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The strong Feller property of reflected Brownian motions on a
class of planar domains

Kouhei Matsuura (Kyoto University)

1 Introduction

Gyrya and Saloff-Coste [3] gave two-sided Gaussian heat kernel estimates of the Neumann heat kernels
on inner uniform domains. In other words, they showed that the associated Dirichlet spaces satisfy the
Poincaré inequality and the volume doubling property. As a corollary, it follows that the Neumann heat
kernels are Hölder continuous. Inner uniform domains are generalized notion of uniform domains. For
example, the Koch snowflake domain is a typical example of uniform domains. Thus, the boundaries
of uniform domains can be fractal sets.

In this talk, we prove the semigroup strong Feller property of Neumann semigroups on a class of
planar domains. Domains in the class are not necessarily inner uniform domains. Our proof is mainly
based on the conformal invariance of planar reflected Brownian motions and a coupling argument. We
also give quantitative lower bounds for Hölder exponents of the Neumann heat kernels on quasidisks.

2 Notation and main results

For a subset A ⊂ C, we denote by A the topological closure in C. We denote by D the unit disk in C.
Let D ⊂ C be a Jordan domain. Then, there exists a conformal map φ : D → D, which is extended to
a homeomorphism from D to D by the Carathéodory’s theorem. Let X = ({Xt}t∈[0,∞), {PX

x }x∈D) be
the reflected Brownian motion on D. We define a Hunt process Y = ({Yt}t∈[0,∞), {PY

y }y∈D) on D by

Yt = φ(XA−1
t
), PY

y = PX
φ−1(y), t ∈ [0,∞), y ∈ D.

Here, {At}t∈[0,∞] is a positive continuous additive functional ofX defined byAt =
∫ t
0 |φ′(Xs)|21D(Xs) ds.

Note that At strictly increases to ∞ as t → ∞. It is easy to show that the resolvent {RY
α }α∈(0,∞) of

Y is absolutely continuous with respect to the Lebesgue measure m on C:

RY
α f(y) =

∫

D
rYα (y, z)f(z) dm(z), y ∈ D, α ∈ (0,∞), f ∈ Bb(D).

Here, Bb(D) stands for the space of bounded measurable functions on D. By [2, Examples 5.3.(2◦)],
the Dirichlet form (E ,F) of Y is regular on L2(D,m), which is identified with

F = {f ∈ L2(D,m) | |∇f | ∈ L2(D,m)}, E(f, g) = 1

2

∫

D
〈∇f,∇g〉 dm, f, g ∈ F ,

where ∇f denotes the distributional gradient of f and 〈·, ·〉 denotes the standard inner product on C.
Our main theorem is as follows.

Theorem 1. Suppose that the conformal map φ : D → D is κ-Hölder continuous. Then, for any
α ∈ (0,∞) and ε ∈ (0,κ), there exists a constant C ∈ (0,∞) such that

|RY
α f(φ(x))−RY

α f(φ(y))| ≤ C‖f‖L∞(D,m)|x− y|(κ−ε)∧(1/2)

for any x, y ∈ D, and f ∈ Bb(D). In particular, for any α ∈ (0,∞) and f ∈ Bb(D), RY
α f is a bounded

continuous function on D.
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The image of the unit circle under a quasiconformal mapping on the plane is called a quasicircle.
The interior of a quasicircle is called a quasidisk. It is known that quasidisks are uniform domains.
Therefore, if D is a quasidisk, we can apply [3, Theorem 3.10] to show that the semigroup {PY

t }t>0 of
Y possesses a (unique) continuous kernel pYt (x, y) : (0,∞) ×D ×D → (0,∞). If D is a quasidisk, it
is known that the conformal map φ : D → D is bi-Hölder continuous. Then, Theorem 1 implies that
the resolvent {RY

α }α∈(0,∞) is also Hölder continuous. Combining these facts with [1, Remark 3.6], we
reach the following corollary.

Corollary 1. Suppose that D is a quasidisk. Then, for each (t, y) ∈ (0,∞) × D, the map D ,
x -→ pYt (x, y) ∈ (0,∞) is Hölder continuous. Furthermore, the Hölder exponent is bounded below by
λ{(κ− ε)∧ (1/2)}, where κ and λ denote the Hölder exponents of φ and φ−1, respectively, and ε is an
arbitrary positive number between 0 and κ.

For a Jordan curve J in C, we define k(J) as

k(J) = inf
|z1 − z3||z2 − z4|

|z1 − z2||z3 − z4|+ |z1 − z4||z2 − z3|
∈ [0, 1],

where the infimum is extended over the set of ordered quadruples z1, z2, z3, z4 of finite points on J
with the property that z1 and z3 separate z2 and z4 on J .

A Jordan curve J in C is quasicircle if and only if k(J) > 0. In [4, Theorem 1, 2], Näkki and Palka
gave estimates for Hölder exponents of conformal maps in terms of k(J). Employing the result, we
have

κ ≥ 2 arcsin2 k(∂D)

π(π − arcsin k(∂D))
, λ ≥ π

2(π − arcsin k(∂D))
.

in the situation of Corollary 1.
If the semigroup of Y is ultracontractive, the method of eigenfunction expansion with the resolvent

strong Feller property (Theorem 1) immediately imply that the heat kernel of Y has a continuous
version on (0,∞) ×D ×D. However, there are non-inner uniform Jordan domains which satisfy the
condition in Theorem 1. In this case, we do not know whether the semigroup of Y is ultracontractive.
In the situation of Theorem 1, it is non-trivial even if the semigroup of Y is strong Feller. Then, we
establish a Faber–Krahn type inequality for part processes of Y and obtain the following theorem.

Theorem 2. Suppose that the conformal map φ : D → D is Hölder continuous. Then, for any t > 0
and f ∈ Bb(D), PY

t f is a bounded continuous function on D.
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Green-tight measures of Kato class and compact embedding theorem for
symmetric Markov processes

(joint work with Kazuhiro Kuwae)

Kaneharu Tsuchida (National Defense Academy)

1 Introduction

Let E be a locally compact separable metric space and m a Radon measure on E with full support. Let
X be a m-symmetric Hunt process and (E ,F) its regular Dirichlet form on L2(E;m). Takeda proved in
[3] that the semigroup of X is compact on L2(E;m) if X satisfies that irreducibility (I), resolvent strong
Feller property (RSF), and Green-tightness (T). As an application, the compactness of embedding from
(F , E) to L2(E;m) can be proved. This compact embedding theorem plays important role in proving
the large deviation principle for additive functionals generated by X. In this talk, we extend this result
to the Markov process which satisfies absolute continuity (AC) and m ∈ S1

CK∞
(X), where S1

CK∞
(X) is

a class of Green-tight measures introduced by Chen ([1]). Finally, we present some examples that are
(AC) but not (RSF).

