NON-CONVERGENCE OF EQUILIBRIUM MEASURES AT ZERO TEMPERATURE LIMIT

MAO SHINODA

1. Abstruct

We study behaviour of equilibrium measures at zero temperature limit in the context of symbolic dynamics. A fundamental problem in this context is whether a sequence of equilibrium measures converges or not. The answer significantly depends on the dimension of symbolic dynamics and the regularity of a potential.

We start with basic definitions. Let \mathcal{A} be a finite set and $d \geq 1$ a positive integer. Consider the space $\mathcal{A}^{\mathbb{Z}^d}$ endowed with the product topology of the discrete topology. We define \mathbb{Z}^d action σ on $\mathcal{A}^{\mathbb{Z}^d}$ by

$$\sigma^i(x)_j = x_{i+j}$$

for every $i, j \in \mathbb{Z}^d$. We call the pair (\mathcal{A}^d, σ) the *d*-dimensional full shift over \mathcal{A} . A Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^d}$ is σ -invariant if $\mu(\sigma^i B) = \mu(B)$ for every $i \in \mathbb{Z}^d$ and Borel sets B. Denote by \mathcal{M}_{σ} the space of σ -invariant Borel probability measures endowed with the weak*-topology. For a continuous function ϕ on $\mathcal{A}^{\mathbb{Z}^d}$ define the pressure by

$$\mathcal{P}(\phi) = \sup\left\{h_{\mu} + \int \phi \ d\mu : \mu \in \mathcal{M}_{\sigma}\right\}$$

where h_{μ} is the Kolmogorov entropy. A σ -invariant measure attaining the supremum is called an *equilibrium measure* for ϕ . For every continuous function there exists an equilibrium measure.

In the case of d = 1 the uniqueness of equilibrium measure holds for every Hölder continuous function [Bo]. However this is not true when $d \ge 2$ even for locally constant functions [K]. For $n \ge 1$ define the *d*-dimensional box Λ_n with size n by $\Lambda_n = \{-n + 1, \ldots, 0, \ldots, n-1\}^d$. For $x \in \mathcal{A}^{\mathbb{Z}^d}$ denote by x_{Λ_n} the restriction of x to Λ_n . Recall that a function ϕ on $\mathcal{A}^{\mathbb{Z}^d}$ is *locally constant* if $\phi(x) = \phi(y)$ whenever $x_{\Lambda_n} = y_{\Lambda_n}$ for some $n \ge 1$.

Take a continuous function ϕ on $\mathcal{A}^{\mathbb{Z}^d}$. For $\beta \in \mathbb{R}$ denote by μ_{β} an equilibrium measure for $\beta\phi$. We consider the following question:

• Does a sequence $\{\mu_{\beta}\}$ of equilibrium measures converge when β goes to infinity?

The parameter β is called *inverse temperature* and the limit $\lim_{\beta\to\infty}\mu_{\beta}$ is called the *zero temperature limit*, if it exists. Remark that we consider convergence with regard to continuous parameter families, since there always exists a convergent subsequence because of the compactness of \mathcal{M}_{σ} .

In the case of d = 1, the zero temperature limit exists for every locally constant function [Br, CGU, L]. On the other hand, there exists a Lipschitz continuous function for which the limit does not exist [CH]. Remark that we have a unique choice of sequences of

equilibrium measures in the above cases. In the case of $d \ge 2$ the situation is more complicated. We prove the following.

Theorem 1. [CS] There exists a locally constant function on a two-dimensional full shift for which every sequence of equilibrium measures does not converge.

In contrast to one-dimensional case, there may be several choices of sequences and we emphasis that our result is non-convergence for every choice of sequences. For $d \geq 3$ the same non-convergent result for locally constant function is proved by Chazottes and Hochman[CH].

References

- [Bo] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, **470**, Springer-Verlag, Berlin, 1975.
- [Br] J. Brémont, Gibbs measures at temperature zero, Nonlinearity 16, pp.419-426, 2003.
- [CGU] J. -R. Chazottes, J. -M.Gambaudo and E. Ugalde, Zero-temperature limit of one-dimensional Gibbs states via renormalization: the case of locally constant potentials, Ergod. Th. and. Dynam. Sys. 31, pp. 1109-1161, 2011.
- [CH] J. -R. Chazottes and M. Hochman, On the Zero-temperature limit of Gibbs states, Commun. Math. Phys. 297, pp. 265-281, 2010.
- [CS] J. -R. Chazottes and M. Shinoda, A finite range functions without zero temperature limit in dimension two, in preparation.
- [K] G. Keller, Equilibrium States in Ergodic Theory, London Mathematical Society Student Texts 42, Cambridge University Press, 1998
- R. Leplaideur, A dynamical proof for the convergence of Gibbs measures at temperature zero, Nonlinearity 18, pp. 2847-2880, 2005.

KEIO UNIVERSITY E-mail address: shinoda-mao@keio.jp