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1. Introduction

Infinite dimensional stochastic differential equations (ISDEs)

{B'}cn are independent d-dimensional Brownian motions.
® = P(x) ; free potential.
¥ = Y(x,y) ; interaction potential.

We study ISDEs of X = (X');en € C([0, 0); (RY)M):

Infinite dimensional stochastic differential equation

g

dX{ = dB] — V. (X})dt - §ZVXW(XZ,X{)dt

JF#i
(X§)ien = s = (si)ien

Existence ( solutions, strong solutions)
Uniqueness (in distribution, pathwise)
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1. Introduction

Related results

1. Lang 1977,1978: W : smooth, with compact support
2. Fritz 1987: singular interaction

3. T. 1996, Fradon-Roelly-T. 2002: W : with hard core

4. Osada 2012: W : Ruelle’s class, logarithmic (Dyson, Ginibre)
Existence of solutions

5. Honda-Osada 2015 : logarithmic (Bessel)
Existence and uniqueness of solutions

6. Osada-T. (arXiv1408.0632): logarithmic (Airy)
Existence and uniqueness of solutions
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2. Preliminaries (Notations)
S : asubset of RY s.t. S is connected, Sipe = S, |0S| = 0.
SN the configuration space of labeled particles

The configuration space of unlabeled particles
M={=>64:x € S,6(K) < oo for VK: compact}

Mei = {£€M:E(S) =00,&({x}) <1for¥xe S}
label [:9M; — SN, [(EjeN 0g) = (Xj)jeN
unlabel  u: (¥)jen — > jen s

For k € N,

W(A) = C([0,00) — A), W,(A) ={w € C([0,0) — A) : w(0) = a}
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2. Preliminaries (ISDE1)

X: = (X{ )jGN SN- valued continuous process

—t = ZjeN 5x{' :<t>k = ZjeNJ;ék 5)({
Let H and Myqe be Borel subsets of M s.t.  H C Mge C M ;.

and put  H=1(H), Sue=1u" (M), Sk, = ! (Maae)

Let o : SHl — R, b:SI] — RY be Borel functions, x € H.

dX] = o(X, =) dBl + (X, =¥)dt

ty—t
X € W(Sue) (ISDE 1)
XO =X

Here B = (B)jen is a (RY)N-valued Brownian motion.
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2. Preliminaries (a solutions)

Definition (a solution of (ISDE1)

We call (X, B) a solution of (ISDE1) if (X, B) is SN x (RY)N-valued
process defined on (£, §, P) with a reference family {F:}¢>0 s.t.

(i) X is an §t-adapted continuous process.
(i) B is (RY)N-valued §;-Brownian motion with By = 0.

(ii)) o(XJ,=¥) and b(X{, =) are F,-adapted processes belonging to £2
and £?, respectively.

(iv) (X, B) satisfies for all t and for a.s. w
) . t i i i t : i
X = x +/ o(Xi,=%)dBl du +/ b(Xi,=%)du, jeN
0 0
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2. Preliminaries (a strong solution)

Definition

1. We call a solution (X, B) of (ISDE1) a strong solution if there exists a
function Fy : Wo((RY)N) — W(SN) such that X = Fy(B).

Fy is also called a strong solution.

(For any Brownian motion B, X = [Fx(B) is a solution of (ISDE1))

2. We call (ISDE1) has a unique strong solution if a strong solution Fy of
(ISDEL1) exists and any solution (X', B’) of (ISDE1) satisfies X' = Fx(B’).

3. We call the pathwise uniqueness of solutions for (ISDE1) holds if
X = X’ a.s. for any solutions X and X’ on the same probability space with
the same Brownian motion B.
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3. First tail theorem (Assumption (B1))

Assumption (B1)
(ISDE1) has a solution (X, B).

