Stochastic flows and rough differential equations on foliated spaces

Yuzuru INAHAMA

Kyushu University

20 Nov 2019 at Tohoku University (Jointwork with Kiyotaka Suzaki. arXiv: 1910.09962)

Yuzuru INAHAMA

Kyushu University

Aim of the talk

- We consider SDE on compact foliated space. First introduced and solved by Suzaki (2015)
- We prove that <u>stochastic flow</u> associted to it exists.
- Our method is rough path theory. For, Kolmogorov-Čentsov continuity criterion is UNavailable.
- From a viewpoint of RP theory, there is no big difficulty in constructing the flow.
- Our work may open the door for full stochastic analysis on foliated spaces (SDE theory, rough path theory, Malliavin calculus, path space analysis, etc.)

Consider the following SDE on \mathbb{R}^n or manifold:

$$dx_t = \sum_{i=1}^d V_i(x_t) \circ dw_t^i + V_0(x_t)dt, \qquad x_0 = \xi \quad \text{(given)}.$$

Here, V_i 's are nice vector fields, $(w_t)_{t\geq 0}$ is *d*-dim BM, ξ is an initial value. We often write $x_t = x(t, \xi, w)$.

ξ → x(t, ξ, w) is called the stochastic flow of homeo/diffeomorphism associated with the SDE.
Stochastic flows play key roles in stochastic analysis over (Riemannian) manifolds. (∃ Many deep resluts.)

Yuzuru INAHAMA

One of the hardest parts of stochastic flow theory is its existence, i.e., the existence of a r.v.

 $w \mapsto [\xi \mapsto x(t,\xi,w)]$

because the negligible null set for the SDE depends on ξ and there are uncountably many ξ 's. The standard (and only?) tool to overcome this difficulty is Kolmogorov-Čentsov criterion for \exists of conti. modification.

 $\mathsf{E}[|x(t,\xi,\cdot)-x(s,\eta,\cdot)|^{\heartsuit}] \lesssim \mathsf{dist}\,((t,\xi),(s,\eta))^{n+1+\bigstar}$

But, this criterion works only on (a subset of) Euclidean space.

Yuzuru INAHAMA

Stochastic flows and rough differential equations on foliated spaces

- Let \mathcal{M} be a compact foliated space. \mathcal{M} itself and its transversal direction are just (locally compact) metric spaces.

- But, a certain differential structure is given ("leafwise C^k ").
- So, there are SDEs on \mathcal{M} :

$$dx_t = \sum_{i=1}^d V_i(x_t) \circ dw_t^i + V_0(x_t)dt, \qquad x_0 = \xi \quad (ext{given}).$$

Here, V_i 's are leafwise smooth (or C^3) vector fields, $(w_t)_{t\geq 0}$ is *d*-dim BM, $\xi \in \mathcal{M}$ is an initial value.

Formulated and solved by Suzaki (Tohoku, 2005) for every fixed ξ . But, since KC criterion is NOT available, \exists Stochastic Flow?

- To prove the existence of $w \mapsto [\xi \mapsto x(t, \xi, w)]$, we will use Rough Path Theory.
- RP theory is a "deterministic version" of Itô's SDE theory.
- The solution map of rough differential eq., Lyons-Itô map, is continuous in all input data (ξ , V_i , "the lift of w").
- RDE naturally generates a flow in a deterministic way.
- Only probabilistic part is lifting the noise $w \mapsto W$ (BRP). Hence, this is the only place where "exceptinal null set" appears. Notice it is clearly independent of ξ .

Quite natural to guess: If we define RDE on \mathcal{M} , then we can easily construct the stochastic flow on \mathcal{M} . $\heartsuit \heartsuit$ (Loosely, this is our main result.)

