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exp(P),-quantum field measure

A : the 2-dimensional torus i.e. A = (R/277Z)2.
po : Nelson's free field measure on A with mass 1,
i.e. g is the centered Gaussian measure on D'(A)

with the covariance (1 — A)~1.
We consider a measure:

e & (— /A exp(a¢(x>>dx) po(d)

where Z(@) is the normalizing constant.

Since the support of pg is tempered distributions (not usual functions),
exp(a¢) is not defined in usual sense.

So, we replace exp by the Wick exponential function exp®.
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Wick exponential function

Let {Hn(x);n € NU{0}} be the Hermite polynomials.
For example, Ho(x) = 1, Hi(x) = x, Ha(x) = x?> — 1, H3(x) = x3 — 3x.
For a Gaussian random variable X with mean 0, define Wick polynomials
: X" by

L X" = E[X?]"/2H, (E[X2]—1/2X) .

Then, regarding ¢ a Gaussian random variable under pg, we define the
Wick exponential function by

[e.o]

exp®(ag) = : exp(ag) : = Z %I!’ co"

n=0
Wick products : ¢" : and the infinite sum are well-defined for pp-a.e. ¢.
We also have a formal equation

exp’(ag) = exp <a¢ - ‘fE*‘O[qb(-)?]) :

Note that EH0[¢(-)?] = co. We discuss the rigorous definition later.
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exp(®),-measure and Stochastic Quantization

Via Wick exponentials we consider the exp(®)2-quantum field measure:

pS(de) = % exp (— /A exp°(a¢)(x)dx> p10(db)

where Z(®) is the normalizing constant. This model is also called the
Hgegh-Krohn model.

In this talk, we consider the stochastic quantization of the
exp(®P)2-measure, which is a time-evolution having the exp(®),-measure
as an invariant measure. The associated SPDE is given by

(SQE) 09:d4(x) = %(A —1)by(x) — %expO(acbt)(x) + We(x), xeA

where W;(x) is a white noise with parameter (t,x). This SPDE is

obtained by log-derivative of ,ug_ffg.
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Shifted equation

Let X be the infinite-dimensional Ornstein-Uhlenbeck process,
which is the solution to

1 .
8tXt = E(A - 1)Xt + Wt~

If & is a solution to (SQE) in some sense, Y := ® — X satisfies

1 o
(*) at Yt = E(A — 1)Yt — E eXpQ(Oth) eXp(OéYt).

Note that exp®(a¢) = exp (a¢(X) - %ZE”O [<;52]>.
(%) is called a shifted equation. Da Prato and Debussche (2003) solve the

SPDE obtained by stochastic quantization of P(®),-measures by using the
shifted equation.
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Relation to ®*-models

The ®*-stochastic quantization equation is given by

Debe(x) = %(A S 1)bu(x) — (6 — (Ci+ G) - de) + Wilx), x €A,

where C; and G, are renormalization constants (C; = G = o).
In this case, the shifted equation is given by

1
OYe=3(A=1)Ye— Y2 -3: X2 Y —3X Y- X -G Y

So, : X2 : is the most singular coefficient. If A is d-dimensional torus,

: X2 : will be a W?~975°_valued process.

On the other hand, exp®(aX;) (dimA = 2) will be W—2*/(47)==2_yalyed.
In view of the singularities,

a = 0 on exp-model ~ ®*-model with dimA = 2
a = V47 on exp-model ~ ®*-model with dimA = 3.
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Some known results

Hgegh-Krohn (1971):

Introduction of exp(®)2-model in Hamiltonian setting

Albeverio and Hgegh-Krohn (1974):

Construction of exp(®),-measure by Euclidean quantum field theory
Albeverio and Rockner (1991):

Construction of the Markov process associated to (SQE) by Dirichlet
forms for |a| < V4~

Garban (to appear in JFA):

Local (in time) well-posedness of (SQE) for |a| < (2v/2 — v/6) x V27
by singular SPDE methods. (Remark: A — 1 is replaced by A.)
Albeverio, Kawabi, Mihalache, and Rockner (preprint):

Regularized version is studied by Dirichlet forms.

Oh, Robert and Wang (preprint after our work):

Hyperbolic case is studied.

We show the global well-posedness of (SQE) for || < V47w

by singular_ SPDE methods.
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Difficulties to apply usual singular SPDE methods

It is difficult to apply a general theory (regularity structure or
paracontrolled calculus) to exp-model as they are. Because
@ When we apply a general theory, we usually assume that inputs
(driving processes) are W*>°-valued processes.
Indeed, the coefficients of shifted equation of ®*-stochastic
quantization equation (: X" :) are W*>-valued for suitable s (s can
be negativel). On the other hand, exp®(aX;) is W—/(4m)==2_yalyed
process, and to improve the integrability 2 we need to loose the
regularity.
@ Moreover, exp does not have polynomial growth, and the derivatives
of exp are unbounded.
Hairer and Shen (2016), Chandra, Hairer and Shen (preprint) study the
sine-Gordon model (the case that exp is replaced by sin). In view of
singularities exp-model is same as sin-model, sin is bounded function with
bounded derivatives.
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Approximation operator

Let ¢ be a Borel measurable function on R? and assume
0 0 <(x) <1 for x € R?
o Y(x) = Y(—x) for x € R?

