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Introduction



In this talk, we consider a path—dependent d—dimensional SDEs

dX* = b(t, X)dt + o(t, X*)AW,, ¢ > 0, X = x € R”. (1)

> W = (W) : d-dimensional standard Brownian motion on a
probability space (2, ¥, P).
> drift coefficient b : [0, 00) x C([0, 00); RY) — R¢:
> B([0, 00)) ® B(C([0, ); RY))/B(R?)-measurable
» for each fixed ¢t > 0, the map C([0, c0); R¢) 3 w — b(t,w) € R is
B,(C([0, 0); RY))/ B(RY)-measurable.
> diffusion matrix o : [0, 00) X R¢ — R4 : m’ble. func.
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Study a probability density function (pdf), p.(x, -), of law of X7 w.rt
Leb. meas.

» The existence and regularity of a pdf of Xf have been studied by
many authors.

Main tools are :
> Analytical approach ~» Levi’s parametrix method (PDE method)
> Probabilistic approach ~» Malliavin calculus / Maruyama—Girsanov
transform
> In this talk, we do not use Malliavin calculus, because we do not

assume a smoothness for coefficients.
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Known results (i)

> Assume that drift b : RY - R is bdd, Hélder conti., and diffusion
matrix o is bdd, unif. elliptic and Hélder conti.
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> The idea is Levi’s parametrix method ', that is, p(s, x; t,y) is a
solution of the following Volterra type linear integral equation:

p(s,x;5t,y)
'

= a5, X3 1y) + f du f depls, 551, DL = L), 1, 3),
s R

where a := 00" and g (s, x; t, ) is a pdf of “frozen" process
x + o(y)W,_, with generator L.
» (Gaussian two-sided bound holds:

E—g?_(t—s)(x’y) < P(s9 X5 t’y) < 6+g?+(t—s)(xay)

[0x,p(s, x5, y)| < ge.(1-5) (X, ¥).

-
(t —_ s)1/2
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Known results (ii)

Maruyama? prove the following:
> Assume b : R — R is Lip. conti. and o = 1.

» Then a pdf ps(x,y) of X:‘(: X+ fot b(X7)ds + W,) exists and has the
following representation :

pe(x,y)

t t
= g:(x,)E [exp ( f b(x + Wy)dW, — % f b(x + Ws)zds)
0 0

x+Wt=y]e

where g;(x,-) is a pdf of x + W,
» This result is Girsanov theorem.

2Maruyama, G. On the transition probability functions of the Markov process. Nat. Sci.
Rep. Ochanomizu Univ. 5, 10-20, (1954).
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Known results (iii)
These results are extended by Makhlouf (2016) and Kusuoka (2017) for
path-dept. SDEs.
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This is the same representation for Levi’s parametrix method.
Indeed, if by = b(Xy), then since ps(x,+) is a pdf,

t
Px,y) = gi(xy) + fo ds fm dzp, (6, NV 145, ), D).

» Kusuoka show that if b is path-dept and bdd, and o is bdd, UE,
Holder conti. then the Gaussian two-sided bound and the following
representation holds:

Pi(x,¥) = q(0,x; £, )E [Z,(1,Y*)

where Y** = x + [ o(r, Y>*)dW, with pdf g(s, x; ¢, y) and

Y:”x = y] , a.e, y € R,

d t t
i1
Z/q, Y°”‘)=exp[2 f 40! B);(5, Y)dW] — = f |qo"b(s,Y°”‘)|2ds]
e JO 0
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Goal :
Extend the results of Makhlouf and Kusuoka to SDEs with path-dept. and
unbounded drift.



Existence and representations



Assumption 1
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(i) a := oo™ is a-Holder continuous in space and a/2-Hélder
continuous in time with a € (0, 1], that is,

la(t, x) — a(t, y)| la(t, x) — a(s, x)|

llalle := ~ -
t€[0,00), vy [x =yl xeRipzs |t — s|/

(iii) The diffusion coefficient o is bounded and uniformly elliptic, that is,
there exist a,a > 0 such that for any (t, x, &) € [0, 00) x R? x R?,

alél” < (a(t, 0§, &) < alél.
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Theorem 1 (Taguchi and Tanaka 2018)

