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SDEs driven by Lévy processes

o Let W = {W; : t >0} be a 1-dimensional Brownian motion.

o Let Z = {Zt > 0} be a 1-dimensional Lévy process.

Consider 1-dimensional stochastic differential equations (SDEs):
¢ t t
Xy :x—l—/ a(Xs)ds—i—/ b(XS)dWS—i—/ co(Xs—) dZs.
0 0 0

In this talk, we shall study the pathwise uniqueness (PU) of the solutions
to the SDE.
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Weak solutions of the SDE

Throughout this talk, we assume the following:

Let a, b, ¢c: R — R be continuous with the linear growth condition. \

@ Under this conditon, the SDE has a weak solution. (Situ's book
(2005))

In this talk, we shall study the condition on the coefficients a, b, ¢ under
which the PU of solutions of the SDEs can be justified. Our approach is

based on Gronwall’s inequality.
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SDEs driven by BM

Consider the SDE driven by BM (a = 0,¢ = 0):

t
Xt:$+/ b(Xs)dWs
0

e PU holds if b is locally 1/2-Hdélder continuous. (Yamada and
Watanabe (1971))

There are counter exapmles if b is 0-Hélder continuous for 0 < 6 < 1/2. \
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SDEs driven by stable processes

When Z is a strictly stable process of index a € (1,2) with parameter
(r—, r4), consider the SDE driven by stable processes (a = 0,b = 0):

t
Xt—a:—i-/ co(Xs-) dZs.
0

e Z: symmetric stable process (r_ = r).
PU holds if ¢ is 1/a-Holder continuous. (Komatsu (1982))

e Z: spectrally positive stable process (r_ = 0).
PU holds if ¢ is increasing and (a — 1)/a-Holder continuous. (Li and
Mytnik (2011))

@ Z: stable process (r4 > r_).
There exists 8 = [(a, r—/r4) such that the PU holds when c is
increasing and (a — ) /a-Holder continuous. (Fournier (2013))
Remark that (a — 8)/a € [(a — 1)/, 1/al.
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Qur class of driving processes 7

In this talk, we shall study the problem on the PU in the case of the Lévy

process with the triplet ('yg”aﬂ 0, 1/?’”“) given by
Vo= (dz) = p(2) (|2]7* " <o) + 1217 as)) dz,

P
PR g
|z|>1
where p : Rg — [0, +00) is a bounded measurable function such that

p(0+) = lim p(z) >0, p(0—)= lim p(z) >0,

z—0+ z—0—

and a_, a4 € (1, 2) such that a— < ay.
(Remark that Ry := R\ {0}.)
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Examples: our driving process Z

Example 1 (Stable processes)

The Lévy measure of a stable process is
v(dz) = 2|77 (r-Tiz<o) + 7+ I(z50)) 42,

where « € (1, 2) and r_, r4 are constants such that 0 < r_ < r,.

Example 2 (Truncated stable processes)

The Lévy measure of a truncated stable process is

v(dz) = |Z|_O£_1 (7”— H(—1<z<0) + Ty ]I(0<z<1)) dz,

where o € (1, 2) and r_, r are constants such that 0 < r_ <ry.
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Example 3 (Tempered stable processes)

The Lévy measure of a tempered stable process is
v(dz) = (T— 2|70t e A Fl T, gy + 1y |2 7T+ e M ]I(z>0)) dz,

where o_ € (0, 2), o4 € (1, 2) and r—, r4, A_, A} are constants such
that r—, r4, A, AL > 0.

N,

Example 4 (Relativistic stable processes)

The Lévy measure of a relativistic stable process is

00 2/ | |2
]/(dz) =T |Z’_a—1 (/ S(1+a)/2_1 exp <_i — M) ds) dz)
0 4 S

where a € (1, 2) and m, r are constants such that m, r > 0.
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Estimate on a-stable Lévy measure

Let a € (1,2), 0 <r_ <r;, 0 < <1, and introduce

= [ e -1-s) @),
Ro

where v . is the stable Lévy measure given by

7T+

v ey (d2) = 277 (r Do) + 74 Tasy) dz.

