Stochastic quantization associated with the $exp(\Phi)_2$ -quantum field model driven by space-time white noise on the torus

(joint work with Masato Hoshino and Hiroshi Kawabi)

Seiichiro Kusuoka

Kyoto University

November 19, 2019

Seiichiro Kusuoka (Kyoto University)

 $exp(\Phi)_2$ -quantum field model

November 19, 2019 1 / 30

$$\begin{split} \Lambda &: \text{the 2-dimensional torus i.e. } \Lambda &= (\mathbb{R}/2\pi\mathbb{Z})^2. \\ \mu_0 &: \text{Nelson's free field measure on } \Lambda \text{ with mass 1,} \\ &\text{i.e. } \mu_0 \text{ is the centered Gaussian measure on } \mathcal{D}'(\Lambda) \\ &\text{with the covariance } (1-\triangle)^{-1}. \end{split}$$

We consider a measure:

$$\frac{1}{Z^{(\alpha)}}\exp\left(-\int_{\Lambda}\exp(\alpha\phi(x))dx\right)\mu_{0}(d\phi)$$

where $Z^{(\alpha)}$ is the normalizing constant. Since the support of μ_0 is tempered distributions (not usual functions), $\exp(\alpha\phi)$ is not defined in usual sense.

So, we replace exp by the Wick exponential function exp^{\diamond} .

Wick exponential function

Let $\{H_n(x); n \in \mathbb{N} \cup \{0\}\}$ be the Hermite polynomials. For example, $H_0(x) = 1$, $H_1(x) = x$, $H_2(x) = x^2 - 1$, $H_3(x) = x^3 - 3x$. For a Gaussian random variable X with mean 0, define Wick polynomials : X^n : by

$$: X^n := E[X^2]^{n/2} H_n \left(E[X^2]^{-1/2} X \right).$$

Then, regarding ϕ a Gaussian random variable under μ_0 , we define the Wick exponential function by

$$\exp^{\diamond}(\alpha\phi) = : \exp(\alpha\phi) := \sum_{n=0}^{\infty} \frac{\alpha^n}{n!} : \phi^n :$$

Wick products : ϕ^n : and the infinite sum are well-defined for μ_0 -a.e. ϕ . We also have a formal equation

$$\exp^{\diamond}(\alpha\phi) = \exp\left(lpha\phi - rac{lpha^2}{2}E^{\mu_0}[\phi(\cdot)^2]
ight).$$

Note that $E^{\mu_0}[\phi(\cdot)^2] = \infty$. We discuss the rigorous definition later.

$exp(\Phi)_2$ -measure and Stochastic Quantization

Via Wick exponentials we consider the $exp(\Phi)_2$ -quantum field measure:

$$\mu_{\exp}^{(\alpha)}(d\phi) = \frac{1}{Z^{(\alpha)}} \exp\left(-\int_{\Lambda} \exp^{\diamond}(\alpha\phi)(x)dx\right) \mu_0(d\phi)$$

where $Z^{(\alpha)}$ is the normalizing constant. This model is also called the Høegh-Krohn model.

In this talk, we consider the stochastic quantization of the $\exp(\Phi)_2$ -measure, which is a time-evolution having the $\exp(\Phi)_2$ -measure as an invariant measure. The associated SPDE is given by

(SQE)
$$\partial_t \Phi_t(x) = \frac{1}{2}(\triangle - 1)\Phi_t(x) - \frac{\alpha}{2}\exp^{\diamond}(\alpha \Phi_t)(x) + \dot{W}_t(x), \quad x \in \Lambda$$

where $W_t(x)$ is a white noise with parameter (t, x). This SPDE is obtained by log-derivative of $\mu_{exp}^{(\alpha)}$.

Let X be the infinite-dimensional Ornstein-Uhlenbeck process, which is the solution to

$$\partial_t X_t = \frac{1}{2}(\bigtriangleup - 1)X_t + \dot{W}_t.$$

If Φ is a solution to (SQE) in some sense, $Y := \Phi - X$ satisfies

(*)
$$\partial_t Y_t = \frac{1}{2}(\bigtriangleup - 1)Y_t - \frac{\alpha}{2}\exp^{\diamond}(\alpha X_t)\exp(\alpha Y_t)$$

Note that $\exp^{\diamond}(\alpha\phi) = \exp\left(\alpha\phi(x) - \frac{\alpha^2}{2}E^{\mu_0}[\phi^2]\right).$

(*) is called a shifted equation. Da Prato and Debussche (2003) solve the SPDE obtained by stochastic quantization of $P(\Phi)_2$ -measures by using the shifted equation.

