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Sub-Riemannian geometry

A (constant-rank) sub-Riemannian manifold is a triple (M,N, g) where M is a
smooth (connected) n-dimensional manifold, N is a smoothly-varying, rank-k
(2 ≤ k < n), bracket-generating distribution, and g is a smoothly-varying
Riemannian metric on N.

Locally, N and g can be specified by giving a smooth orthonormal frame
X1, . . . ,Xk.

Example: The Heisenberg group. Let X = ∂x− (y/2)∂z and Y = ∂y + (x/2)∂z

be orthonormal in R3. Then [X,Y] = ∂z = Z (the Reeb vector field, thinking
of this as a contact structure). Also, X, Y , and Z are left-invariant.
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Sub-Riemannian volumes and Laplacians

On a sR manifold, there is a natural notion of horizontal gradient. Then an
obvious approach to defining a Laplacian is by ∆ω = divω ◦ gradH , for some
“sub-Riemannian volume” ω. (This gives a self-adjoint operator.)
Unfortunately, there is no canonical choice of ω, in general.

Popp volume (for equiregular structure) defined by Montgomery [2001]
(already defined by Brockett in some special cases in 1981).

spherical Hausdorff volume (or Hausdorff volume).

volumes coming from Lie group structure or “nice” Riemmanian
extensions, in some cases.

In general Popp and spherical Hausdorff do not coincide unless the “tangent
space to the sub-Riemannian manifold” (in the Gromov-Hausdorff sense) it is
independent of the point , and they are not smooth one w.r.t. one another (C3

but not C5 in contact sR geometry [Agrachev, Barilari, Boscain, Gauthier
2012-2014]).
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Geodesics

Horizontal curves have tangent vectors in N. They have lengths, and one can
ask to minimize the length between two points. This gives rise to a distance,
making M into a metric space. Length minimizers are geodesics or/and
abnormals (which we’ll ignore).

horizontal curve
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Co-tangent cylinder

The geodesics are given by projections on the manifold of solutions of the
Hamiltonian system having as Hamiltonian

H(q, p) =
1
2

k∑
i

〈p,Xi(q)〉2 λ = (q, p) ∈ T∗M, and Xi a local o.n. frame.

Arclength parameterized geodesics belong to H = 1
2 , which will be a

non-compact cylinder. For Heisenberg, at the origin, it is {p2
x + p2

y = 1}.
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The Heisenberg geodesics

Let ∂x − (y/2)∂z and ∂y + (x/2)∂z be orthonormal in R3 :
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Isotropic random walk: The Riemannian case

The Laplacian is the infinitesimal generator of
√

2-BM, the limit of an
isotropic random walk qεt , with step size ε in time ε2/(2n).

M

q0
q1

q2

That is, for any ϕ ∈ C∞0 (M), with µq uniform probability measure,

∆ϕ(q) = lim
ε→0

2n
ε2

(∫
Sn−1

ϕ
(
expq(ε, θ)

)
dµq (θ)− ϕ(q)

)
= lim

ε→0

2n
ε2

(
E
[
ϕ
(

qεε2/(2n)

)∣∣∣ qε0 = q
]
− ϕ (q)

)
:= lim

ε→0
Lε

2/(2n)ϕ(q).
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Probabilistic aside: convergence of random walks

Previous andom walk/flight/etc. approximations to diffusions in geometry:

Pinsky (1976): a random flight/isotropic transport process in Riemannian
case, via semi-group/resolvent methods
Gordina-Laetsch (2017): same thing for sR case
Lebeau-Michel (2010 and 2015): convergence also of spectrum of some
types of random walks in Riemannian and sR cases
Breuillard-Friz-Huesmann (2009): convergence of Euclidean random
walks in rough path topology, can be viewed as a case of sR convergence
Angst-Bailleul-Tardif (2015): “Kinetic BM” on Riemannian manifold,
C1 curves with diffusing velocity
Xue-Mei Li (2016): a vertical diffusion on SO(n); similar to previous
Ishiwata-Kawabi-Kotani-Namba (2017-) CLTs for random walks on
graphs embedded into Euclidean or sR manifolds
von Renesse (2004) and Kuwada (2012) use random walk
approximations to rigorously construct coupled Brownian motions on
(time-dependent) Riemannian manifolds
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Pathspace

Following Stroock-Varadhan (1979), let ΩM be the space of continuous paths
from [0,∞) to M. For ω ∈ ΩM, let ωt be the position of ω at time t. Then we
can define a metric on Ω by

dΩM (ω, ω̃) =

∞∑
i=1

1
2i

sup0≤t≤i dM(ωt, ω̃t)

1 + sup0≤t≤i dM(ωt, ω̃t)
.

