Uniqueness of solutions of infinite dimensional stochastic differential equations

Hideki Tanemura (Keio University)

Stochastic Analysis and Related Topics (November 20th-21th 2018, Okayama)

Outline

- 1. Introduction.
- 2. Preliminaries.
- 3. Theorem 1 (First tail theorem).
- 4. Theorem 2 (Second tail theorem).
- 5. Examples.
- 6. Condition (B1).
- 7. Condition (B3).
- 8. Condition (B2).
- 9. Applications
 - 1 Osada, Tanemura : Infinite-dimensional stochastic differential equations and Tail σ -fields. arXiv:1412.8672v4
 - 2 Kawamoto, Osada, Tanemura : Uniqueness of Dirichlet forms related to infinite systems of interacting Brownian motions. arXiv:1711.07796

1. Introduction

Infinite dimensional stochastic differential equations (ISDEs)

 $\{B^i\}_{i\in\mathbb{N}}$ are independent *d*-dimensional Brownian motions. $\Phi = \Phi(x)$; free potential.

 $\Psi = \Psi(x, y)$; interaction potential.

We study ISDEs of $\mathbf{X} = (X^i)_{i \in \mathbb{N}} \in C([0, \infty); (\mathbb{R}^d)^{\mathbb{N}})$:

Infinite dimensional stochastic differential equation

$$dX_t^i = dB_t^i - \frac{\beta}{2} \nabla_x \Phi(X_t^i) dt - \frac{\beta}{2} \sum_{j \neq i}^{\infty} \nabla_x \Psi(X_t^i, X_t^j) dt$$
$$(X_0^i)_{i \in \mathbb{N}} = \mathbf{s} = (s_i)_{i \in \mathbb{N}}$$

Existence (solutions, strong solutions) Uniqueness (in distribution, pathwise)

Hideki Tanemura (Keio Univ.)

1. Introduction

Related results

- 1. Lang 1977,1978: Ψ : smooth, with compact support
- 2. Fritz 1987: singular interaction
- 3. T. 1996, Fradon-Roelly-T. 2002: Ψ : with hard core
- 4. Osada 2012: Ψ : Ruelle's class, logarithmic (Dyson, Ginibre) Existence of solutions
- 5. Honda-Osada 2015 : logarithmic (Bessel) Existence and uniqueness of solutions
- 6. Osada-T. (arXiv1408.0632): logarithmic (Airy) Existence and uniqueness of solutions

2. Preliminaries (Notations)

S : a subset of \mathbb{R}^d s.t. S_{int} is connected, $\overline{S_{\text{int}}} = S$, $|\partial S| = 0$.

 $S^{\mathbb{N}}$: the configuration space of labeled particles

The configuration space of unlabeled particles $\mathfrak{M} = \{\xi = \sum \delta_{x^j}; x^j \in S, \xi(K) < \infty \text{ for } \forall K: \text{ compact}\}$

 $\mathfrak{M}_{\mathrm{s.i.}} = \{\xi \in \mathfrak{M} : \xi(S) = \infty, \xi(\{x\}) \leq 1 \text{ for } \forall x \in S \}$

 $\text{label} \quad \mathfrak{l}:\mathfrak{M}_{\mathrm{s.i.}}\to \mathcal{S}^{\mathbb{N}}, \qquad \mathfrak{l}(\sum_{j\in\mathbb{N}}\delta_{x^j})=(x^j)_{j\in\mathbb{N}}$

unlabel $\mathfrak{u}: (x^j)_{j \in \mathbb{N}} \to \sum_{j \in \mathbb{N}} \delta_{x^j}$

For $k \in \mathbb{N}$, $\mathfrak{l}_{[k]} : \mathfrak{M}_{\mathrm{s.i.}} \to S^k \times \mathfrak{M}_{\mathrm{s.i.}}$, $\mathfrak{l}_{[k]}(\sum_{j \in \mathbb{N}} \delta_{x^j}) = (x^1, \dots, x^k, \sum_{j > k} \delta_{x^j})$ $W(\mathcal{A}) = C([0, \infty) \to \mathcal{A}), W_a(\mathcal{A}) = \{w \in C([0, \infty) \to \mathcal{A}) : w(0) = a\}$

2. Preliminaries (ISDE1)

 $\mathbf{X}_t = (X^j_t)_{j \in \mathbb{N}}$: $S^{\mathbb{N}}$ - valued continuous process

$$\Xi_t = \sum_{j \in \mathbb{N}} \delta_{X_t^j}, \qquad \Xi_t^{\diamond k} = \sum_{j \in \mathbb{N}, j \neq k} \delta_{X_t^j}$$

 $\begin{array}{lll} \text{Let }\mathcal{H} \text{ and }\mathfrak{M}_{\mathrm{sde}} \text{ be Borel subsets of }\mathfrak{M} \text{ s.t.} & \mathcal{H} \subset \mathfrak{M}_{\mathrm{sde}} \subset \mathfrak{M}_{s.i.} \\ \text{and put} & \textbf{H} = \mathfrak{l}(\mathcal{H}), \quad \textbf{S}_{\mathrm{sde}} = \mathfrak{u}^{-1}(\mathfrak{M}_{\mathrm{sde}}), \quad \textbf{S}_{\mathrm{sde}}^{[1]} = \mathfrak{u}_{[1]}^{-1}(\mathfrak{M}_{\mathrm{sde}}) \end{array}$

 $\text{Let } \sigma: \mathbf{S}^{[1]}_{\text{sde}} \to \mathbb{R}^{d^2} \text{, } \ b: \mathbf{S}^{[1]}_{\text{sde}} \to \mathbb{R}^d \ \text{ be Borel functions, } \quad \mathbf{x} \in \mathbf{H}.$

$$\begin{split} dX_t^j &= \sigma(X_t^j, \Xi_t^{\diamond j}) dB_t^j + b(X_t^j, \Xi_t^{\diamond j}) dt \\ \mathbf{X} &\in W(\mathbf{S}_{sde}) \\ \mathbf{X}_0 &= \mathbf{x} \end{split} \tag{ISDE 1}$$

Here $\mathbf{B} = (B^j)_{j \in \mathbb{N}}$ is a $(\mathbb{R}^d)^{\mathbb{N}}$ -valued Brownian motion.

2. Preliminaries (a solutions)

Definition (a solution of (ISDE1)

We call (\mathbf{X}, \mathbf{B}) a solution of (ISDE1) if (\mathbf{X}, \mathbf{B}) is $S^{\mathbb{N}} \times (\mathbb{R}^d)^{\mathbb{N}}$ -valued process defined on $(\Omega, \mathfrak{F}, P)$ with a reference family $\{\mathfrak{F}_t\}_{t\geq 0}$ s.t.

(i) **X** is an \mathfrak{F}_t -adapted continuous process.

(ii) **B** is $(\mathbb{R}^d)^{\mathbb{N}}$ -valued \mathfrak{F}_t -Brownian motion with **B**₀ = **0**.

(iii) $\sigma(X_t^j, \Xi_t^{\diamond j})$ and $b(X_t^j, \Xi_t^{\diamond j})$ are \mathfrak{F}_t -adapted processes belonging to \mathcal{L}^2 and \mathcal{L}^2 , respectively.

(iv) (\mathbf{X}, \mathbf{B}) satisfies for all t and for a.s. ω

$$X_t^j = x^j + \int_0^t \sigma(X_u^j, \Xi_u^{\diamond j}) dB_u^j du + \int_0^t b(X_u^j, \Xi_u^{\diamond j}) du, \quad j \in \mathbb{N}$$

2. Preliminaries (a strong solution)

Definition

1. We call a solution (\mathbf{X}, \mathbf{B}) of (ISDE1) a strong solution if there exists a function $\mathbb{F}_{\mathbf{x}} : W_0((\mathbb{R}^d)^{\mathbb{N}}) \to W(S^{\mathbb{N}})$ such that $\mathbf{X} = \mathbb{F}_{\mathbf{x}}(\mathbf{B})$. $\mathbb{F}_{\mathbf{x}}$ is also called a strong solution. (For any Brownian motion $\mathbf{B}, \mathbf{X} = \mathbb{F}_{\mathbf{x}}(\mathbf{B})$ is a solution of (ISDE1))

2. We call (ISDE1) has a unique strong solution if a strong solution \mathbb{F}_x of (ISDE1) exists and any solution $(\mathbf{X}', \mathbf{B}')$ of (ISDE1) satisfies $\mathbf{X}' = \mathbb{F}_x(\mathbf{B}')$.

3. We call the pathwise uniqueness of solutions for (ISDE1) holds if $\mathbf{X} = \mathbf{X}'$ a.s. for any solutions \mathbf{X} and \mathbf{X}' on the same probability space with the same Brownian motion \mathbf{B} .

3. First tail theorem (Assumption (B1))

Assumption (B1) (ISDE1) has a solution (X, B).