2 Setting

Let X = (Px, Xt, ζ) be a m-symmetric special standard process on E, where ζ is the life time of X.
Let (E ,F) be the Dirichlet form associated with X, which is known to be quasi-regular. X(1) denotes

the 1-subprocess of X defined by X(1) = (P(1)
x , Xt) with P(1)

x (Xt ∈ A) = e−tPx(Xt ∈ A) for all t > 0
and A ∈ B(E). Let (Pt)t≥0 be the transition semigroup of X. The transition kernel of X is denoted by
Pt(x, dy), t > 0, that is, for any f ∈ Bb(E),

Ptf(x) := Ex[f(Xt) : t < ζ] =

∫

E
f(y)Pt(x, dy), x ∈ E, t > 0.

We assume that X has the absolute continuity condition, that is, for any Borel set B, m(B) = 0 implies
Pt(x,B) = Px(Xt ∈ B) = 0 for all t > 0 and x ∈ E. Let (Rα)α>0 be the resolvent of X, that is, for any
f ∈ Bb(E),

Rαf(x) = Ex

[∫ ∞

0
e−αtf(Xt)dt

]
=

∫ ∞

0
e−αtPtf(x)dt.

Here X is said to possess the resolvent strong Feller property (RSF) (resp. strong Feller property (SF))
if Rα(Bb(E)) ⊂ Cb(E) for any α > 0 (resp. Pt(Bb(E)) ⊂ Cb(E) for any t > 0). It is known that the
implication (SF) =⇒ (RSF) =⇒ (AC) holds. Let S1(X) be the family of positive smooth measures in
the strict sense under (AC). For ν ∈ S1(X), we set

Rαν(x) := Ex

[∫ ∞

0
e−αtdAν

t

]
, x ∈ E,

where Aν
t is the positive continuous additive functional associated to ν ∈ S1(X).

Definition 2.1. A measure ν ∈ S1(X) is said to be in the Kato class if limα→∞ supx∈E Rαν(x) = 0. A
measure ν ∈ S1(X) is said to be in the local Kato class if for any compact subset K of E, 1Kν is of Kato
class.

We denote by S1
K(X) (resp. S1

LK(X)) the family of measures of Kato class (resp. local Kato class).

Definition 2.2 ([1]). Let ν ∈ S1(X) and take an α ≥ 0. When α = 0, we always assume the transience
of X. ν is said to be an α-order Green-tight smooth measure of Kato class with respect to X if for any

1



ε > 0 there exists a Borel subset K = K(ε) of E with ν(K) < ∞ and a constant δ > 0 such that for all
ν-measurable set B ⊂ K with ν(B) < δ,

sup
x∈E

Rα(1B∪Kcν) < ε.

In view of the resolvent equation, for a positive constant α, the α-order Green-tightness of Kato class
is independent of the choice of α > 0. Let denote by S1

CK∞
(X) (resp. S1

CK+
∞
(X)) the family of 0-order

(resp. positive order) Green-tight smooth measure of Kato class. Clearly, S1
CK+

∞
(X) = S1

CK∞
(X(1)).

It can be proved as in [1] that S1
CK+

∞
(X) ⊂ S1

K(X) and S1
CK∞

(X) ⊂ S1
K(X). It is easy to see that

S1
CK∞

(X) ⊂ S1
CK∞

(X(1)) if X is transient.

3 Results

Theorem 3.1 ([2, Theorem 1.5]). Suppose that X satisfies (AC) and m ∈ S1
CK∞

(X(1)). Then the
embedding F → L2(E;m) is compact.

Theorem 3.2 ([2, Theorem 1.6]). Suppose that X satisfies (AC) and m ∈ S1
CK∞

(X(1)). Then the
L2-semigroup Pt is a compact operator on L2(E;m) and its every eigenfunction has a finely continuous
Borel measurable bounded m-version. Moreover, if X satisfies (RSF), then every eigenfunction has a
bounded continuous m-version.

Let (Fe, E) be the extended Dirichlet space of (E ,F). For ν ∈ S1
CK∞

(X), the Stollmann-Voigt
inequality tells us ∫

E
f(x)2ν(dx) ≤ ‖R0ν‖∞E(f, f), f ∈ Fe

if X is transient. This means that (Fe, E) is continuously embedded in L2(E; ν).

Corollary 3.3 ([2, Corollary 1.7]). Suppose that X is transient and it satisfies (AC). Let ν ∈ S1
CK∞

(X).
Then (Fe, E) is compactly embedded in L2(E; ν).

Let λ2 be the bottom of the spectrum:

λ2 := inf

{
E(f, f) : f ∈ F ,

∫

E
f2dm = 1

}
.

A function φ0 on E is called a ground state of the L2-generator for E if φ0 ∈ F , ‖φ0‖2 = 1 and
E(φ0,φ0) = λ2.

Theorem 3.4 ([2, Theorem 1.8]). Suppose that X satisfies (AC), (I) and m ∈ S1
CK∞

(X(1)). Then there
exists a bounded ground state φ0 uniquely up to sign. Moreover, φ0 can be taken to be strictly positive on
E.

Finally, we state the following general theorem to construct examples which do not possess (RSF),
but satisfy (AC).

Theorem 3.5 ([2, Theorem 4.1, 4.2]). Suppose that X is transient and possesses (RSF). Take ν ∈ S1(X)
with ‖R0ν‖∞ < ∞ and assume ν )∈ S1

LK(X). If ν has the full quasi-support, then the time-changed process
(X̌, ν) does not possess (RSF), but satisfies (AC). Under same assumptions on ν, there exists an α > 0
such that the killed process X−αν does not possess (RSF), but satisfies (AC).