Let (X, B) be a solution of (ISDE1). For m € N we put

XM= (XY X2, X™), X™ = (xmtl xmt2

and

=™ =u(X™) = > oy
Jj=m+1
We define o : [0,00) x §™ — (RF)Y, b : [0,00) x ™ — (RI)N by

ox (t, (u,v)) = o(u,u(v) + =), bx(t, (u,v)) = b(u,u(v) + =)
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3. First tail theorem (SDE-m)

We consider the infinite system of finite dimensional SDEs (SDE-m)
associated with (ISDE1):

dthJ = U?(ty (thJy YT’JO))dB{* + b)T(ta (thJa YTJQ))dL

Y{ € Sgqe(t, X), for Vt >0, (SDE-m)
Yo =x" = (x1,x2,...,x™),
where
Ssde(t, X) = {x" € ST u(x") + =™ € Myge
and

YT = (ymb ym2 Lyt ymItL Ly mm)
for YT = (Ym1 ymz2  ymm)
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3. First tail theorem (Assumption (B2), IFC)

Assumption (B2)

For each m € N, (SDE-m) has a strong solution Y™, and the pathwise
uniqueness for solutions holds for each m € N.

Assume (B1) and (B2). Put
FM(B,X) = (Y™ X™) = (ymL . ymm xmtl xm+2
From the pathwise uniqueness of solution to (SDE-m) for each m

Facts

1. F™(B,X) = F™Y(B,X) VmeN,\Vi=1,2...,m.
2. (F°(B,X),B)=(X,B) P-as.

IFC (infinite system of finite-dimensional SDEs with consistency)
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3. First tail theorem (IFC solution)

Definition (IFC solution)
A probability measure Py on W(SN) x V@((Rd)N) is called an
(asymptotic) IFC solution for (ISDE1) if Ps satisfies
1. Px(B € -) = PZ(:) := the distribution of (R¥)N-valued BM
2. For Vj € N for Ps-a.s. (X,B)
lim FPI(X. B) = (X, B)

lim / ol (F™(X, B))udB{,:/.af(Ffo’f(X, B)).dB,

m—oo 0 0
lim /b"(F;"(x,B))udUZ/ b (F°(X,B)),du in W(RY),
where

Uj(x)t = J(Xi”i: —:-:J 3 bj(x)f = b(X#v E?J .
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3. First tail theorem (IFC solution)

Remark B
In the definition of IFC solution (X, B) under Ps is not always a solution of
(ISDE1). (X, B) is a solution, in case F°(X,B) = X,

Facts

3. Assume (B1) and (B2).

Let Py be the distribution of a solution of (ISDE1).
Then Py is an IFC solution for (ISDE1).

4. Assume (B2).
Let Px be an IFC solution for (ISDE1).
Then (F°(X,B), B) is a solution of (ISDE1) under Py.
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3. First tail theorem (Tail o-fields)
Tpath(SY) is the tail o-field of W defined by

%ath(SN) = U(Xm*)7 Where X = (Xi)ioim—i-l'

DL

m=1

For a probability measure P such that Zpam(SY) is P-trivial, that is,
P(A) € {0,1},VA € Tpan(SY),

we set

7

otn(S™ P) = {A € Tpoun(S™); P(A) = 1}.
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3. First tail theorem (Tail o-fields and measurability)
For the distribution Py of a solution of (ISDE1), put

Pxg(-) = Px(B)

Fact

5. The map A" is o(X™*) x IS’(WO((]R")I‘I)Px -measurable.

6. The map F° is ﬂ o(Xm*) x B( Wo((IRd)N)PX -measurable.
meN

7. The map FXX is ’Z;,ath(SN) *® _measurable for P(-)-as. B.

Hideki Tanemura (Keio Univ.) Uniqueness of solutions Probability Theory 15 / 61



3. First tail theorem (Theorem 1)

Py g(-) = Px(:|B) : the regular conditional probability.
Assumptions (B3) — (B5)

(B3) Zpath(SY) is Py g-trivial for P&~ a.s. B.

(B4) Z01,(5"; Pre) = 7]

path(SN;ﬁx,B) for Pg- as. B.

(85) 7!

path(SN;ﬁ&B) is independent of Py g for Pg- a.s. B.

Theorem 1 (First tail theorem)
1. (B1)—(B3) = (ISDE1) has a strong solution.

2. (B1)-(B4) = Strong solutions X and X’ satisfy X = X’ as.
3. (B1)—(B5) = (ISDEL1) has a unique strong solution.
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4. Second tail theorem (Tail o-field on 90t)

Unlabeled configuration space on S

M= {¢= dej 1 E(K) < oo VK : compact}
J

M is Polish with the vague topology. Set
Msi = {£€M:E(S) =00, s({x}) € {0,1}, Vx € S}.

