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The cut locus

Let M be a complete, connected, smooth Riemannian manifold of dimension
n.
For x ∈ M, Cut(x) is

the set of y ∈ M such that there is more than one minimal geodesic from
x to y, or there is a minimal geodesic from x to y which is conjugate (or
both);

the closure of the set where dist(x, ·) is not differentiable;

the points where geodesics cease to minimize distance.
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The picture
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sub-Riemannian geometry

A sub-Riemannian manifold may admit abnormal minimizers in addition to
(normal) geodesics. These are poorly understood, and we will avoid them.
Note that in several important classes of sub-Riemannian manifolds, such as
contact and CR geometry, abnormals do not arise.

Away from abnormals and the diagonal, the exponential map and cut and
conjugate loci are largely analogous to the Riemannian case, although note
that Cut(x) is adjacent to x.

We equip our (smooth, connected, complete) sub-Riemannian manifold with a
sub-Laplacian, which gives rise to a hypoelliptic diffusion, and a smooth
volume, which serves as a reference measure for the associated heat kernel.
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The Heisenberg group

Let X = ∂x − (y/2)∂z and Y = ∂y + (x/2)∂z be orthonormal in R3 (here
∆ = X2 + Y2 and the volume is the Euclidean one):
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Perturbed: 3D contact case
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The heat kernel

Let

E(x, y) = 1
2 dist(x, y)2 be the energy function,

∆ the (sub-) Laplacian on M,

pt(x, y) the heat kernel (the fundamental solution to ∂tut(x) = ∆ut(x)).
(We try to stick to the analysts’ normalization.)

As t↘ 0,

−2t log pt(x, y)→ E(x, y) uniformly on compacts, due to Varadhan (or
Leandre).

pt(x, y) ∼
( 1

4πt

)n/2
e−d2(x,y)/4t∑∞

i=0 Hi(x, y)ti

on M \ Cut(x) (or also minus x and any abnormals), due to
Minakshisundaram and Pleijel (or Ben Arous).
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Molchanov’s technique

In the 70’s, Molchanov discussed a method (later formalized by Hsu) to get an
expansion similar to that of Minakshisundaram and Pleijel at the cut locus in
the Riemannian case. It is quite flexible, requiring 3 ingredients

a “global” coarse estimate, like Varadhan/Leandre above

a finer estimate off of the cut locus, like Minakshisundaram-Pleijel/Ben
Arous above

the Markov property/Chapman-Kolmogorov equation

Below, we develop this idea for the leading term in the Riemannian case and
extend it to the sub-Riemannian case. (Further extensions are work in
progress...)

The idea is to glue two copies of the expansion at Γ.
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Other approaches

Integral representations of hypoelliptic heat kernels for left-invariant
structures on Lie groups have been studied algebraically going back to Gaveau
and Hulanicki (Heisenberg group, late 70s) and Beals-Gaveau-Greiner
(higher-dimension extension of this, mid-90s). Asaad-Gordina (2016) gave a
general treatment for nilpotent Lie groups via generalized Fourier transform.

The positively and negatively curved sub-Riemannian model spaces, de Sitter
and anti-de Sitter, space also admit explicit integral representations for the
heat kernel, as developed by Bonnefont, Badoin-Bonnefont, and
Baudoin-Wang (’09-’12).

Recently, Inahama-Taniguchi (2017) used Watanabe’s distributional Malliavin
calculus to give a general approach to sub-Riemannian heat kernel
asymptotics, and Ludewig (2018) gave similar asymptotics for Riemannian
vector bundles via a path-integral-type approach. (Also Kusuoka-Stroock. . . )
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Basic objects

Take x, y ∈ M, let Γ be the set of midpoints of minimal geodesics from x to y
and let Γε be an ε-neighborhood. For example, if M is the standard sphere and
x, y the north and south poles, Γ is the equator.

Let hx,y(z) = E(x, z) + E(z, y) be the hinged energy function. Note

hx,y(z) achieves its minimum (of d2(x, y)/4) exactly on the set Γ.

For z ∈ Γ,∇2hx,y(z) is non-degenerate if and only if the geodesic from x
to y through z is non-conjugate.
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The computation

pt(x, y) =

∫
M

pt/2(x, z)pt/2(z, y) dz

=

∫
Γε

pt/2(x, z)pt/2(z, y) dz +

∫
M\Γε

· · ·

∼
∫

Γε

pt/2(x, z)pt/2(z, y) dz

∼
∫

Γε

[(
1

2πt

)n/2
]2

e−E(x,z)/tH0(x, z) · e−E(z,y)/tH0(z, y) dz

=

(
1

2πt

)n ∫
Γε

H0(x, z)H0(z, y)e−hx,y(z)/t dz

The rigorous sub-Riemannian version of this goes back to Barilari-Boscain-N.
(’12).
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Laplace integrals

This leads us to study integrals of the form∫
ϕ(z)e−g(z)/t dz

as t↘ 0, for non-negative g.