For w € [0, 1], define

a. ) = 1 ATCCOS u? sin®(m o) — (1 4 u cos(w a))? .
gl ) T [u2 sin?(ra) + (1 +u cos(7ra))2 ] €la=1, 1

Set 5y = B(a, r—/r4). Then it holds I?_’ﬁ& = 0. Furthermore, it holds
that I&25., < 0 for B € (0, Bo).
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Proof of Lemma 1

By using integration by parts, we have

s BTOT(-B)
= al() sin (r(a - 1))

x {—ry sin(rfB) +r_ sin (7(a — 1)) + r_ sin (7(a— 8)) } .

By setting uw = r_/r, it is enough to show for 8 € (0, ),

—sin(7 8) + u sin (r(a — 1)) + w sin (7(a — 8)) <0
= u?(1—cos(rB)) sin’(ra) < (1 + u cos(m 04))2 (1 + cos(m ).
The inequality follows from

u? sin2(7r a) — (1 + u cos(m a))2

u? sin®(m @) + (1 + u cos(w oz))Q.

cos(m 3) > cos(m fp) = O
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Main result (- = o)

Theorem 1 (Case of a_ = avy)

Let a_ = ay =: a and p(0—) < p(0+). Write By = B(ca, p(0—)/p(0+))
as introduced in Lemma 1. Suppose that the coefficients a, b, ¢ satisfy

(i) a is decreasing;
(ii) b is locally (2 — B)/2-Holder continuous with B € (0, By);

(iii) ¢ is increasing and locally (o — f3)/a-Hélder continuous with
B € (0, Bo).
Then, the PU holds.

H. TSUKADA (Kyoto Univ.) Pathwise uniqueness of Lévy driven SDEs Nov. 20, 2018. 12 /28



Main result (a_ < ay)

Theorem 2 (Case of a_ < ay)

Let a— < ay. Suppose that the coefficients a, b, ¢ satisfy
(i) a is decreasing;

(ii) b is locally (2 — B)/2-Hélder continuous with 8 € (0, 1);

(iii) c is increasing and locally (ay — ) /a-Hélder continuous with
g€ (0,1).
Then, the PU holds.
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Driving process Z

By the Lévy-1t6 decomposition,

t
Zt—// 2z N(dz,ds),
0 JRo

where N(dz,ds) is the Poisson random measure with the intensity

N(dz,ds) := v~ **(dz) ds, and the compensated random measure
N(dz,ds) = N(dz,ds) — N(dz,ds).

Consider 1-dimensional SDEs:
t t t
Xt:m+/ a(XS)ds—}—/ b(Xs) dWs —|—/ co(Xs—)dZs
0 0

¢
:x+/a(XS)ds+/ s) dWs +// )z N(dz,ds).
0 Ro
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For i = 1, 2, we consider two solutions of the SDE:
. t . t . t . ~
X, =z +/ a(X?)ds —I—/ b(X?) dWg + // c¢(X:_)zN(dz,ds).
0 0 0 JR
Write Ay = X} — X? and

Av=a(X}) —a(X?), By =0b(X{) = b(X7), Cr=c(X})—c(X7).