We will give concrete examples during the talk.
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Asymptotic behavior of the spectral functions
for Schrödinger forms

Masaki Wada (Fukushima University)

October 31, 2019

1 Setting and the main result

Let {Xt} be the rotationally invariant α-stable process on Rd with 0 < α < 2 and denote
by (E ,F) the corresponding Dirichlet form on L2(Rd). We assume α < d, transience of
{Xt} and denote the Green kernel by G(x, y). Let µ and ν be positive Radon smooth
measures satisfying three properties, i.e. Kato class, Green tightness and of finite 0-order
energy integral. Define the Schrödinger form by

Eλ(u, v) = E(u, v)−
∫

Rd

u(x)v(x)µ(dx)− λ

∫

Rd

u(x)v(x)ν(dx) (λ ≥ 0)

For simplicity, we also assume µ is critical, that is,

inf

{
E(u, u)

∣∣∣ u ∈ Fe,

∫

Rd

u2(x)µ(dx) = 1

}
= 1.

Here Fe is the extended Dirichlet space. Define the spectral function by

C(λ) = −
{
Eλ(u, u)

∣∣∣
∫

Rd

u2(x)dx = 1

}
.

There are several preceding results for the differentiability of the spectral functions.
Takeda and Tsuchida [2] treated this problem in the framework of µ = ν. Nishimori
[1] treated the differentiability of C(λ). Both of them showed that the differentiability of
the spectral function is equivalent to d/α ≤ 2. In this talk, we treat the precise asymptotic
behavior of the spectral function and our main result is as follows:

Theorem 1. (W. 2018)
As λ ↓ 0, the spectral function C(λ) satisfies the asymptotic behavior as follows:

C(λ) ∼
(
αΓ(d2)| sin(

d
απ)|〈h0, h0〉ν

21−dπ1− d
2 〈µ, h0〉2

λ

) α
d−α

(1 < d/α < 2)

C(λ) ∼ Γ(α + 1)〈h0, h0〉ν
21−dπ− d

2 〈µ, h0〉2
· λ

log λ−1
(d/α = 2)

1



C(λ) ∼ 〈h0, h0〉ν
〈h0, h0〉m

· λ (d/α > 2)

Here h0(x) is the ground state of E0 and m stands for the Lebesgue measure of Rd.

Remark 2. For µ = ν = V ·m, this result is the same as in [3]

2 Outline of the proof

(1) Let Gβ(x, y) be the resolvent kernel of {Xt}t≥0. Define the compact operators by

Kλf(x) =

∫

Rd

GC(λ)(x, y)f(y)(µ+ λν)(dy) f ∈ L2(µ+ λν)

K̃λf(x) =

∫

Rd

GC(λ)(x, y)f(y)µ(dy) f ∈ L2(µ)

(2) Denote the principal eigenfunction of these operator by hλ and h̃λ. The principal
eigenvalue of Kλ is 1, while the principal eigenvalue of K̃λ admits the asymptotic
behavior as follows.

lim
λ→0

1− γC(λ)

k(C(λ))
= κ(d,α, µ) k(β) =






βd/α−1 (1 < d/α < 2)

β log β−1 (d/α = 2)

β (d/α > 2)

Here κ(d,α, µ) is a unique positive constant.

(3) Considering the inner product of hλ and h̃λ, we have

(1− γC(λ))〈hλ, h̃λ〉µ = λ〈hλ, h̃λ〉ν .

Both hλ and h̃λ converges to the ground state h0 in L2(µ) and L2(ν). Thus we
obtain the desired result.
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Temperature e↵ects in the model of superfluidity

Reika Fukuizumi
Research Center for Pure and Applied Mathematics,
Graduate School of Information Sciences,
Tohoku University, Japan

Abstract

The stochastic Gross-Pitaevskii equation is used as a model of Bose-Einstein condensation

(BEC) at positive temperature. The equation is a complex Ginzburg- Landau equation with

a trapping potential and an additive space-time white noise. A positive temperature e↵ect,

for example, the spontaneous vortex formation by a sudden quench in BEC (seen as a phase

transition) is of great interest in Physics, and the Gibbs equilibrium is the key ingredient in

the analysis from the point of view in statistical physics. In this talk we will first give some

recent results on the 2D stochastic Gross-Pitaevskii equation, where a Wick inhomogeneous
renormalization is required to give a sense to the nonlinearity. We will refer to another result on

a closely related, but another model described by a stochastic damped nonlinear wave equation

too if time permitting. This talk will be based on joint works with Anne de Bouard (Ecole

polytechnique), Arnaud Debussche (ENS Rennes), and Masato Hoshino (Kyushu University).



Global well-posedness of stochastic complex
Ginzburg-Landau equation on the 2D torus

Toyomu Matsuda

Graduate School of Mathematics, Kyushu University

E-mail: matsuda.toyomu.858@s.kyushu-u.ac.jp

In this talk, we study the following stochastic complex Ginzburg-Landau equa-
tion (

∂tu = (i+µ)Du�n |u|2u+lu+x , t > 0, x 2 2,

u(0, ·) = u0,
(1)

where µ > 0, n 2 {z 2 |¬z > 0}, l 2 and 2 is a two dimensional torus. The
random field x is the complex space-time white noise, i.e., the centered Gaussian
random field with covariance structure

[x (t,x)x (s,y)] = 0, [x (t,x)x (s,y)] = d (t � s)d (x� y).

The main objective is to discuss global well-posedness of this equation and Markov
properties of the solution.

The difficulty lies in the fact that a solution of the equation (1) has to be a
Schwartz distribution due to the low regularity of the noise x , which leaves the
nonlinear term |u|2u ill-defined. To overcome this difficulty, we employ a strategy
first introduced in [DD03]. Namely, we decompose a solution u = Z +Y , where
Z is a solution of a linear SPDE

∂tZ = (i+µ)DZ �Z +x .

Although Z is still a distibution-valued random variable, we can naturally define
its products via Wick renormalization.

1



Then Y formally solves

∂tY = (i+µ)DY �Y

+(1+l )(Z +Y )�n(|Y |2Y +2Z|Y |2 +ZY
2 +2|Z|2Y +Z

2
Y + |Z|2Z).

(2)

In the light of Shauder’s estimate, Yt has positive regularity and therefore the prod-
ucts appearing in the equation (2) are well-defined.