Relation to Φ^4 -models

The Φ^4 -stochastic quantization equation is given by

$$\partial_t \Phi_t(x) = rac{1}{2}(\bigtriangleup - 1)\Phi_t(x) - (\Phi_t^3 - (C_1 + C_2) \cdot \Phi_t) + \dot{W}_t(x), \quad x \in \Lambda,$$

where C_1 and C_2 are renormalization constants ($C_1 = C_2 = \infty$). In this case, the shifted equation is given by

$$\partial_t Y_t = \frac{1}{2} (\triangle - 1) Y_t - Y_t^3 - 3 : X_t^2 : Y_t - 3X_t Y_t^2 - : X_t^3 : -C_2 Y_t.$$

So, : X_t^2 : is the most singular coefficient. If Λ is *d*-dimensional torus, : X_t^2 : will be a $W^{2-d-\varepsilon,\infty}$ -valued process. On the other hand, $\exp^{\diamond}(\alpha X_t)$ (dim $\Lambda = 2$) will be $W^{-\alpha^2/(4\pi)-\varepsilon,2}$ -valued. In view of the singularities,

$$\alpha = 0$$
 on exp-model $\sim \Phi^4$ -model with dim $\Lambda = 2$
 $\alpha = \sqrt{4\pi}$ on exp-model $\sim \Phi^4$ -model with dim $\Lambda = 3$.

Some known results

• Høegh-Krohn (1971):

Introduction of $exp(\Phi)_2\text{-model}$ in Hamiltonian setting

- Albeverio and Høegh-Krohn (1974): Construction of exp(Φ)₂-measure by Euclidean quantum field theory
- Albeverio and Röckner (1991): Construction of the Markov process associated to (SQE) by Dirichlet forms for $|\alpha| < \sqrt{4\pi}$.
- Garban (to appear in JFA): Local (in time) well-posedness of (SQE) for |α| < (2√2 - √6) × √2π by singular SPDE methods. (Remark: △ - 1 is replaced by △.)
- Albeverio, Kawabi, Mihalache, and Röckner (preprint): Regularized version is studied by Dirichlet forms.
- Oh, Robert and Wang (preprint after our work): Hyperbolic case is studied.

We show the global well-posedness of (SQE) for $|\alpha|<\sqrt{4\pi}$

by singular SPDE methods.

Difficulties to apply usual singular SPDE methods

It is difficult to apply a general theory (regularity structure or paracontrolled calculus) to exp-model as they are. Because

- When we apply a general theory, we usually assume that inputs (driving processes) are $W^{s,\infty}$ -valued processes. Indeed, the coefficients of shifted equation of Φ^4 -stochastic quantization equation (: X^n :) are $W^{s,\infty}$ -valued for suitable s (s can be negative!). On the other hand, $\exp^{\diamond}(\alpha X_t)$ is $W^{-\alpha^2/(4\pi)-\varepsilon,2}$ -valued process, and to improve the integrability 2 we need to loose the regularity.
- Moreover, exp does not have polynomial growth, and the derivatives of exp are unbounded.

Hairer and Shen (2016), Chandra, Hairer and Shen (preprint) study the sine-Gordon model (the case that exp is replaced by sin). In view of singularities exp-model is same as sin-model, sin is bounded function with bounded derivatives.

- **2** Wick exponentials
- 3 Existence and Uniqueness of Shifted equations
- **4** Approximation by stationary processes
- **5** Identification with the diffusion process generated by Dirichlet forms

2 Wick exponentials

- Existence and Uniqueness of Shifted equations
- Approximation by stationary processes
- **5** Identification with the diffusion process generated by Dirichlet forms

Summary

Approximation operator

Let ψ be a Borel measurable function on \mathbb{R}^2 and assume

•
$$0 \leq \psi(x) \leq 1$$
 for $x \in \mathbb{R}^2$

•
$$\psi(x) = \psi(-x)$$
 for $x \in \mathbb{R}^2$

•
$$\sup_{x \in \mathbb{R}^2 \setminus \{0\}} |x|^{-\theta} |\psi(x) - 1| < \infty$$
 for some $\theta \in (0, 1)$
(Hölder continuity at 0)

•
$$\sup_{x \in \mathbb{R}^2} |x|^m |\psi(x)| < \infty$$
 for some $m \ge 4$.