Let (\mathbf{X}, \mathbf{B}) be a solution of (ISDE1). For $m \in \mathbb{N}$ we put

$$\mathbf{X}^m = (X^1, X^2, \dots, X^m), \quad \mathbf{X}^{m*} = (X^{m+1}, X^{m+2}, \dots).$$

and

$$\Xi^{m*} = \mathfrak{u}(\mathbf{X}^{m*}) = \sum_{j=m+1}^{\infty} \delta_{X^j}$$

We define $\sigma_{\mathbf{X}}^m : [0,\infty) \times S^m \to (\mathbb{R}^{d^2})^{\mathbb{N}}$, $b_{\mathbf{X}}^m : [0,\infty) \times S^m \to (\mathbb{R}^d)^{\mathbb{N}}$ by

 $\sigma_{\mathbf{X}}^{m}(t,(u,\mathbf{v})) = \sigma(u,\mathfrak{u}(\mathbf{v}) + \Xi_{t}^{m*}), \ b_{\mathbf{X}}^{m}(t,(u,\mathbf{v})) = b(u,\mathfrak{u}(\mathbf{v}) + \Xi_{t}^{m*})$

3. First tail theorem (SDE-*m*)

We consider the infinite system of finite dimensional SDEs (SDE-m) associated with (ISDE1):

$$\begin{aligned} dY_t^{m,j} &= \sigma_{\mathbf{X}}^m(t, (Y_t^{m,j}, \mathbf{Y}_t^{m,j\diamond})) dB_t^j + b_{\mathbf{X}}^m(t, (Y_t^{m,j}, \mathbf{Y}_t^{m,j\diamond})) dt, \\ \mathbf{Y}_t^m &\in \mathbf{S}_{sde}(t, \mathbf{X}), \quad \text{for } \forall t \ge 0, \end{aligned} \tag{SDE-m} \\ \mathbf{Y}_0^m &= \mathbf{x}^m = (x^1, x^2, \dots, x^m), \end{aligned}$$

where

$$\mathbf{S}_{ ext{sde}}(t,\mathbf{X}) = \{\mathbf{x}^m \in \mathcal{S}^m: \mathfrak{u}(\mathbf{x}^m) + \Xi^{m*}_t \in \mathfrak{M}_{ ext{sde}}\}$$

and

$$\mathbf{Y}^{m,j\diamond} = (Y^{m,1}, Y^{m,2}, \dots, Y^{m,j-1}, Y^{m,j+1}, \dots, Y^{m,m})$$
for $\mathbf{Y}^m = (Y^{m,1}, Y^{m,2}, \dots, Y^{m,m}).$

3. First tail theorem (Assumption (B2), IFC)

Assumption (B2)

For each $m \in \mathbb{N}$, (SDE-*m*) has a strong solution \mathbf{Y}^m , and the pathwise uniqueness for solutions holds for each $m \in \mathbb{N}$.

Assume (B1) and (B2). Put

$$F_{\mathbf{x}}^{m}(\mathbf{B},\mathbf{X}) = (\mathbf{Y}^{m},\mathbf{X}^{m*}) = (Y^{m,1},\ldots,Y^{m,m},X^{m+1},X^{m+2},\ldots).$$

From the pathwise uniqueness of solution to (SDE-m) for each m

Facts

1.
$$F_{\mathbf{x}}^{m,i}(\mathbf{B},\mathbf{X}) = F_{\mathbf{x}}^{m+1,i}(\mathbf{B},\mathbf{X}) \quad \forall m \in \mathbb{N}, \forall i = 1, 2, ..., m.$$

2. $(F_{\mathbf{x}}^{\infty}(\mathbf{B},\mathbf{X}),\mathbf{B}) = (\mathbf{X},\mathbf{B}) \quad P\text{-a.s.}$

IFC (infinite system of finite-dimensional SDEs with consistency)

3. First tail theorem (IFC solution)

Definition (IFC solution)

A probability measure $\overline{P}_{\mathbf{x}}$ on $W(S^{\mathbb{N}}) \times W_{\mathbf{0}}((\mathbb{R}^d)^{\mathbb{N}})$ is called an (asymptotic) IFC solution for (ISDE1) if $\overline{P}_{\mathbf{s}}$ satisfies

1.
$$\overline{P}_{\mathsf{x}}(\mathsf{B} \in \cdot) = P^{\infty}_{Br}(\cdot) :=$$
 the distribution of $(\mathbb{R}^d)^{\mathbb{N}}$ -valued BM

2. For
$$\forall j \in \mathbb{N}$$
 for $\overline{P}_{\mathbf{x}}$ -a.s. (\mathbf{X}, \mathbf{B})

$$\lim_{m \to \infty} F_{\mathbf{x}}^{m,j}(\mathbf{X}, \mathbf{B}) = F_{\mathbf{x}}^{\infty,j}(\mathbf{X}, \mathbf{B})$$

$$\lim_{m \to \infty} \int_{0}^{\cdot} \sigma^{j} (F_{\mathbf{x}}^{m,j}(\mathbf{X}, \mathbf{B}))_{u} dB_{u}^{j} = \int_{0}^{\cdot} \sigma^{j} (F_{\mathbf{x}}^{\infty,j}(\mathbf{X}, \mathbf{B}))_{u} dB_{u}^{j}$$

$$\lim_{m \to \infty} \int_{0}^{\cdot} b^{i} (F_{\mathbf{x}}^{m}(\mathbf{X}, \mathbf{B}))_{u} du = \int_{0}^{\cdot} b^{i} (F_{\mathbf{x}}^{\infty}(\mathbf{X}, \mathbf{B}))_{u} du \quad \text{in } W(\mathbb{R}^{d}),$$
where

$$\sigma^j(\mathbf{X})_t = \sigma(X_t^j, \Xi_t^{\diamond j}), \qquad b^j(\mathbf{X})_t = b(X_t^j, \Xi_t^{\diamond j}).$$

3. First tail theorem (IFC solution)

Remark

In the definition of IFC solution (\mathbf{X}, \mathbf{B}) under \overline{P}_s is not always a solution of (ISDE1). (\mathbf{X}, \mathbf{B}) is a solution, in case $F_{\mathbf{x}}^{\infty}(\mathbf{X}, \mathbf{B}) = \mathbf{X}$,

Facts

3. Assume **(B1)** and **(B2)**. Let \overline{P}_x be the distribution of a solution of (ISDE1). Then \overline{P}_x is an IFC solution for (ISDE1).

4. Assume **(B2)**. Let $\overline{P}_{\mathbf{x}}$ be an IFC solution for (ISDE1). Then $(F_{\mathbf{x}}^{\infty}(\mathbf{X}, \mathbf{B}), \mathbf{B})$ is a solution of (ISDE1) under $\overline{P}_{\mathbf{x}}$. 3. First tail theorem (Tail σ -fields)

 $\mathcal{T}_{\textit{path}}(S^{\mathbb{N}})$ is the tail σ -field of ${f W}$ defined by

$$\mathcal{T}_{path}(S^{\mathbb{N}}) = \bigcap_{m=1}^{\infty} \sigma(\mathbf{X}^{m*}), \text{ where } \mathbf{X}^{m*} = (X^i)_{i=m+1}^{\infty}.$$

For a probability measure P such that $\mathcal{T}_{path}(S^{\mathbb{N}})$ is P-trivial, that is,

$$P(A) \in \{0,1\}, orall A \in \mathcal{T}_{path}(S^{\mathbb{N}})$$
,

we set

$$\mathcal{T}^{[1]}_{path}(S^{\mathbb{N}}; P) = \{A \in \mathcal{T}_{path}(S^{\mathbb{N}}); P(A) = 1\}.$$

3. First tail theorem (Tail σ -fields and measurability) For the distribution \overline{P}_x of a solution of (ISDE1), put

$$\overline{P}_{\mathbf{x}.\mathbf{B}}(\cdot) = \overline{P}_{\mathbf{x}}(\cdot|\mathbf{B})$$

Fact

5. The map
$$F_{\mathbf{x}}^{m}$$
 is $\overline{\sigma(\mathbf{X}^{m*}) \times \mathcal{B}(W_{0}((\mathbb{R}^{d})^{\mathbb{N}}))^{\overline{P}_{\mathbf{x}}}}$ -measurable.
6. The map $F_{\mathbf{x}}^{\infty}$ is $\bigcap_{m \in \mathbb{N}} \overline{\sigma(\mathbf{X}^{m*}) \times \mathcal{B}(W_{0}((\mathbb{R}^{d})^{\mathbb{N}}))^{\overline{P}_{\mathbf{x}}}}$ -measurable.
7. The map $F_{\mathbf{x}}^{\infty}$ is $\overline{\mathcal{T}_{path}(S^{\mathbb{N}})}^{\overline{P}_{\mathbf{x},\mathbf{B}}}$ -measurable for $P_{Br}^{\infty}(\cdot)$ -a.s. **B**.

3. First tail theorem (Theorem 1)

 $\overline{P}_{\mathbf{x},\mathbf{B}}(\cdot) = \overline{P}_{\mathbf{x}}(\cdot|\mathbf{B})$: the regular conditional probability.

Assumptions (B3) – (B5)

(B3) $\mathcal{T}_{path}(S^{\mathbb{N}})$ is $\overline{P}_{\mathbf{x},\mathbf{B}}$ -trivial for P_{Br}^{∞} - a.s. **B**.

(B4)
$$\mathcal{T}^{[1]}_{path}(S^{\mathbb{N}}; \overline{P}_{\mathbf{x}, \mathbf{B}}) = \mathcal{T}^{[1]}_{path}(S^{\mathbb{N}}; \overline{P'}_{\mathbf{x}, \mathbf{B}})$$
 for P^{∞}_{Br} - a.s. **B**.

(B5) $\mathcal{T}_{path}^{[1]}(S^{\mathbb{N}}; \overline{P}_{\mathbf{x}, \mathbf{B}})$ is independent of $\overline{P}_{\mathbf{x}, \mathbf{B}}$ for P_{Br}^{∞} - a.s. **B**.