The main theorem of this talk is the following;

Theorem 1. There exists a unique (mild) solution of (2) over any time interval

[0,T ].

For the proof of the theorem, we follow the paper [MW17], where the authors
show global well-posedness of the dynamic F4

2 equation. In our setting, however,
the argument in [MW17] does not imply a priori L

p estimates of solutions for
large p. We overcome this obstacle by bootstrap arguments, which leads to;

Theorem 2. Let b 2 (0,2) and C b := Bb
•,• be a Besov space. Then there exists

k 2 (0,•) such that for every solution Y of (2) over [0,T ],

sup
t0tT

kYtkC b .Z,b ,T t
�k
0 ,

uniformly for the initial value Y0.

Finally, I discuss my ongoing research on Markov properties of the solution
as in [TW18].
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PARACONTROLLED CALCULUS AND REGULARITY STRUCTURES

MASATO HOSHINO

Regularity structure (RS) by Hairer (2014) and Paracontrolled calculus (PC) by Gubinelli-
Imkeller-Perkowski (2015) both solve many singular SPDEs. These theories are believed
to be equivalent, but there are some gaps. For example, the general KPZ equation

∂th = ∂2
xh+ f(h)(∂xh)

2 + g(h)ξ

is solved by RS, but cannot be solved within PC. Our aim is to show the equivalence
between RS and (an extension of) PC and fill such gaps.

Both of RS and PC are extensions of the rough path theory. Our main result means
that the two different ways of defining the “rough paths” on the same algebraic structure
are equivalent. A rough image of our main result is the following.

Theorem 1. [1, 2] The following equivalences hold.

Rough path theory RS PC

Rough path Model
⇔
[1]

Pararemainders

Controlled path Modelled distribution
⇔
[2]

Paracontrolled distribution

We explain the precise meanings. Recall that the α-Hölder geometric rough paths living
in Rn are α-Hölder continuous paths on the "1/α#-step nilpotent Lie group G(!1/α")(Rn),
which is identified with a space of linear functionals g on T (!1/α")(Rn) such that

g(x y) = g(x)g(y)

for any x, y ∈ T (!1/α")(Rn), where is the shuffle product. The model is defined similarly
by replacing T (!1/α")(Rn) by a general graded Hopf algebra T+.

Definition 1. A (concrete) regularity structure is a pair of a graded Hopf algebra T+ =⊕
α∈A+ T+

α with a coproduct ∆+ and a graded linear space T =
⊕

β∈A Tβ with a linear

map ∆ : T → T ⊗ T+ satisfying the right comodule properties on T+ such that

∆+τ ∈ τ ⊗ 1+ 1⊗ τ +
⊕

0<β<α

T+
β ⊗ T+

α−β ,

∆σ ∈ σ ⊗ 1+
⊕

γ<β

Tγ ⊗ T+
β−γ ,

for any τ ∈ T+
α and σ ∈ Tβ.

Let B(+)
α be a basis of T (+)

α and let B(+) =
⋃

α∈A(+) B(+)
α . We assume that the basis

B+ is a monoid generated by B+
◦ . Moreover, we assume that B+

◦ consists of

• monomials X1, . . . , Xd,
• derivatives ∂kτ of “pure” elements τ ∈ PB+

◦ .
1



2 MASATO HOSHINO

Then we have the following equivalence result. We say that each element τ ∈ T (+)
α is

homogeneous and write
|τ | = α.

Theorem 2. [1, 2] Let Mrap be the space of all models (g,Π) on Rd, i.e., all pairs of

• a Lipschitz continuous map g from Rd to the group G of algebra homomorphisms
T+ → R,

• a bounded operator Π : T → S ′(Rd) such that Πτ has a “|τ |-class Taylor expansion”
for any homogeneous τ ∈ T ,

and such that g(τ) and Πσ rapidly decrease at infinity for any τ ∈ T+ and σ ∈ T . Then
the space Mrap is homeomorphic to the direct product of Banach spaces;

Mrap '
∏

τ∈B◦, |τ |<0

C|τ |
rap(Rd)×

∏

σ∈PB+
◦

C|σ|
rap(Rd).

We return to the rough path theory. The path Y : [0, T ] → R is said to be an α-
Hölder path controlled by a rough path X if there exists a continuous path Y : [0, T ] →
T (!1/α"−1)(Rn) such that Y ∅

t = Yt and

Y i1...ik
t =

∑

ik+1,...,i!

Y
i1...ikik+1...i!
s X

i1...ikik+1...i!
st +O(|t− s|(!1/α"−k)α)

for any i1, . . . , ik ∈ {1, . . . , n}, where Y i1...ik and Xi1...ik represents the ei1 ⊗ · · · ⊗ eik -
components of Y and X, respectively. A modelled distribution is a T -valued function on
Rd with a similar “Taylor-like expansion” at each point x ∈ Rd. Note that any g ∈ G acts
on T by

ĝ(τ) := (Id⊗ g)∆τ, τ ∈ T.

Denote by (·)τ : T → R the projection to the τ -component.

Theorem 3. [2] Let γ ∈ R. Let Dγ
rap be the space of all γ-class modelled distributions,

i.e., all functions f : Rd → T such that, for any homogeneous τ ∈ T ,
(
f(y)− ĝyxf(x)

)
τ
= O(|y − x|γ−|τ |),

where gyx := gyg−1
x ∈ G, and

(
f(x)

)
τ
rapidly decreases as |x| → ∞.

We assume that the basis B of T has a good structure; monomials and antiderivatives.
Then the space Dγ

rap is homeomorphic to the direct product of Banach spaces;

Dγ
rap '

∏

τ∈PB◦, |τ |<γ

( ∏

η∈PBτ

Cγ−|η|
rap (Rd)

)
,

where PB◦ is the set of all “pure” elements, and PBτ is the set of independent antideriva-
tives of τ . (If the antiderivative is unique for each τ , then PBτ = {τ}.)

This talk is based on a joint work with Ismaël Bailleul (Université de Rennes 1).

References

[1] I. Bailleul and M. Hoshino, Paracontrolled calculus and regularity structures (1), arXiv:1812.07919.
[2] I. Bailleul and M. Hoshino, Paracontrolled calculus and regularity structures (2), in preparation.