Then, we are in position to study

t t t
At:/ Asds+/ BSdWSJr// Cs_ 2z N(dz,ds).
0 0 0 JRo
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1t6 formula for &,

Llet0<pB<1,0<n<land N > 0.
Define the function &, and the stopping time Ty by

By(u) = (u2+0?)"?, Ty =inf {t>0; |X}| A X2 > N}.
Now, we shall apply the It6 formula for the function @, and get
@W(At/\TN) - @n(o)
tATN , 1 " ) tAT N ,
_ /0 {@n(AS)AS + 5 B(A) BS} ds +/0 ! (A,) By dWV,

+ /MTN {Py(As— 4+ Cs— 2) — Py (As-)} N(dz, ds)
0 Ro

tATN N
+ / [y(As+ Cuz) — By(Ay) — B)(Ay) Caz} N(dz, ds).
0 Ro

H. TSUKADA (Kyoto Univ.) Pathwise uniqueness of Lévy driven SDEs Nov. 20, 2018.



Expectation of the Itd formula for &,

Taking the expectation implies that

E[®,(Atnty)] — 84(0)

_E [ /O A, ds] (A)
+E UOMTN % P (As) B ds] (B)

tATN N
+E U {By(As + Cs 2) = By (As) — D) (As) Cs 2} N(dz,ds)| .
0 Ro
(©)

The monotone convergence theorem yields that

E[@y(Aunry)] = E[| Ay |’]

as 7 \( 0. Thus, we shall study the limit of the right hand side
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Limit of (A) as n \, 0

Suppose that a is monotonic. Then, it holds that

tATN tATN
lim E [/ P (As) As ds] =E [/ Bsgn(As) |As]PL A, ds] :
UL 0 0

Proof. The monotone convergence theorem leads us to see that

tATN
/
E [ /O B (A,) Ay ds]

I 2, 2((8-2)/2
:]E |:/0 BA8|A5+TZ ’ As (H(A5A520)+]I(ASAS<O)) d5:|
tATN
—E [/ Bsgn(As) A7 A, ds],
0

as n \(0.
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Limit of (B) as  \, 0

Suppose that, for each N > 0, there exists a positive constant K1(N) s.t.
[b(z) = b(@)| < Ki(N) |z — 3|72, (H1)

for all |z|, |Z| < N. Then, it holds that

7 \0

tATN tATN
li{nE [/ P (A) B? ds] =F [/ B(B—1)|A,P2B2ds| .
0 0

Proof. Since &, (u) = f3 [u2 4+ n2|B=2/2 L B (8 — 2) u? |u? + n2|B-/2,
|27(As) B2 < B3 = B) A7 B < Ki(N)?B(3 - ).

Hence, the assertion follows from the dominated convergence theorem. [J
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Limit of (C) as 1\, 0

Lemma 4

Suppose that, for each N > 0, there exists a positive constant Ky(N) s.t.
le(z) — ¢(F)| < Ka(N) |z — &+ =D/, (H2)

for all |z|, || < N. Then, it holds that

tATN
lim E [/ {@n(As +C,) — Dp(As) — @%(As) Cy Z}]/;V:Oé+(dz)d5:|
7\0 0 Ro

D Cs |8 C
— B 8 _ — 8 o—, 4
E[/O |Ag] </RO{’1+ : Z‘ 1-—p - Z}Vp (dz)) ds].

(a4 = B)/ay > (a_ — B)/a-.
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Proof of Lemma 4

|P5(As + Cs 2) — By(As) — B (As) Cs 2|
< Ks(8) { (18:°721C, 21%) A (1A.IP~ (G ) }

on the event {A; # 0}, where K3(f) is a positive constant.

Lemma 6
Under the condition (H2), it holds that

| A

tATN
E [/ / {(’AS|’B_2 |Cs 212) A (|As|ﬁ_1 |Cs z|)}uz‘*’°‘+(dz) ds} < 0.
0 Ro

v
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1t& formula for |z|”

Corollary 1

Suppose that a is monotonic and the conditions (H1) and (H2) hold.
Then, it holds that

Ef| Aty |’]

tATN
R [/ Bsgn(A,) AP A, ds]
0

tAT,
NoB B—2 12

tATN 8 C
—|—E[/ Ay (/ {1+ 5 2
(L | =

- 1-8 ZS z} V;“"O‘+(dz)> ds}

Proof. Direct consequences of Lemmas 2, 3 and 4.
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Case of a_ =

First, we shall prove the case of a_ = ay.

