}^{-lpha_0}})^{\kappa} \| x - y \|_{\mathcal{C}^{-lpha_0}}^{lpha}$$

for some $\kappa \in (0,\infty)$ and $\alpha \in (0,1)$.

Key idea: Bismut-Elworthy-Li formula

Exponential mixing

As we add a space-time white noise, it is natural to expect exponential mixing of the CGL dynamics.

- Tsatsoulis and Weber⁶ proved the exponential mixing of the Φ₂⁴ equation by combining the support theorem and an estimate independent of the initial condition.
- Can we extend their result to 2D CGL? (supprt theorem)

⁶P. Tsatsoulis and H. Weber. "Spectral gap for the stochastic quantization equation on the 2-dimensional torus". In: *Ann. Inst. H. Poincaré Probab. Statist.* 54 (2018).

Well-posedness in the plane

Is it possible to prove global well-posedness in the plane?

Difficulty: We have to use weighted Besov spaces.
 The work by Gubinelli and Hofmanová⁷ seems useful.

⁷M. Gubinelli and M. Hofmanová. "Global Solutions to Elliptic and Parabolic Φ^4 Models in Euclidean Space". In: *Communications in Mathematical Physics* 368 (2019).

Well-posedness in the plane

Is it possible to prove global well-posedness in the plane?

Difficulty: We have to use weighted Besov spaces.
 The work by Gubinelli and Hofmanová⁷ seems useful.

Thank you for listening!

⁷M. Gubinelli and M. Hofmanová. "Global Solutions to Elliptic and Parabolic Φ^4 Models in Euclidean Space". In: *Communications in Mathematical Physics* 368 (2019).