Tale o-field 7(90t) on M is given by

where T£(§)(1) =&(-NSF), Sr={xeS:|x|<r}.
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4. Second tail theorem (Labeled map on the path space)
Labeled maps on 9t and W/(M;)
A map [: 9 — SN given as
((€) = x = (¥)jen, for & = D21 0s €M
is called a label. For a label [, we can deternine the map [,,:4
lpath : W(Msi) — W(SY)
such that
[(Z)o = Xo = (X)jen, for = =372, dxm € W(Ms3.)

For a prob. meas.

Py = [ (d€)Pe  on W(Msi) (e Pyo Eal =),
put
pl=pol™ Pu=P,ol},
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4. Second tail theorem (Theorem 2)

Assumptions (C1) — (C3)

(C1) T(9M) is pi-trivial.

(C2) P 0=t <, Vt€[0,T] (u-AC) : p-absolutely cont. cond.
(C3) Pu(NZ1{m/(X) <o0}) =1 (NBJ) : No big jump condition
where m,(X) =inf{me N: X[ € 57, Vt € [0, T], Vn > m}.

Theorem 2 (Second tail theorem)
Assume (B2). Suppose that there exists P, satisfying (C1) — (C3), and

Pu(F2(X,B) = X) = 1.

Then (B1) and (B3) — (B5) hold for p'-a.s. x.
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4. Second tail theorem (Outline of the proof Theorem 2)

Step I ~ Step 11 ~ Step 111
T(M) == Tparn(M) ——  Tpatn(S") ——  Tparn(S")
14 PH P#[ ﬁxB

Here, Tpan(9N) is the cylindrical tail o-field on W/(90) defined as

o0

Tan@) =\ (olE)1<i<n)

t=(t1,t2,...,tn),nEN r=1

and Z,.0n(SY) is the cylindrical tail o-field on W/(SY) defined as

o0

Toan(S) =\ [olXP1<i<nl.

t=(t1,t2,...,tn),nEN m=1
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5. Examples

1. Lennard-Jones 6-12 potential
d =3 and Vg 12(x) = {|x| 72 — |x|7°}.

- . B 12(X/ — X9  6(X] — Xk _
dXi = dB + 3 > A (jt k1f4) ( ks)}t (jeN)
kEN, k#j |Xt_Xt| |X X |

2. Riesz potentials
d <aeNand V,(x) = (5/a)|x| 2.

. : — Xk
dxi = dBl + _ %t g (jeN)
kE%#J |XJ Xk|a+2

Hideki Tanemura (Keio Univ.) Uniqueness of solutions Probability Theory 21 / 61



5. Examples

logarithmic potential W(x,y) = log |x — y|
3. Sine RPF: 8 =1,2,4, d =1.

; F 6] 1 .
J / —
dX! = dB] + Lllm {—2 § T Xk dt (jeN)
kj,|Xk|<L 77t t

4. Airy RPF : 3=1,2,4,d = 1.

N

' T 1 p(x)dx
J ) —
dX{ = dB; + Lllm { E P Xk /|X|<L — }dt

k#j|IXE|<L 7t

(eN)
where p(x) = 2\/=x1(x < 0) TH 3.
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5. Examples

3.3 Ginibre RPF : d = 2.
Xj _ Xk
dX) = dBl + Jlim. > ————dt (jeN)
e, it e X

dX!) = dB) — XJdt + |i 7)({ — Xt dt (jeN
¢ = dby — Xpdt + Ll—>ngo Z |Xj T XA (jeN)
k£j, | Xk|<L 17t t
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6. Condition (B1)

(B.1) (ISDE1) has a solution (X, B)

dxi = dBl — gvxcb(xf dt — = Zv w(x!, x{)dt (j € N)

k;éJ
(X)ien = (x')ien = x

(1) Construction of M-valued process =; = 3y dx; by Dirichlet form
(E*, DH) associated with a (¥, W)-quasi-Gibbs state . [Osada AOP
2013].