By using ψ we define an approximation operator P_N on $\mathcal{D}'(\Lambda)$ by

$$P_N f(x) = \sum_{k \in \mathbb{Z}^2} \psi(2^{-N}k) \langle f, e_k \rangle e_k(x), \quad x \in \Lambda,$$

where $\{e_k\}$ is the Fourier basis. For example, $\psi \in S$ with $0 \le \psi \le 1$, $\psi = \mathbb{I}_{[-L,L]^2}$ (L > 0), $\psi = \mathbb{I}_{\{|x| \le r\}}$ (r > 0). Let $\psi_{\mathcal{N}} := \psi(2^{-\mathcal{N}} \cdot)$ and define approximation of Wick exponentials by

$$C_N := \int (P_N \phi(x))^2 \mu_0(d\phi) = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}^2} \frac{\psi_N(k)^2}{1 + |k|^2}$$
$$\exp^{\diamond}_N(\alpha \phi)(x) := \sum_{n=0}^{\infty} \frac{\alpha^n}{n!} C_N^{n/2} H_n(C_N^{-1/2} P_N \phi(x))$$
$$= \exp\left(\alpha P_N \phi(x) - \frac{\alpha^2}{2} C_N\right).$$

Denote $W^{-\beta,2}$ by $H^{-\beta}$.

Existence of Wick exponentials

Theorem

For $|\alpha| < \sqrt{4\pi}$, let $\beta \in (\alpha^2/(4\pi), 1)$. Then $\{\exp_N^{\diamond}(\alpha\phi)\}$ converges in $H^{-\beta}$ for μ_0 -a.e. ϕ , and in $L^2(\mu_0; H^{-\beta})$. Moreover, the limit $\exp^{\diamond}(\alpha\phi)$ is independent of ψ .

Proof.

Calculate $\sum_{N=1}^{\infty} 2^{\varepsilon N} \sum_{k \in \mathbb{Z}^2} \frac{1}{(1+|k|^2)^{\beta}} \int |\langle \exp_{N+1}^{\diamond}(\alpha\phi) - \exp_N^{\diamond}(\alpha\phi), e_k \rangle|^2 \mu_0(d\phi)$ $= \sum_{N=1}^{\infty} 2^{\varepsilon N} \sum_{n=1}^{\infty} \frac{|\alpha|^{2n}}{(n!)^2} \sum_{k \in \mathbb{Z}^2} \frac{1}{(1+|k|^2)^{\beta}}$ $\times \int \left| \langle C_{N+1}^{n/2} H_n(C_{N+1}^{-1/2} P_{N+1}\phi) - C_N^{n/2} H_n(C_N^{-1/2} P_N\phi), e_k \rangle \right|^2 \mu_0(d\phi)$ $\leq \infty.$

$exp(\Phi)_2$ -quantum field

We define

$${}^{\mathsf{e}}\mu_{\mathsf{N}}^{(\alpha)}(d\phi) := rac{1}{Z_{\mathsf{N}}^{(\alpha)}}\exp\left\{-\int_{\mathsf{\Lambda}}\exp_{\mathsf{N}}^{\diamond}(\alpha\phi)(x)dx
ight\}\mu_{0}(d\phi).$$

where $Z_N^{(\alpha)}$ is a normalizing constant.

Corollary

Let $|\alpha| < \sqrt{4\pi}$. The $\exp(\Phi)_2$ -measure $\mu_{\exp}^{(\alpha)}$ is well-defined as the limit of $\{\mu_N^{(\alpha)}\}$ in weak topology, and is absolutely continuous with respect to μ_0 . In particular, the support of $\mu_{\exp}^{(\alpha)}$ is in $H^{-\varepsilon}(\Lambda)$ for $\varepsilon > 0$. Moreover, the Radon-Nikodym derivatives $\left\{ d\mu_N^{(\alpha)}/d\mu_0 \right\}$ are uniformly bounded.

Proof.

Assertions follow from almost-sure convergence of $\{\exp_N^{\diamond}(\alpha\phi)\}$ and

$$\exp\left\{-\int_{\Lambda}\exp_{N}^{\diamond}(\alpha\phi)(x)dx\right\}\leq 1.$$

Seiichiro Kusuoka (Kyoto University)

Time evolution of Wick exponentials

Let $X = X(\phi)$ be the solution to

$$\begin{cases} \partial_t X_t = \frac{1}{2}(\triangle - 1)X_t + \dot{W}_t \\ X_0 = \phi \end{cases}$$

It is well-known that

- μ_0 is the invariant measure of X.
- X is a $W^{-1/2-\varepsilon,p}$ -valued continuous process for $\varepsilon > 0$ and $p \in [1,\infty]$.

