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Introduction

RWs on Γ-nilpotent covering graphs

♠ Γ : finitely generated torsion free nilpotent group of step r

• torsion free: If γn = 1Γ, then n = 0 (and γ = 1Γ).
• nilpotent: There exists some r ∈ N such that

Γ ⊃ [Γ,Γ] ⊃ · · · ⊃ Γ(r)(:= [Γ,Γ(r−1)]) = {1Γ}

♠ A nilpotent covering graph X is a covering graph of a finite
graph X0 whose covering transformation group is Γ.

In other words, Γ acts on X freely and the quotient graph
X0 = Γ\X is finite.

♠ X is called a crystal lattice if Γ is abelian (r = 1).
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Figure : Crystal lattices with Γ = ⟨σ1, σ2⟩ ∼= Z2
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3D disctrete Heisenberg group : Γ = ⟨γ1, γ2, γ3, γ
−1
1 , γ−1

2 , γ−1
3 ⟩

γ1γ3 = γ3γ1, γ2γ3 = γ3γ2, [γ1, γ2](= γ1γ2γ
−1
1 γ−1

2 ) = γ3

Figure : A part of the Cayley graph of Γ = H3(Z)
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• For an edge e ∈ E, the origin, the terminus and the inverse
edge of e are denoted by o(e), t(e) and e, respectively.

• Ex := {e ∈ E | o(e) = x} (x ∈ V ).

♠ A RW on X is characterized by giving the transition probability
p : E −→ [0, 1] satisfying the Γ-invariance,

p(e) + p(e) > 0, (e ∈ E),　&　
∑
e∈Ex

p(e) = 1, (x ∈ V ).

=⇒ This induces a time homogeneous Markov chain

(Ωx(X), Px, {wn}∞n=0),

where Ωx(X) stands for the set of all paths in X starting at x.

♠ By Γ-invariance of p, we may consider the RW
(Ωπ(x)(X0), Pπ(x), {wn}∞n=0) (π : X → X0: covering map).
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• Lf(x) :=
∑
e∈Ex

p(e)f
(
t(e)

)
: transition operator.

• n-step transition probability; p(n, x, y) := Lnδy(x).

Assumption (Irreducibility)

The Markov chain {wn}∞n=0 on X0 is irreducible, that is,
　　 ∀x, y ∈ V0, ∃n = n(x, y) ∈ N s.t. p(n, x, y) > 0.

Remark RW on X : irreducible =⇒
⇍= RW on X0 : irreducible.

♠ By the Perron-Frobenius theorem,

∃!m : V0 −→ (0, 1] : L-invariant measure, s.t.∑
x∈V0

m(x) = 1　&　tLm(x) = m(x) (x ∈ V0).

♠ We also write m : V −→ (0, 1] for the lift of m to X.

• m̃(e) := p(e)m
(
o(e)

)
(the conductance of e ∈ E).
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♠ We define the homological direction γp of the RW by

γp :=
∑
e∈E0

m̃(e)e ∈ H1(X0,R).

♠ RW: (m-)symmetric
def⇐⇒ m̃(e) = m̃(e)

iff⇐⇒ γp = 0.

Our Problem

Functional CLT (Donsker type invariance principle)

♡ Abelian case: Ishiwata–K–Kotani (’17, JFA)(Φ0(w[nt])− [nt]ρR(γp)√
n

)
t≥0

=⇒
n→∞

(Bt)t≥0 ,where

ρR : H1(X0,R) ↠ Γ⊗ R(∼= Zd ⊗ R = Rd),
Φ0 : X → (Γ⊗ R, g0) is the “standard realization”, and
(Bt): standard BM on Γ⊗ R with Albanese metric g0.
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X = (V,E)

π

X0 = (V0,E0) = Γ\X

(Devide by Γ = ⟨σ1, σ2⟩)

σ1

σ2

Catch the quantative data

e.g.) homological direction γp

Φ0

1st homology group H1(X0,R)

σ1

σ2

(Γ⊗ R, g0)

ρR loop in X0 7−→ aσ1 + bσ2

e.g.) asymptotic direction ρR(γp)

Realize X into Γ⊗ R by using
(1) (modified) harmonic realization Φ0

(2) Albanese metric g0 on Γ⊗ R

e1 e2

e3
e4

e1

e2
e3

e4

No Coordinates

1
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♣ In this talk, we discuss this problem for non-symmetric RWs
on nilpotent covering graphs from a viewpoint of discrete
geometric analysis developed by T. Sunada (with M. Kotani).