Rough Differential Equation

• Geometric Rough Path $\triangle := \{(s, t) \mid 0 \le s \le t \le 1\}, \quad \alpha \in (0, 1],$ $A : \triangle \rightarrow \mathbb{R}^d$, conti.

$$||A||_{\alpha} := \sup_{0 \le s < t \le 1} |A_{s,t}|/|t-s|^{\alpha}$$

$$\mathcal{T}^{(2)}(\mathbb{R}^d) := \mathbb{R} \oplus \mathbb{R}^d \oplus (\mathbb{R}^d \otimes \mathbb{R}^d)$$

(truncated tensor algebra of step 2)

Yuzuru INAHAMA

Kyushu University

Definition (rough path) $\alpha \in (1/3, 1/2]$ "roughness" A conti. map $W = (1, W^1, W^2) : \triangle \to T^{(2)}(\mathbb{R}^d)$ is said to be a rough path if

(i) K. T. Chen's identity $0 \le s \le u \le t \le 1$,

Yuzuru INAHAMA

Example (smooth RP) $h: [0, 1] \rightarrow \mathbb{R}^{d};$ a Camerom-Martin path.

$$H^1_{s,t}:=h_t-h_s,\quad H^2_{s,t}:=\int_s^t(h_u-h_s)\otimes dh_u$$

This $H = (H^1, H^2)$ is clearly a RP. Lift of h. The lift map is denoted by \mathcal{L} , i.e., $H = \mathcal{L}(h)$.

Definition (the geometric RP space) (complete, separable)

$$G\Omega_{lpha}(\mathbb{R}^d):=\overline{\{\mathcal{L}(h)\mid h\in\mathcal{H}\}}^{d_{lpha}}\subset\Omega_{lpha}(\mathbb{R}^d).$$

Yuzuru INAHAMA

Kyushu University

• Rough Differential Equation $V_i : \mathbb{R}^n \to \mathbb{R}^n, \quad C_b^3. \quad (0 \le i \le d)$ (Often viewed as vector fields on \mathbb{R}^n .)

• For $W \in G\Omega_{\alpha}(\mathbb{R}^d)$, consider the following equaiton on \mathbb{R}^n . This is called RDE driven by W:

$$dx_t = \sum_{i=1}^d V_i(x_t) d\mathbf{W}_t^i + V_0(x_t) dt, \quad x_0 = \xi \in \mathbb{R}^n$$

• If W is a natural lift of a CM path h, i.e., $W = \mathcal{L}(h)$, then RDE solution coincides with the solution of $dx_t = \sum_{i=1}^d V_i(x_t) dh_t^i + V_0(x_t) dt$, $x_0 = \xi$ in the standard sense. (Of course!) Thorem (Lyons' continuity thm) The solution map $(W, \xi, \{V_i\}) \mapsto x \in C^{\alpha}([0, 1], \mathbb{R}^n)$

is continuous from $G\Omega_{\alpha}(\mathbb{R}^d) \times \mathbb{R}^n \times C^3_b(\mathbb{R}^n, \mathbb{R}^n)^{d+1}$.

[Remark] For our porpose, continuity in $\{V_i\}$ is crucial. [Remark] Though the definition of geometric RP is unique, \exists several formulations of RDE (at least 5 or 6?).

Brownian Rough Path

$$\begin{split} & w = (w_t)_{0 \le t \le 1}: \qquad d\text{-dim BM.} \\ & w(m) = (w(m)_t)_{0 \le t \le 1}: \qquad \text{dyadic piecewise linear} \\ & \text{approximation of } w \text{ associated with the partition} \\ & \{j/2^m: \ 0 \le j \le 2^m\}. \end{split}$$

Then, the following set is of Wiener measure 1:

 $\left\{w: \ \left\{\mathcal{L}(w(m))\right\}_{m=1}^{\infty} \text{ is Cauchy in } G\Omega_{\alpha}(\mathbb{R}^{d})
ight\}$

So, we set $\mathcal{L}(w) = \lim_{m \to \infty} \mathcal{L}(w(m))$ if w belongs to the above subset (and set $\mathcal{L}(w)$ to be zero-RP if otherwise).

Yuzuru INAHAMA

Kyushu University

Then, $\mathcal{L}: C_0([0,1], \mathbb{R}^d) \to G\Omega_{\alpha}(\mathbb{R}^d)$ is a everywhere-defined Borel measurable map.

If we put $W = \mathcal{L}(w)$ in Lyons-Itô map, then $x = x(\mathcal{L}(w), \xi, \{V_i\})$ coincides with the solution of corresponding Stratonovich SDE. (Thanks to Wong-Zakai's approximation & Lyons continuity theirem)

Thus, the solution of SDE is expressed as the image of a continuous map.