Define an approximation of Wick exponentials by

$$\mathcal{X}_t^{(\exp,N)}(\phi) = \exp_N^{\diamond}(\alpha X_t(\phi)).$$

Theorem

For $|\alpha| < \sqrt{4\pi}$, let $\beta \in (\alpha^2/(4\pi), 1)$. Then $\{\mathcal{X}_t^{(\exp,N)}\}$ converges in $L^2([0, T]; H^{-\beta}) \mathbb{P} \otimes \mu_0$ -a.s., and in $L^2(\mathbb{P} \otimes \mu_0; H^{-\beta})$. Moreover, the limit $\mathcal{X}_t^{(\exp,\infty)}$ is independent of ψ .

Seiichiro Kusuoka (Kyoto University)

Wick exponentials

3 Existence and Uniqueness of Shifted equations

Approximation by stationary processes

5 Identification with the diffusion process generated by Dirichlet forms

Summary

Nonnegative distributions

If a distribution $\xi \in \mathcal{D}'(\Lambda)$ satisfies that $\xi(\varphi) \ge 0$ for $\varphi \in C^{\infty}(\Lambda; \mathbb{R}_+)$, then we call ξ nonnegative.

Theorem

For any nonnegative $\xi \in D'(\Lambda)$, there exists a (nonnegative) Borel measure μ_{ξ} such that

$$\xi(\varphi) = \int_{\Lambda} \varphi(x) \mu_{\xi}(dx), \quad \varphi \in \mathcal{D}(\Lambda).$$

In particular, the domain of ξ is extended to $C(\Lambda)$.

Theorem (Garban (preprint))

```
For nonnegative \xi \in B_{p,r}^{-s} and f \in C(\Lambda),
```

$$\|f \cdot \xi\|_{B^{-s}_{p,r}} \le C \|f\|_{C(\Lambda)} \|\xi\|_{B^{-s}_{p,r}}.$$

Uniqueness of the solution

Let T > 0 and

 $\mathscr{Y}_{\mathcal{T}} := \{ \mathcal{Y} \in L^2([0, \mathcal{T}]; C(\Lambda) \cap H^1) \cap C([0, \mathcal{T}]; L^2(\Lambda)); e^{\alpha \mathcal{Y}} \in L^\infty([0, \mathcal{T}]; C(\Lambda)) \}$

Lemma

Let $\mathcal{X} \in L^2([0, T]; H_+^{-\beta})$ and $v \in H^{2-\beta}$. Then,

$$\begin{cases} \partial_t \mathcal{Y}_t &= \frac{1}{2} (\bigtriangleup - 1) \mathcal{Y}_t - \frac{\alpha}{2} e^{\alpha \mathcal{Y}_t} \mathcal{X}_t \\ \mathcal{Y}_0 &= v, \end{cases}$$

has at most one mild solution in \mathscr{Y}_{T} .

Proof.

The conditions $\mathcal{X} \in L^2([0, T]; H^{-\beta}_+)$ and $v \in H^{2-\beta}$ are sufficiently nice and \mathscr{Y}_T is suitable. Moreover, $y \mapsto -e^{\alpha y}$ is decreasing and \mathcal{X}_t is nonnegative. These facts yield the uniqueness.

Seiichiro Kusuoka (Kyoto University)

 $exp(\Phi)_2$ -quantum field model

Lemma

For any $\mathcal{X} \in L^2([0, T]; H^{-\beta}_+)$ and $\upsilon \in H^{2-\beta}$, there is at least one mild solution $\Upsilon \in \mathscr{Y}_T$. Moreover, for any $\delta \in (0, 1 - \beta)$, there exists a constant C > 0 independent of \mathcal{X} and υ such that one has the a priori estimate

$$\begin{split} \|\Upsilon\|_{L^{2}([0,T];H^{1+\delta})\cap C([0,T];H^{\delta})\cap C^{\delta/2}([0,T];L^{2})} \\ & \leq C\left\{\|\upsilon\|_{H^{2-\beta}} + e^{|\alpha|\|\upsilon\|_{C(\Lambda)}}\|\mathcal{X}\|_{L^{2}([0,T];H^{-\beta})}\right\}. \end{split}$$

Proof.

Make a uniform estimates of approximating sequence and apply compact embeddings.