Theorem 1 (First tail theorem)

- 1. **(B1)–(B3)** \Rightarrow (ISDE1) has a strong solution.
- 2. (B1)–(B4) \Rightarrow Strong solutions X and X' satisfy X = X' a.s.
- 3. **(B1)–(B5)** \Rightarrow (ISDE1) has a unique strong solution.

4. Second tail theorem (Tail σ -field on \mathfrak{M})

Unlabeled configuration space on S

$$\mathfrak{M} = \{\xi = \sum_{j} \delta_{x_{j}} : \xi(K) < \infty \quad \forall K : \textit{compact}\}$$

 ${\mathfrak M}$ is Polish with the vague topology. Set

$$\mathfrak{M}_{\mathrm{s.i.}} = \{\xi \in \mathfrak{M} : \xi(S) = \infty, \ \mathfrak{s}(\{x\}) \in \{0,1\}, \ \forall x \in S\}.$$

Tale σ -field $\mathcal{T}(\mathfrak{M})$ on \mathfrak{M} is given by

$$\mathcal{T}(\mathfrak{M}) = \bigcap_{r=1}^{\infty} \sigma(\pi_r^c)$$

where $\pi_r^c(\xi)(\cdot) = \xi(\cdot \cap S_r^c), \quad S_r = \{x \in S : |x| \le r\}.$

4. Second tail theorem (Labeled map on the path space) Labeled maps on \mathfrak{M} and $W(\mathfrak{M}_{s.i.})$

A map $\mathfrak{l}:\mathfrak{M}\to\mathcal{S}^{\mathbb{N}}$ given as

$$\mathfrak{l}(\xi) = \mathbf{x} = (x^j)_{j \in \mathbb{N}}, \text{ for } \xi = \sum_{j=1}^{\infty} \delta_{x^j} \in \mathfrak{M}$$

is called a label. For a label l, we can deternine the map l_{path}

$$\mathfrak{l}_{path}: W(\mathfrak{M}_{\mathrm{s.i.}}) o W(S^{\mathbb{N}})$$

such that

$$\mathfrak{l}(\Xi)_0 = \mathbf{X}_{\mathbf{0}} = (X_0^j)_{j \in \mathbb{N}}, ext{ for } \Xi = \sum_{j=1}^\infty \delta_{X^m} \in W(\mathfrak{M}_{ ext{s.i.}})$$

For a prob. meas.

$$\mathbb{P}_{\mu}=\int_{\mathfrak{M}}\mu(d\xi)\mathbb{P}_{\xi}$$
 on $W(\mathfrak{M}_{ ext{s.i.}})$ (i.e. $\mathbb{P}_{\mu}\circ\Xi_{0}^{-1}=\mu),$

put

$$\mu^{\mathfrak{l}} = \mu \circ \mathfrak{l}^{-1}, \quad P_{\mu^{\mathfrak{l}}} = \mathbb{P}_{\mu} \circ \mathfrak{l}_{path}^{-1}$$

4. Second tail theorem (Theorem 2)

Assumptions (C1) – (C3) (C1) $T(\mathfrak{M})$ is μ -trivial.

(C2) $\mathbb{P}_{\mu} \circ \Xi_t^{-1} \prec \mu, \forall t \in [0, T]$ (μ -AC) : μ -absolutely cont. cond. (C3) $P_{\mu^l}(\bigcap_{r=1}^{\infty} \{m_r(\mathbf{X}) < \infty\}) = 1$ (NBJ) : No big jump condition where $m_r(\mathbf{X}) = \inf\{m \in \mathbb{N} : X_t^n \in S_r^c, \forall t \in [0, T], \forall n > m\}.$

Theorem 2 (Second tail theorem) Assume (B2). Suppose that there exists \mathbb{P}_{μ} satisfying (C1) – (C3), and

$$P_{\mu^{\mathfrak{l}}}(F^{\infty}_{\mathbf{x}}(\mathbf{X},\mathbf{B})=\mathbf{X})=1.$$

Then (B1) and (B3) – (B5) hold for μ^{I} -a.s. x.

4. Second tail theorem (Outline of the proof Theorem 2)

$$\begin{array}{cccc} \mathcal{T}(\mathfrak{M}) \xrightarrow{\operatorname{Step I}} & \tilde{\mathcal{T}}_{path}(\mathfrak{M}) \xrightarrow{\operatorname{Step II}} & \tilde{\mathcal{T}}_{path}(S^{\mathbb{N}}) \xrightarrow{\operatorname{Step III}} & \mathcal{T}_{path}(S^{\mathbb{N}}) \\ \mu & & \mathbb{P}_{\mu} & & P_{\mu^{\mathbb{I}}} & & \overline{P}_{\mathbf{x},\mathbf{B}} \end{array}$$

Here, $\tilde{\mathcal{T}}_{path}(\mathfrak{M})$ is the cylindrical tail σ -field on $W(\mathfrak{M})$ defined as

$$ilde{\mathcal{T}}_{path}(\mathfrak{M})) = \bigvee_{\mathbf{t}=(t_1,t_2,...,t_n), n\in\mathbb{N}} \bigcap_{r=1}^{\infty} \sigma[\pi_r^c(\Xi_{t_i}), 1\leq i\leq n].$$

and $\tilde{\mathcal{T}}_{path}(S^{\mathbb{N}})$ is the cylindrical tail σ -field on $W(S^{\mathbb{N}})$ defined as

$$ilde{\mathcal{T}}_{path}(S^{\mathbb{N}}) = \bigvee_{\mathbf{t}=(t_1,t_2,...,t_n),n\in\mathbb{N}} \bigcap_{m=1}^{\infty} \sigma[\mathbf{X}_{t_i}^{m*}, 1\leq i\leq n].$$

5. Examples

1. Lennard-Jones 6-12 potential
$$d = 3$$
 and $\Psi_{6,12}(x) = \{|x|^{-12} - |x|^{-6}\}.$

$$dX_t^j = dB_t^j + \frac{\beta}{2} \sum_{k \in \mathbb{N}, k \neq j} \{ \frac{12(X_t^j - X_t^j)}{|X_t^j - X_t^k|^{14}} - \frac{6(X_t^j - X_t^k)}{|X_t^j - X_t^k|^8} \} dt \quad (j \in \mathbb{N})$$

2. Riesz potentials $d < a \in \mathbb{N}$ and $\Psi_a(x) = (\beta/a)|x|^{-a}$.

$$dX_t^j = dB_t^j + \frac{\beta}{2} \sum_{k \in \mathbb{N}, k \neq j} \frac{X_t^j - X_t^k}{|X_t^j - X_t^k|^{s+2}} dt \quad (j \in \mathbb{N})$$

5. Examples

logarithmic potential $\Psi(x,y) = \log |x-y|$

3. Sine RPF: $\beta = 1, 2, 4, d = 1$.

$$dX_t^j = dB_t^j + \lim_{L \to \infty} \left\{ \frac{\beta}{2} \sum_{k \neq j, |X_t^k| < L} \frac{1}{X_t^j - X_t^k} \right\} dt \quad (j \in \mathbb{N})$$

4. Airy RPF : $\beta = 1, 2, 4$, d = 1.

$$dX_t^j = dB_t^j + \lim_{L \to \infty} \left\{ \frac{\beta}{2} \sum_{k \neq j, |X_t^k| < L} \frac{1}{X_t^j - X_t^k} - \int_{|x| < L} \frac{\widehat{\rho}(x) dx}{-x} \right\} dt$$

 $(j \in \mathbb{N})$

where $\widehat{\rho}(x) = \frac{1}{\pi} \sqrt{-x} \mathbf{1}(x < 0)$ $\forall \mathfrak{BS}$.

5. Examples

3.3 Ginibre RPF : d = 2.

$$dX^j_t = dB^j_t + \lim_{L o \infty} \sum_{k
eq j, \ |X^j_t - X^k_t| < L} rac{X^j_t - X^k_t}{|X^j_t - X^k_t|^2} dt \quad (j \in \mathbb{N})$$

$$dX^j_t = dB^j_t - X^j_t dt + \lim_{L o \infty} \sum_{k
eq j, \ |X^k_t| < L} rac{X^j_t - X^k_t}{|X^j_t - X^k_t|^2} dt \quad (j \in \mathbb{N})$$

6. Condition (B1)

(B.1) (ISDE1) has a solution (\mathbf{X}, \mathbf{B})

$$egin{aligned} &dX^j_t = dB^j_t - rac{eta}{2}
abla_{\mathsf{x}} \Phi(X^j_t) dt - rac{eta}{2} \sum_{k
eq j}^\infty
abla_{\mathsf{x}} \Psi(X^i_t, X^j_t) dt \; (j \in \mathbb{N}) \ &(X^i_0)_{i \in \mathbb{N}} = (x^i)_{i \in \mathbb{N}} = \mathsf{x} \end{aligned}$$

- (1) Construction of \mathfrak{M} -valued process $\Xi_t = \sum_{j \in \mathbb{N}} \delta_{X_t^j}$ by Dirichlet form $(\mathcal{E}^{\mu}, \mathcal{D}^{\mu})$ associated with a (Φ, Ψ) -quasi-Gibbs state μ . [Osada AOP 2013].
- (2) Existence of solutions of (ISDE1) related to the logarithmic derivative of the Campbell measure $\mu^{[1]}$ of μ [Osada PTRF 2012].