Suppose that Assumption 1 holds. Then SDE (1) has a weak solution
and uniqueness in law holds on [0, T1].
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In particular, for any measurable functional f : C([0, T]; R¢) — R such
that the expectation E[f(Y**)Z (1, Y*¥)] exists, it holds that
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. |
Z(g, Y™) := exp[Z f a5, Y)Wy - = f Iqu(s,Y“”‘)IzdSJ,
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where for g € R, Z(q, Y*) = (Z,(q, Y*)):e0.17 is @ martingale defined by

d t t
. . 1
Z,(q,Y"™) = exp| Y f Qi (s, Y )aw] - ~ f lqu(s, Y ds |,
j=1 0 2 Jo
u(t,w) == o(t,w)"'b(t,w), (t,w) € [0,T] x C([0, T]; RY).
Moreover, for any (t,x) € (0,T] x R¢, X;‘ admits a pdf p;(x,-), w.r.t Leb.
meas. and it has the following representations: for a.e. y € R¢,
t
Pi(x,y) = g0, x5 8,y) + f E [(V.q(s, XZ5 £, ), b(s, X*))] ds,
0

= q(0,x; £, Y)E[Z,(1, Y™¥) | Y)* = y].

11/25



Remarks

Remark 1

For SDE dX, = b(t, X)dt + dW,, under linear growth condition on b,
there exists a weak sol and uniqueness in law holds (see Corollary
3.5.16 in Karatzas and Shreve).

In this case, o = I, that is if b = 0 then dX; = dW; is important.

3Qlivera, C. and Tudor, C. A. Density for solutions to stochastic differential equations with
unbounded drift. arXiv:1805.0671.
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Remark 1

For SDE dX, = b(t, X)dt + dW,, under linear growth condition on b,
there exists a weak sol and uniqueness in law holds (see Corollary
3.5.16 in Karatzas and Shreve).

In this case, o = I, that is if b = 0 then dX; = dW; is important.

Remark 2

Recently, Olivera and Tudor ® proved existence of pdf of Xf with Hélder
continuous drift (unbounded),

by using Malliavin calculus and It6—Tanaka trick or Zvonkin transform,
that is, apply PDE A¢, + L$, = b.

Theorem 1 includes this results.

3Qlivera, C. and Tudor, C. A. Density for solutions to stochastic differential equations with
unbounded drift. arXiv:1805.0671.

12/25



Idea of proof Theorem 1:
» Check a "local" Novikov condition (see Corollary 3.5.14 in Karatzas
and Shreve): for any fixed T' > 0, there exist n(T) € N and a
sequence {tp,...,tur} suchthat0 = ¢ty < ¢ty <-:+ < tyq) = T and

1 L
E [exp (5 f lgu(s, Y°”‘)I2dS)
tp-1

Recall that a pdf ¢(0, x; ¢, y) of Y?’x (without drift) satisfies the
following GB:

< oo, forallm=1,...,n(T).

C_ge.(1-9(%,¥) < q(5, %3 1,) < Cy g, (1-5(%, ¥), (4)

Since u = o~1b is of linear growth, so we can find a sequence
{05 -5t} Thus Z(1, Y*) is a martingale.
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{05 -5t} Thus Z(1, Y*) is a martingale.
» |dea: t, — t,- is sufficiently small, then

fd eXp("'c(tn - tn—l)ly - xlz)gc’t(xyy)dy < oo.
R

> By the def. of regular condi. prob., we have the second rep. for pdf.
» Since u(s, x;t) := E[f(Yts’x)] is a solution of PDE

(05 + Lou(s,x3 £) = 0, u(t,x;t) = f(x), (s,x) € [0,£) x RY, (5)

applying 1td’s formula forf(Xf), we obtain the first representation.
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Gaussian two-sided bound and continuity
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Now we consider the Gaussian two—sided bound and continuity for a pdf
under the following sub—linear growth condition on the drift coefficient b.

Assumption 2

Suppose that for any 6, t > 0, there exists K,(6) > 0 such that K;(0) is
increasing w.r.t t and for all t > 0 and w € C([0, t]; RY),

|b(z,w)| < & sup |wg| + K;().

0<s<t
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compact subset of R? and | f(x)| = o(Jx|) as |x] = oo, which is
equivalent to the condition that for any 6 > 0, there exists a constant
K(8) > 0 such that|f(x)| < 6]x| + K(J).