For example, in 1D, suppose, maybe after smooth change of coordinates, that
g(z) = g(0) + z2 on (−ε, ε). Then∫

|z|≤ε
ϕ(z)e−g(z)/t dz ∼

(
ϕ(0)
√
π
)

t1/2e−g(0)/t.

If g(z) = g(0) + z4 on (−ε, ε), then∫
|z|≤ε

ϕ(z)e−g(z)/t dz ∼
(
ϕ(0)

Γ(1/4)

2

)
t1/4e−g(0)/t.
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For the heat kernel

Let M = S1 ≡ R/2πZ. For θ ∈ (0, π), i.e. not the cut locus

pt(0, θ) ∼ c(θ)
1

t1/2 e−θ
2/4t.

On the cut locus (θ = π),

pt(0, π) ∼ 2 · c(π)
1

t1/2 e−π
2/4t.

Here c(θ) is continuous.
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General role of universal cover

ỹ

ỹ

ỹ

ỹ

ỹ

ỹ
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Examples: S2 and the Heisenberg group

Let N and S be the North and South poles of S2. For y 6= S,

y 6= S⇒ pt(N, y) ∼ const.
1
t

e− dist2(N,y)/4t,

pt(N, S) ∼ const.
1

t3/2 e− dist2(N,S)/4t.

Similarly, for the Heisenberg group, if y 6= x then

y 6∈ Cut(x)⇒ pt(x, y) ∼ const.
1

t3/2 e− dist2(x,y)/4t,

y ∈ Cut(x)⇒ pt(x, y) ∼ const.
1
t2 e− dist2(x,y)/4t.

Note that in both of these cases, hx,y is Morse-Bott (the Hessian is not
degenerate on the normal bundle to TΓ.)
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The Morse-Bott case

Theorem (BBN in press at Ann. Fac. Sci. Toulouse Math. & ’12,
Kusuoka-Stroock 90s, Inahama-Taniguchi ’17)
Let M be a Riemannian or sub-Riemannian manifold as above, with x and y
distinct and every optimal geodesic joining x to y strongly normal. Define

O := {p ∈ T∗x M | Expx(p, d(x, y)) = y}

Assume that:

(i) O is a submanifold of T∗x M of dimension r.

(ii) for every p ∈ O we have dim ker Dp,d(x,y) Expx = r.

Then there exists a positive constant C such that

pt(x, y) =
C + O(t)

t
n+r

2

e−d2(x,y)/4t for small t.
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The role of conjugacy

The Taylor expansion/normal form of hx,y near its minima governs the power
of 1/t appearing in the expansion of pt(x, y). The behavior of hx,y, in turn is
governed by the exponential map; a “more degenerate” Hessian corresponds
to “more conjugacy.”

Thus more conjugacy leads to a larger power of 1/t.
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Generic singularities

Up to (and including) dimension 5, the generic singularities of the
Riemannian exponential map have normal forms from the following list, in
the Arnold classification (Weinstein, Janeczko-Mostowski):

A2 : x 7→ x2 or a suspension,
A3 : (x, y) 7→ (x3 + xy, y) or a suspension,
A4 : (x, y, z) 7→ (x4 + x2y + xz, y, z) or a suspension,
A5 : (x, y, z, t) 7→ (x5 + x3y + x2z + xt, y, z, t) or a suspension,
A6, D+

4 , D−4 , D+
5 , D−5 , D+

6 , D−6 , E+
6 , or E−6 .

Let M be a Riemannian manifold, x, y ∈ M such that γ(t) = Expx(tv) for
0 ≤ t ≤ 1 gives a minimizing conjugate geodesic from x to y. Then we say
that γ is A2-conjugate if at v, Expp has a normal form given by A2. We define
A3-conjugacy, etc. in a similar way.
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Am-conjugacy

If γ is Am-conjugate, then near the midpoint of γ, hx,y has the form

hx,y(z) =
1
4

d2(x, y) + z2
1 + . . .+ z2

n−1 + zm+1
n .

Note: This implies a minimizing geodesics can’t be A2k-conjugate.

