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We study a strong Markov process X on the half line [0, 00) which is a
natunal scale diffusion up to the first hitting time of 0 and, as soon as X hits
0, X jumps into the interior (0, co) and starts afresh. It was shown by Feller[1]
and It6[2] that such a process can be characterized by the speed measure dm
which characterizes the diffusion on the interior (0,00) and the jumping-in
measure j which characterizes the law of jumps from the boundary 0 to the
interior (0,00). We denote this process by X,,; and call it a jumping-in
diffusion.

Let us consider the inverse local time 7, ; at 0 of a jumping-in diffusion
Xpm ;. One of our two main theorems is to establish the fluctuation scaling
limit of the inverse local time 7, ; of the form:
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for some constants b > 0 and o € (0,2]. Here D denotes the space of
cadlag paths from [0,00) to R equipped with Skorokhod’s Ji-topology. In
order to obtain the limit, we establish the continuity theorem for jumping-
in diffusion processes which roughly asserts the following: for jumping-in
diffusions {X,,, j,}n, if their speed measures {dm,}, converge to a speed
measure dm in a certain sense and the measures {j,(dz)}, degenerate to the
point mass at the origin in a certain sense, then for the appropriate constants

{bn }n, it holds that
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for some constants ¢ and k. Here B denotes a standard Brownian motion
and T'(m;t) the spectrally positive Lévy process associated to m which is
independent of B. In order to prove the continuity theorem, we introduce a
class of A-eigenfunctions of the generalized second order differential operator
d d

-—-=-and apply Krein-Kotani correspondence and its continuity established

in Kotani[4].



The other one is about the occupation time of two-sided jumping-in diffu-
sions which are constructed by connecting two jumping-in diffusion processes
with respect to 0. Let X be such a process and define A(t) = f(f 1(0,00) (Xs)ds.
We give conditions for the existence of the limit distribution $ A(t) as t — co.
Moreover, in the case where the limit degenerate, that is,
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holds, we show the scaling limit of the fluctuation around the limit constant
along the exponential clock, that is, the following limit:
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for some positive function f(¢) which diverges to oo as ¢ — +0. Here ¢,
denotes an exponentially distributed random variable with parameter ¢ > 0
and is independent of X. This result is a jumping-in version of the result
proved for diffusions in Kasahara and Watanabe[3].
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