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Introduction

‘RWs on I'-nilpotent covering graphs‘

& T : finitely generated torsion free nilpotent group of step r
e torsion free: If 4™ = 1p, then n = 0 (and v = 1r).
e nilpotent: There exists some r € N such that

>[I D--->rMe= [, 1Y) = {11}

& A nilpotent covering graph X is a covering graph of a finite
graph Xy whose covering transformation group is T'.

In other words, I' acts on X freely and the quotient graph
Xo = I'\ X is finite.

#® X is called a crystal lattice if I' is abelian (r = 1).
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Figure : Crystal lattices with T' = (o1, 02) = 72
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3D disctrete Heisenberg group : T' = (v1,v2, 73, 71_1, 72_1, 73_1)

Y13 = Y37V1s Y2¥3 = V372> [71,72](= Y1v2v: v D) = 3

Figure : A part of the Cayley graph of T' = Hj3(Z)
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e For an edge e € FE, the origin, the terminus and the inverse
edge of e are denoted by o(e), t(e) and e, respectively.

e E,:={ec E|o(e)=x}(xeV).
® A RW on X is characterized by giving the transition probability
p: E — [0, 1] satisfying the I'-invariance,

p(e) +p(e) >0,(e€ E), & Z ple) =1, (z € V).
ecFE,

= This induces a time homogeneous Markov chain

(Q22(X), Pey {wn}520),

where (X)) stands for the set of all paths in X starting at x.

& By I'-invariance of p, we may consider the RW
(Qﬂ(m)(Xo),Pﬂ(m), {wn}72 ) (m: X — Xo: covering map).

Hiroshi KAWABI (Keio University) CLT for RWs on nilpotent covering graphs Nov 21, 2018 @ Okayama 5/25



o Lf(x) := Z p(e)f(t(e)) : transition operator.
ecE,
e n-step transition probability; p(n, x,y) := L"d,(x).

Assumption (Irreducibility)

The Markov chain {w, }$2 , on X is , that is,
Ve,y € Vp, In = n(x,y) € Ns.t. p(n,z,y) > 0.

RW on X : irreducible z RW on X : irreducible.

& By the Perron-Frobenius theorem,

A'm : Vo — (0, 1] : L-invariant measure, s.t.

Y mz)=1 & ‘Lm(z)=m(z) (z€ V).
xEVY

& We also write m : V.— (0, 1] for the lift of m to X.
e m(e) := p(e)m(o(e)) (the conductance of e € E).
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& We define the homological direction ~, of the RW by

Yp 1= Z m(e)e € Hi(Xo, R).
ecFEq

& RW: (m-)symmetric MU m(e) = m(e) LN ¥p = 0.

Our Problem
Functional CLT (Donsker type invariance principle)

© Abelian case: Ishiwata—K—Kotani (17, JFA)

—> (Bt)t>0 ;where
t>0 n—oo -

(q’o(wW]) ;ﬁ[nt]PR(’Yp))

pr : H1(X0,R) » T @ R(X Z? ® R = R%),
Py : X —» (I ® R, go) is the “standard realization”, and
(Bg): standard BM on I' ® R with Albanese metric go.
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— X=(V,B) ——

No Coordinates Realize X into I' @ R by using
(1) (modified) harmonic realization ®¢
P (2) Albanese metric gg on ' @ R
—— ([C®R,g0) —
7 | (Devide by I' = (o1,02))
02
— X() = (Vo, E()) = F\X
I1
€1

PR[ loop in Xg — aoy + bos

ea e.g.) asymptotic direction pr(7p)

Q 1st homology group Hy(Xo,R)

Catch the quantative data
e.g.) homological direction =,
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& In this talk, we discuss this problem for non-symmetric RWs
on nilpotent covering graphs from a viewpoint of discrete
geometric analysis developed by T. Sunada (with M. Kotani).

: Replace the usual transition operator by

“transition-shift operator”

to “delete” the diverging drift term. (cf. arXiv:1806.03804)

: Introduce a one-parameter family of RWs on X
(Q(X), PO {wP}2,) (0<e<1)
to “weaken” the diverging drift term. (— This talk !)

& “Scheme 2” is applied to the study of the hydrodynamic limit
of weakly asymmetric exclusion processes.
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Nilpotent Lie group (as a continuous model)

® How to realize the I'-nilpotent covering graph X into some
continuous space ?

[Maléev (’51)]
3G = Gr : connected & simply connected nilpotent Lie group
such that I is isomorphic to a cocompact lattice in (G, -).