Scheme 1 : Replace the usual transition operator by

“transition-shift operator”

to “delete” the diverging drift term. (cf. arXiv:1806.03804)

Scheme 2 : Introduce a one-parameter family of RWs on X

(Ωx(X), P(ε)
x , {w(ε)

n }
∞
n=0) (0 ≤ ε ≤ 1)

to “weaken” the diverging drift term. (−→ This talk !)

♠ “Scheme 2” is applied to the study of the hydrodynamic limit
of weakly asymmetric exclusion processes.
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Nilpotent Lie group (as a continuous model)

♠ How to realize the Γ-nilpotent covering graph X into some
continuous space ?

[Malćev (’51)]� �
∃G = GΓ : connected & simply connected nilpotent Lie group
such that Γ is isomorphic to a cocompact lattice in (G, ·).� �
♠ By a certain deformation of the product · on G, we may

assume that G is a stratified Lie group of step r.
Namely, its Lie algebra (g, [·, ·]) satisfies

g =

r⊕
i=1

g(i); [g(i), g(j)]

{
⊂ g(i+j) (i + j ≤ r),

= {0g} (i + j > r),

and g(i+1) = [g(1), g(i)] (i = 1, . . . , r − 1).
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♠ Example: 3-dim Heisenberg group H3(R)(= G(2)(R2))

▷ Γ = H3(Z) :=

{1 x z
0 1 y
0 0 1

 : x, y, z ∈ Z

}(
↪→
lattice

G = H3(R)
)
.

▷ g = Lie(G) =

{0 x z
0 0 y
0 0 0

 : x, y, z ∈ R

}
.

▷ X1 :=

0 1 0
0 0 0
0 0 0

, X2 :=

0 0 0
0 0 1
0 0 0

, X3 :=

0 0 1
0 0 0
0 0 0

.
(
⇝ [X1, X2] = X3, [X1, X3] = [X2, X3] = 0g.

)
▷ G = H3(R) : a (free) nilpotent Lie group of step 2, i.e.,

g = g(1) ⊕ g(2); g(1) = spanR{X1, X2}, g(2) := spanR{X3}.
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♠ We identify G with Rn through the canonical coordinates of
the 1st kind:

G ∋ exp
( r∑

k=1

dk∑
i=1

x
(k)
i X

(k)
i︸ ︷︷ ︸

∈g(k)

)

←→ (x(1), x(2), . . . , x(r)) ∈ Rd1+d2+···+dr ,

where

▷ g = (g(1), g0)⊕ g(2) ⊕ · · · ⊕ g(r).

▷ g(k) = spanR{X
(k)
1 , . . . , X

(k)
dk
} (k = 1, . . . , r).

▷ x(k) = (x
(k)
1 , . . . , x

(k)
dk

) ∈ Rdk ∼= g(k) (k = 1, . . . , r).
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Construction of the Albanese metric on g(1)

♠ We induce a special flat metric on g(1), called the Albanese
metric, by the following diagram:

(g(1), g0) !!!! ρR
""

dual
##

H1(X0,R)""

dual
##

Hom(g(1),R) !
"

tρR
$$ H1(X0,R) ∼=

(
H1(X0), ⟨⟨·, ·⟩⟩p

)
.

1

▷ H1(X0) :=
{
ω ∈ C1(X0,R) :

∑
e∈(E0)x

p(e)ω(e) = ⟨γp, ω⟩
}

with ⟨⟨ω, η⟩⟩p :=
∑
e∈E0

m̃(e)ω(e)η(e)− ⟨γp, ω⟩⟨γp, η⟩.

▷ ρR : H1(X0,R)↠g(1) : the surjective linear map defined by

ρR([c]) := log(σc)|g(1) for [c] ∈ H1(X0,R)

s.t. σc ∈ Γ(↪→ G) satisfies σc · o(c̃) = t(c̃) on X.
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Harmonic realization of the graph X into G

♠ We consider a Γ-equivariant map Φ : X = (V,E) −→ G:

Φ(γx) = γ · Φ(x) (γ ∈ Γ, x ∈ V ).

Definition [Modified Harmonic Realization]

A realization Φ0 : X −→ G is said to be modified harmonic if

∆
(
logΦ0

∣∣
g(1)

)
(x) = ρR(γp) (x ∈ V ),

where ∆ := L− I : the discrete Laplacian on X.

♠ Such Φ0 is uniquely determined up to g(1)-translation, however,
it has the ambiguity in (g(2) ⊕ · · · ⊕ g(r))-component!

♠ ρR(γp) is called the (g(1)-)asymptotic direction of the RW.
(LLN): limn→∞

1
n
log Φ0(wn) = ρR(γp)

♠ We emphasize that

γp = 0 ⇒⇍ ρR(γp) = 0g.
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Dilation & the CC-metric on G

♠ We introduce the 1-parameter group of dilations
{τε}ε≥0 on G:

G ∋ (x(1),x(2), . . . , x(r))
τε7−→

(εx(1), ε2x(2), . . . , εrx(r)) ∈ G.