This metric makes ΩM into a Polish space (convergence is uniform
convergence on bounded time intervals) with Borel σ-algebra and natural
filtration. We will generally be interested in a (Markov) family of probability
measures, indexed by points of M, written as Pq for q ∈ M.
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Controlled interpolation

Let Ph
q be a family of random walks from q with “steps” at time

0, h, 2h, 3h, . . ., namely continuous, piecewise deterministic processes,
Markov at step-times.

We also need a “controlled interpolation” condition: for any ρ > 0, any
compact Q ⊂ M, and any α > 0, there exists h0 > 0 such that

1
h

Ph
q

[
sup

0≤s≤h
dM
(
qh

0, q
h
s
)
≤ ρ

]
> 1− α

whenever q ∈ Q and h < h0.

Automatically satisfied if step-size goes uniformly to 0, as before.
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Convergence in general

Theorem (Boscain-N.-Rizzi 2017)
Let M be a (sub)-Riemannian manifold (possibly rank-varying) with a smooth
diffusion operator L. Further, suppose that the diffusion generated by L,
which we call q0, does not explode, and let Pq be the corresponding
probability measure on ΩM starting from q. Similarly, let Ph

q be the probability
measures on ΩM corresponding to a sequence of random walks qh

t as above
with qh

0 = q, and let Lh be the associated operators. Suppose that, for any
ϕ ∈ C∞0 (M), we have that

Lhϕ→ Lϕ uniformly on compacts as h→ 0,

and also suppose that the controlled interpolation condition holds for the qh
t .

Then if qh → q as h→ 0, we have that Ph
qh
→ Pq as h→ 0.

A kind of Donsker invariance. . .
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sR geodesic random walk

Geodesics are well understood, so we might try to use them to determine a
Laplacian. But there’s no uniform probability measure on the cylinder of
“unit” co-vectors. We could take the “most horizontal geodesics”. . .

Cylinder of initial covectors

“most horizontal geodesics”

. . . but this is meaningless in general, because there is no canonical splitting of
either the tangent or co-tangent spaces.
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Walk/Laplacian w.r.t. a splitting

Let c be smooth choice of splitting/vertical complement such that
TqM = Nq ⊕ cq. This equivalently gives horizontal subspace of T∗Mq. The
sR metric g does induce a uniform measure on the resulting (k − 1)-dim.
sphere of horizontal “unit” co-vectors. So we can construct a corresponding
horizontal random walk, which converges to a diffusion generated by a
“Laplacian” Lc. (Or more directly define horizontal divergence.)

We can also let the probability measure on co-vectors have an independent
vertical component with some appropriate polynomial decay– this doesn’t
affect the limiting process or operator.
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Heisenberg/3D contact

For the Heisenberg group, at the origin, let

v1 = dx + a dz and v2 = dy + b dz

give an o.n. basis for the space of horizontal co-vectors, for some real a and b.
We wish to choose a (unit) horizontal covector uniformly at random, which
means a covector

cos θ v1 + sin θ v2 = cos θ dx + sin θ dy + (a cos θ + b sin θ) dz

where θ is chosen uniformly at random from [0, 2π).

The associated ransom walk, in the parabolic scaling limit, acts on smooth
functions by

Lϕ = ϕxx + ϕyy + bϕx + aϕy.

So there’s a 1-1 correspondence between splittings and first-order terms here.
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Compatibility

Still no canonical choice in general, but we can ask about compatibility:
When does Lc = ∆ω?

Theorem (Gordina-Laetsch 2016 via Riemannian extension,
Grong-Thalmaier 2016 some cases, Boscain-N.-Rizzi 2017)
For any complement c and volume ω, ∆ω and Lc have the same principal
symbol. Moreover Lc = ∆ω if and only if

Lc −∆ω =

k∑
i=1

n∑
j=k+1

cj
jiXi + gradH(θ) = 0,

where θ = log |ω(X1, . . . ,Xn)| and c`ij are the structural functions associated
with an orthonormal frame X1, . . . ,Xk for N and a frame Xk+1, . . . ,Xn for c.

This is our coordinate-free version of the theorem; it is suitable for broad
classes of examples. . .
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Contact structures

Theorem (Boscain-N.-Rizzi 2017)
Let (M,N, g) be a contact sub-Riemannian structure. For any ω there exists a
unique c such that Lc = ∆ω. In this case c = span{X0}, with

X0 = Z − J−1 gradH(θ), θ = log |ω(X1, . . . ,Xk,Z)|, (1)

where Z is the Reeb vector field and J : N→ N is the contact endomorphism.