(2) Existence of solutions of (ISDE1) related to the logarithmic derivative
of the Campbell measure pl! of ;1 [Osada PTRF 2012].
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6. Condition (B1) (Quasi Gibbs state)
Hamiltonian for ®, W on S, = {x € RY : |x| < ¢}

Hi Q)= > o(x)+ > V(x,y),

x€supp¢NSy X,y €Esupp¢NSe,x£y

Definition(Quasi Gibbs state)
A RPF p is called a (¥, W)-quasi Gibbs state, if

e (d¢) = p(dClmse (&) = mse(€), C(Se) = m),
satisfies that for £, m, k € N, p-a.s. £
¢ te HOINP(dC) < pfe(rs, € dC) < ce”HONT(d()

where ¢ = ¢(¢,m,£) > 0 is a constant depending on ¢, m,§,
AJ" is the rest. of PRF with int. meas. dx on M} = {£(S¢) = m}.
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6. Condition (B1) (Polynomial functions)
A function f on 91 is called a polynomial function if it is represented as
f(f) =Q ((@175)7 <(p2a£>v SRR <¢fa§>)

with a polynomial function @ on R’, and smooth functions 0, 1< <Y,
with compact supports, where

(0.6) = | o(s(a).

We denote by P the set of all polynomial functions on 99t. A polynomial
function is local and smooth: 3K compact s.t.

(&) =f(mk(&)) and (&) = f(x1,...,xn) is smooth
where n = £(K) and 7k (€) is the restriction of £ on K.
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6. Condition (B1) (Square fields)

For f € P we introduce the square field on 91 defined by

D(f,g)(¢) = / (VL (€) - Vg (€).

For a RPF (a probability measure 1 on 90t), we introduce the bilinear form
on L?(u) defined by

EM(F.g) = /m D(f.g)(E)u(de), f,g € DI
DE={fePNL2(M,pu):| f|l1< oo}

where
| £ I3=1 F 22,y +E7(F.F).
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6. Condition (B1) (Systems of unlabeled particles)

We make assumptions on RPF g

(A1) pis a (®, W)-quasi Gibbs state, and ¢ : R — RU {co} and
V:RY x RY — RU {oo} satisfy

cldg(x) < d(x) < ¢ Do(x)

cMWo(x —y) S VY(x,y) < c Wo(x — y)

for some ¢ > 1 and locally bounded from below and lower semi-continuous
function ®g, Wo with {x € RY : Wy(x) = 0o} being compact.

Let k € N.
(A2) ) " n*u(om]) = / £(S)Ku(d€) < oo, Vr € N, Yk € N,
n=1 m
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6. Condition (B1) (Systems of unlabeled particles 2)

Proposition 1 (Osada 13)
Suppose that (A1) — (A2). Then

1. (E#, DY) is closable on L2(9, i), and the closure (£#,DH) is a
quasi-regular Dirichlet form.

2 The associated diffusion process (=¢,P¢) can be constructed and it
has 1 as a reversible probability measure.

Remark. In Osada[CMP 1996, AOP 2013], the set D%l of local smooth
functions are introduced and set

DE = {f e DN [2(M, p) o f |l1< oo}

Although P C DY, it give the same Dirichlet form (£, D). Osada-T.
[PJA 2014]
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6. Condition (B1) (Logarithmic derivative)

Definition (log derivative)
We call d* € LL _(R? x 9, ult) the logarithmic derivative of p if

/ d(x, ), ) (x, ) = — / V() (x, ),
RIxMm RIxM

is satisfied for ¢ € C°(RY) @ DIc.

Here ulkl, k € N is the Campbell measure of u:
MWAXB%:AMA&ﬁQMm A € B((RY)K), B € B(M).

and pix is the reduced Palm measure conditioned at x € (R9)¥

k
Hx = /’L( - Z(sxf
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6. Condition (B1) (ISDE representation)

Let X = [pan(Zt) = (X{)jeN- We make the following assumptions:
(A3) {X/} do not collide each other.

(A4) each particle X/ never explodes.

(A5) w has a logarithmic derivative d*.

Proposition 2 [Osada 2010, 2012]

Assume (A1)-(A5). Then there exists H C 91 such that u(H) = 1, and
for any ¢ € 'H, there exists (RY)N-valued continuous process X; = (X{)j’il

satisfying Xo = I({) = x = (Xj)fil and

. .1 .
dx! = dB] + Sd" (X{, > 5th)dt, jeN. (ISDE1)
k:kj
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6. Condition (B1) (Tagged particle processes)
Foré e Hlet [(§) =x= (xj)f’il, §™ =2 ismi10x

0. (= ]P)g) <~ (EH, D)

L (XL EF), P aiey) <= (e4", D)