Faculty of Mathematics, Kyushu University

E-mail address: hoshino@math.kyushu-u.ac.jp



Asymptotic behavior of reflected SPDEs with
singular potentials driven by additive noises

Bin Xie (Shinshu University)

In this talk, we will mainly review the results on the asymptotic behavior of the
following reflected SPDE with a singular potential by making use of the dimension-
free Harnack inequality:

∂u

∂t
(t, θ) = −1

2
(−∆)γ

(
δH(u)

δu(θ)
(t, θ) + ξ(t, θ)

)
+ (−∆)γ/2BẆ (t, θ). (1)

Hereafter, γ ∈ {0, 1}, θ ∈ (0, 1), ξ(t, θ) denotes a signed random reflecting measure
which prevents the solution from leaving a subset I of R, Ẇ (t, θ) denotes a Gaussian
noise and δH(u)

δu(θ) denotes the functional derivative of the formal HamiltonianH, where

H(u) =

∫ 1

0

(
1

2
|∇u(θ)|2 + F (u(θ))

)
dθ

is called the Ginzburg-Landau-Wilson free energy with a self-potential F .
The SPDE (1) is sometimes called the time-dependent Ginzburg-Landau equa-

tion. In addition, because the reflecting term ξ(t, θ) is considered, (1) is also called
the random parabolic obstacle problem and is regarded as the infinite-dimensional
Skorokhod problem. Formally, we can easily see that the mass of solutions of (1) (i.e.∫ 1

0 u(t, θ)dθ)) is conservative under the time evolution for the case γ = 1, whereas it
is not conservative for the case γ = 0. Hence, according to Hohenberg and Halperin
(1977), we will call (1) with γ = 0 the Model A with reflection, and respectively
(1) with γ = 1 the Model B with reflection in the following. As for applications,
the reflected SPDE (1) has been used to model the fluctuations for ∇φ interface
models on a hard wall with or without conservation of the area. In this talk, both
the Model A and the Model B will be discussed.

For the Model A with reflection, we will study (1) with I = [0,∞) and B = I
under Dirichlet boundary conditions. Noting that δH(u)

δu(θ) = −∆u(θ) + F ′(u(θ)), we

know that, under the above assumptions, (1) can be written as





∂u

∂t
(t, θ) =

1

2

∂2u

∂θ2
(t, θ)− F ′(u(t, θ)) + Ẇ (t, θ) + ξ(dtdθ), θ ∈ (0, 1),

u(t, 0) = u(t, 1) = 0,

u(0, θ) = h(θ) ≥ 0, θ ∈ (0, 1),

u(t, θ) ≥ 0, θ ∈ [0, 1] a.s,

(2)

1



which is called the reflected stochastic reaction-diffusion equation. Under very weak
conditions, we study the hypercontractive property of the Markov semigroup as-
sociated with (2) driven by the additive space-time white noise. To show it, the
coupling of property, the Harnack inequality with power of the Markov semigroup
and the Gaussian concentration of the invariant probability measure are investigated
respectively. As the same time, we can show the compactness of the Markov semi-
group, the exponential convergences of the Markov semigroup to its unique invariant
measure in the sense of L2, total variation norm and entropy are obtained.

In order to explain the Model B with reflection, let us first define the non-linear
function f of the logarithmic type by

f(u) = log
(1− u

1 + u

)
+ λu, u ∈ (−1, 1),

which has two singularity points −1 and 1 and let F ′(u) = −f(u). Then (1) with
I = [−1, 1] is called the stochastic Cahn-Hilliard equation with logarithmic potential
and particularly under Neumann boundary conditions, it can be written as the
following:






∂u

∂t
(t, θ) =− 1

2

∂2

∂θ2

(
∂2u

∂θ2
(t, θ) + f(u(t, θ)) + ξ(t, θ)

)
+BẆ (t, θ),

u(t, 0) =u(t, 1) =
∂3u

∂x3
(t, 0) =

∂3u

∂x3
(t, 1) = 0, t ≥ 0,

u(0, θ) =x(θ), θ ∈ (0, 1),

u(t, θ) ∈[−1, 1] a.s.,

(3)

where ξ(t, θ) = η−(t, θ)−η+(t, θ) preventing the solution u(t, θ) from exiting [−1, 1].
In fact, in applications, the solution of (3) is explained as the rescaled density of
atoms or concentration of one of material’s components which naturally takes values
in [−1, 1]. Hence, the function f defined above is more important and owing to the
effect of noises, reflecting measures η−(t, θ) and η+(t, θ) are required. We will study
the asymptotic behavior of the solution of (3) driven by both the degenerate colored
noise and the non-degenerate white noise. For the case of degenerate colored noise,
the asymptotic log-Harnack inequality is established under the so-called essentially
elliptic conditions, which implies the asymptotic strong Feller property. For the
case of non-degenerate space-time white noise, the Harnack inequality with power
is established. This part is the joint work with L. Goudenège.
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Uniqueness of Dirichlet forms related to stochastic
quantization of exp(Φ)2-measures in finite volume

Hiroshi KAWABI (Keio University) ∗

This talk is based on a (still ongoing) joint work with Sergio Albeverio (Universität
Bonn), Stefan Mihalache (KPMG, Frankfurt) and Michael Röckner (Universität Biele-
feld). In this talk, we discuss Lp-uniqueness for the diffusion operators defined through
Dirichlet forms given by space-time quantum fields with interactions of exponential type,
called exp(Φ)2-measures (Høegh-Krohn’s model of quantum fields), in finite volume.

Let T2 = (R/2πZ)2 be the two dimensional torus and Hs(T2), s ∈ R denotes the
Sobolev space of order s with periodic boundary condition. We put H := L2(T2). Let µ0

be the mean-zero Gaussian measure on E := H−β(T2), β > 0 with covariance operator
(1 −∆)−1. It is called the (massive) Gaussian free field (in finite volume). For a charge
parameter α ∈ (−

√
4π,

√
4π) and a Gaussian free field z, we formally introduce a random

measure M(α)
z on T2 by

M(α)
z (dx) := exp"(αz(x))dx = exp

(
αz(x)− α2

2
Eµ0

[
z(x)2

])
dx, x ∈ T2.