6. Condition (B1) (Quasi Gibbs state) Hamiltonian for Φ , Ψ on $S_{\ell} = \{x \in \mathbb{R}^d : |x| \le \ell\}$ $H_{\ell}(\zeta) = \sum_{x \in \operatorname{supp} \zeta \cap S_{\ell}} \Phi(x) + \sum_{x,y \in \operatorname{supp} \zeta \cap S_{\ell}, x \neq y} \Psi(x, y),$

Definition(Quasi Gibbs state) A RPF μ is called a (Φ , Ψ)-quasi Gibbs state, if

$$\mu_{\ell,\xi}^m(d\zeta) = \mu(d\zeta|\pi_{S_\ell^c}(\xi) = \pi_{S_r^c}(\zeta), \zeta(S_\ell) = m),$$

satisfies that for $\ell, \mathit{m}, k \in \mathbb{N}$, $\mu\text{-a.s.}$ ξ

$$c^{-1}e^{-H_\ell(\zeta)}\Lambda_\ell^m(d\zeta) \leq \mu_{\ell,\xi}^m(\pi_{\mathcal{S}_\ell}\in d\zeta) \leq ce^{-H_\ell(\zeta)}\Lambda_\ell^m(d\zeta)$$

where $c = c(\ell, m, \xi) > 0$ is a constant depending on ℓ, m, ξ , Λ_{ℓ}^{m} is the rest. of PRF with int. meas. dx on $\mathfrak{M}_{\ell}^{m} = \{\xi(S_{\ell}) = m\}$.

6. Condition (B1) (Polynomial functions)

A function f on \mathfrak{M} is called a polynomial function if it is represented as

$$f(\xi) = Q(\langle \varphi_1, \xi \rangle, \langle \varphi_2, \xi \rangle, \dots, \langle \varphi_\ell, \xi \rangle)$$

with a polynomial function Q on \mathbb{R}^{ℓ} , and smooth functions ϕ_j , $1 \leq j \leq \ell$, with compact supports, where

$$\langle \varphi, \xi \rangle = \int_{\mathbb{R}^d} \varphi(x) \xi(dx).$$

We denote by \mathcal{P} the set of all polynomial functions on \mathfrak{M} . A polynomial function is local and smooth: $\exists K$ compact s.t.

$$f(\xi) = f(\pi_{\mathcal{K}}(\xi))$$
 and $f(\xi) = f(x_1, \dots, x_n)$ is smooth

where $n = \xi(K)$ and $\pi_K(\xi)$ is the restriction of ξ on K.

6. Condition (B1) (Square fields)

For $f \in \mathcal{P}$ we introduce the square field on \mathfrak{M} defined by

$$\mathbf{D}(f,g)(\xi) = rac{1}{2}\int_{\mathbb{R}^d} \xi(dx)
abla_x f(\xi) \cdot
abla_x g(\xi).$$

For a RPF (a probability measure μ on \mathfrak{M}), we introduce the bilinear form on $L^2(\mu)$ defined by

$$\mathcal{E}^{\mu}(f,g) = \int_{\mathfrak{M}} \mathbf{D}(f,g)(\xi)\mu(d\xi), \quad f,g \in \mathcal{D}^{\mu}_{\circ} \ \mathcal{D}^{\mu}_{\circ} = \{f \in \mathcal{P} \cap L^{2}(\mathcal{M},\mu) : \parallel f \parallel_{1} < \infty\}.$$

where

$$|| f ||_1^2 = || f ||_{L^2(\mu)}^2 + \mathcal{E}^{\mu}(f, f).$$

6. Condition (B1) (Systems of unlabeled particles) We make assumptions on RPF μ

(A1) μ is a (Φ, Ψ) -quasi Gibbs state, and $\Phi : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ and $\Psi : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ satisfy

$$c^{-1}\Phi_0(x) \leq \Phi(x) \leq c \; \Phi_0(x) \ c^{-1}\Psi_0(x-y) \leq \Psi(x,y) \leq c \; \Psi_0(x-y)$$

for some c > 1 and locally bounded from below and lower semi-continuous function Φ_0, Ψ_0 with $\{x \in \mathbb{R}^d : \Psi_0(x) = \infty\}$ being compact.

Let
$$k \in \mathbb{N}$$
.
(A2) $\sum_{n=1}^{\infty} n^k \mu(\mathfrak{M}_r^n) = \int_{\mathfrak{M}} \xi(S_r)^k \mu(d\xi) < \infty, \ \forall r \in \mathbb{N}, \ \forall k \in \mathbb{N}.$

6. Condition (B1) (Systems of unlabeled particles 2)

Proposition 1 (Osada 13)

Suppose that (A1) - (A2). Then

- 1. $(\mathcal{E}^{\mu}, \mathcal{D}^{\mu}_{\circ})$ is closable on $L^{2}(\mathfrak{M}, \mu)$, and the closure $(\mathcal{E}^{\mu}, \mathcal{D}^{\mu})$ is a quasi-regular Dirichlet form.
- 2 The associated diffusion process $(\Xi_t, \mathbb{P}_{\xi})$ can be constructed and it has μ as a reversible probability measure.

Remark. In Osada[CMP 1996, AOP 2013], the set $\mathcal{D}_\infty^{\rm local}$ of local smooth functions are introduced and set

$$\mathcal{D}^{\mu}_{\circ} = \{ f \in \mathcal{D}^{\text{local}}_{\infty} \cap L^{2}(\mathcal{M}, \mu) : \parallel f \parallel_{1} < \infty \}.$$

Although $\mathcal{P} \subset \mathcal{D}^{\mu}_{\circ}$, it give the same Dirichlet form $(\mathcal{E}^{\mu}, \mathcal{D}^{\mu})$. Osada-T. [PJA 2014]

Hideki Tanemura (Keio Univ.)

6. Condition (B1) (Logarithmic derivative)

Definition (log derivative)

We call $\mathbf{d}^{\mu} \in L^{1}_{loc}(\mathbb{R}^{d} imes \mathfrak{M}, \mu^{[1]})$ the logarithmic derivative of μ if

$$\int_{\mathbb{R}^d\times\mathfrak{M}} \mathbf{d}^{\mu}(x,\eta)\varphi(x,\eta)d\mu^{[1]}(x,\eta) = -\int_{\mathbb{R}^d\times\mathfrak{M}} \nabla_x\varphi(x,\eta)d\mu^{[1]}(x,\eta),$$

is satisfied for $\varphi \in C^\infty_c(\mathbb{R}^d) \otimes \mathcal{D}^{\mathrm{loc}}_\infty.$

Here $\mu^{[k]}$, $k \in \mathbb{N}$ is the Campbell measure of μ :

$$\mu^{[k]}(A \times B) = \int_{A} \mu_{\mathbf{x}}(B) \rho^{k}(\mathbf{x}) d\mathbf{x}, \quad A \in \mathcal{B}((\mathbb{R}^{d})^{k}), B \in \mathcal{B}(\mathfrak{M}).$$

and $\mu_{\mathbf{x}}$ is the reduced Palm measure conditioned at $\mathbf{x} \in (\mathbb{R}^d)^k$

$$\mu_{\mathbf{x}} = \mu(\cdot - \sum_{i=1}^{k} \delta_{x^{j}} \Big| \xi(x^{j}) \ge 1 \text{ for } j = 1, 2, \dots, k),$$

Hideki Tanemura (Keio Univ.)

6. Condition (B1) (ISDE representation)

Let $\mathbf{X} = \mathfrak{l}_{\text{path}}(\Xi_t) = (X_t^j)_{j \in \mathbb{N}}$. We make the following assumptions:

(A3) $\{X^j\}$ do not collide each other.

(A4) each particle X^j never explodes.

(A5) μ has a logarithmic derivative \mathbf{d}^{μ} .

Proposition 2 [Osada 2010, 2012]

Assume (A1)-(A5). Then there exists $\mathcal{H} \subset \mathfrak{M}$ such that $\mu(\mathcal{H}) = 1$, and for any $\xi \in \mathcal{H}$, there exists $(\mathbb{R}^d)^{\mathbb{N}}$ -valued continuous process $\mathbf{X}_t = (X_t^j)_{j=1}^{\infty}$ satisfying $\mathbf{X}_0 = \mathfrak{l}(\xi) = \mathbf{x} = (x^j)_{j=1}^{\infty}$ and

$$dX_t^j = dB_t^j + \frac{1}{2} \mathbf{d}^{\mu} \left(X_t^j, \sum_{k:k \neq j} \delta_{X_t^k} \right) dt, \quad j \in \mathbb{N}.$$
 (ISDE1)

6. Condition (B1) (Tagged particle processes) For $\xi \in \mathcal{H}$ let $\mathfrak{l}(\xi) = \mathbf{x} = (x^j)_{j=1}^{\infty}, \ \xi^{m*} = \sum_{j \ge m+1} \delta_{x^j}$

0.
$$(\Xi_t, \mathbb{P}_{\xi}) \iff (\mathcal{E}^{\mu}, \mathcal{D}^{\mu})$$

1. $((X_t^1, \Xi_t^{1*}), \mathbb{P}_{(x^1, \xi^{1*})}) \iff (\mathcal{E}^{\mu^{[1]}}, \mathcal{D}^{\mu^{[1]}})$
2. $((\mathbf{X}_t^2, \Xi_t^{2*}), \mathbb{P}_{((x^1, x^2), \xi^{2*})}) \iff (\mathcal{E}^{\mu^{[2]}}, \mathcal{D}^{\mu^{[2]}})$
m. $((\mathbf{X}_t^m, \Xi_t^{m*}), \mathbb{P}_{((x^1, x^2, ..., x^m), \xi^{m*})}) \iff (\mathcal{E}^{\mu^{[m]}}, \mathcal{D}^{\mu^{[m]}})$

We construct the sequence

$$\{(\mathbf{X}_t^m, \Xi_t^{m*})\}_{k\in\mathbb{N}}$$

with the consistency : $\forall m \in \mathbb{N}$

$$X_t^{m,j} = X_t^{m+1,j} \equiv X_t^j, \quad 1 \le j \le m, \quad \Xi_t^{m*} = \delta_{X_t^{m+1,m+1}} + \Xi_t^{m+1*}$$

Then $\mathbf{X}_t = (X_t^1, X_t^2, \dots)$ is a Dirichlet process.

