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1. Introduction

Many singular SPDEs have motivations from statistical physics, quantum field
theory, etc., but they are sometimes ill-posed without “renormalizations”. The
theory of paracontrolled calculus by Gubinelli, Imkeller and Perkowski [4] made
it possible to show the local well-posedness results for such renormalized SPDEs.
Compared with the famous theory of regularity structures by Hairer [6], the PC
theory has an advantage in showing detailed properties [5, 8, 9, 1, 3, 7] (global well-
posedness, ergodicity, etc.) but it is not algebraically sophisticated. Our ultimate
goal is to show the equivalence of RS and PC and construct a new theory which
has both advantages of RS and PC.

One of the main differences between the two theories is in the definition of
solutions. In PC, solutions are written by using the Bony’s paraproduct [2]. In
RS, solutions are described based on local estimates. Therefore in order to get the
relationship between these concepts, we need local estimates of Bony’s paraproduct.

This talk is based on a joint work with Ismaël Bailleul.

2. Main results

Our main theorems are the local estimates of iterated paraproducts and the Hopf
algebra structure behind these estimates.

We consider the Bony’s paraproducts on the Euclidean space Rd. Let (∆i)i≥−1

be the Littlewood-Paley blocks. For any distribution f on Rd, we write

fi = ∆if, fi− =
∑

j≤i−2

fj .

Then the Bony’s paraproduct is defined by

f 4 g =
∑
i

fi−gi.

For any f i ∈ S ′(Rd), i = 1, . . . , n, we define the iterated paraproduct

(f1, . . . , fn) =
∑
i

(f1, . . . , fn)i, (f1, . . . , fn)i = (f1, . . . , fn−1)i−(f
n)i

Note that

(f1, . . . , fn) ̸= (. . . ((f1 4 f2) 4 f3) . . . 4 fn−1) 4 fn.

We conjecture that they have similar local estimates.

Theorem 2.1. Let α1, . . . , αn > 0.
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(1) Let f1 ∈ Cα1 . Define

∆yxf
1 = f1(y)−

∑
|k|<α1

(y − x)k

k!
∂kf1(x).

Then one has |∆yxf
1| ≲ |y − x|α1 .

(2) Let f1 ∈ Cα1 and f2 ∈ Cα2 . Define

∆yx(f
1, f2) = (f1, f2)(y)−

∑
|k|<α1+α2

(y − x)k

k!
∂k
∗ (f

1, f2)(x)

−
∑

|l|<α1

(y − x)l

l!
∂lf1(x)∆yxf

2,

where

∂k
∗ (f

1, f2) = ∂k(f1, f2)−
∑

k=l+m,|l|<α1,|m|≥α2

k!

l!m!
(∂lf1)(∂mf2)

Then one has |∆yx(f
1, f2)| ≲ |y − x|α1+α2 .

(3) Let f i ∈ Cαi , i = 1, . . . , n. Define

∆yx(f
1, . . . , fn) = (f1, . . . , fn)(y)−

∑
|k|<α1+···+αn

(y − x)k

k!
∂k
∗ (f

1, . . . , fn)(x)

−
n−1∑
m=1

∑
|l|<α1+···+αm

(y − x)l

l!
∂l
∗(f

1, . . . , fm)(x)∆yx(f
m+1, . . . , fn)

with some coefficients ∂l
∗(f

1, . . . , fm)(x) defined continuously from f1, . . . , fn.
Then one has |∆yx(f

1, . . . , fn)| ≲ |y − x|α1+···+αn .

Next we define the Hopf algebra which describes these “extended Taylor series”.
Let W =

∪
k∈N{1, . . . , n}k and let W be the commutative algebra freely generated

by W . We define the coproduct

∆̊(i1 . . . ik) = (i1 . . . ik)⊗ 1+ 1⊗ (i1 . . . ik) +

k−1∑
l=1

(il+1 . . . ik)⊗ (i1 . . . il).

Then W is a Hopf algebra. Moreover, let W̃ = W × Nd and define the differential
map ∂i : W̃ → W̃ by ∂iτm = τm+ei . We extend the coproduct ∆̊ by

∆̊∂i = (∂i ⊗ Id + Id⊗ ∂i)∆̊.

We have independent symbols {Xi}di=1 and define

∆̊Xi = Xi ⊗ 1+ 1⊗Xi.

Let H be the commutative algebra freely generated by W̃ ∪ {Xi}di=1. Then (H, ∆̊)
is a Hopf algebra. We next define the new coproduct ∆ by

∆ = exp(
d∑

i=1

Xi ⊗ ∂i)∆̊.

Here we assume ∂iXj = 0 and denote by Xi the map τ 7→ Xiτ . Then (H,∆) is
again a Hopf algebra.
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Fix β1, . . . , βn > 0. We define the homogeneity | · | on H by

|(i1 . . . ik)m| = βi1 + · · ·+ βik − |m|, |Xi| = 1.

Here |m| =
∑d

i=1 mi. Now H is graded but contains negative homogeneities. Hence
we focus only on the algebra

H+ = H/⟨τσ ∈ H; |σ| < 0⟩.
Then H+ forms the regularity structure (H+, G) with the character group G on
H+. The following theorem is the another form of the above theorem.

Theorem 2.2. Let α1, . . . , αn > 0.

(1) Given f i ∈ Cαi , i = 1, . . . , n, we define (Π, g) by

Π(i1 . . . ik)m(x) = gx((i1 . . . ik)m) = ∂m
∗ (f i1 , . . . , f ik)(x).

Then (Π, g) is a model on (H+, G).

(2) Let β > 0 and g ∈ Cβ. We define the H+-valued function

g =
∑

|k|<β+α1+···+αn

∂k
∗ (g, f

1, . . . , fn)
Xk

k!

+
n−1∑
i=1

∑
|ki|<β+α1+···+αi

∂ki
∗ (g, f1, . . . , f i)

Xki

ki!
((i+ 1) . . . n)

+
∑

|m|<β+α1+···+αn

(∂mg)
Xm

m!
(1 . . . n).

Then one has g ∈ Dβ+α1+···+αn .
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[3] M. Gubinelli and M. Hofmanová, Global solutions to elliptic and parabolic Φ4 models in

Euclidean space, arXiv:1804.11253.

[4] M. Gubinelli, P. Imkeller, and N. Perkowski, Paracontrolled distributions and singular
PDEs, Forum Math. Pi 3 (2015), e6, 75pp.

[5] M. Gubinelli and N. Perkowski, KPZ reloaded, Comm. Math. Phys. 349 (2017), no. 1,
165-269.

[6] M. Hairer, A theory of regularity structures, Invent. Math. 198 (2014), no. 2, 269-504.
[7] M. Hoshino, Global well-posedness of complex Ginzburg-Landau equation with a space-time

white noise, arXiv:1704.04396.

[8] J.-C. Mourrat and H. Weber, The dynamic Φ4
3 model comes down from infinity, Comm.

Math. Phys. 356 (2017), no. 3, 673-753.
[9] P. Tsatsoulis and H. Weber, Spectral gap for the stochastic quantization equation on the

2-dimensional torus, Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018), no. 3, 1204-1249.
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