This measure is called the the Liouville measure in the context of Liouville quantum
gravity. We then define the exp(Φ)2-measure µ = µ(α)

exp by

µ(dz) = Z−1
α exp(−M(α)

z (T2))µ0(dz),

where Zα > 0 is the normalizing constant. It is a probability measure on E.

We now fix γ > 0 such that β + 2γ > 2, and consider a pre-Dirichlet form (E ,FC∞
b )

which is given by

E(F,G) =
1

2

∫

E

(
(1−∆)−γDHF (z), DHG(z)

)

H
µ(dz), F,G ∈ FC∞

b ,

where FC∞
b is the set of all smooth cylindrical functions on E and DH denotes the H-

Fréchet derivative. The corresponding pre-Dirichlet operator (L0,FC∞
b ) is defined by

E(F,G) = −(L0F,G)L2(µ), F,G ∈ FC∞
b . It implies that (E ,FC∞

b ) is closable on L2(µ).
We denote the closure of (E ,FC∞

b ) by (E ,D(E)).

Our main theorem in this talk is the following. (If time permits, I will touch a sketch
of the proof based on the argument in [LR98].)

∗e-mail address: kawabi@keio.jp
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Theorem. Assume β, γ > 0, β + 2γ > 2 and |α| < min{
√
4πγ,

√
4π}. Then the pre-

Dirichlet operator (L0,FC∞
b ) is Lp(µ)-unique for all 1 ≤ p < 1

2

(
1 + 4πγ

α2

)
. Namely, there

exists exactly one C0-semigroup on Lp(µ) such that its generator extends (L0,FC∞
b ). In

particular, we obtain the Markov uniqueness, that is, the Dirichlet form (E ,D(E)) is the
unique extension of (E ,FC∞

b ) such that FC∞
b is contained in the domain of the associated

generator.

We remark that L1-uniqueness for this model and Lp-uniqneness for P (Φ)1-, exp(Φ)1-
models in infinite volume have been obtained in [Wu00] and [AKR12], respectively.

As an application of this theorem, we have the unique existence of weak solution to
the corresponding modified-stochastic quantization equation:

∂tu(t, x) =− 1

2
(1−∆)1−γu(t, x)− α

2
(1−∆)−γexp

(
αu(t, x)− α2

2
∞

)

+ (1−∆)−
γ
2 ξ(t, x), t > 0, x ∈ T2,

where ξ = (ξ(t, x))t≥0,x∈T2 is a space-time white noise on [0,∞) × T2. Furthemore, by
following the argument in [HKK19], we may construct a unique strong solution to this
singular SPDE. However, it does not imply the Lp(µ)-uniqueness of the Dirichlet op-
erator. This is obvious, since a priori the latter might have extensions which generate
non-Markovian semigroups which thus have no probabilistic interpretation as transition
probabilities of a process. Therefore, neither of Lp(µ)-uniqueness of the Dirichlet operator
and strong uniqueness of the corresponding SPDE implies the other.
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Stochastic quantization associated with the exp(Φ)2-quantum
field model driven by space-time white noise on the torus

Seiichiro Kusuoka
ʢDepartment of Mathematics, Kyoto Universityʣ

This is a joint work with Masato Hoshino and Hiroshi Kawabi. Let Λ be the
2-dimensional torus (R/2πZ)2 and µ0 be Nelson’s free field measure on Λ with mass
1. We consider the exp(Φ)2-quantum field measure:

µ(α)
exp(dφ) =

1

Z(α)
exp

(
−
∫

Λ

exp!(αφ)(x)dx

)
µ0(dφ)

where Z(α) is the normalizing constant and exp!(αφ) is the Wick exponential defined
by

exp!(αφ) = : exp(αφ) : =
∞∑

n=0

αn

n!
: φn : .

We also have a formal equation

exp!(αφ) = exp

(
αφ− α2

2
Eµ0 [φ(·)2]

)
.

Here, note that Eµ0 [φ(·)2] = ∞. In this talk, we consider the stochastic quantization
of the exp(Φ)2-measure, which is a time-evolution having the exp(Φ)2-measure as
an invariant measure. The associated SPDE is given by

∂tΦt(x) =
1

2
(#− 1)Φt(x)−

α

2
exp!(αΦt(x)) + Ẇt(x), x ∈ Λ (1)

where Ẇt(x) is a white noise with parameter (t, x). This SPDE is obtained by log-

derivative of µ(α)
exp. Let X = X(φ) be the infinite-dimensional Ornstein-Uhlenbeck

process, which is the solution to
{

∂tXt = 1
2(#− 1)Xt + Ẇt

X0 = φ.

If Φ is a solution to (1) in some sense, Y := Φ−X satisfies

∂tYt =
1

2
(#− 1)Yt −

α

2
exp!(αXt) exp(αYt). (2)

We call (2) the shifted equation of (1). Via approximations for |α| <
√
4π we are

able to define the process of Wick exponentials of Xt by

Xt(φ) = exp!(αXt(φ))

and ∫

D′(Λ)

(∫ T

0

‖Xt(φ)‖2H−β(Λ) dt

)
µ0(dφ) < ∞.

for β ∈ (α2/(4π), 1). There are some difficulties to apply general theories such as
the regularity structure and the paracontrolled calculus to (1). When we apply a
general theory, we usually assume that inputs (driving processes) are W s,∞-valued
processes. However, exp!(αXt) is a W−α2/(4π)−ε,2-valued process, and to improve
the integrability 2 we need to loose the regularity. The regularity is very serious



for singular SPDEs. So, we need to solve (1) in the spaces with integrability 2 by
using a model dependent argument. Another difficulty is that exponential functions
do not have polynomial growth, and the derivatives are unbounded. These are the
reasons that we study the exp(Φ)2-model by using the method by singuar SPDEs.
We remark that Xt(φ) is a nonnegative distribution almost every φ, and that the
nonnegativity plays an important role in the proofs of main theorems.

Theorem 1. Assume that |α| <
√
4π and let β ∈ (α2/(4π), 1), X ∈ L2([0, T ];H−β

+ )
and v ∈ H2−β. Then, {

∂tYt = 1
2(#− 1)Yt − α

2 e
αYtXt

Y0 = v,

has a unique mild solution in L2([0, T ];H1+δ) ∩ C([0, T ];Hδ) for δ ∈ (0, 1 − β).
Moreover, the mapping

S : H2−β × L2([0, T ];H−β
+ ) ) (v,X ) *→ Y ∈ L2([0, T ];H1+δ) ∩ C([0, T ];Hδ)

is continuous.

