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Main theorem
In this talk, we consider the following stochastic complex
Ginzburg-Landau(CGL) equation;{

∂tu = (i + μ)∆u − ν|u|2u + λu + ξ
u(0, ·) = u0.

u = u(t , x), t ∈ [0,∞), x ∈ T2 := [−1
2 , 1

2 ]2.
i =
√
−1, μ ∈ (0,∞), Re ν >0, λ ∈ C.

ξ is a complex space-time white noise;

E[ξ(t , x)ξ(s, y)] = 0, E[ξ(t , x)ξ(s, y)] = δ(t − s)δ(x − y).

Theorem
The above stochastic complex Ginzburg-Landau equation has
a unique global solution for every μ ∈ (0,∞).
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Background: Singular SPDEs
KPZ equation:

∂th = ∆h + (∂xh)2 + ξ.

Φ4 equation:
∂tΦ = ∆Φ− Φ3 + ξ.

Recent theories(theory of regularity structures, paracontrolled
calculus and etc) provide a local well-posedness of many
important singular SPDEs.
ILocal well-posedness of 3D CGL.1

I Further analysis is needed to gain more information about
singular SPDEs.

1M. Hoshino, Y. Inahama, and N. Naganuma. “Stochastic complex Ginzburg-Landau equation
with space-time white noise”. In: Electron. J. Probab. 22 (2017).
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Global well-posedness:
Φ4

2 equation (on the torus and in the plane).2

Φ4
3 equation (on the torus).3

3D CGL (on the torus) for μμμ >>> 1
2
√

2
.4

Markov properties:
Strong Feller and exponential mixing of Φ4

2 (on the torus).5

IGoal: apply and develop ideas from above papers to 2D CGL.

2J.-C. Mourrat and H. Weber. “Global well-posedness of the dynamic Φ4 model in the plane”.
In: Ann. Probab. 45 (2017).

3J.-C. Mourrat and H. Weber. “The Dynamic Φ4
3 Model Comes Down from Infinity”. In:

Commun. Math. Phys. 356 (2017).
4M. Hoshino. “Global well-posedness of complex Ginzburg–Landau equation with a

space–time white noise”. In: Ann. Inst. H. Poincaré Probab. Statist. 54 (2018).
5P. Tsatsoulis and H. Weber. “Spectral gap for the stochastic quantization equation on the

2-dimensional torus”. In: Ann. Inst. H. Poincaré Probab. Statist. 54 (2018).
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Besov spaces
We fix two radial, smooth functionsχ−1, χ : R2 → R such that

(i) supp(χ−1) ⊂ B(0, 4
3) and supp(χ) ⊂ B(0, 8

3) \ B(0, 3
4),

(ii)
∑∞

k=−1 χk ≡ 1 where χk = χ(·/2k ) for k ≥ 0.

Definition

Set δk f (x) :=
∑

m∈Z2 χk (m)f̂ (m)e2πim·x . For p ∈ [1,∞] and α ∈
R,
‖f‖Bαp := supk≥−1 2αk‖δk f‖Lp .

Bαp := the completion of C∞(T2) under ‖·‖Bαp .
Cα := Bα∞ (generalizes the usual Hölder space).

I p: integrability ααα: regularity
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I Schauder’s estimate:
‖etAf‖Bβp . t−

β−α
2 ‖f‖Bαp , A := (i + μ)∆− 1.

In particular, if f ∈ Cα and g(t) =
∫ t
−∞ e(t−s)Afds (i.e., g is a

solution of ∂tg = Ag + f ), we have g(t) ∈ Cα+δ (δ ∈ (0,2)).

I Products:
f ,g ∈ Cα, α >0 =⇒ fg is well-defined.
f ∈ Cα, g ∈ Cβ, α <0 <β, ααα+ βββ >>>0 =⇒ fg is well-defined.

∂tu = (i + μ)∆u − ν|u|2u + λu + ξ

The regularity of ξ is −2− ε.
The expected regularity of u is 0− ε.
I |u|2u is ill-defined.
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Ornstein-Uhlenbeck processes
A := (i + μ)∆− 1. We first consider a linear SPDE

∂tZ = AZ + ξ.