Three Major formalisms of RDE

Lyons' original formulation

Solution is a fixed point of rough integral equation. Both RP integrals and solutions are rough paths.

Gubinelli's formulation

Solution is a fixed point of rough integral equation. Both RP integrals and solutions are <u>controlled paths</u> w.r.t. given $W \in G\Omega_{\alpha}(\mathbb{R}^d)$.

Davie's formulation Use Euler-Taylor type expansion as definition. Solution is a <u>usual path</u>.
 (∃ some variants, e.g., Bailleul's works.)

One of the variants of Davie's formulation (by Bailleul): $(x_t)_{0 \le t \le 1}$ solves the RDE if and only if

$$f(x_t) - f(x_s) = \sum_{i=1}^d V_i f(x_s) W_{s,t}^{1,i} + \sum_{j,k=1}^d V_j V_k f(x_s) W_{s,t}^{2,jk} + V_0 f(x_s) (t-s) + O(|t-s|^{3\alpha}), \quad \forall f \in C^3(\mathbb{R}^n, \mathbb{R}).$$

This formulation works very well on manifolds because

- A solution is a usual path (No "higher objects").
- Independent of the choice of local chart.
- So we will use this type of formulation.

Foliated Spaces

- Let \mathcal{M}, \mathcal{Z} be locally compact metric space.

- Let $A \subset \mathbb{R}^p$, $B \subset \mathcal{Z}$ be open. A function $f: A \times B \to \mathbb{R}^n$ is called <u>leafwise</u> C^k if f = f(y, z) is C^k in y for each fixed z and the derivatives are continous in (y, z).

- Let $\phi: A \times B \to \hat{A} \times \hat{B}$ is called <u>leafwise C^k </u> if it is of the form $\phi(y, z) = (f(y, z), g(z))$ for some $f \in C_L^k$ and some continuous g.

Definition (foliated space) \mathcal{M} is called a *p*-dimensional foliated space (transversely modelled on \mathcal{Z}) if the following conditions are satisfied:

- ∃ open cover $\{U_{\beta}\}$ of \mathcal{M} , ∃ homeo ϕ_{β} : $U_{\beta} \to A_{\beta} \times B_{\beta}$, where $A_{\beta} \subset \mathbb{R}^{p}, B_{\beta} \subset \mathcal{Z}$ are certain open subsets.
- $\phi_{\beta} \circ \phi_{\gamma}^{-1}$: $\phi_{\gamma}(U_{\beta} \cap U_{\gamma}) \to \phi_{\beta}(U_{\beta} \cap U_{\gamma})$ are leafwise C^{∞} .
- A set of the form $\phi_{\beta}(A_{\beta} \times \{z\})$ is called a plaque.
- Patching together intersecting plaques, you get <u>a leaf</u> on \mathcal{M} .
- Each leaf is a C^{∞} -manifold. Different leaves never intersect.
- **&** Foliated manifold \implies Lamination \implies Foliated space.
- In what follows, \mathcal{M} is assumed to be compact.

Let V_i $(1 \le i \le d)$ be leafwise C^3 vector fields. SDEs on \mathcal{M} :

$$dx_t = \sum_{i=1}^d V_i(x_t) \circ dw_t^i + V_0(x_t)dt, \qquad x_0 = \xi \quad (given).$$

Formulated and Solved by Suzaki (2015).

The corresponding RDE should be

$$dx_t = \sum_{i=1}^d V_i(x_t) d\mathbf{W}_t^i + V_0(x_t) dt, \qquad x_0 = \xi \quad \text{(given)}.$$

Yuzuru INAHAMA

Kyushu University

Definition (Solution to RDE)

 $(x_t)_{0 \leq t \leq 1}$ is said to solve the RDE on \mathcal{M} if $x_0 = \xi$ and

$$f(x_t) - f(x_s) = \sum_{i=1}^d V_i f(x_s) W_{s,t}^{1,i} + \sum_{j,k=1}^d V_j V_k f(x_s) W_{s,t}^{2,jk} + V_0 f(x_s) (t-s) + O(|t-s|^{3\alpha}), \quad \forall f \in C_L^3(\mathcal{M})$$

[Remark]

A (time-local) solution never gets out of the initial plaque. Hence, a solution stays in one leaf.