In this talk we call Φ := Y +X the strong solution to (1), where Y is the solution
appeared in Theorem 1 and X is the Ornstein-Uhlenbeck process. We are able to
show that the strong solution corresponds to the limit of the stationary processes
associated to approximating equations to (1).

Theorem 2. Let |α| <
√
4π, ε > 0, and PN as above. Let N ∈ N and consider the

solution Φ̄N to



∂tΦ̄

N
t =

1

2
(#− 1)Φ̄N

t − α

2
PN exp

(
αPN Φ̄

N
t − α2

2
CN

)
+ Ẇt,

Φ̄N
0 = ξN ∈ D′(Λ)

(3)

where ξN be a random variable with the law µ(α)
N and independent of W . Then Φ̄N is

a stationary process and converges in law to the strong solution with an initial law
µ(α)
exp, in the space C([0, T ];H−ε(Λ)) for any T > 0. Moreover, the law of Φ̄t is µ(α)

exp

for any t ≥ 0.

In [1], the Markov process M = (Θ,G, (Gt)t≥0, (Ψt)t≥0, (Qφ)φ∈E) associated to (1)
by the Dirichlet form theory. As follows, we obtain the identification between the
processes obtained in Theorem 1 and [1].

Theorem 3. Let |α| <
√
4π. Then for µ(α)

exp-a.e. φ, the diffusion process Ψ coincides
with the strong solution Φ of (1) driven by some L2(Λ)-cylindrical (Gt)-Brownian
motion W = (Wt)t≥0 with the initial value φ, Qφ-almost surely.
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[1] Sergio Albeverio and Michael Röckner, Stochastic differential equations in in-
finite dimensions: Solutions via Dirichlet forms, Probab. Theory Relat. Fields
89 (1991), 347–386.

[2] Masato Hoshino, Hiroshi Kawabi and Seiichiro Kusuoka, Stochastic quantiza-
tion associated with the exp(Φ)2-quantum field model driven by space-time
white noise on the torus, preprint, arXiv: 1907.07921.



Applications of non-local Dirichlet forms defined on
infinite dimensional spaces.

Sergio Albeverio ∗, and Minoru W. Yoshida †

October 25, 2019

Abstract

By [AKYY 2019] (with detailed proofs), [AK 2019] (with a concise explanation), [Sympo.2019]
and [Sympo.2018], general theorems on the closability and quasi-regularity of non-local
Markovian symmetric forms on probability spaces (S,B(S), µ), with S Fréchet spaces such
that S ⊂ RN, B(S) is the Borel σ-field of S, and µ is a Borel probability measure on S, have
been introduced. There, a family of non-local Markovian symmetric forms E(α), 0 < α < 2,
acting in each given L2(S;µ) was defined, the index α characterizing the order of the non-
locality. Then, it has been shown that all the forms E(α) defined on

⋃
n∈N C

∞
0 (Rn) are closable

in L2(S;µ). Moreover, sufficient conditions under which the closure of the closable forms,
that are Dirichlet forms, become strictly quasi-regular, has been given. Also, an existence
theorem for Hunt processes properly associated to the Dirichlet forms has been introduced.
In addition, the application of the above abstract theorems to the problem of stochastic
quantizations of Euclidean Φ4

d fields, for d = 2, 3, by means of these Hunt processes has been
indicated.

In the present talk, we shall introduce several applications of the abstract theorem to the
stochastic quantizations, in the non-local sense, of various random fields:
1. Non-local type stochastic quantization of Euclidean P (Φ)2 fields.
We consider a non-local type stochastic quantization of the finite volume Euclidean P (Φ)2
field.
2. Non-local type stochastic quantization of Euclidean quantum field with ex-
ponential potential.
We consider a non-local type stochastic quantization of the 2-dimensional Euclidean quantum
field with finite volume exponential potential.
3. Non-local type stochastic quantization of Euclidean quantum field with
trigonometric potentials.
We consider a non-local type stochastic quantization of the 2-dimensional Euclidean quantum
field with finite volume trigonometric potentials.
4. Non-local type stochastic quantization of a field of classical infinite particle
system.

∗Inst. Angewandte Mathematik, and HCM, Univ. Bonn, Germany, email :albeverio@iam.uni-bonn.de
†Dept. Information Systems Kanagawa Univ., Yokohama, Japan, email: washizuminoru@hotmail.com
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Implicit Euler–Maruyama scheme for radial Dunkl processes

Dai Taguchi (Okayama University)
joint work with

Hoang-Long Ngo (Hanoi National University of Education)

Abstract

Let R be a (reduced) root system in Rd and W be the associated reflection group. For given a
vector ⇠ 2 Rd, the Dunkl operator T⇠ on Rd associated with W are introduced by Dunkl [4] and
are di↵erential-di↵erence operators given by

T⇠f(x) :=
@f(x)

@⇠
+

X

↵2R+

k(↵)h↵, ⇠if(x)� f(�↵x)

h↵, xi ,

where @
@⇠ is the directional derivative with respect to ⇠, and �↵ is the orthogonal reflection with

respect to ↵ 2 Rd \ {0}, R+ is a positive subsystem of the root system R and k : R ! [1/2,1) is a
multiplicity function. Dunkl operators have been widely studied in both mathematics and physics,
for example, there operators play a crucial role to the study special functions associated with root
systems and the Hamiltonian operators of some Calogero-Moser-Sutherland quantum mechanical
systems. Moreover, the Dunkl Laplacian defined by �kf(x) :=

Pd
i=1 T

2
⇠i
, for any orthonormal

basis {⇠1, . . . , ⇠d} of Rd is an important, and it has the following explicit form

�kf(x) = �f(x) + 2
X

↵2R+

k(↵)

⇢
hrf(x),↵i

h↵, xi +
f(�↵x)� f(x)

h↵, xi2

�
.