2. ((X%,Z% ) ]P)((Xl,x2)7§2*)) = (EM[Z],'D“[Z])

m. ((XT,ET ),]P)((X17X2,“.,Xm)7£m*)) <~ (5”[m],’D“[ml)
We construct the sequence

{(X¢", Z) Fken

with the consistency : Vm € N

. L . _ _
XM =X =X, 1<j<m =M= Xm+1m+1+—m+1*

Then X; = (X}, X?,...) is a Dirichlet process.
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——
7. Condition (B3) — (Bb)
We check Assumptions in Theorem 2 (Second tail theorem):
Assumptions (C1) — (C3)
(C1) 7(9m) is p-trivial.
(C2)P,0o=1 <pu Vt€[0,T] (p-AC) : p-absolutely cont. cond.
(C3) P(NZ1{m(X) <oc}) =1 (NBJ): No big jump condition
where m,(X) =inf{me N: X[ € §¢, Vt € [0, T], Vn > m}.
Let (X, B) be a diffusion process constructed by Propositions 1 and 2.
1. (Z¢,P,) is reversible = (C2)
2. Lyons-Zheng decomposition = (C3)
If (C1) holds, (X, B) under Py satisfies (B3)-(B5) for u'-a.s. x.
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Lyons-Zheng decomposition
(zlm pli

(x, 5)) the process with reversible measure [

G(Z!™) . Dirichlet process

t
G(E) - 6EM) = mEIM, + /0 b(='"Yds Fukushima decomposition

For fixed T > 0, put = [m] = :[7'-771,:.

GE) - 6= = 6EF) - 6EF)

) ) Tt
= MEM)r = MEM) 7 +/ b(=725)ds

-
—[m —[m 1 =[m =[m =[m
6= - 6= = 5 {ME. + ME) -~ ME) |
Lyons-Zheng decomposition
Hideki Tanemura (Keio Univ.)
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7. Condition (B3) — (Bb)

Let 11, be a regular conditional probability measure by the tail o-field
defined by

i = w7 (9)(a).
Note that s is quasi-Gibbs state implies u%,; is quasi-Gibbs state.

i can be decomposed as u(-) = / 1 () p(da).
m

. 1,y satisfies (C1).

. p satisfies (A1)—(A5) = Y, satisfies (A1)—(AS5), p-as. a.
(Zt,Pla) is reversible = (C2)

. Lyons-Zheng decomposition = (C3)

A W N -

(X, B) under P¢ satisfies (B3)-(B5) for u.; o [Tl-ass. x.
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8. Condition (B2)

Assumption (B2)

For each m € N, (SDE-m) has a strong solution Y™ = F’(X, B), and the
pathwise uniqueness for solutions holds for each m € N.

dY{™ = dB} + bg(t, (Y™, Y7 dt,
Y{ € Seae(t, X), for Vt >0,

Yo =x"=(x, %%, ... x™),

(SDE-m)
Where b : [0,00) x S™ — (RN by
by (t, (u,v)) = b(u,u(v) + =7).
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8. Condition (B2) : Prelimiaries

Let a = {ak }ken be a sequence of increasing sequence ax = {ax(r)}ren
such that ax(r) < ax+1(r), k,r € N. We introduce a compact subset of
M defined by

Rlak] ={£ € M : £(Sr) < ak(r), Vr € N} compact

and put

A= flad.

keN

We take a sequence such that p(R) = 1. If u is translation invariant, we
can take ax(r) = kre.

We set a (r) = ax(r + 1) and a* = {a] }xen
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8. Condition (B2) : Prelimiaries
For m e N let MM = {(x,£) € S™ x M : u(x) + £ € M.}

Hlalp.gx = {(x,g) e x e S7.¢ € Aa]]

inf|x —xK|>27P  inf ¥ —y|> 2_p}
J#k J:yE€supp &
Hlalgr = |J 9lalpar  9lalk = | lalex $la] = | 9lalk
peN geN keN

Facts
Suppose (A1) and (A2)

1. CapH(&[a™]¢) =0.
2. Cap“[m] (9[a]¢) = 0 for each m € N.
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8. Condition (B2) : Preliminaries

Put x = (x!,x2,...,x™)

bm(X7£) = b(X17Z(SxJ +£)
j=2

and let b™(x, ¢) be a quasi-continuous version of b™(x, ). Put

N = {(p,q,k),(q,k),k: p,q,k € N}.