Heuristically, Duhamel’s principle implies

Z (t , x) =

∫ t

−∞
e(t−s)Aξ(s, x)ds

=

∫ t

−∞

∫
T2

K (t − s, x − y)ξ(s, y)dyds,

where K (t , x) :=
∑

y∈Z2
e−t

4π(i+μ)t exp
(
− |x−y |2

4(i+μ)t

)
1{t≥0}.

IWe interpret ξ(s, y)dyds by complex Itô-Wiener integral.
However, (s, y) 7→ K (t − s, x − y) is not L2-function.
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Ornstein-Uhlenbeck processes
Definition

We define Z (t) = {Z (t , φ) | φ ∈ L2(R×T2)} by

Z (t , φ) :=

∫
R×T2

〈K (t − s, · − y), φ〉T2ξ(dsdy).

The integral is in the sense of complex Itô-Wiener integral.
Z (t) has C−α-valued modification(∀α >0) and
t 7→ Z (t) ∈ C−α is continuous.
Z (t) is a log-correlated field.
The process Z = {Z (t)}t≥0 is stationary (A = (i + μ)∆ −1).
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Wick renormalization
ξδ(t , x) be a space-time mollification of ξ.
Hk ,l(z; c) = zkz l + · · · is the (k , l)-th order complex Hermite
polynomial (H1,1(z; c) = |z|2 − c, H2,1(z; c) = |z|2z − 2cz
and so on).
Zδ is the solution of ∂tZδ = AZδ + ξδ with Zδ(−∞) = 0.

Proposition

There exists Z :k ,l: such that for all α,T ,p ∈ (0,∞)

lim
δ→0

E[ sup
0≤t≤T

‖Hk ,l(Zδ(t); cδ)− Z :k ,l:(t)‖p
C−α] = 0,

where cδ ∼ 1
4πμ log δ−1.
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Da Prato-Debussche trick{
∂tu = (i + μ)∆u − ν|u|2u + λu + ξ
u(0, ·) = u0.

We decompose u = Z + Y , where Z is the Ornstein-Uhlenbeck
process constructed before. Y then formally solves

∂tY =(i + μ)∆Y − Y + (1 + λ)(Z + Y )

− ν(|Y |2Y + 2Z |Y |2 + ZY 2 + 2|Z |2Y + Z 2Y + |Z |2Z ).

IWe interpret powers of Z as the corresponding Wick powers
of Z .
I The expected regularity of Y is 2− and hence the PDE for Y is
well-defined.
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Main theorem
We fix

Z = (Z ,Z 2, |Z |2, |Z |2Z ) ∈ C([0,∞); C−α)4.
and set Ψ(Y ,Z ) :=
(1+λ)(Z +Y )−ν(|Y |2Y +2Z |Y |2 +ZY 2 +2|Z |2Y +Z 2Y + |Z |2Z ).
We also fix some α1 ∈ (0,1) and γ ∈ (0, 1

3).

IWe say that Y is a solution of the shifted equation{
∂tY = AY + Ψ(Y ,Z ) A = (i + μ)∆− 1,
Y (0, ·) = Y0 ∈ C−α0 α0 ∈ (0,2/3),

if the following are satisfied;
(i) sup0<t≤T tγ‖Yt‖Cα1 <∞ for every T ∈ (0,∞),

(ii) Yt = etAY0 +
∫ t

0 e(t−s)AΨ(Ys,Z s)ds ( mild solution).
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Main theorem
IWe say that Y is a solution of{

∂tY = AY + Ψ(Y ,Z ) A = (i + μ)∆− 1,
Y (0, ·) = Y0 ∈ C−α0 α0 ∈ (0,2/3),

if the following are satisfied;
(i) sup0<t≤T tγ‖Yt‖Cα1 <∞ for every T ∈ (0,∞),

(ii) Yt = etAY0 +
∫ t

0 e(t−s)AΨ(Ys,Z s)ds ( mild solution).

Theorem
The shifted equation has exactly one solution over any time in-
terval [0,T ].
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Local well-posedness
Proposition
There exists T ∗ = T ∗(‖Y0‖C−α0 ,Z ) ∈ (0,∞) such that the shifted
equation is well-posed in the interval [0,T ∗].