Contact structures have a natural Riemannian extension, obtained by
declaring the Reeb vector field a unit vector orthonormal to N. It turns out that
the Riemannian volume of this extension is Popp volume.

Theorem (Boscain-N.-Rizzi 2017)
Let P be the Popp volume. The unique complement c such that Lc = ∆P is
generated by the Reeb vector field. Moreover, P is the unique volume (up to
constant rescaling) with this property.
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Continued

The inverse problem, namely for a fixed c, to find a volume ω such that
Lc = ∆ω is a more complicated (and in general has no solution). In the
contact case, we gave explicitly a necessary and sufficient condition.

For Carnot groups, Popp volume and (left) Haar volume are proportional.
There exists a complement with Lc = ∆P , but it is not unique in general.

Robert Neel (Lehigh University) Sub-Riemannian random walks Stochastic Analysis, Okayama 18 / 26



More on the canonicalness of Popp volume

We say a volume on a (sub)-Riemannian manifold is N-intrinsic if
(informally) it depends only on the nilpotent approximation at each point. For
a Riemannian manifold, such a volume is the standard one, up to a constant.
Popp volume and spherical Hausdorff volume are both N-intrinsic.

A (sub)-Riemannian structure is equi-nilpotentizable if the nilpotent
approximations at any two points are isometric.

If a (sub)-Riemannian manifold is equi-nilpotentizable, the only N-intrinsic
volume, up to a constant, is Popp volume.
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Lack of complement

Consider the quasi-contact structure on M = R4 with coordinates (x, y, z,w),
and g(z) any strictly increasing, positive function, given by the global o.n.
frame

X =
1
√

g

(
∂x +

1
2

y∂w

)
, Y =

1
√

g

(
∂y −

1
2

x∂w

)
, Z =

1
√

g
∂z.

This structure is equi-nilpotentizable, so the the Popp volume

P = g5/2
√

2
dx ∧ dy ∧ dz ∧ dw

is the unique (up to constant) N-intrinsic volume.

Lemma (Boscain-N.-Rizzi 2017)
For this M, there is no complement c such that Lc = ∆P .
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Non-standard volumes in Riemannian case

Let M be a Riemannian manifold, with Riemannian volumeR. If ω = ehR,
with h ∈ C∞(M), then

∆ω = ∆R + grad(h).

If we want a random walk that gives this operator in the limit, we should take
the volume into account in a way the previous isotropic walk does not.
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Volume-sampled walk

M
q

c ε ε

We pull back the n− 1 form iγ̇(t)ω := ωγ(t)(γ̇(t), . . .), defined along the
geodesic γ, through the exponential map to obtain a probability measure on
Sn−1 given by

µcε
q =

1
N(q, cε)

(expq(cε, ·)∗iγ̇(cε)ω)q, where c ∈ [0, 1].
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The volume-sampled operator

Then we choose the geodesic for the next step of the random walk by µcε
q . For

c = 0, we get the same thing as before. But in general, in the limit we get the
diffusion associated to the operator

Lc
ωϕ(q) = lim

ε→0

2n
ε2

(∫
Sn−1

ϕ
(
expq(ε, θ)

)
dµcε

q (θ)− ϕ(q)

)
.

Lemma (Agrachev-Boscain-N.-Rizzi, in press)
With the notation above,

Lc
ω = ∆ω + (2c− 1) grad(h).

Hence Lc
ω = ∆ω (and Lc

ω with domain C∞c (M) is essentially self-adjoint on
L2(M, ω)) if and only if either ω is proportional toR or c = 1/2.
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Significance

This points out the special role played by the Riemannian volume. It’s also
interesting that c = 1 doesn’t give the right answer (we haven’t seen this
written down before, but apparently it is somewhat familiar to experts, for
example, Bismut).

However c = 1/2 is equivalent to weighting by the “total volume” seen along
the geodesic, which after the fact seems natural.

That this absolutely continuous change of measure on Sn−1, from µq to µcε
q ,

results in a drift can be nicely interpreted as a “discretization” of Girsanov’s
theorem.
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Volume-sampling in the sR context

Here, many issues arise:

Do we include geodesics past their cut points?

If so, do we use the induced signed measure, or take absolute value?
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sR context

The computations are difficult, in part because the cylinder of initial
co-vectors is not compact.

For Heisenberg, we get results like in the Riemannian case. For higher
dimensional Carnot groups, the principal symbol won’t be “right,” in general.
We can say some things, but it’s a complicated situation and hard to go
beyond groups.
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