& By a certain deformation of the product - on G, we may
assume that G is a stratified Lie group of step r.
Namely, its Lie algebra (g, [-,:]) satisfies

N (i L (+i) (447 <
_ (@), @) (G)7)C9 (i+3 <),
g g?g s (6%, ]{: 0 (i+3>m)

and gttt = [g(l),g(i)] t=1,...,7—=1).
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& Example: 3-dim Heisenberg group H3(R)(= G (R?))

(1 = 2]
> T = H3(Z) —{ 01 y|: w,y,zEZ}(‘—>G H?’(R))
lattice
0 0 1]
[0 = =z
> g = Lie(G) = { 0 0 y :m,y,zER}.
0 0 0]
01 0 0 0O 0 0 1
> X3:=1(0 0 0|, X2:=(0 0 1|, X3:=1(0 0 0].
0 0 O 0 0O 0 0O
( [X1, Xa] = X3, [X1, X3] = [Xa2, X3] = og.)

> G = H3(R) : a (free) nilpotent Lie group of step 2, i.e.,

g=9" @g®; g = spang{X1, X2}, g@ := spang{Xs}.
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& We identify G with R™ through the canonical coordinates of
the 1st kind:

G 3 exp ( Z Zw(k)X(k)>
k=11i=1
EQ(k)

— (5,3(1),:,3(2), . .’w('r')) € Rb+Hdatotdy
where
> g= (g(l) QO) @9(2) D P g(r)_
> g® = spany {X®, ..., x®} (k=1,...,7).
> 2® =@, (k)) cR% =gk (k=1,...,r).
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Construction of the Albanese metric on g(!)

& We induce a special flat metric on g(*), called the Albanese
metric, by the following diagram:

(6™, go) < Hy(Xo,R)

1dual $dual

Hom(g), R);—~H' (X0, ) & (H'(X0). (-)).

> HU(Xo) 1= {w € CH (X0, R) + Y ple)w(e) = (v, )}
e€(FEo)z

with (w, ), := Y m(e)w(e)n(e) — (vp,w){(1psm)-
ecFEq
> pr : Hi(Xg,R)—>g® : the surjective linear map defined by

pr([c]) :=log(coc)|ga) for [c] € Hi(Xo,R)

s.t. 0. € I'(— G) satisfies o.-o0(¢) = t(¢) on X.
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Harmonic realization of the graph X into G

& We consider a I'-equivariant map ¢ : X = (V, E) — G:
P(yr) =v-®(z) (vel,zeV).

Definition [Modified Harmonic Realization]

A realization &5 : X — G is said to be modified harmonic if

A(log ®o| ) ) (x) = pu(v) (z € V),

where A := L — I : the discrete Laplacian on X.

& Such @ is uniquely determined up to g(!)-translation, however,
it has the ambiguity in (¢ @ --- @ g("))-component!
& pr(7p) is called the (g(")-)asymptotic direction of the RW.
(LLN):  lim,_,o0 % log ®o(wyn) = pr(7p)
& We emphasize that

Yp =0 == PR('Yp) = Og. J
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Dilation & the CC-metric on G

& We introduce the 1-parameter group of dilations
{Tc}e>0 on G:

(sas(l) 52 @,... ,e”’as(r)) € G.

& We equip G with the Carnot-Carathéodory metric:
1
doc(g,h) i=inf { [ [16(®)l dt|c € AC(0,1):6),
0

c(0) = g, c(1) = h, &(t) € a()} (9,h € G).

& (G,dcc) is not only a metric space but also a geodesic space.
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Family of RWs with weak asymmetry

® For 0 < e <1, we define

pe(e) := po(e) + eq(e) (e € E),
where

po(e) 1= *(p(e) + mlole))

a(e) = (ple) - TN

& Namely, p. is defined by the linear interpolation between the

symmetric transition probability pg and the given one p = p;.

> RW on X : (Q,(X),PE), {wE}e ) (0<e<1).

& m.(e)=m(e), vp. =7 (0<e<1).
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S Foro<e<i1,
> Lo f(@) = ) pe(e)f(t(e)) (z€V, f:V —R).

ecE,

> g'¥) : Albanese metric on g(!) associated with p..