Proof.
Set

BT := {Y : (0,T ]→ Cα1 | sup
0<t≤T

tγ‖Yt‖Cα1 ≤ 1}

MT y(t) := etAY0 +

∫ t

0
e(t−s)AΨ(y(s),Z s)ds.

For small T ∗, the mapMT∗ : BT∗ → BT∗ is a contraction. �
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Strategy for a global solution
Proposition
There exists T ∗ = T ∗(‖Y0‖C−α0 ,Z ) ∈ (0,∞) such that the
shifted equation is well-posed in the interval [0,T ∗].

How to construct a global solution?
We repeatedly use fixed point arguments to extend the local
solution.
Then we have to take T ∗ uniformly.
A prior bound on ‖Yt‖C−α0 .
IWe need to exploit the nonlinear damping.
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A priori Lp estimate
Proposition

Let p ∈ [2,2(1 + μ2 + μ
√

1 + μ2)) and Y solve the shifted equa-
tion. Then we have

‖Yt‖Lp .Z t−
1
2

uniformly for the initial condition Y0.

Proof.
The proof is similar to Mourrat and Weber(2017). We need the
upper bound on p to "beat i∆ by μ∆". �

IWe need p >3 to have the inclusion Lp ↪→ C−α0. This is not the
case for small μ.
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Bootstrap arguments
We obtained ‖Yt‖p

Lp . t−
p
2 .

Actually, the previous analysis also yields

‖Yt‖p
Lp +

∫ t

t0
‖Ys‖p+2

Lp+2ds +

∫ t

t0
‖∇Ys‖2

L2ds .Z t−
p
2

0 .

We want to exploit the bound on the integral terms.

Yt = e(t−t0)AYt0 +

∫ t

t0
e(t−s)AΨ(Ys,Z s)ds

I Upgrade the bounds on Y by Shauder’s estimate.
I Key tools: Young’s convolution inequality and Besov
embedding.

Toyomu Matsuda (Kyushu University) 19 / 24



Bootstrap arguments
We need to upgrade the Lp-bound on Yt .

I
∫ t1

t0
‖Yt‖3

Bε3p
dt . t−κ1

0 . I supt0≤t≤t1‖Yt‖Bεp . t−κ2
0 .

I
∫ t1

t0
‖Yt‖3

B2ε
3p

dt . t−κ3
0 . I supt0≤t≤t1‖Yt‖B2ε

p
. t−κ4

0 .

IWe continue this process to obtain the next theorem;

Theorem
Let β ∈ (0,2). If Y solves the shifted equation, then

sup
t0≤t≤t1

‖Yt‖Cβ .Z ,β t−κ0

uniformly for the initial value Y0.
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Markov process
The solution u of the CGL equation defines a Markov process on
C−α0 (the space of the initia value).

PtΦ(x) := E[Φ(u(t))|u(0) = x ] defines a semigroup.
∃ invariant measure by Krylov-Bogoliubov method.
Furthermore Pt is strong Feller as the next theorem
suggests.

Theorem
If ‖x − y‖C−α0 ≤ 1, we have

‖P∗t δx − P∗t δy‖TV . (1 + ‖x‖C−α0 )κ‖x − y‖αC−α0

for some κ ∈ (0,∞) and α ∈ (0,1).

Key idea: Bismut-Elworthy-Li formula
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Exponential mixing
As we add a space-time white noise, it is natural to expect
exponential mixing of the CGL dynamics.

Tsatsoulis and Weber6 proved the exponential mixing of the
Φ4

2 equation by combining the support theorem and an
estimate independent of the initial condition.

Can we extend their result to 2D CGL? (supprt theorem)

6P. Tsatsoulis and H. Weber. “Spectral gap for the stochastic quantization equation on the
2-dimensional torus”. In: Ann. Inst. H. Poincaré Probab. Statist. 54 (2018).
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Well-posedness in the plane

Is it possible to prove global well-posedness in the plane?

Difficulty: We have to use weighted Besov spaces.
I The work by Gubinelli and Hofmanová7 seems useful.

Thank you for listening!

7M. Gubinelli and M. Hofmanová. “Global Solutions to Elliptic and Parabolic Φ4 Models in
Euclidean Space”. In: Communications in Mathematical Physics 368 (2019).
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