Suppose that, for some ` ∈ {3, 5, 7, . . .} every minimizing geodesic from x to
y is non-conjugate or Am-conjugate for some 3 ≤ m ≤ `, and at least one is A`
. Then there exists C > 0 such that

pt(x, y) =
C + O

(
t

2
`+1

)
t

n+1
2 −

1
`+1

e−d2(x,y)/4t.
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Generic minimizing singularities

Theorem (Barilari-Boscain-Charlot-N. ’17)
Let M be a smooth manifold, dim M = n ≤ 5, and x ∈ M. For a generic
Riemannian metric on M and any minimizing geodesic γ from x to some y, γ
is either non-conjugate, A3-conjugate, or A5-conjugate.

The only possible heat kernel asymptotics are (here C > 0 is some constant
which can differ from line to line):

If no minimizing geodesic from x to y is conjugate, then
pt(x, y) = C+O(t)

t
n
2

e−d2(x,y)/4t,

If at least one minimizing geodesic from p to q is A3-conjugate but none
is A5-conjugate, pt(x, y) = C+O(t1/2)

t
n
2 + 1

4
e−d2(x,y)/4t,

If at least one minimizing geodesic from p to q is A5-conjugate,
pt(x, y) = C+O(t1/3)

t
n
2 + 1

6
e−d2(x,y)/4t.
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A sub-Riemannian case

Theorem (BBCN ’17)
Let M be a smooth manifold of dimension 3. Then for a generic 3D contact
sub-Riemannian metric on M, every x, and every y close enough to x:

(i) If no minimizing geodesic from x to y is conjugate then

pt(x, y) =
C + O(t)

t3/2 e−d2(x,y)/4t,

(ii) If at least one minimizing geodesic from x to y is conjugate it is
A3-conjugate and

pt(x, y) =
C + O(t1/2)

t7/4 e−d2(x,y)/4t.

Moreover, there are points y arbitrarily close to x such that case (ii) occurs.
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Non-generic cases

Non-generically, there is much more variety.

Theorem (BBCN ’17)
For any integer η ≥ 3, any positive real α, and any real β, there exists a
smooth metric on the sphere S2 and (distinct) points x and y such that the heat
kernel has the small-time asymptotic expansion

pt(x, y) = e−d2(x,y)/4t 1
t(3η−1)/2η

{
α+ t1/ηβ + o

(
t1/η
)}

.

In particular, in contrast to some suggestions in older literature, the expansion
need not proceed in integer powers of t.
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More general statements

If we only have estimates on the exponential map, we get heat kernel
estimates.

Theorem (BBCN ’17)
For x and y in a Riemannian or sub-Riemannian manifold (with x 6= y)
suppose there is a unique minimizing strongly normal geodesic from x to y
(which we denote Expx(tλ) for 0 ≤ t ≤ 1, and λ a covector). Then if Dλ Expx
has rank n− r for some r ∈ {0, 1, 2, . . . , n− 1}, then for all small enough t

C1

t
n
2 + r

4
e−d2(x,y)/4t ≤ pt(x, y) ≤ C2

t
n
2 + r

2
e−d2(x,y)/4t.
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General bounds

Theorem (BBN ’12)
For x and y in a Riemannian or sub-Riemannian manifold (with x 6= y and
every minimizer from x to y is a strongly normal geodesic), we have:

If x and y are conjugate along any minimal geodesic,

C1

t(n/2)+(1/4)
e−d2(x,y)/4t ≤ pt(x, y) ≤ C2

tn−(1/2)
e−d2(x,y)/4t

for all small enough t.

If x and y are not conjugate along any minimal geodesic,

pt(x, y) =
C + O(t)

tn/2 e−d2(x,y)/4t.
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More asymptotics

Assume M is Riemannian (and compact). Motivated by Varadhan’s result, we
define

Et(x, y) = −2t log pt(x, y) so that

Et(x, y)→ E(x, y) as t↘ 0.

Malliavin and Stroock (probabilistically, ’96) and Berline, Getzler, and
Vergne (analytically, -’92) show that, away from the cut locus, spatial
derivatives of Et(x, y) commute with the limit as t↘ 0.

The lack of differentiability of E(x, y) at the cut locus means that something
else must be occurring there; we will describe this “something else.”
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Example: S1

Again let M = S1 ≡ R/2πZ.

On the cut locus (θ = π),

lim
t↘0

∂θEt(0, θ)|θ=π = 0,

while ∂2
θEt(0, θ)

∣∣
θ=π
∼ −π

2

t
.

Hessian blows up like 1/t.

This blow-up is in the negative direction.