Rösler [7] studied Dunkl heat equation (�k � @t)u, u(·, 0) = f 2 Cb(Rd;R) and Rösler and Voit
[8] introduced Dunkl processes Y which are càdlàg Markov processes with infinitesimal generator
�k/2 and is martingale with the scaling property. On the other hand, a radian Dunkl process
X = (X(t))t�0 is a continuous Markov process with infinitesimal generator LW

k /2 defined by

LW
k f(x)

2
:=

�f(x)

2
+

X

↵2R+

k(↵)
hrf(x),↵i

h↵, xi ,

and is W -radial part of the Dunkl process Y , that is, for the canonical projection ⇡ : Rd ! Rd/W ,
X = ⇡(Y ), as identifying the space Rd/W to (fundamental) Weyl chamberW := {x 2 Rd ; h↵, xi >
0, ↵ 2 R+} of the root system R. Schapira [9] and Demini [2] proved that a radial Dunkl process
X satisfies the following W-valued stochastic di↵erential equation (SDE)

dX(t) = dB(t) +
X

↵2R+

k(↵)
↵

h↵, X(t)idt, X(0) = x(0) 2 W, (1)

1



where B = (B(t))t�0 is a d-dimensional standard Brownian motion. For example, if R := {±1}
then X is a Bessel process, and for type Ad�1 root system, that is, R := {ei � ej 2 Rd ; i 6= j} ⇢
{x 2 Rd;

Pd
i=1 xi = 0}, then X is a Dyson’s Brownian motion.

In this talks, inspired by [1, 3, 5, 6], we study a numerical analysis for radial Dunkl processes
corresponding to arbitrary (reduced) root systems in Rd, not only Bessel processes and Dyson’s
Brownian motions. We introduce an implicit Euler–Maruyama scheme for radial Dunkl processes
(1), which takes values in the domain Wely chamber W, and provide its rate of convergence in
Lp-sup norm and path-wise sense. The key idea of the proof is to use the change of measure based
on Girsanov theorem for radial Dunkl processes, which was proved in [10] for the Bessel case.
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Parametrix method for multi-skewed Brownian
motion

Gô Yûki (Ritsumeikan University)

Let x0 ∈ R, n ∈ N, α1, . . . ,αn ∈ (−1, 1) and −∞ < a1 < a2 < · · · <
an < +∞. We consider one dimensional SDEs of the form

Xt(x0) = x0 +Bt +
n∑

i=1

αiL
ai
t (X),(1)

where {Bt}t≥0 is a one-dimensional Brownian motion and Lai
t (X) denotes

the symmetric local time of X at the point ai until the time t. If n = 1 and
a1 = 0, the process X is called the skew Brownian motion. In [3], one can
find exact simulation methods for the skew Brownian motion. These methods
have been extended to some other cases in [1] using resolvent methods. In
the case of n = 2, a simulation method has been proposed in [2] which points
out at the difficulty of obtaining exact simulations methods for n ≥ 3. In
this talk, we propose a simulation method for any n. The method is based on
an expansion for E[f(Xt(x0))] which is obtained by the parametric method.

Main Result

Let us define bi :=
ai+ai+1

2 for i = 1, · · · , n− 1. Fix 0 < ε < min
1≤i≤n−1

{ai+1−ai
2 }

arbitrary. Let ϕ1, . . . ,ϕn be elements of C2
b (R) which satisfy the following

conditions.

(H1):
∑n

i=1 ϕi ≡ 1.

(H2): suppϕ1 = (−∞, b1 + ε], ϕ1 = 1 on (−∞, b1 − ε] and decreasing on
(b1 − ε, b1 + ε].

(H3): For 2 ≤ i ≤ n − 1, suppϕi = [bi−1 − ε, bi + ε], increasing on (bi−1 −
ε, bi−1 + ε], ϕi = 1 on [bi−1 + ε, bi − ε] and decreasing on (bi − ε, bi + ε].

1



(H4): suppϕn = [bn−1 − ε,+∞), ϕn = 1 on [bn−1 + ε,+∞) and increasing on
[bn−1 − ε, bn−1 + ε).

Let X̃ i(x0) be the solution to the SDE

X̃ i
t(x0) = x0 +Bt + αiL

ai
t (X̃

i(x0)).(2)

For a bounded Borel measurable function f , we put

Ptf(x) := E[f(Xt(x))] and P̃tf(x) :=
n∑

i=1

E[ϕi(X̃
i
t(x))f(X̃

i
t(x))] (t ∈ (0, T ]).

Theorem 0.1. Let x0 ∈ R, X be a solution to (1) and for i = 1, · · · , n, X̃ i

be a solution to (2). Then for t ∈ (0, T ], we have that

Ptf(x0) = P̃tf(x0) +
n∑

i=1

∫ t

0

E
[
P̃t−sf(X̃

i
s(x0))Θ

i
s(x0, X̃

i
s(x0))

]
ds

+
∞∑

m=2

∑

1≤i1,··· ,im≤n

∫

∆m(t)

E

[
P̃t−

∑m
l=1 sl

f(Ỹ im
sm )

m∏

j=1

Θij
sj(Ỹ

ij−1
sj−1

, Ỹ ij
sj )

]
dsm1 ,

(3)

where Ỹ i0
s0 := x0, Ỹ

ij
sj := X̃

ij
sj(Ỹ

ij−1
sj−1 ) for j ≥ 1, Θi

s(x0, x) :=
1
2

(
ϕ′′
i (x) + 2ϕ′

i(x)
∂xpis(x0,x)
pis(x0,x)

)

and pi denotes the transition density function of X̃ i.
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Stochastic flows and rough differential equations
on foliated spaces

Yuzuru INAHAMA (Kyushu Univ.)

In this talk we construct stochastic flows associated with SDEs on compact
foliated spaces via rough path theory.

In 2015 Suzaki constructedʠleafwise diffusion processesʡon compact foliated
spaces via SDE theory. However, it is not known whether the stochastic flows
associated to them exist or not. The main difficulty is in showing the existence
of continuous modifications. The reason is that Kolmogorov-Centsov criterion
is not available in this case since a foliated space is just a locally compact metric
space.

From the viewpoint of rough path theory, however, there is in fact not much
difficulty here and this problem is naturally and easily solved.

Since stochastic flows play a very important role in stochastic analysis on
manifolds, we hope our result would open the door for stochastic analysis on
foliated spaces.

This is a joint work with Kiyotaka SUZAKI (Kumamoto Univ.) and can be
found at arXiv:1910.09962.
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