Well-posedness of the solution

From these lemmas we obtain the following.

Theorem

Let
$$\mathcal{X} \in L^2([0, T]; H_+^{-\beta})$$
 and $v \in H^{2-\beta}$. Then,

$$\begin{cases} \partial_t \mathcal{Y}_t &= \frac{1}{2} (\bigtriangleup - 1) \mathcal{Y}_t - \frac{\alpha}{2} e^{\alpha \mathcal{Y}_t} \mathcal{X}_t \\ \mathcal{Y}_0 &= v, \end{cases}$$

has a unique mild solution in $L^2([0, T]; H^{1+\delta}) \cap C([0, T]; H^{\delta})$ for $\delta \in (0, 1 - \beta)$. Moreover, the mapping

 $\mathcal{S}: H^{2-\beta} \times L^2([0,T]; H^{-\beta}_+) \ni (v, \mathcal{X}) \mapsto \mathcal{Y} \in L^2([0,T]; H^{1+\delta}) \cap C([0,T]; H^{\delta})$

is continuous.

We call the Φ obtained in the theorem the strong solution with the initial value ϕ .

Seiichiro Kusuoka (Kyoto University)

- 2 Wick exponentials
- **3** Existence and Uniqueness of Shifted equations

4 Approximation by stationary processes

5 Identification with the diffusion process generated by Dirichlet forms

Summary

Approximation by stationary processes 1

Let ρ be a nonnegative function on \mathbb{R}^2 and let

$$P_N f(x) = \int_{\mathbb{R}^2} 2^{2N} \rho(2^N(x-y)) \tilde{f}(y) dy, \quad x \in \Lambda, \ f \in \mathcal{D}'(\Lambda),$$

where \tilde{f} is the periodic extension of f to \mathbb{R}^2 . Then the operator P_N is a nonnegative operator, i.e. $P_N f \ge 0$ if $f \ge 0$.

Let $\psi := \mathcal{F}\rho$ (the Fourier transform of ρ) and assume that ψ satisfies the conditions in a previous slide. We remark that we are able to choose usual mollifiers as P_N .

We consider the regularized $\exp(\Phi)_2$ -measure by

$$\mu_{N}^{(\alpha)}(d\phi) := \frac{1}{Z_{N}^{(\alpha)}} \exp\left\{-\int_{\Lambda} \exp_{N}^{\diamond}(\alpha\phi)(x)dx\right\} \mu_{0}(d\phi),$$

where $Z_N^{(\alpha)} > 0$ is the normalizing constant, and the SPDE associated with this measure.

Seiichiro Kusuoka (Kyoto University)

Approximation by stationary processes 2

Theorem

Let $|\alpha| < \sqrt{4\pi}$ and P_N as above. Let $N \in \mathbb{N}$ and consider the solution $\Phi^N = \Phi^N(\phi)$ of an SPDE

$$\begin{cases} \partial_t \mathbf{\Phi}_t^N = \frac{1}{2} (\triangle - 1) \mathbf{\Phi}_t^N - \frac{\alpha}{2} P_N \exp\left(\alpha P_N \mathbf{\Phi}_t^N - \frac{\alpha^2}{2} C_N\right) + \dot{W}_t, \\ \mathbf{\Phi}_0^N = \phi \in \mathcal{D}'(\Lambda). \end{cases}$$

Let ξ_N be a r. v. with the law $\mu_N^{(\alpha)}$ and independent of W. Then $\bar{\Phi}^N = \Phi^N(\xi_N)$ is a stationary process and the family $\{\bar{\Phi}^N\}_{N=1}^{\infty}$ converges in law to the strong solution $\bar{\Phi}$ with an initial law $\mu^{(\alpha)}$, in the space $C([0, T]; H^{-\varepsilon}(\Lambda))$ for any T > 0. Moreover, $\bar{\Phi}_t$ is also stationary.

Proof.

We show the tightness of the solutions to the shifted equations and apply the uniqueness of the limit in the previous theorem. $\hfill\square$

Seiichiro Kusuoka (Kyoto University)

 $exp(\Phi)_2$ -quantum field model

23 / 30

- 2 Wick exponentials
- **3** Existence and Uniqueness of Shifted equations
- **4** Approximation by stationary processes

5 Identification with the diffusion process generated by Dirichlet forms

Summary

Identification with the one given by Dirichlet forms 1

Now we introduce a pre-Dirichlet form $(\mathcal{E}, \mathfrak{F}C_b^{\infty})$. We fix $\beta \in (\frac{\alpha^2}{4\pi}, 1)$ and let $H = L^2(\Lambda; \mathbb{R})$ and $E = H^{-\beta}(\Lambda)$.