7. Condition (B3) - (B5)

We check Assumptions in Theorem 2 (Second tail theorem):

Assumptions (C1) - (C3) (C1) $\mathcal{T}(\mathfrak{M})$ is μ -trivial. (C2) $\mathbb{P}_{\mu} \circ \Xi_t^{-1} \prec \mu, \forall t \in [0, T] \quad (\mu\text{-AC}) : \mu\text{-absolutely cont. cond.}$ (C3) $P_{\mu^{l}}(\bigcap_{r=1}^{\infty} \{m_r(\mathbf{X}) < \infty\}) = 1$ (NBJ) : No big jump condition

where $m_r(\mathbf{X}) = \inf\{m \in \mathbb{N} : X_t^n \in S_r^c, \ \forall t \in [0, T], \ \forall n > m\}.$

Let (\mathbf{X}, \mathbf{B}) be a diffusion process constructed by Propositions 1 and 2.

- 1. $(\Xi_t, \mathbb{P}_{\mu})$ is reversible \Longrightarrow (C2)
- 2. Lyons-Zheng decomposition \implies (C3)

If (C1) holds, (X, B) under P_x satisfies (B3)-(B5) for μ^{l} -a.s. x.

Lyons-Zheng decomposition

 $(\Xi^{[m]}_t, \mathbb{P}^{[m]}_{(x,\xi)})$: the process with reversible measure $\mu^{[m]}$

 $G(\Xi_t^{[m]})$: Dirichlet process

 $G(\Xi_t^{[m]}) - G(\Xi_0^{[m]}) = M(\Xi^{[m]})_t + \int_0^t b(\Xi_s^{[m]}) ds$ Fukushima decomposition

For fixed T > 0, put $\tilde{\Xi}_t^{[m]} := \Xi_{T-t}^{[m]}$.

$$G(\Xi_t^{[m]}) - G(\Xi_0^{[m]}) = G(\tilde{\Xi}_{T-t}^{[m]}) - G(\tilde{\Xi}_T^{[m]})$$

= $M(\tilde{\Xi}^{[m]})_{T-t} - M(\tilde{\Xi}^{[m]})_T + \int_T^{T-t} b(\Xi_{T-s}^{[m]}) ds$

$$G(\Xi_t^{[m]}) - G(\Xi_0^{[m]}) = \frac{1}{2} \left\{ M(\Xi^{[m]})_t + M(\tilde{\Xi}^{[m]})_{\tau-t} - M(\tilde{\Xi}^{[m]})_{\tau} \right\}$$

Lyons-Zheng decomposition

Hideki Tanemura (Keio Univ.)

7. Condition (B3) - (B5)

Let $\mu^{\mathfrak{a}}_{\mathit{Tail}}$ be a regular conditional probability measure by the tail $\sigma\text{-field}$ defined by

$$\mu^{\mathfrak{a}}_{\mathit{Tail}} = \mu(\cdot | \mathcal{T}(\mathfrak{M})(\mathfrak{a}).$$

Note that μ is quasi-Gibbs state implies $\mu^{\mathfrak{a}}_{Tail}$ is quasi-Gibbs state. μ can be decomposed as $\mu(\cdot) = \int_{\mathfrak{M}} \mu^{\mathfrak{a}}_{Tail}(\cdot)\mu(d\mathfrak{a}).$

1.
$$\mu^{\mathfrak{a}}_{Tail}$$
 satisfies **(C1)**.

2.
$$\mu$$
 satisfies (A1)–(A5) $\implies \mu^{\mathfrak{a}}_{Tail}$ satisfies (A1)–(A5), μ -a.s. \mathfrak{a} .

- 3. $(\Xi_t, \mathbb{P}^{\mathfrak{a}}_{\mu^{\mathfrak{a}}})$ is reversible \Longrightarrow (C2)
- 4. Lyons-Zheng decomposition \implies (C3)

 (\mathbf{X}, \mathbf{B}) under $P_{\mathbf{x}}^{\mathfrak{a}}$ satisfies **(B3)-(B5)** for $\mu_{Tail}^{\mathfrak{a}} \circ \mathfrak{l}^{-1}$ -a.s. \mathbf{x} .

8. Condition (B2)

Assumption (B2)

For each $m \in \mathbb{N}$, (SDE-*m*) has a strong solution $\mathbf{Y}^m = F_{\mathbf{x}}^m(\mathbf{X}, \mathbf{B})$, and the pathwise uniqueness for solutions holds for each $m \in \mathbb{N}$.

$$\begin{split} dY_t^{m,j} &= dB_t^j + b_{\mathbf{X}}^m(t, (Y_t^{m,j}, \mathbf{Y}_t^{m,j\diamond}))dt, \\ \mathbf{Y}_t^m &\in \mathbf{S}_{sde}(t, \mathbf{X}), \quad \text{for } \forall t \geq 0, \\ \mathbf{Y}_0^m &= \mathbf{x}^m = (x^1, x^2, \dots, x^m), \end{split}$$
(SDE-m)

Where $b^m_{\mathbf{X}}:[0,\infty) imes S^m o (\mathbb{R}^d)^{\mathbb{N}}$ by

$$b_{\mathsf{X}}^{m}(t,(u,\mathbf{v})) = b(u,\mathfrak{u}(\mathbf{v}) + \Xi_{t}^{m*}).$$

8. Condition (B2) : Prelimiaries

Let $\mathbf{a} = \{a_k\}_{k \in \mathbb{N}}$ be a sequence of increasing sequence $a_k = \{a_k(r)\}_{r \in \mathbb{N}}$ such that $a_k(r) < a_{k+1}(r), k, r \in \mathbb{N}$. We introduce a compact subset of \mathfrak{M} defined by

$$\mathfrak{K}[a_k] = \{\xi \in \mathfrak{M} : \xi(S_r) \le a_k(r), \ \forall r \in \mathbb{N}\}$$
 compact

and put

$$\mathfrak{K} = igcup_{k \in \mathbb{N}} \mathfrak{K}[a_k].$$

We take a sequence such that $\mu(\mathfrak{K}) = 1$. If μ is translation invariant, we can take $a_k(r) = kr^d$.

We set
$$a_k^+(r)=a_k(r+1)$$
 and $\mathbf{a}^+=\{a_k^+\}_{k\in\mathbb{N}}$

8. Condition (B2) : Prelimiaries
For
$$m \in \mathbb{N}$$
 let $\mathfrak{M}_{s.i.}^{[m]} = \{(x,\xi) \in S^m \times \mathfrak{M} : \mathfrak{u}(x) + \xi \in \mathfrak{M}_{s.i.}\}$
 $\mathfrak{H}[\mathbf{a}]_{p,q,k} = \left\{ (x,\xi) \in \mathfrak{M}_{s.i.}^{[m]} : x \in S_q^m, \xi \in \mathfrak{K}[a_k^+] \right\}$
 $\inf_{j \neq k} |x^j - x^k| \ge 2^{-p}, \quad \inf_{j,y \in \text{supp } \xi} |x^j - y| \ge 2^{-p} \right\}$
 $\mathfrak{H}[\mathbf{a}]_{q,k} = \bigcup_{p \in \mathbb{N}} \mathfrak{H}[\mathbf{a}]_{p,q,k} \quad \mathfrak{H}[\mathbf{a}]_k = \bigcup_{q \in \mathbb{N}} \mathfrak{H}[\mathbf{a}]_{q,k} \quad \mathfrak{H}[\mathbf{a}] = \bigcup_{k \in \mathbb{N}} \mathfrak{H}[\mathbf{a}]_k$

Facts

Suppose (A1) and (A2) $% \left(A^{\prime}\right) =\left(A^{\prime}\right) \left(A^{$

- 1. $\operatorname{Cap}^{\mu}(\mathfrak{K}[\mathbf{a}^+]^c) = 0.$
- 2. $\operatorname{Cap}^{\mu^{[m]}}(\mathfrak{H}[\mathbf{a}]^c) = 0$ for each $m \in \mathbb{N}$.