[Fact]

 \exists ! unique global solution for every ξ and $W = (W^1, W^2)$.

[Key Point] In a local chart

 $\mathcal{M} \supset \mathcal{U} \ni \quad x \longleftrightarrow (y, z) \quad \in \mathcal{A} \times \mathcal{B} \subset \mathbb{R}^{p} \times \mathcal{Z},$

the RDE on \mathcal{M} is equivalent to the following one on \mathbb{R}^{p} :

$$dy_t = \sum_{i=1}^d V_i(y_t, z_0) d\mathbf{W}_t^i + V_0(y_t, z_0) dt, \qquad \phi(\xi) = (y_0, z_0)$$

Therefore, varying the initial value ξ in the transversal direction amounts to varying the coefficient vector fields on \mathbb{R}^{p} -valued RDE. (The continuity in ξ is heuristically evident.) \implies The flow associated with RDE on \mathcal{M} exists and it is a "leafwise homeomorphism"

Yuzuru INAHAMA

Main Result

Theorem 1 (I.-Suzaki, soon to finish)

Let W be Brownian rough path and consider the RDE on \mathcal{M} driven by W. Then, the global solution $x_t = x(t, \xi, W)$ coincides with the solution of corresponding stratonovich SDE. Moreover,

$$\mathsf{W} \quad \mapsto \quad ig[(t,\xi)\mapsto \mathsf{x}(t,\xi,\mathsf{W})\in\mathcal{M}ig]$$

almost surely defines a flow of leafwise homeomorphisms.

• In reality, this is a flow of leaf-preserving leafwise diffeomorphisms of \mathcal{M} .

Some comments are in order:

- Beside basic (and a little bit cumbersome) calculations of rough paths, Wong-Zakai's approximation is needed.
- The only exceptional null set is
 {w: w does not admit a RP lift}. But, this is clearly
 independent of the initial value ξ.
- The inverse flow is given by the solution to the RDE driven by <u>the time reversal</u> of the same rough path.

[1] As usual, the heat semigroup associated with $\frac{1}{2}\sum_{i=1}^{d}V_i^2 + V_0$ admits a Feynman-Kac representation:

 $T_t f(\xi) = \mathbb{E}[f(x(t,\xi,W))].$

Suzaki (2015) showed Feller property, i.e., $f \in C(\mathcal{M}) \Longrightarrow T_t f \in \overline{C(\mathcal{M})}$ by checking the continuity $\xi \mapsto x(\bullet, \xi, w)$ in the sense of limit in probability. His proof is rather long. Now this fact immediately follows from our main reslt.

Yuzuru INAHAMA

[2] Measurability issue: In Suzaki (2015),

 $(\xi, w) \mapsto x(\bullet, \xi, w)$ (strong sol. of SDE)

is only shown to be measurable w.r.t.

$$\bigcap \{ \overline{\mathcal{B}(\mathcal{M}) \otimes \mathcal{B}(\mathcal{C}_0([0,1],\mathbb{R}^d))}^{m \times \mu} \colon m \in \operatorname{Prob}(\mathcal{M}) \},$$

where μ is the Wiener measure.

But, this σ -field looks a bit too large.

Stochastic flows and rough differential equations on foliated spaces

In our approach, it is written as the composition of Lyons-Itô map and RP lift \mathcal{L} .

$$(\xi, w) \mapsto x(\bullet, \xi, w) = x(\bullet, \xi, \mathcal{L}(w)).$$

So, as an everywhere defined map, this is measurable w.r.t.

 $\mathcal{B}(\mathcal{M})\otimes \mathcal{B}(\mathcal{C}_0([0,1],\mathbb{R}^d)).$

As a μ -equivalence class, this is measurable w.r.t.

$$\mathcal{B}(\mathcal{M})\otimes\overline{\mathcal{B}(\mathcal{C}_0([0,1],\mathbb{R}^d))}^{\mu}.$$

Therefore, we have slightly improved the previous work.

Stochastic flows and rough differential equations on foliated spaces

The End