Let {Tn(m)}men be an increase sequence of closed sets in S™ x 9 such
that, for any n € N,

Ja(m) CJn(m+1) ¥YmeN

and

Cap"™ (| a(m))) = 0.

meN
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8. Condition (B2) : Prelimiaries

Let ¢ = c(m, n) be constants such that 0 < ¢ < co and that

L bm(x.)

x = x|

(6 6) o () x #
(x.€). (X €) € Hlala O rfn(m)},

where (x,&) ~n (x',£) means x and x’ are in the same connected
component of {y € S : (y,¢) € H[a]n}

(E) For each m € N there exists a quasi-continuous version b™ of

b™(x,€) = b(x', 37, +€) and {Jn(m)} such that c(m,n) < oo for each
me NandneN.
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8. Condition (B2)

We put Cma(X™, Z0M) = inf{t > 0 : (X, =) ¢ H]a], N Tn(m)}.

Lemma 8.1
Assume (A1) — (A5), (E). Then (B2) holds.

Mollifier (introduced in Osada 1996)

For each m € N, there exists a function x,, n € N satisfying the following
conditions

L xn(x,8) =0, (x,€) ¢ Hlaln+1-

2. x(x,8) =1, (x¢) € Hlala.

3.0 < xn(x,€) <1, [Vixa(x, €)> < 3¢, Dlxn, xn] <3¢,
4. xn € pH™,
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8. Condition (B2)

Let I ={j=(rjo,- . J))":0<ji <l > ji=1}
al i=1

Set 9= o forjc JN 1 € N 9; = identity for j € JIOL.

For any ¢ € N we introduce the following

(F1) For each j € U_o I, xn8ib e DH" forallne N

(F2) For each j € JI, there exists hj € C(S?\ {x,y}) such that

L ajb(X7€) = kazl Zy€supp I3 hj(xk7y) for (X7§) S fj[a]'

2 Py Yy conpp ¢ |06 Y] - (x,€) € Hlala} < oo for each
n e N.

Lemma 8.2
Assume there exists ¢ € N such that (F1) and (F2) holds. Then (E) holds.
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(Examples)
We can check (F1) and (F2) for the following examples:

1. Lennard-Jones 6-12 potential  ((F1),(F2) holds with £ =1.)
d =3 and Vg 12(x) = {|x| 712 — |x|7°}.

B 12(X/ — x4y 6(X{ — ,
dX{=dBl+5 > { ; k1f4) ( ks)}t (j € N)
keN, k#j |X Xt | |X X |

2. Riesz potentials  ((F1),(F2) holds with £ =1.)
d <aeNand V,(x) = (8/a)x]| 2.

. ) XJ _ xk
daxi — gl + 0 Y T gt (jeN)
|XJ _ Xk|a+2
keN,k#j 1\t t
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(Examples)

logarithmic potential W(x,y) = log |x — y|

3. Sine RPF: g =1,2,4. ((F1),(F2) holds with £ =1.)

) /
dXi = dBy LII—>“ool { 2 Z Vi X_k dt (j e N)
k;ﬁj,|th\<L t t

4. Airy RPF: p=1,2,4. ((F1),(F2) holds with £ =1.)

, . 1 5
dx! = dB! + lim {@ 3 - _/ p(X)dx}dt
o 2 e X XE et X

(U eN)
ZITH(x)=1/=x1(x<0) TH3.
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(Examples)

3.3 Ginibre RPF  ((F1),(F2) holds with ¢ =2.)
; ; XJ — Xk
i JBl 4 i t t ,
dX; = dB; + Lll_r)noo E ————dt (jeN)

_ Xj —_ Xk|2
i, xdxt< X X

j Y : X — Xk :
dXt = dBt — Xtdt + Lll—>ngo Z mdt (_j (S N)
k#j, [XEl<L T
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Relations of results

Junique strong solution < (B1) ~ (B5) : First tail theorem
(B1) <= (A1) ~ (A5) : Proposition 1 4+ Proposition 2

(B2) <= (A1) ~ (A5) + (E) : Lemma 8.1
<= (A1) ~ (A5) + (F1),(F2) : Lemma 8.2

(B3) ~ (B5) < (B2) + (C1) ~ (C3) : Second tail theorem
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9. Applications : preliminaries
Let S, = {x € R : x| < r} and
={eMm; &S,)=m}, r,meNlN.
mr(§) = £(- N S) and w7 (€) = £(- N S7).
For £ € MM, x™(&) = (x}(&),...,xM(€)) € S™ is called a S™-coordinate
of & if m(§) = 211, S.d(e)
For f: 9 — R, a function £7(-) : 9 x 57 — R is called the

S/"-representation for f if f’"( ) satisfies the following :

(1) f”é is a permutation invariant function on S/ for each & € 9.