H T~ H o — o . L, 0,0
For simplicity, write a := a— = a4 and vy =V .

Lemma 7

Let By = B(a, p(0—)/p(0+)) as introduced in Lemma 1, and suppose that
p(0—) < p(0+). Then, for each B € (0, By), it holds that

Ky(pB) == 21;;0)/&) {|1 +kzf -1 —Bk‘z} vy (dz) < +oo.

Proof. From Lemma 1, we have
/ {|1 +kzf—1— Bk‘z} p(2) 2|7 tdz
Ro

—ko‘/RO{\l—i-y\ﬁ—l—By} p<%> ly| " tdy = —oc0 as k — +oo.
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Proof of our result (a_ = )

Theorem 1 (Case of a_ = ary)

Let o = oy =: o and p(0—) < p(0+4). Write 5y = B(c, p(0—)/p(0+))

as introduced in Lemma 1. Suppose that the coefficients a, b, ¢ satisfy
(i) a is decreasing;

(i) bis locally (2 — 3)/2-Hélder continuous with 3 € (0, SBo);

(iii) ¢ is increasing and locally (o — )/a-Holder continuous with
B € (0, fo)-
Then, the PU holds.

Proof. From Corollary 1 and Lemma 7,

tATN
Ellann, ) < K@ | [ 1A ],

and the required result follows from Gronwall's inequality. O
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Next, we shall prove the case of a— < a.

Lemma 8
Let o < ay. For B € (0, 1), it holds that

K5(B) := sup/ {|1 +kzf—1— 5kz} vy (dz) < +oo.
k>0 JR,

Proof. From Lemma 1, we have

/R {]1 +kzf—1- Bkz} vy~ (d2)
0

= [T a1 s0) o ()i

+ kY /_io {Il +ylf —1 *53/} p (%) lyl = "tdy

— —o0 ask — +oo. O
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Proof of our result (a_ < ay)

Theorem 2 (Case of a_ < ay)
Let «— < a4. Suppose that the coefficients a, b, ¢ satisfy
(i) a is decreasing;
(ii) b is locally (2 — 3)/2-Holder continuous with 8 € (0, 1);
(i) cis increasing and locally (a4 — ) /a-Hdlder continuous with
B e (0, 1).
Then, the PU holds.

Proof. From Corollary 1 and Lemma 8,

tATN
Ellann, ) < K@ | [ 18P ],

and the required result follows from Gronwall's inequality.

H. TSUKADA (Kyoto Univ.) Pathwise uniqueness of Lévy driven SDEs Nov. 20, 2018.



References

» Fournier, N. (2013). On pathwise uniqueness for stochastic differential equations driven
by stable Lévy processes. Ann. Inst. H. Poincaré Probab. Statist. 49(1): 138-159.

» Komatsu, T. (1982). On the pathwise uniqueness of solutions of one-dimensional
stochastic differential equations of jump type. Proc. Japan Acad. Ser. A Math. Sci.
58(8): 353-356.

> Li, Z., Mytnik, L. (2011). Strong solutions for stochastic differential equations with
jumps. Ann. Inst. H. Poincaré Probab. Statist. 47(4): 1055-1067.

» Situ, R. (2005). Theory of Stochastic Differential Equations with Jumps and Applications:
Mathematical and Analytical Techniques with Applications to Engineering. New York:
Springer.

» Takeuchi, T., Tsukada, H. Remark on pathwise uniqueness of stochastic differential

equations driven by Lévy processes. Stoch. Anal. Appl. to appear.

»> Yamada, T., Watanabe, S. (1972). On the uniqueness of solutions of stochastic
differential equations. J. Math. Kyoto Univ. 11(1): 155-167.

. TSUKADA (Kyoto Univ.) Pathwise uniqueness of Lévy driven SDEs Nov. 20, 2018. 27 / 28



Thank you for your attention.
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