® SUP,cRr2\{0} Ix|~?)1b(x) — 1| < oo for some 6§ € (0,1)
(Holder continuity at 0)

@ sup,cp2 x| (x)| < oo for some m > 4.
By using 1) we define an approximation operator Py on D’(A) by

Puf(x) =Y (2 VK, e)en(x), x €N,
kez?

where {ex} is the Fourier basis.
For example, ¢ € S with 0 <9 <1, ¢ =1;_,; ;3o (L > 0),
P = H{\x\gr} (r > 0)
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Approximation of Wick exponentials

Let ¥y := (27 N.) and define approximation of Wick exponentials by

Cui= [ (Puol)Pro(d) = 5 3 1™

2
2 2

exp(a0)(x) = D 4 o/ Hn(C 2 Pus(x)

n=0

2
= exp (aPN¢>(X) - O;CN> .

Denote W52 by H=#,
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Existence of Wick exponentials

Theorem

For |a| < V/4r, let B € (a?/(47),1). Then {exp$,(a)} converges in H=#
for pip-a.e. ¢, and in L?(uo; H=P). Moreover, the limit exp®(ap) is
independent of 1.

Calculate

Sy 1+|1k|2)ﬁ [ Hexpia(ad) - ewi(ag), e o(do)

N=1 k€Z2

vy o 1
:ZQ NZ (n!)2 2 (1+ |k[2)?

kez?

n - n — 2
/ (CHl 2 Hn(CR Y Prs10) — Gl Hol(C /2 Pug), €| o(d9)
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exp(P),-quantum field

We define

5 00) 1= o0~ [ ewilas)(0dx b ualao)

N

where Z,(Va) is a normalizing constant.

Corollary

Let || < v/4m. The exp(®)a-measure ug% is well-defined as the limit of
{u(,\?‘)} in weak topology, and is absolutely continuous with respect to pig.
In particular, the support of ,ugffg is in H=¢(A\) for ¢ > 0. Moreover, the
Radon-Nikodym derivatives {dus\(f) / duo} are uniformly bounded.

Proof.

Assertions follow from almost-sure convergence of {exp§,(a¢)} and

5@ {— /A expy\,(m)(x)dx} <1

| A
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Time evolution of Wick exponentials

Let X = X(¢) be the solution to

It is well-known that

@ i is the invariant measure of X.

o X isa W—1/2-5P_valued continuous process for ¢ > 0 and p € [1, oq].
Define an approximation of Wick exponentials by

7N (5) = exply(aXe())-

For |a| < /4T, let B € (a?/(47),1). Then {Xt(eXp’N)} converges in
L2([0, T]; H?) P ® po-a.s., and in L2(P @ uo; H=?). Moreover, the limit
Xt(eXp’oo) is independent of 1.
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Nonnegative distributions

If a distribution £ € D’'(A) satisfies that £(p) > 0 for ¢ € C°(A; Ry),
then we call £ nonnegative.

Theorem

For any nonnegative £ € D'(N), there exists a (nonnegative) Borel measure
e such that

&(0) = /A o()pe(dx), @€ D(A).

In particular, the domain of £ is extended to C(A).

Theorem (Garban (preprint))

For nonnegative § € B, 7 and f € C(NA),

I - Ellgze < Clifllcmliéll -
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Uniqueness of the solution

Let T > 0 and
Dy = (¥ € L2(0, TL CNNHYNC(, TT; L2(A)); & € L2((0, TT; C(A)}

Lemma

Let X € LX([0, T); H.") and v € H2>=P. Then,

{ Ve =3(A—1)V: — eV X,
Yo =v,

has at most one mild solution in %/7.

Proof.

The conditions X € L2([0, T]; H;”) and v € H>F are sufficiently nice
and %7 is suitable. Moreover, y — —e® is decreasing and X} is
nonnegative. These facts yield the uniqueness. OJ

| A\
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Existence of the solution

For any X € L2([0, T]; H;B) and v € H*=P, there is at least one mild
solution T € #%t. Moreover, for any § € (0,1 — [3), there exists a constant
C > 0 independent of X and v such that one has the a priori estimate

1Tl 2o, 73; H2-+6)nc ([0, T1: H8 )N Co/2([0, T:L2)
=C {HU”HQ—B + el&'”””“")HXHL?([O,T];H—ﬂ’)} ’

Proof.