Unsurprising, since∇2
A,AE(x, y), thought of as a distribution, has as

singular part a non-positive measure.
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The measure

As before, we’re concerned with hx,y near Γ. But because of the
log-derivatives, we need the following one-parameter family of probability
measures:

µt(dz) =
1Γε(z)

Zt
H0(x, z)H0(y, z) exp

(
−

hx,y(z)
t

)
dz

where Zt =

∫
Γε

H0(x, z)H0(y, z) exp
(
−

hx,y(z)
t

)
dz.
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Relationship to pathspace

Fix x and y, and let Pt be the measure on path-space corresponding to the
Brownian bridge from x to y at time t. Let νt be the push-forward of Pt under
the map that takes each path to its position at time t/2. Then µt → µ (weakly
as measures on M) if and only if “νt → µ.”

Let A be any vector in TyM. Let θA(z) be the angle between A and the unit
tangent to the geodesic from x to y through z, evaluated at y. Then

∇AE(z, y) =
1
2

dist(x, y)|A| cos θA(z),

which we consider as a function of z ∈ Γε.
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The main formulas

Let A be a smooth vector field on M. Our covariant derivatives act on the
y-variable.

Theorem (N. ’08)
For a smooth, compact, connected (Riemannian) manifold M, let x and y be
any distinct points. Then, with the above notation, we have

∇AEt(x, y) =

∫
Γε

∇AE(z, y)µt(dz) + O(t)

= 2Eµt [∇AE(·, y)] + O(t)

and ∇2
A,AEt(x, y) = −4

t
Varµt [∇AE(·, y)] + O(1).

These formulas are derived by extending the approach of Molchanov. They
also require global estimates on log-derivatives, due to Stroock and Turetsky
(late 90s), and Hsu (’02).
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Example: Sn

Let N and S be the North and South poles of Sn. Then Γ is the equatorial
sphere Sn−1(1). By symmetry, µt converges to the uniform probability
measure on the equatorial sphere. Next, let A be any vector in TSM.

It is straightforward to compute that

∇2
A,AEt(N, S) ∼ −π

2|A|2

nt

as t↘ 0.
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The variance

Malliavan and Stroock previosuly used path space integration to show that, if
the set of minimal geodesics connecting x and y is sufficiently nice, then
∇2Et(x, y) is asymptotic to −1/t times the variance of some random variable
on path space as t↘ 0.

Why the variance?

L(t) = logE[etX] is the moment generating function of the random
variable X.

Then L′′(0) = Var(X).

The heat semigroup is et∆.

If the heat kernel is the expectation of this semigroup, then the Hessian
of the log of the heat kernel at time zero should be the “variance” of ∆.
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The Feynman picture

How do we interpret the “variance” of ∆?

Think of “variance” of Brownian motion.

Under the Feynman picture, distribution of (
√

2-dilated) BM has
“density” on pathspace proportional to

exp
(
− 1

4t

∫ 1

0
|w′(τ)|2 dτ

)
.

For paths from x to y in time t, as t↘ 0 this measure should be
concentrating on the minimal geodesics joining x and y.

Heuristically, we guess that, as t↘ 0, ∇2 log pt(x, y) should be the
“variance” of minimal geodesics from x to y.

Robert Neel (Lehigh University) Heat kernel at cut points Stochastic Analysis, Okayama 33 / 35



Taylor series of hx,y

As before, the Taylor series of hx,y near its minima governs the asymptotics of
µt. The more conjugate a geodesic is, the more degenerate the Hessian of hx,y

is, and the more the mass desires to concentrate on that geodesic.

To be concrete, suppose that there are three minimal geodesics from x to y,
with γ1 non-conjugate and γ2 and γ3 each A3-conjugate. Then µt → µ0 with
µ0 supported on the midpoints of γ2 and γ3.

Robert Neel (Lehigh University) Heat kernel at cut points Stochastic Analysis, Okayama 34 / 35



Characterizing the cut locus

Instead of understanding classes of examples, we can give a general result.

Theorem (N. ’08)
Let M be a compact, smooth Riemannian manifold, and let x and y be any two
distinct points of M. Then y 6∈ Cut(x) if and only if

lim
t↘0
∇2Et(x, y) = ∇2E(x, y)

and y ∈ Cut(x) if and only if

lim sup
t↘0

∥∥∇2Et(x, y)
∥∥ =∞

where ‖∇2Et(x, y)‖ is the operator norm. Further, if M is real-analytic, the
limit supremum can be replaced with the limit (and the proof considerably
simplified).
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