(2) 70y (x) = 7o) (x) i w7 (€(1)) = 77 (£(2)), £(1),£(2) € M.
(3) £ (x7(€)) = f(ﬁ) for £ € M.

(4) £7(x) = O for € ¢ M.

Note that £7(-) is determined uniquely and f(&§) = 3770 o £ (x](£))-
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9. Applications : preliminaries

We set
B,(9) ={f : M — R: fis o(n,)-measurable}

Boo(90) = U B,(91), the set of local functions

r=1

When f € B,(9), S/ -representation for f is independent of &.
We introduce the set of local smooth functions defined by

D¢ = {f € Boo(M) : f,"s are smooth on S for all m,r € N,{ € 9 },

Note that D'%¢ ¢ C(9M) and D% is dense in L2(IM, 1), for a Borel
measure p on M.
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9. Applications : Bilinear forms

For f,g € D%, m,r € N we set

D[f, gl(€) = ZVX, re(x7(€)) - Vigle(x(€)), € € MY,
DT[fag](g):Ov £¢9ﬁr )

Here £ = Z Ox;» VX,_(axl””"aiid)'

Note that DJ"[f, g] is independent of the choice of S/"-coordinate xJ"(§)
and well-defined. We put

o0

D/[f,g] =Y DJIf,gl, &ecm

m=1
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9. Applications : Dirichlet forms

Let i be a probability measure on 2. We define bilinear forms on DL%C :
ern(f.g) = | DPIFle)dn,
m
er(f.e) = | DiIFgl(e)an

Let (€%, D5) be a bilinear form on L2(91, 1) with domain D4 defined by

DE = {f € DN L2(M, ) ; EX(F, F) < oo},

EX(F,f) =sup&EX(F,f) = lim EX(F,T).
reN r—oo

We make the following assumption:

(E-™ DEY is closable on L2(9M, i) for each m,r € N (CL)
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9. Applications : Lemmas

Lemma 1 [Osada 1996, Lemmas 2.1-2.2, Theorem 2]

Under the assumption (CL)

(1) (&, D5 N B,(M)) and (EF,DE) are closable on L2(9M, 1) for each r.
Let (£4P", D;P") be the closure of (£#, D5 N B,(IM)),
and (&M DI"r) be the closures of and (EF, Db)

(2) (E*,D5) is closable on L?(IM, 1).
Let (£UP", DUP") be the closure of (EX, D).

(3) {(EMr, DM}, cn is increasing and {(E4P", D/P")} e is decreasing.
Let (£, D) be the Dirichlet form

DM = {f € (D} lim EM(f,f) < oo},
r>0

EM(F,F) = lim EM(f,f), feD".
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9. Applications : Lemmas

Let G (a), G (), G'P () and G“P"(a) be resolvents of (£ DIvr),
(EMvr DMWY, (£4Pr DP") and (£YPT, DUP") on L%(IM, ), respectively.

Lemma 2 [Osada 1996, Lemma 2.1.]
(1) G (a) converges to G™(«) strongly in L2(9M, 11) for all o > 0.

(2) G/P"(a) converges to GUP(«a) strongly in L2(90, ) for all a > 0.
It is clear that (EUYP", DUPT) > (EMr, D), iLe.
DY D™ and  EW(f,f) > EM(F,f), feD
Problem: When does the following hold?
(guPr DTy — (gl DI,

This is not true in general. So we look for a sufficient condition.
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9. Applications : About (£, D).

Remind that
1. Definition:

DY = {f € (DM lim EM(f,f) < oo},
r—oo

r>0
EMI(F F) = lim EM(f,f), feD".
r—o0

2. (EMr DM is closed on L2(9M, ;1) and
G () — G™ () strongly in L2(9M, 1), Ya > 0.
3. (EYPr, DUPTY > (EM DMWY, that s,

DU DM and  EYPT(f,f) > EM(F,f), f e DU
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9. Applications : Dirichlet form (£*,D™).
Put

Dt = {f € (M, p) : IF € 2(RY x M) s.t.