♠ We equip G with the Carnot-Carathéodory metric:

dCC(g, h) := inf
{ ∫ 1

0
∥ċ(t)∥g0 dt

∣∣∣ c ∈ AC([0, 1];G),

c(0) = g, c(1) = h, ċ(t) ∈ g
(1)
c(t)

}
(g, h ∈ G).

♠ (G, dCC) is not only a metric space but also a geodesic space.
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Family of RWs with weak asymmetry

♠ For 0 ≤ ε ≤ 1, we define

pε(e) := p0(e) + εq(e) (e ∈ E),

where

p0(e) :=
1

2

(
p(e) +

m
(
t(e)

)
m

(
o(e)

)p(e)) : m-symmetric,

q(e) :=
1

2

(
p(e)−

m
(
t(e)

)
m

(
o(e)

)p(e)) : m-anti-symmetric.

♠ Namely, pε is defined by the linear interpolation between the
symmetric transition probability p0 and the given one p = p1.

▷ RW on X : (Ωx(X), P(ε)
x , {w(ε)

n }∞n=0) (0 ≤ ε ≤ 1).

♠ mε(e) = m(e), γpε = εγp (0 ≤ ε ≤ 1).
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♠ For 0 ≤ ε ≤ 1,

▷ L(ε)f(x) =
∑
e∈Ex

pε(e)f
(
t(e)

)
(x ∈ V, f : V −→ R).

▷ g
(ε)
0 : Albanese metric on g(1) associated with pε.

(=⇒ Continuity of the Albanese metric g
(ε)
0 w.r.t. ε.)

▷ G(ε) : nilpotent Lie group whose Lie algebra is

(g(1), g
(ε)
0 )⊕ g(2) ⊕ · · · ⊕ g(r).

▷ Φ
(ε)
0 : X −→ G : (pε-)modified harmonic realization, i.e.,

(L(ε) − I)
(
logΦ

(ε)
0

∣∣
g(1)

)
(x) = ερR(γp) (x ∈ V ).

▷ Pε : C∞(G) −→ C∞(X) : scaling operator defined by

Pεf(x) := f
(
τε
(
Φ

(ε)
0 (x)

))
(x ∈ V, 0 ≤ ε ≤ 1).
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Semigroup-CLT

♠ We actually have, for f ∈ C∞
0 (G(0)),

1

Nε2
(I − LN

(ε))Pεf ∼ PεA(ε)f

as N →∞, ε↘ 0 and N2ε↘ 0 in some sense, where

A(ε) = −
1

2

d1∑
i=1

V 2
i︸ ︷︷ ︸

sub-Laplacian on G(0)

−ρR(γp)︸ ︷︷ ︸
∈g(1)

−β(ε)(Φ
(ε)
0 )︸ ︷︷ ︸

∈g(2)

,

β(ε)(Φ
(ε)
0 ) :=

∑
e∈E0

m̃ε(e)log
(
Φ

(ε)
0

(
o(e)

)−1 · Φ(ε)
0

(
t(e)

))∣∣∣
g(2)

.

♠ Usually, the diverging drift term appears in g(1)-direction.
However, it is weakened due to γpε = εγp.
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Question What is the behavior of β(ε)(Φ
(ε)
0 ) as ε↘ 0 ?

♠ Unfortunately, it is NOT expected that

lim
ε↘0

Φ
(ε)
0 (x) = Φ

(0)
0 (x) (x ∈ V ).

▷ ∃ {Φ(ε)
0 }0≤ε≤1 s.t.

∥∥∥log (Φ(ε)
0 (x)−1 · Φ(0)

0 (x)
)∣∣∣

g(k)

∥∥∥
g(k)
−→∞

for k = 2, 3, . . . , r.

♠ We now impose

(A1)� �∑
x∈F

m(x)
{
logΦ

(ε)
0 (x)

∣∣
g(1) − logΦ

(0)
0 (x)

∣∣
g(1)

}
= 0,

where F : a fundamental domain of X.� �
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Key Proposition

Under (A1), we have lim
ε↘0

β(ε)(Φ
(ε)
0 ) = 0g.

♠ By combining Proposition 1 with the Trotter approximation
theorem, we obtain a semigroup-CLT.