Let $\mathfrak{F}C_b^{\infty}$ be the space of all smooth cylinder functions on E. Note that $\mathfrak{F}C_b^{\infty}$ is dense in $L^p(\mu^{(\alpha)})$ for all $p \ge 1$. For

$$F(\phi) = f(\langle \phi, I_1 \rangle, \dots, \langle \phi, I_n \rangle), \quad \phi \in E$$

with $n \in \mathbb{N}$, $f \in C_b^{\infty}(\mathbb{R}^n; \mathbb{R})$ and $l_1, \ldots, l_n \in \text{Span}\{e_k; k \in \mathbb{Z}^2\}$, we define the *H*-Fréchet derivative $D_H F : E \to H$ by

$$D_H F(\phi) := \sum_{j=1}^n \partial_j f(\langle \phi, I_1 \rangle, \dots, \langle \phi, I_n \rangle) I_j, \quad \phi \in E.$$

We consider a pre-Dirichlet form $(\mathcal{E},\mathfrak{F}C_b^\infty)$ which is given by

$$\mathcal{E}(F,G) = \frac{1}{2} \int_{E} \left(D_{H}F(w), D_{H}G(w) \right)_{H} \mu^{(\alpha)}(dw), \quad F, G \in \mathfrak{F}C_{b}^{\infty}.$$
$$\mathfrak{F}C_{b}^{\infty}) \text{ is closable on } L^{2}(\mu^{(\alpha)}).$$

 $(\mathcal{E},$

,

So we can define $\mathcal{D}(\mathcal{E})$ as the completion of $\mathfrak{F}C_b^{\infty}$ with respect to $\mathcal{E}_1^{1/2}$ -norm. By the general methods in the theory of Dirichlet forms, we have the quasi-regularity of $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ and the existence of a diffusion process $\mathbb{M} = (\Theta, \mathcal{G}, (\mathcal{G}_t)_{t \geq 0}, (\Psi_t)_{t \geq 0}, (\mathbb{Q}_{\phi})_{\phi \in E})$ associated to $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$.

Theorem

Let $|\alpha| < \sqrt{4\pi}$. Then for $\mu^{(\alpha)}$ -a.e. ϕ , Ψ coincides with the strong solution Φ driven by some $L^2(\Lambda)$ -cylindrical (\mathcal{G}_t)-Brownian motion $\mathcal{W} = (\mathcal{W}_t)_{t \ge 0}$ with the initial value ϕ , \mathbb{Q}_{ϕ} -almost surely.

Proof.

It is known that Ψ satisfies

$$egin{aligned} \langle \Psi_t, e_k
angle &= \langle \phi, e_k
angle + \langle \mathcal{W}_t, e_k
angle + rac{1}{2} \int_0^t \langle \Psi_s, (\bigtriangleup - 1) e_k
angle \ &- rac{lpha}{2} \int_0^t \langle \exp^\diamond(lpha \Psi_s), e_k
angle ds \quad \mathbb{Q}_{\phi} ext{-a.s.} \end{aligned}$$

Decompose $\Psi = X(\phi) + Y$ and see

$$\mathbb{Q}_{\phi}\left(\exp^{\diamond}(lpha \Psi_{t})=e^{lpha Y_{t}}\exp^{\diamond}(lpha X_{t}) ext{ a.e. } t
ight)=1, \quad \mu^{(lpha)} ext{-a.e. } \phi.$$

э

- 2 Wick exponentials
- **3** Existence and Uniqueness of Shifted equations
- Approximation by stationary processes
- **5** Identification with the diffusion process generated by Dirichlet forms

- General theories of singular SPDEs are not applicable (as they are) to the stochastic quantization equation associated to exp-model. We showed that the time-global solution exists uniquely.
- When $|\alpha| < \sqrt{4\pi}$, delicate problems do not occur (similarly to Φ_2^4 and different from Φ_3^4). Indeed, one subtraction $Y := \Phi X$ is sufficient to solve the shifted equation, one renormalization constant is enough, and the exp-measure is absolutely continuous with respect to the free field measure μ_0 .

Hence, we have the uniqueness in a large class of approximations (universality).

• In proofs we use the nonnegativity of wick exponentials.

Thank you for your attention.

э