Make a uniform estimates of approximating sequence and apply compact
embeddings. OJ

| A

v
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Well-posedness of the solution

From these lemmas we obtain the following.

Theorem
Let X € LX([0, T); H.") and v € H>*F. Then,

{ 0t)e = %(A -1 — %eatht
yO =V,

has a unique mild solution in L2([0, T]; H*+°) N C([0, T]; H?) for
0 € (0,1 — B). Moreover, the mapping

S H* PxL2([0, T); H:P) 3 (v, X) = Y e L3([0, T]; H*)nC ([0, T]; HY)

is continuous. )

We call the ® obtained in the theorem the strong solution with the initial
value ¢.
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Approximation by stationary processes 1

Let p be a nonnegative function on R? and let
Puf() = [ 22" (x—y)Fy)dy. x €, f D)
R2

where f is the periodic extension of f to R2. Then the operator Py is a
nonnegative operator, i.e. Pyf >0 if f > 0.

Let ¢ := Fp (the Fourier transform of p) and assume that 1 satisfies the
conditions in a previous slide. We remark that we are able to choose usual
mollifiers as Py.

We consider the regularized exp(®),-measure by

1 (o
@) = e {= [[ et (a) (1o | ol

where Z,(Va) > 0 is the normalizing constant, and the SPDE associated
with this measure.
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Approximation by stationary processes 2

Theorem

Let |a| < V4w and Py as above. Let N € N and consider the solution
oN = &N (¢) of an SPDE

1 2 :
9, 0N = (8- 1ol — %PN exp <aPN¢§V _ azc,\,> + W,

o) = ¢ c D'(N).

Let &y be a r. v. with the law ,u%y) and independent of_W. Then

oV = dN(¢y) is a stationary process and the family {®N}22 | converges
in law to the strong solution ® with an initial law 1) in the space
C([0, T]; H=¢(N)) for any T > 0. Moreover, ®; is also stationary.

| A

Proof.
We show the tightness of the solutions to the shifted equations and apply
the uniqueness of the limit in the previous theorem. O

Seiichiro Kusuoka (Kyoto University) exp(®P)2-quantum field model November 19, 2019 23/30



© !dentification with the diffusion process generated by Dirichlet
forms
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|dentification with the one given by Dirichlet forms 1

Now we introduce a pre-Dirichlet form (€,§Cp°). We fix 8 € (2‘—;, 1) and
let H=L2(A;R) and E = H7A(A).
Let $C,° be the space of all smooth cylinder functions on E. Note that
FCp° is dense in LP(p(®)) for all p > 1.
For

F(¢):f(<¢a’1>7"'7<¢7’n>)’ ¢ € E,
with ne N, f € C;°(R™R) and /i, ..., I, € Span{ex; k € Zz}, we define
the H-Fréchet derivative DyF : E — H by

DrF(¢) = 0if ((¢,h), .-, (6, 1n))j, € E.
j=1

We consider a pre-Dirichlet form (£, §Cp°) which is given by

E(F,G) = ;/E(DHF(W),DHG(W))Hu(a)(dW), F,G e FCr.

(£,5C°) is closable on L2(p(®)).
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|dentification with the one given by Dirichlet forms 2

So we can define D(&) as the completion of FCp° with respect to
511/2—norm. By the general methods in the theory of Dirichlet forms, we
have the quasi-regularity of (£, D(€)) and the existence of a diffusion
process M = (©, G, (Gt)t>0, (We)e>0, (Qp)pck) associated to (£, D(E)).

Let |a| < v/4m. Then for u{®)-a.e. ¢, W coincides with the strong solution
® driven by some L2(N)-cylindrical (G:)-Brownian motion W = (W;) >0
with the initial value ¢, Qg4-almost surely.
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|dentification with the one given by Dirichlet forms 3

It is known that W satisfies

(Wered = (600 + Were) + 5 [ (Vs (8=D)ed

t
- %/ <exp°(oztlls),ek>ds Q¢—a.s.
0

Decompose W = X(¢) + Y and see

Qo (expo(alllt) = ™Yt exp®(aX;) a.e.t) =1, p®ae ¢.
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o General theories of singular SPDEs are not applicable (as they are) to
the stochastic quantization equation associated to exp-model. We
showed that the time-global solution exists uniquely.

o When |a| < V4T, delicate problems do not occur (similarly to ®% and
different from ¢‘3‘). Indeed, one subtraction Y := ® — X is sufficient
to solve the shifted equation, one renormalization constant is enough,
and the exp-measure is absolutely continuous with respect to the free
field measure pyg.

Hence, we have the uniqueness in a large class of approximations
(universality).

@ In proofs we use the nonnegativity of wick exponentials.
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Thank you for your attention.
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