B / F(3x + ) {d*(x,m)o(x, 1) + Vo (x, 1) Y (x, 1)
R9 xM

= [ Flemelemdilin ), v € CX(R) ®DL%C}.
R xM

Let us denote ' by D,f and set

1
Ef(f.g) = —/ Dif(x,n) - Dxg(x,n)dult(x,n), f,g € D*.
RIx9M

2
Under (A1), we see that (€M7, D) = (&+, D).
Remark. (£7,D™) is not alway quasi regular.
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9. Applications : Process associated with (£, D/"r)

X7 : the labeled process associated with the quasi-regular Dirichlet form
((c/’lwr Dlwr).

X7 describe the system of interacting Brownian motions in which

1. each particle in S, at time 0 moves in S, and when it hits the
boundary 0S,, it reflects and enters the domain S, immediately,
2. the particles out of S, stay the initial positions forever.

We denote by ;"¢ the regular conditional distribution defined by

pEC) = uClo(rp))(E)  peas. &

Remind that ;"¢ is a probability measure on

Mg ={neM:xr(n) =7 (£}

Then for p-a.s. £, the diffusion process X starting from £ is associated
with the Dirichret form (Eﬁr’g’lwr,D’r‘r’f’lwr).
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9. Applications : SDE for X’

We see that the system of infinite number of particles, in which only finite
number of particles move, satisfies the following SDE: for u- a.s. £

1 rJj rJ rJ .

S0 [ XD 0y | dt T (X)dLY, 1< < (S)
k#j

X =Xg, J=6(S)+1LE(S)+2,. .,

X6 =X= (XJ')J.GNa

dX{’ = dB] +

where Lg‘/, Jj=1,2,...,&(S,) are non-decreasing function satisfying

. t . .
L = / 15, (X9)dLLY,
0

and n"(x) is the inward normal unit vectors at x € 95,.
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9. Applications : Assumption (A6)

(A6) There exist bg, 5, , € Co(RY x M), s1, 5, p € N, such that for

p-a.s. &
lim lim lim  su - 1=0
5]—00 $p—00 p—00 r251+52+1 H 51752’P H[_l(Rde ey &l ]) >

for each R € N, where ;"¢ is the 1-Campbell measure of ;"¢
p &M (dxdn) = 1s,(x)p S (x)ug(dn)dx,  (x,m) € RY x 9.

and
) () = "B ) 1 S x )
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Theorem 3 [Kawamoto-Osada-T.]

Assume that (A1)-(A6) hold. Then {X"},en is tight in W((R)N), and
limit point X = (X7)jen of {X"},cn is a solution of the (ISDE1) :

. 1 .
dXi = dB! + Sd" (X{, > 6th)dt, jeN.
k:kj
with conditions (C2) and (C3):
(C2) (u-AC) p¢ < pfor all t >0, where piy = P (de{ € ) :
JjeN

(C3) (NBJ) foreach r, T € N,

P(ﬂ{i eN: X/ €S, forsome t € [0, T]} < oo) =1.
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Uniqueness theorem

Theorem [Osada-T ]
Assume that (A6) hold. Then solutions of the (ISDE1) :

. .1 :
dX! = dB! + Sd (X{, > 5th)dt, jeN.
k:kj

with conditions (C2), (C3) and (B2) are pathwise unique.

Theorem 2 [Kawamoto-Osada-T.]
Assume that (A1)-(A6) and (B2) hold. Then

(5upr’Dupr) — (glwr’Dlwr) — (5+,D+).
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-_—
(F1) and (F2)

d
Let J[l]:{j:(jlvj27"'7j[)m:Ogji§£7 Z./l:l}
i=1

/
Set 9= % forje JN 1 € N 9; = identity for j € JIOL.

For any ¢ € N we introduce the following
(F1) For each j € UfZOJ[/], xnOjb € DH™ for all n € N

(F2) For each j € JI, there exists hj € C(S?\ {x,y}) such that

L 8jb(X7€) = kazl ZyEsupp I3 hj(xk7y) for (X7§) € ,6[3],

2 Py Yy coupp ¢ |06 Y] - (x,€) € Hlala} < oo for each
n e N.
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Thank you for your attention