Theorem 1. (Ishiwata-K-Namba, ’18)

Under (A1), we have, for 0 ≤ s ≤ t and f ∈ C∞(G),

lim
n→∞

∥∥∥L[nt]−[ns]

(n−1/2)
Pn−1/2f − Pn−1/2e−(t−s)Af

∥∥∥
∞

= 0,

where A is a 2nd order sub-elliptic operator on G(0) defined by

A = −
1

2

d1∑
i=1

V 2
i − ρR(γp).

▷ {V1, V2, . . . , Vd1} : ONB of (g(1), g
(0)
0 ).
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Functional CLT

▷ x∗ ∈ V : a reference point s.t. Φ
(0)
0 (x∗) = 1G.(

Note : It is not always Φ
(ε)
0 (x∗) = 1G due to (A1).

)
♠ We define

X (ε,n)
t (c) := τε

(
Φ

(ε)
0 (w

(ε)
[nt])(c)

)
for 0 ≤ t ≤ 1, 0 ≤ ε ≤ 1, n = 1, 2, . . . and c ∈ Ωx∗(X).

♠ We also define a G(0)-valued continuous stochastic process

Y(ε,n) = (Y(ε,n)
t )0≤t≤1 by the dCC-geodesic interpolation

(w.r.t. g
(0)
0 -metric) of {X (ε,n)

k/n }
n
k=0 for every 0 ≤ ε ≤ 1.

♣ To show tightness of {Y(n−1/2,n)}, we need to impose an

additional assumption on (Φ
(ε)
0 )0≤ε≤1.
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(A2)� �
∃C > 0 s.t. for k = 2, 3, . . . , r,

sup
0≤ε≤1

max
x∈F

∥∥∥log (Φ(ε)
0 (x)−1 · Φ(0)

0 (x)
)∣∣∣

g(k)

∥∥∥
g(k)
≤ C.

� �
♠ Intuitively, the situations that the “distance” between

Φ
(ε)
0 (x) and Φ

(0)
0 (x) tends to be too big as ε↘ 0

are removed under (A2).

♠ Under (A1) & (A2), we can show

EP(n−1/2)
x∗

[
dCC

(
Y(n−1/2,n)

t ,Y(n−1/2,n)
s

)4m]
≤ C(t− s)2m

by combining the modified harmonicity of Φ
(n−1/2)
0 , several

martingale inequalities and an idea (of the proof) of Lyons’
extension theorem in rough path theory.
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Theorem 2. (Ishiwata-K-Namba, ’18)

Under (A1) & (A2), we obtain, for all α < 1/2,

(Y(n−1/2,n)
t )0≤t≤1 =⇒

n→∞
(Yt)0≤t≤1 in C0,α

(
[0, 1], G(0)

)
.

▷ (Yt)0≤t≤1 : G(0)-valued diffusion process which solves

dYt =

d1∑
i=1

Vi(Yt) ◦ dBi
t + ρR(γp)(Yt) dt, Y0 = 1G.

▷ C0,α
(
[0, 1], G(0)

)
:= Lip

(
[0, 1];G(0)

)∥·∥α-Höl
: Polish, where

∥w∥α-Höl := sup
0≤s<t≤1

dCC(ws, wt)

|t− s|α
+ dCC(1G, w0).
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Some Comments

♠ ∃ many results on CLTs in which

sub-Laplacian + g(2)-valued drift

is captured as the generator of the limiting diffusion.

• Raugi (’78), Pap (’93), Alexopoulos (’02), ...

♠ Indeed, we obtained such a (functional) CLT for non-symmetric
RWs on X by applying Scheme 1 (transition-shift scheme).
As the generator of the limiting diffusion, we have

A = −
1

2

d1∑
i=1

V 2
i − βρ(Φ0), where

βρ(Φ0) :=
∑
e∈E0

m̃(e)log
(
Φ0

(
o(e)

)−1·Φ0

(
t(e)

)
· e−ρR(γp)

)∣∣∣
g(2)

.

♠ Note that γp = 0 =⇒ βρ(Φ0) = 0g.
(This drift arises from the non-symmetry of the given RW.)
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♠ However, to our best knowledge, there seems to be few results
on CLTs in the nilpotent setting in which a g(1)-valued drift
appears in the generator of the limiting diffusion.

♡ (Namba, in preparation): By combining Schemes 1 & 2, i.e.,

L(ε)f(x, t) =
∑
e∈Ex

pε(e)f
(
t(e), t + 1

)
,

Pεf(x, t) = f
(
τε

(
Φ

(ε)
0 (x)· exp(tb)

))
, b ∈ g(2),

we also obtain a CLT with A = −
1

2

d1∑
i=1

V 2
i − ρR(γp)− b.

♡ Applying the (g(1)-)corrector-method (which is standard
in stochastic homogenization), we might prove Theorem 2

without the modified-harmonicity of Φ
(ε)
0 .
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