(i) If there exists K > 0 and B € (0,1) such that
(2, w)l < K(1 + Iw*PP), for all (£,w) € [0, 00) X C([0, c0); RY).
Then b satisfies Assumption 2 with K,(8) = K{1 + (K/8)*/1-P}.
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Under sub-linear growth condition on b, we prove a Gaussian two—sided
bound and a continuity for a pdf of X7.

Theorem 2 (Taguchi and Tanaka 2018)

Suppose Assumption 1 and Assumption 2 hold.
Let p1, p2, p3 > 1 with py € (1, 7%5) and 1/py + 1/p2 + 1/p3 = 1.
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and a.e. y € R?, it holds that

pt(x9y)
C—g2‘1?_t(xay)
>
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b

and

Pt(x,J’)
1
<C, (1 + sup E [Z,(1, Y] I

0<s<t

. 1
max [E [b(s, YO”‘)””] /m) gpc, (X, ).
i=1,2
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Under sub—linear growth cond. on b, moment of Z,(1, Y**) is finite.

Lemma 1
Suppose Assumption 1 and 2 hold. For any r € R, there exists C > 0
such that for all (¢, x) € (0, T] x R,

sup E[Z,(1, Y*")']

0<s<t

1, if2r* —r <0,

C exp (CK(b, T’t(1 + |x)), if2rt —r>0, t € (0,1,],
- x| ) )

Cexp (CK7(6,.7)%t) ex , if2rr—r>0,te(t,T],

p (CK7(8.7)*t) "(sar (
where t, ;= min{7, ———L % §,, = —L |
" { " 2K,T) ,/3g(2r2-r)a} T a2

Idea of proof:
For ¢ € (0,¢,], use liner growth.
For t € (t,, T], use sub-linear growth with 6 = §,,.

Remark 4
Ifd = 1,0 =1,b(x) = x, rt 2 2,rt*> < § and then E[Z,(1, Y**)'] = 0.
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Corollary 1
Let ps(x,-) be a conti. version of a pdf of X;‘ . Then there exist C+. > 0
and c. > 0 such that forany t € (0,T], x,y € R?,

C_ gc_t(x, y)
(1 + |xP?) exp(c.Jx]?)

Remark 5
Note that if b is bounded, then

1
sup sup E [Zs(l, YO”‘)”’Z] L

x€R 0<s<t

oo,

thus we have the Gaussian two-sided

C_g.i(x,y) < pi(x,y) £ Ci8c.t(x,y).

< pe(x,y) < Co(1 + Ix?) exple|xIP) ge, o (x, ).
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Proof of Theorem 2
Gaussian two-sided bounds: The proof is based on Kusuoka’s paper.
Applying Fatou’s lemma,

4(0,x; 1, E[Z,(1, Y'Y

=]

< q(0,x; £,y) liminf & [Z,_(1, Y**) | ¥} = y]
s—0 t
< 9(0,x3t,y) sup E[Z,(1, Y [ )" =]

0<s<t

= 0sup E [q(s, Y?’x; tL,y)Z1, Y“’x)'] (by Markov property of Y**)
<s<t
< aga,(x, y) (by Ité’s formula)
1
+ Cppy sup E[Z,1,¥"y7]""
0<s<t

ips /P
max E [b(s, Y| " g,,z,,(x, y)
i=1,2

(6)

]1/112 ]1/173

Cs + Crp, SUPggoq, B[ Z(1, YOy2 | " maxizy 2 E [b(s, YO)i:
< < oo,
(Ze,t)1?
)

Hence (6) with r = 1, we have the upper bound for p,(x, y).
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(Lower bound) By using Schwarz’s inequality, it holds that
2
1=E (2,0, 22,0, 772 | 7" =y

< E[z,0, 7% | Y)* = y|E[z,q, 7! | Y* =y| ae, yeRY,

this implies
1

<
E [Z,(1, Y0)! | Y =y

<E[z:0,7")

Y?’x = y] , a.e, yeR.