8. Condition (B2) : Preliminaries

Put $x = (x^1, x^2, ..., x^m)$

$$b^m(x,\xi) = b(x^1, \sum_{j=2}^m \delta_{x^j} + \xi)$$

and let $\hat{b}^m(x,\xi)$ be a quasi-continuous version of $b^m(x,\xi)$. Put

$$\mathbf{N} = \{(p,q,k), (q,k), k : p,q,k \in \mathbb{N}\}.$$

Let $\{\mathfrak{I}_n(m)\}_{m\in\mathbb{N}}$ be an increase sequence of closed sets in $S^m\times\mathfrak{M}$ such that, for any $n\in N$,

$$\mathfrak{I}_{\mathsf{n}}(\mathsf{m}) \subset \mathfrak{I}_{\mathsf{n}}(\mathsf{m}+1) \quad \forall \mathsf{m} \in \mathbb{N}$$

and

$$\operatorname{Cap}^{\mu^{[m]}}((\bigcup_{\mathbf{m}\in\mathbb{N}}\mathfrak{I}_{\mathbf{n}}(\mathbf{m}))^{c})=0.$$

8. Condition (B2) : Prelimiaries

Let $c = c(\mathbf{m}, \mathbf{n})$ be constants such that $0 \le c \le \infty$ and that

$$c = \sup\left\{\frac{|\hat{b}^m(x,\xi) - \hat{b}^m(x'.\xi)|}{|x - x'|} : (x,\xi) \sim_n (x',\xi), x \neq x' \\ (x,\xi), (x',\xi) \in \mathfrak{H}[\mathbf{a}]_{\mathbf{n}} \cap \mathfrak{I}_{\mathbf{n}}(\mathbf{m})\right\},\$$

where $(x,\xi) \sim_{\mathbf{n}} (x',\xi)$ means x and x' are in the same connected component of $\{y \in S^{2m} : (y,\xi) \in \mathfrak{H}[\mathbf{a}]_{\mathbf{n}}\}$

(E) For each $m \in \mathbb{N}$ there exists a quasi-continuous version \hat{b}^m of $b^m(x,\xi) = b(x^1, \sum_{j=2}^m +\xi)$ and $\{\mathfrak{I}_n(\mathbf{m})\}$ such that $c(\mathbf{m}, \mathbf{n}) < \infty$ for each $m \in \mathbb{N}$ and $\mathbf{n} \in \mathbb{N}$.

8. Condition (B2)

We put $\zeta_{m,n}(\mathbf{X}^{m}, \Xi^{[m]}) = \inf\{t > 0 : (\mathbf{X}_{t}^{m}, \Xi^{[m]}_{t}) \notin \mathfrak{H}[\mathbf{a}]_{n} \cap \mathfrak{I}_{n}(\mathbf{m})\}.$ Lemma 8.1 Assume (A1) – (A5), (E). Then (B2) holds.

Mollifier (introduced in Osada 1996)

For each $m \in \mathbb{N}$, there exists a function χ_n , $n \in \mathbb{N}$ satisfying the following conditions

1.
$$\chi_{\mathbf{n}}(x,\xi) = 0$$
, $(x,\xi) \notin \mathfrak{H}[\mathbf{a}]_{\mathbf{n}+1}$.
2. $\chi_{\mathbf{n}}(x,\xi) = 1$, $(x,\xi) \in \mathfrak{H}[\mathbf{a}]_{\mathbf{n}}$.
3. $0 \leq \chi_{\mathbf{n}}(x,\xi) \leq 1$, $|\nabla_{x}\chi_{\mathbf{n}}(x,\xi)|^{2} \leq \exists c$, $\mathbb{D}[\chi_{\mathbf{n}},\chi_{\mathbf{n}}] \leq \exists c'$.
4. $\chi_{\mathbf{n}} \in \mathcal{D}^{\mu^{[m]}}$.

8. Condition (B2)

Let
$$\mathbf{J}^{[I]} = \{\mathbf{j} = (j_1, j_2, \dots, j_\ell)^m : 0 \le j_i \le \ell, \sum_{i=1}^d j_i = I\}$$

Set $\partial_{\mathbf{j}} = \frac{\partial'}{\partial x_{\mathbf{j}}}$ for $\mathbf{j} \in \mathbf{J}^{[l]}$ $l \in \mathbb{N}$ $\partial_{\mathbf{j}} = identity$ for $\mathbf{j} \in \mathbf{J}^{[0]}$. For any $\ell \in \mathbb{N}$ we introduce the following

(F1) For each
$$\mathbf{j} \in \bigcup_{l=0}^{\ell} \mathsf{J}^{[l]}$$
, $\chi_{\mathbf{n}} \partial_{\mathbf{j}} b \in \mathcal{D}^{\mu^{[m]}}$ for all $\mathbf{n} \in \mathsf{N}$
(F2) For each $\mathbf{j} \in \mathsf{J}^{[\ell]}$, there exists $h_{\mathbf{j}} \in C(S^2 \setminus \{x, y\})$ such that

1.
$$\partial_{\mathbf{j}}b(x,\xi) = \sum_{k=1}^{m} \sum_{y \in \text{supp } \xi} h_{\mathbf{j}}(x_k, y)$$
 for $(x,\xi) \in \mathfrak{H}[\mathbf{a}]$,

2. $\sup\{\sum_{k=1}^{m}\sum_{y\in \text{supp }\xi} |h_j(x_k, y)| : (x, \xi) \in \mathfrak{H}[\mathbf{a}]_{\mathbf{n}}\} < \infty \text{ for each } \mathbf{n} \in \mathbf{N}.$

Lemma 8.2

Assume there exists $\ell \in \mathbb{N}$ such that (F1) and (F2) holds. Then (E) holds.

.

Hideki Tanemura (Keio Univ.)

42 / 61

(Examples)

We can check (F1) and (F2) for the following examples:

1. Lennard-Jones 6-12 potential ((F1),(F2) holds with $\ell = 1$.) d = 3 and $\Psi_{6,12}(x) = \{|x|^{-12} - |x|^{-6}\}.$

$$dX_t^j = dB_t^j + \frac{\beta}{2} \sum_{k \in \mathbb{N}, k \neq j} \{ \frac{12(X_t^j - X_t^j)}{|X_t^j - X_t^k|^{14}} - \frac{6(X_t^j - X_t^k)}{|X_t^j - X_t^k|^8} \} dt \quad (j \in \mathbb{N})$$

2. Riesz potentials ((F1),(F2) holds with $\ell = 1$.) $d < a \in \mathbb{N}$ and $\Psi_a(x) = (\beta/a)|x|^{-a}$.

$$dX_t^j = dB_t^j + \frac{\beta}{2} \sum_{k \in \mathbb{N}, k \neq j} \frac{X_t^j - X_t^k}{|X_t^j - X_t^k|^{a+2}} dt \quad (j \in \mathbb{N})$$

(Examples)

logarithmic potential $\Psi(x, y) = \log |x - y|$

3. Sine RPF: $\beta = 1, 2, 4$. ((F1),(F2) holds with $\ell = 1$.)

$$dX_t^j = dB_t^j + \lim_{L \to \infty} \left\{ \frac{\beta}{2} \sum_{k \neq j, |X_t^k| < L} \frac{1}{X_t^j - X_t^k} \right\} dt \quad (j \in \mathbb{N})$$

4. Airy RPF : $\beta = 1, 2, 4$. ((F1),(F2) holds with $\ell = 1$.)

$$dX_t^j = dB_t^j + \lim_{L \to \infty} \left\{ \frac{\beta}{2} \sum_{k \neq j, |X_t^k| < L} \frac{1}{X_t^j - X_t^k} - \int_{|x| < L} \frac{\widehat{\rho}(x) dx}{-x} \right\} dt$$

$$(j \in \mathbb{N})$$

ここで $\widehat{\rho}(x) = \frac{1}{\pi}\sqrt{-x}\mathbf{1}(x < 0)$ である.

(Examples)

3.3 Ginibre RPF ((F1),(F2) holds with $\ell = 2$.)

$$dX^j_t = dB^j_t + \lim_{L o \infty} \sum_{k
eq j, \ |X^j_t - X^k_t| < L} rac{X^j_t - X^k_t}{|X^j_t - X^k_t|^2} dt \quad (j \in \mathbb{N})$$

$$dX^j_t = dB^j_t - X^j_t dt + \lim_{L o \infty} \sum_{k
eq j, \ |X^k_t| < L} rac{X^j_t - X^k_t}{|X^j_t - X^k_t|^2} dt \quad (j \in \mathbb{N})$$

Relations of results

 $\begin{array}{l} \exists \text{unique strong solution} \Leftarrow (B1) \sim (B5) : \text{First tail theorem} \\ (B1) \Leftarrow (A1) \sim (A5) : \text{Proposition 1} + \text{Proposition 2} \\ (B2) \Leftarrow (A1) \sim (A5) + (E) : \text{Lemma 8.1} \\ \leftarrow (A1) \sim (A5) + (F1), (F2) : \text{Lemma 8.2} \\ (B3) \sim (B5) \Leftarrow (B2) + (C1) \sim (C3) : \text{Second tail theorem} \end{array}$

9. Applications : preliminaries

Let $S_r = \{x \in \mathbb{R}^d : |x| \le r\}$ and $\mathfrak{M}_r^m = \{\xi \in \mathfrak{M} ; \xi(S_r) = m\}, \quad r, m \in \mathbb{N}.$ $\pi_r(\xi) = \xi(\cdot \cap S_r)$ and $\pi_r^c(\xi) = \xi(\cdot \cap S_r^c).$ For $\xi \in \mathfrak{M}_r^m, \mathbf{x}_r^m(\xi) = (x_r^1(\xi), \dots, x_r^m(\xi)) \in S_r^m$ is called a S_r^m -coordinate of ξ , if $\pi_r(\xi) = \sum_{j=1}^m \delta_{x_r^j(\xi)}.$

For $f: \mathfrak{M} \to \mathbb{R}$, a function $f_{r,\cdot}^m(\cdot): \mathfrak{M} \times S_r^m \to \mathbb{R}$ is called the S_r^m -representation for f if $f_{r,\cdot}^m(\cdot)$ satisfies the following :

(1) $f_{r,\xi}^{m}$ is a permutation invariant function on S_{r}^{m} for each $\xi \in \mathfrak{M}$. (2) $f_{r,\xi(1)}^{m}(x) = f_{r,\xi(2)}^{m}(x)$ if $\pi_{r}^{c}(\xi(1)) = \pi_{r}^{c}(\xi(2)), \xi(1), \xi(2) \in \mathfrak{M}_{r}^{m}$. (3) $f_{r,\xi}^{m}(\mathbf{x}_{r}^{m}(\xi)) = f(\xi)$ for $\xi \in \mathfrak{M}_{r}^{m}$. (4) $f_{r,\xi}^{m}(\mathbf{x}) = 0$ for $\xi \notin \mathfrak{M}_{r}^{m}$.

