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In this talk, we study the following stochastic complex Ginzburg-Landau equa-
tion {

∂tu = (i+µ)∆u−ν |u|2u+λu+ξ , t > 0, x ∈T2,

u(0, ·) = u0,
(1)

where µ > 0, ν ∈ {z∈C |ℜz > 0}, λ ∈C andT2 is a two dimensional torus. The
random field ξ is the complex space-time white noise, i.e., the centered Gaussian
random field with covariance structure

E[ξ (t,x)ξ (s,y)] = 0, E[ξ (t,x)ξ (s,y)] = δ (t− s)δ (x− y).

The main objective is to discuss global well-posedness of this equation and Markov
properties of the solution.

The difficulty lies in the fact that a solution of the equation (1) has to be a
Schwartz distribution due to the low regularity of the noise ξ , which leaves the
nonlinear term |u|2u ill-defined. To overcome this difficulty, we employ a strategy
first introduced in [DD03]. Namely, we decompose a solution u = Z +Y , where
Z is a solution of a linear SPDE

∂tZ = (i+µ)∆Z−Z +ξ .

Although Z is still a distibution-valued random variable, we can naturally define
its products via Wick renormalization.
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Then Y formally solves

∂tY = (i+µ)∆Y −Y

+(1+λ )(Z +Y )−ν(|Y |2Y +2Z|Y |2 +ZY 2 +2|Z|2Y +Z2Y + |Z|2Z).
(2)

In the light of Shauder’s estimate, Yt has positive regularity and therefore the prod-
ucts appearing in the equation (2) are well-defined.

The main theorem of this talk is the following;

Theorem 1. There exists a unique (mild) solution of (2) over any time interval
[0,T ].

For the proof of the theorem, we follow the paper [MW17], where the authors
show global well-posedness of the dynamic Φ4

2 equation. In our setting, however,
the argument in [MW17] does not imply a priori Lp estimates of solutions for
large p. We overcome this obstacle by bootstrap arguments, which leads to;

Theorem 2. Let β ∈ (0,2) and C β := Bβ
∞,∞ be a Besov space. Then there exists

κ ∈ (0,∞) such that for every solution Y of (2) over [0,T ],

sup
t0≤t≤T

‖Yt‖C β .Z,β ,T t−κ

0 ,

uniformly for the initial value Y0.

Finally, I discuss my ongoing research on Markov properties of the solution
as in [TW18].
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