Therefore, from the representation of p,(x,y), we have

0,x;t,y)>
pe(x,y) 2 o« ») >0, ae, yeR

9(0,x3 £, )E [Z,(1, Y0y | ¥ = y]

Applying (7) with r = =1, then p,(x, y) is estimated from below by

—x]2
¢ exp(- 2

=~ ]2
@rc.1) ey

Cs + C_y1p, SuPyeye; E[Z,(1, Y0%) 2217 maxy , T [B(s, YOx)irs] /P
'"d/ TP gy (x,y)

C, + C_1p, supye,; E[Z,(1, YO05) =217 max;_; , IE [b(s, YO~ )irs]'/P3
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Sharp bounds for a pdf of Brownian motion with
bounded drift
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If the drift coefficient is bounded, then by using the parametrix method,
we obtain the following representation on p;(x, y).

Theorem 3 (Taguchi and Tanaka 2018)

Let X* = (fj’x),e[s,ﬂ be a solution of the following Markovian SDE

t t
Xj’x =x+ f b(r, X, )dr + f o(r, X ")dw,,

whered : [0,T] x R — RY js a bounded and measurable.
Suppose Assumption 1 holds and b, b are bounded. Then for any
(t,x,y) € (0,T] x R? x R¢, it holds that

t —~—
Pi(x,y) = B0, x5 1,y) + fo E [(V.B(s, X33 1, ), b(s, X*) = B(s, X2)] ds,

where p(s, x; t, ) is a pdf of ff”‘.
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Inspired by Qian and Zheng #, we consider a sharp two-sided bound for
a Brownian motion with path—dependent and bounded drift coefficient of
the form

t
X' =x+ fo b(s, X*)ds + W,, x € R%, t € [0, T], (8)

by using Theorem 3 and bang—bang diffusion processes.
We define a d-dimensional bang—bang diffusion process with parameter

@= (..., B = (Br,...,Ba)" €R":

t
YoF = x 4 f Bsgn(a — Yf’“’ﬁ)ds + W,
0

t

where Bsgn(x) := (81sgn(xy), .. ., Basgn(x4))7, for each x € RY.
Then it follows from Theorem 2 of Qian and Zheng that for any ¢ € (0, T7],
"”ﬁ admits a pdf, denoted by q"’ﬁ(x, -) which satisfies

d 2
0 (zi — Bi Vb)
ﬁ - _ .
(x,a) = | | [ Z; eXp [ 3 ] dz;.

i1 V2xt Vlxi—ail/ Vi

4Sharp bounds for transition probability densities of a class of diffusions. C. R. Acad.
Sci. Paris, Ser 335(11), 953-957, (2002)
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Corollary 2

Suppose Assumption 1 holds and the drift coefficient b is bounded. Then
a pdf of a solution of (8), denoted by p,(x, -) satisfies the following
two—sided estimates: for any (t,x,y) € [0,T] x R¢ x R?,

7" (x,y) < pux,y) < @G, )

Proof.
Let x,y € R? be fixed. Using Theorem 3 with p = ¢**!ll= we have

pex,y) — ¢ (x, y)

!
= fo E [(V.eq, 11 (X7, y), b(s, X¥) = (11Bllo)sgn(y — X7))] ds.

On the other hand, it holds that for any s € [0, ¢), z € R¢ and
w € C([0, 00); RY),

32,01 (2, y)(B' (s, w) = 1BllwSgN(y; — 2:)) < 0,
35, q "V (2, y)(B'(5, w) + IIblloSIN(Y; = 2:)) 2 0,

thus we conclude the statement. O o425



Conclusions
» Under linear growth condi. of the drift b, provide two representations

t
pi(x,y) = g0, x31,y) + f E [(V.q(s, X33 £, ), b(s, X*))] ds, ae., y € RY,
0
= q(0,x; £, E[Z,(L,Y™) | Y)* = y], ae, y € R%
» Under sub—linear condi. on b, prove a Gaussian two sided bound:

C_gc +(x,y)

< pe(x,y) < Co(1 + Ix?) exple|x1P) ge, o (x, ).
L+ P expleslap) DY =5 ' ’

> Under bounded condi. on b, provide a representation

t —
pi(x,y) = PO, x5 1,y) + f E [(V.B(s, X¥58,3), b(s, X*) = B(s, X)) ds,
0

» Further results:
> Holder continuity of the map y — p,(x,y).
> Application to numerical analysis for E[f(X7})].
> Existence of pdf of one-dim. SDEs with super—linear growth
coefficients
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