Note that $f_{r,\cdot}^m(\cdot)$ is determined uniquely and $f(\xi) = \sum_{m=0}^{\infty} f_{r,\xi}^m(\mathbf{x}_r^m(\xi))$.

9. Applications : preliminaries

We set

$$\mathcal{B}_r(\mathfrak{M}) = \{f : \mathfrak{M} \to \mathbb{R} : f \text{ is } \sigma(\pi_r)\text{-measurable}\}\$$

 $\mathcal{B}_\infty(\mathfrak{M}) = \bigcup_{r=1}^\infty \mathcal{B}_r(\mathfrak{M}), \text{ the set of local functions}$

When $f \in \mathcal{B}_r(\mathfrak{M})$, S_r^m -representation for f is independent of ξ . We introduce the set of local smooth functions defined by

 $\mathcal{D}_{\infty}^{\mathrm{loc}} = \{ f \in \mathcal{B}_{\infty}(\mathfrak{M}) : f_{r,\xi}^{m} \text{ are smooth on } S_{r}^{m} \text{ for all } m, r \in \mathbb{N}, \xi \in \mathfrak{M} \},\$

Note that $\mathcal{D}_{\infty}^{\text{loc}} \subset C(\mathfrak{M})$ and $\mathcal{D}_{\infty}^{\text{loc}}$ is dense in $L^{2}(\mathfrak{M}, \mu)$, for a Borel measure μ on \mathfrak{M} .

9. Applications : Bilinear forms

For $f,g\in\mathcal{D}^{\mathrm{loc}}_\infty,\ m,r\in\mathbb{N}$ we set

$$\mathbb{D}_r^m[f,g](\xi) = \frac{1}{2} \sum_{i}^m \nabla_{x_i} f_{r,\xi}^m(\mathbf{x}_r^m(\xi)) \cdot \nabla_{x_i} g_{r,\xi}^m(\mathbf{x}_r^m(\xi)), \ \xi \in \mathfrak{M}_r^m,$$
$$\mathbb{D}_r^m[f,g](\xi) = 0, \quad \xi \notin \mathfrak{M}_r^m,$$

Here
$$\xi = \sum_{i} \delta_{x_{i}}, \nabla_{x_{i}} = (\frac{\partial}{\partial x_{i1}}, \dots, \frac{\partial}{\partial x_{id}}).$$

Note that $\mathbb{D}_r^m[f,g]$ is independent of the choice of S_r^m -coordinate $\mathbf{x}_r^m(\xi)$ and well-defined. We put

$$\mathbb{D}_r[f,g] = \sum_{m=1}^{\infty} \mathbb{D}_r^m[f,g], \quad \xi \in \mathfrak{M}$$

9. Applications : Dirichlet forms

Let μ be a probability measure on \mathfrak{M} . We define bilinear forms on $\mathcal{D}_{\infty}^{\mathrm{loc}}$:

$$\mathcal{E}_r^{\mu,m}(f,g) = \int_{\mathfrak{M}} \mathbb{D}_r^m[f,g](\xi) d\mu, \ \mathcal{E}_r^\mu(f,g) = \int_{\mathfrak{M}} \mathbb{D}_r[f,g](\xi) d\mu.$$

Let $(\mathcal{E}^{\mu}, \mathcal{D}^{\mu}_{o})$ be a bilinear form on $L^{2}(\mathfrak{M}, \mu)$ with domain \mathcal{D}^{μ}_{o} defined by

$$\mathcal{D}_{o}^{\mu} = \{ f \in \mathcal{D}_{\infty}^{\mathrm{loc}} \cap L^{2}(\mathfrak{M}, \mu) ; \mathcal{E}^{\mu}(f, f) < \infty \},\\ \mathcal{E}^{\mu}(f, f) \equiv \sup_{r \in \mathbb{N}} \mathcal{E}_{r}^{\mu}(f, f) = \lim_{r \to \infty} \mathcal{E}_{r}^{\mu}(f, f).$$

We make the following assumption:

 $(\mathcal{E}^{\mu,m}_r,\mathcal{D}^{\mu}_o)$ is closable on $L^2(\mathfrak{M},\mu)$ for each $m,r\in\mathbb{N}$ (CL)

9. Applications : Lemmas

Lemma 1 [Osada 1996, Lemmas 2.1-2.2, Theorem 2]

Under the assumption (CL)

- (1) $(\mathcal{E}^{\mu}, \mathcal{D}^{\mu}_{o} \cap \mathcal{B}_{r}(\mathfrak{M}))$ and $(\mathcal{E}^{\mu}_{r}, \mathcal{D}^{\mu}_{o})$ are closable on $L^{2}(\mathfrak{M}, \mu)$ for each r. Let $(\mathcal{E}^{upr}, \mathcal{D}^{upr}_{r})$ be the closure of $(\mathcal{E}^{\mu}, \mathcal{D}^{\mu}_{o} \cap \mathcal{B}_{r}(\mathfrak{M}))$, and $(\mathcal{E}^{lwr}_{r}, \mathcal{D}^{lwr}_{r})$ be the closures of and $(\mathcal{E}^{\mu}_{r}, \mathcal{D}^{\mu}_{o})$
- (2) $(\mathcal{E}^{\mu}, \mathcal{D}^{\mu}_{o})$ is closable on $L^{2}(\mathfrak{M}, \mu)$. Let $(\mathcal{E}^{upr}, \mathcal{D}^{upr})$ be the closure of $(\mathcal{E}^{\mu}, \mathcal{D}^{\mu}_{o})$.
- (3) $\{(\mathcal{E}_{r}^{lwr}, \mathcal{D}_{r}^{lwr})\}_{r \in \mathbb{N}}$ is increasing and $\{(\mathcal{E}^{upr}, \mathcal{D}_{r}^{upr})\}_{r \in \mathbb{N}}$ is decreasing. Let $(\mathcal{E}^{lwr}, \mathcal{D}^{lwr})$ be the Dirichlet form

$$\mathcal{D}^{lwr} = \{ f \in \bigcap_{r>0} \mathcal{D}_r^{lwr}; \lim_{r \to \infty} \mathcal{E}_r^{lwr}(f, f) < \infty \},\$$
$$\mathcal{E}^{lwr}(f, f) = \lim_{r \to \infty} \mathcal{E}_r^{lwr}(f, f), \quad f \in \mathcal{D}^{lwr}.$$

9. Applications : Lemmas

Let $G_r^{lwr}(\alpha)$, $G^{lwr}(\alpha)$, $G_r^{upr}(\alpha)$ and $G^{upr}(\alpha)$ be resolvents of $(\mathcal{E}_r^{lwr}, \mathcal{D}_r^{lwr})$, $(\mathcal{E}^{lwr}, \mathcal{D}^{lwr})$, $(\mathcal{E}^{upr}, \mathcal{D}_r^{upr})$ and $(\mathcal{E}^{upr}, \mathcal{D}^{upr})$ on $L^2(\mathfrak{M}, \mu)$, respectively.

Lemma 2 [Osada 1996, Lemma 2.1.]

G^{lwr}_r(α) converges to G^{lwr}(α) strongly in L²(M, μ) for all α > 0.
 G^{upr}_r(α) converges to G^{upr}(α) strongly in L²(M, μ) for all α > 0.

It is clear that $(\mathcal{E}^{upr}, \mathcal{D}^{upr}) \geq (\mathcal{E}^{lwr}, \mathcal{D}^{lwr})$, i.e.

 $\mathcal{D}^{upr} \subset \mathcal{D}^{lwr}$ and $\mathcal{E}^{upr}(f,f) \geq \mathcal{E}^{lwr}(f,f), f \in \mathcal{D}^{upr}.$

Problem: When does the following hold?

$$(\mathcal{E}^{upr}, \mathcal{D}^{upr}) = (\mathcal{E}^{lwr}, \mathcal{D}^{lwr}).$$

This is not true in general. So we look for a sufficient condition.

9. Applications : About $(\mathcal{E}^{lwr}, \mathcal{D}^{lwr})$.

Remind that

1. Definition:

$$\mathcal{D}^{lwr} = \{f \in \bigcap_{r>0} \mathcal{D}_r^{lwr}; \lim_{r \to \infty} \mathcal{E}_r^{lwr}(f, f) < \infty\},\$$

 $\mathcal{E}^{lwr}(f, f) = \lim_{r \to \infty} \mathcal{E}_r^{lwr}(f, f), \quad f \in \mathcal{D}^{lwr}.$

2. $(\mathcal{E}^{\textit{lwr}}, \mathcal{D}^{\textit{lwr}})$ is closed on $L^2(\mathfrak{M}, \mu)$ and

 $G_r^{lwr}(\alpha) \to G^{lwr}(\alpha)$ strongly in $L^2(\mathfrak{M},\mu), \ \forall \alpha > 0.$

3. $(\mathcal{E}^{upr}, \mathcal{D}^{upr}) \geq (\mathcal{E}^{lwr}, \mathcal{D}^{lwr})$, that is,

$$\mathcal{D}^{upr} \subset \mathcal{D}^{lwr}$$
 and $\mathcal{E}^{upr}(f,f) \geq \mathcal{E}^{lwr}(f,f), f \in \mathcal{D}^{upr}$.

