Uniqueness of Dirichlet forms related to stochastic quantization of $\exp(\Phi)_2$ -measures in finite volume

Hiroshi KAWABI (Keio University) *

This talk is based on a (still ongoing) joint work with Sergio Albeverio (Universität Bonn), Stefan Mihalache (KPMG, Frankfurt) and Michael Röckner (Universität Bielefeld). In this talk, we discuss L^p -uniqueness for the diffusion operators defined through Dirichlet forms given by space-time quantum fields with interactions of exponential type, called $\exp(\Phi)_2$ -measures (Høegh-Krohn's model of quantum fields), in finite volume.

Let $\mathbb{T}^2 = (\mathbb{R}/2\pi\mathbb{Z})^2$ be the two dimensional torus and $H^s(\mathbb{T}^2)$, $s \in \mathbb{R}$ denotes the Sobolev space of order s with periodic boundary condition. We put $H := L^2(\mathbb{T}^2)$. Let μ_0 be the mean-zero Gaussian measure on $E := H^{-\beta}(\mathbb{T}^2)$, $\beta > 0$ with covariance operator $(1 - \Delta)^{-1}$. It is called the (massive) Gaussian free field (in finite volume). For a charge parameter $\alpha \in (-\sqrt{4\pi}, \sqrt{4\pi})$ and a Gaussian free field z, we formally introduce a random measure $\mathcal{M}_z^{(\alpha)}$ on \mathbb{T}^2 by

$$\mathcal{M}_{z}^{(\alpha)}(dx) := \exp^{\diamond}(\alpha z(x)) dx = \exp\left(\alpha z(x) - \frac{\alpha^{2}}{2} \mathbb{E}^{\mu_{0}}\left[z(x)^{2}\right]\right) dx, \quad x \in \mathbb{T}^{2}.$$

This measure is called the the *Liouville measure* in the context of Liouville quantum gravity. We then define the $\exp(\Phi)_2$ -measure $\mu = \mu_{\exp}^{(\alpha)}$ by

$$\mu(dz) = Z_{\alpha}^{-1} \exp(-\mathcal{M}_z^{(\alpha)}(\mathbb{T}^2)) \mu_0(dz),$$

where $Z_{\alpha} > 0$ is the normalizing constant. It is a probability measure on E.

We now fix $\gamma > 0$ such that $\beta + 2\gamma > 2$, and consider a pre-Dirichlet form $(\mathcal{E}, \mathcal{F}\mathcal{C}_b^{\infty})$ which is given by

$$\mathcal{E}(F,G) = \frac{1}{2} \int_{F} \left((1-\Delta)^{-\gamma} D_H F(z), D_H G(z) \right)_H \mu(dz), \quad F, G \in \mathcal{F}\mathcal{C}_b^{\infty},$$

where $\mathcal{F}C_b^{\infty}$ is the set of all smooth cylindrical functions on E and D_H denotes the HFréchet derivative. The corresponding pre-Dirichlet operator $(\mathcal{L}_0, \mathcal{F}C_b^{\infty})$ is defined by $\mathcal{E}(F,G) = -(\mathcal{L}_0F,G)_{L^2(\mu)}, F,G \in \mathcal{F}C_b^{\infty}.$ It implies that $(\mathcal{E},\mathcal{F}C_b^{\infty})$ is closable on $L^2(\mu)$.
We denote the closure of $(\mathcal{E},\mathcal{F}C_b^{\infty})$ by $(\mathcal{E},\mathcal{D}(\mathcal{E}))$.

Our main theorem in this talk is the following. (If time permits, I will touch a sketch of the proof based on the argument in [LR98].)

^{*}e-mail address: kawabi@keio.jp

Theorem. Assume $\beta, \gamma > 0$, $\beta + 2\gamma > 2$ and $|\alpha| < \min\{\sqrt{4\pi\gamma}, \sqrt{4\pi}\}$. Then the pre-Dirichlet operator $(\mathcal{L}_0, \mathcal{F}\mathcal{C}_b^{\infty})$ is $L^p(\mu)$ -unique for all $1 \leq p < \frac{1}{2}(1 + \frac{4\pi\gamma}{\alpha^2})$. Namely, there exists exactly one C_0 -semigroup on $L^p(\mu)$ such that its generator extends $(\mathcal{L}_0, \mathcal{F}\mathcal{C}_b^{\infty})$. In particular, we obtain the Markov uniqueness, that is, the Dirichlet form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ is the unique extension of $(\mathcal{E}, \mathcal{F}\mathcal{C}_b^{\infty})$ such that $\mathcal{F}\mathcal{C}_b^{\infty}$ is contained in the domain of the associated generator.

We remark that L^1 -uniqueness for this model and L^p -uniqueness for $P(\Phi)_1$ -, $\exp(\Phi)_1$ models in *infinite* volume have been obtained in [Wu00] and [AKR12], respectively.

As an application of this theorem, we have the *unique* existence of *weak* solution to the corresponding modified-stochastic quantization equation:

$$\partial_t u(t,x) = -\frac{1}{2} (1-\Delta)^{1-\gamma} u(t,x) - \frac{\alpha}{2} (1-\Delta)^{-\gamma} \exp\left(\alpha u(t,x) - \frac{\alpha^2}{2} \infty\right) + (1-\Delta)^{-\frac{\gamma}{2}} \xi(t,x), \qquad t > 0, \ x \in \mathbb{T}^2,$$

where $\xi = (\xi(t,x))_{t\geq 0, x\in\mathbb{T}^2}$ is a space-time white noise on $[0,\infty)\times\mathbb{T}^2$. Furthemore, by following the argument in [HKK19], we may construct a unique *strong* solution to this singular SPDE. However, it does not imply the $L^p(\mu)$ -uniqueness of the Dirichlet operator. This is obvious, since a priori the latter might have extensions which generate non-Markovian semigroups which thus have no probabilistic interpretation as transition probabilities of a process. Therefore, neither of $L^p(\mu)$ -uniqueness of the Dirichlet operator and strong uniqueness of the corresponding SPDE implies the other.

References

- [AKR12] S. Albeverio, H. Kawabi and M. Röckner: Strong uniqueness for both Dirichlet operators and stochastic dynamics to Gibbs measures on a path space with exponential interactions, J. Funct. Anal. **262** (2012), pp. 602–638.
- [HKK19] M. Hoshino, H. Kawabi and S. Kusuoka: Stochastic quantization associated with the $\exp(\Phi)_2$ -quantum field model driven by space-time white noise on the torus, arXiv:1907.07921.
- [LR98] V. Liskevich and M. Röckner: Strong uniqueness for certain infinite-dimensional Dirichlet operators and applications to stochastic quantization, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Serie IV, 27 (1998), pp. 69–91.
- [Wu00] L. Wu: Uniqueness of Nelson's diffusion II: Infinite dimensional setting and applications, Potential Anal. 13 (2000), pp. 269–301.