9. Applications : Dirichlet form $(\mathcal{E}^+, \mathcal{D}^+)$. Put

$$\mathcal{D}^{+} = \left\{ f \in L^{2}(\mathfrak{M},\mu) : \exists f' \in L^{2}(\mathbb{R}^{d} \times \mathfrak{M}) \text{ s.t.} \right.$$
$$- \int_{\mathbb{R}^{d} \times \mathfrak{M}} f(\delta_{x} + \eta) \{ \mathbf{d}^{\mu}(x,\eta)\varphi(x,\eta) + \nabla_{x}\varphi(x,\eta) \} d\mu^{[1]}(x,\eta)$$
$$= \int_{\mathbb{R}^{d} \times \mathfrak{M}} f'(x,\eta)\varphi(x,\eta) d\mu^{[1]}(x,\eta), \ \forall \varphi \in C^{\infty}_{c}(\mathbb{R}^{d}) \otimes \mathcal{D}^{\mathrm{loc}}_{\infty} \right\}.$$

Let us denote f' by $D_x f$ and set

$$\mathcal{E}^+(f,g) = rac{1}{2}\int_{\mathbb{R}^d imes\mathfrak{M}} D_x f(x,\eta) \cdot D_x g(x,\eta) d\mu^{[1]}(x,\eta), \; f,g\in\mathcal{D}^+.$$

Under (A1), we see that $(\mathcal{E}^{lwr}, \mathcal{D}^{lwr}) = (\mathcal{E}^+, \mathcal{D}^+)$. **Remark.** $(\mathcal{E}^+, \mathcal{D}^+)$ is not alway quasi regular.

Hideki Tanemura (Keio Univ.)

9. Applications : Process associated with $(\mathcal{E}_r^{lwr}, \mathcal{D}_r^{lwr})$

 \mathbf{X}_{t}^{r} : the labeled process associated with the quasi-regular Dirichlet form $(\mathcal{E}^{lwr}, \mathcal{D}^{lwr})$.

 \mathbf{X}_t^r describe the system of interacting Brownian motions in which

- 1. each particle in S_r at time 0 moves in S_r and when it hits the boundary ∂S_r , it reflects and enters the domain S_r immediately,
- 2. the particles out of S_r stay the initial positions forever.

We denote by $\mu^{r,\xi}$ the regular conditional distribution defined by

$$\mu^{r,\xi}(\cdot) = \mu(\cdot | \sigma(\pi_r^c))(\xi) \quad \mu\text{-a.s. } \xi.$$

Remind that $\mu^{r,\xi}$ is a probability measure on

$$\mathfrak{M}_{r,\xi} = \{\eta \in \mathfrak{M} : \pi_r^c(\eta) = \pi_r^c(\xi)\}.$$

Then for μ -a.s. ξ , the diffusion process \mathbf{X}_t^r starting from ξ is associated with the Dirichret form $(\mathcal{E}_r^{\mu^{r,\xi},lwr}, \mathcal{D}_r^{\mu^{r,\xi},lwr})$.

9. Applications : SDE for \mathbf{X}^r

We see that the system of infinite number of particles, in which only finite number of particles move, satisfies the following SDE: for μ - a.s. ξ

$$dX_{t}^{r,j} = dB_{t}^{j} + \frac{1}{2} \mathbf{d}^{\mu} \left(X_{t}^{r,j}, \sum_{k \neq j} \delta_{X_{t}^{r,k}} \right) dt + \mathbf{n}^{r} (X_{t}^{r,j}) dL_{t}^{r,j}, \ 1 \le j \le \xi(S_{r})$$
$$X_{t}^{r,j} = X_{0}^{j}, \quad j = \xi(S_{r}) + 1, \xi(S_{r}) + 2, \dots,$$
$$\mathbf{X}_{0}^{r} = \mathbf{x} \equiv (x_{j})_{j \in \mathbb{N}},$$

where $L_t^{r,j}$, $j = 1, 2, \ldots, \xi(S_r)$ are non-decreasing function satisfying

$$L_t^{r,j} = \int_0^t \mathbf{1}_{\partial S_r}(X_s^{r,j}) dL_s^{r,j},$$

and $\mathbf{n}^{r}(x)$ is the inward normal unit vectors at $x \in \partial S_{r}$.

9. Applications : Assumption (A6)

(A6) There exist $\mathbf{b}_{s_1,s_2,\mathsf{p}} \in C_b(\mathbb{R}^d \times \mathfrak{M})$, $s_1, s_2, \mathsf{p} \in \mathbb{N}$, such that for μ -a.s. ξ

$$\lim_{s_1\to\infty}\lim_{s_2\to\infty}\lim_{\mathsf{p}\to\infty}\sup_{r\geq s_1+s_2+1}\|\frac{1}{2}\mathbf{d}^{\mu}-\mathbf{b}_{s_1,s_2,\mathsf{p}}\|_{L^1(\mathbb{R}^d\times\mathfrak{M},\mu_R^{r,\xi,[1]})}=0,$$

for each $R \in \mathbb{N}$, where $\mu^{r,\xi,[1]}$ is the 1-Campbell measure of $\mu^{r,\xi}$

$$\mu^{r,\xi,[1]}(d\mathsf{x} d\eta) = \mathbb{1}_{\mathcal{S}_r}(\mathsf{x})\rho^{r,\xi,1}(\mathsf{x})\mu^{r,\eta}_\mathsf{x}(d\eta)d\mathsf{x}, \quad (\mathsf{x},\eta) \in \mathbb{R}^d \times \mathfrak{M}.$$

and

$$\mu_R^{r,\xi,[1]}(d\mathsf{x} d\eta)(\cdot) = \mu^{r,\xi,[1]}(d\mathsf{x} d\eta)(\cdot \cap S_R \times \mathfrak{M})$$

Theorem 3 [Kawamoto-Osada-T.]

Assume that (A1)-(A6) hold. Then $\{\mathbf{X}^r\}_{r\in\mathbb{N}}$ is tight in $W((\mathbb{R}^d)^{\mathbb{N}})$, and limit point $\mathbf{X} = (X^j)_{j\in\mathbb{N}}$ of $\{\mathbf{X}^r\}_{r\in\mathbb{N}}$ is a solution of the (ISDE1) :

$$dX^j_t = dB^j_t + rac{1}{2} \mathbf{d}^\mu igg(X^j_t, \sum_{k: k
eq j} \delta_{X^k_t}igg) dt, \quad j \in \mathbb{N}.$$

with conditions (C2) and (C3):

(C2) (
$$\mu$$
-AC) $\mu_t \prec \mu$ for all $t \ge 0$, where $\mu_t = P\left(\sum_{j \in \mathbb{N}} \delta_{X_t^j} \in \cdot\right)$.

(C3) (NBJ) for each $r, T \in \mathbb{N}$,

$$P\left(\sharp\{i\in\mathbb{N}:X_t^j\in S_r \text{ for some }t\in[0,T]\}<\infty
ight)=1.$$

Uniqueness theorem

Theorem [Osada-T.]

Assume that (A6) hold. Then solutions of the (ISDE1) :

$$dX_t^j = dB_t^j + \frac{1}{2} \mathbf{d}^{\mu} \left(X_t^j, \sum_{k: k \neq j} \delta_{X_t^k} \right) dt, \quad j \in \mathbb{N}.$$

with conditions (C2), (C3) and (B2) are pathwise unique.

Theorem 2 [Kawamoto-Osada-T.]

Assume that (A1)-(A6) and (B2) hold. Then

$$(\mathcal{E}^{upr}, \mathcal{D}^{upr}) = (\mathcal{E}^{lwr}, \mathcal{D}^{lwr}) = (\mathcal{E}^+, \mathcal{D}^+).$$

(F1) and (F2)

Let
$$\mathbf{J}^{[I]} = \{\mathbf{j} = (j_1, j_2, \dots, j_\ell)^m : 0 \le j_i \le \ell, \sum_{i=1}^d j_i = I\}$$

Set $\partial_{\mathbf{j}} = \frac{\partial'}{\partial x_{\mathbf{j}}}$ for $\mathbf{j} \in \mathbf{J}^{[l]}$ $l \in \mathbb{N}$ $\partial_{\mathbf{j}} = identity$ for $\mathbf{j} \in \mathbf{J}^{[0]}$. For any $\ell \in \mathbb{N}$ we introduce the following

(F1) For each $\mathbf{j} \in \bigcup_{l=0}^{\ell} \mathsf{J}^{[l]}$, $\chi_{\mathsf{n}} \partial_{\mathbf{j}} b \in \mathcal{D}^{\mu^{[m]}}$ for all $\mathsf{n} \in \mathsf{N}$

(F2) For each $\mathbf{j} \in \mathbf{J}^{[\ell]}$, there exists $h_{\mathbf{j}} \in C(S^2 \setminus \{x, y\})$ such that

1.
$$\partial_{\mathbf{j}}b(x,\xi) = \sum_{k=1}^{m} \sum_{y \in \text{supp } \xi} h_{\mathbf{j}}(x_k,y) \text{ for } (x,\xi) \in \mathfrak{H}[\mathbf{a}],$$

2.
$$\sup\{\sum_{k=1}^{m}\sum_{y\in \text{supp }\xi} |h_j(x_k, y)| : (x, \xi) \in \mathfrak{H}[\mathbf{a}]_{\mathbf{n}}\} < \infty \text{ for each } \mathbf{n} \in \mathbf{N}.$$

Thank you for your attention