(=> Continuity of the Albanese metric g\~ w.r.t. .)
> G(e) : nilpotent Lie group whose Lie algebra is

(6,95 @@ @ ®g".
> &) : X —» G : (p.-)modified harmonic realization, i.e.,
(L) = D (log @[ o)) (@) = epr(1,) (@ € V).
> P : Coo(G) — Coo(X) : scaling operator defined by

P.f(2) = f(r.(®(@)) (@eV,0<e<).
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Semigroup-CLT

& We actually have, for f € C5°(G(o)),

Nz LE)Pef ~ P-Ag f

as N — oo, € \( 0 and N2¢ \ 0 in some sense, where

dy
1
Ay = —52‘? —pr(vp) —BO (@) ,
—_—— cg® cg®@

sub-Laplacian on G (o)

l@(e)(cﬁgs)) = Z me(e)log (4’86) (O(e))_l : (I)gs) (t(e))) ‘9(2)'

ecEg

& Usually, the diverging drift term appears in g(1-direction.
However, it is weakened due to v, = e7p.

Hiroshi KAWABI (Keio University) CLT for RWs on nilpotent covering graphs Nov 21, 2018 @ Okayama 18 / 25



What is the behavior of ,6(5)({)(()6)) ase (07

& Unfortunately, it is NOT expected that

lim &7 (z) = P (z) (z € V).
eN\0

> 3{B Jocect sit. Hlog (@gf)(m)—l - @80)(m)>’
for k =2,3,...,7.

g [ g()

& We now impose

(A1)

> m(@){log @5 ()] ) — log @3 (@) 1) } = 0,
xeF

where F : a fundamental domain of X.
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Key Proposition
Under (A1), we have lim 8 (&) = o,.
e\0

& By combining Proposition 1 with the Trotter approximation
theorem, we obtain a semigroup-CLT.

Theorem 1. (Ishiwata-K-Namba, '18)

Under (A1), we have, for 0 < s < tand f € C(G),

Tim_ HLEZ@I}Z)S]PWW f— P, e G—9A f”oo —o,
where A is a 2nd order sub-elliptic operator on G () defined by
dy

1
A=—2> V= pz(p)-

=1

> {V4,Va,...,Vq,} : ONB of (g@,g\").

v
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Functional CLT

> x, € V : a reference point s.t. <I>80) (z4) = 1g-
(m : It is not always q)és)(a:*) = 1¢ due to (Al).)
& We define
2 (e) i= 7 (@ (i) (€))
for0<t<1,0<e<1l,n=12,... and c € Q, (X).
& We also define a G (g)-valued continuous stochastic process
yeEn) = ()Jte’n))OStS;l by the dcc-geodesic interpolation
(w.r.t. g( )-metric) of {X(E n)}k o forevery 0 <e < 1.

& To show tightness of {y<"‘“2»">}, we need to impose an
additional assumption on (@(()6))055§1.
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(A2)

4C >0s.t. fork=2,3,...,r,

2o, ma g (267 (@)~ 2 (@)

<
g [ gy

® Intuitively, the situations that the “distance” between
3 (z) and ®”(z) tends to be too big as e N\, 0
are removed under (A2).

& Under (Al) & (A2), we can show

]EP:(BZA/z) [dCC< t(nfl/z’n)’ ys(n—1/2’n))4m} ol 8)2m

-1/
by combining the modified harmonicity of ‘1>(()n ' 2), several
martingale inequalities and an idea (of the proof) of
in rough path theory.
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Theorem 2. (Ishiwata-K-Namba, "18)

Under (Al) & (A2), we obtain, for all o < 1/2,

n_l/z,n) a 0.c
(Yt )o<t<1i = (Yi)o<t<1 in CV%([0,1], G(0))-

> (Yt)o<t<1 : G(o)-valued diffusion process which solves

di
dY; = 3 Vi(¥:) 0 dB; + pr(v,) (i) dt, Yo = 1c.
1=1
> C%*([0,1], G(oy) := Lip([0, 1]; G(o))ll'”a—mil : Polish, where

dcec(ws, wt)
lwllana := sup ————=+ dcc(la,wo).
0<s<t<1 [t —s]
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Some Comments

& = many results on CLTs in which
sub-Laplacian + g(®-valued drift
is captured as the generator of the limiting diffusion.
e Raugi ('78), Pap ('93), Alexopoulos ('02), ...

& Indeed, we obtained such a (functional) CLT for non-symmetric
RWs on X by applying Scheme 1 (transition-shift scheme).
As the generator of the limiting diffusion, we have

di
1
A= —5 ’; ‘/7:2 — Bp(‘I’o), where

Bp(20) := Y _m(e)log <<I>0(o(e))_1- By (t(e)) - e—pmp)) ‘

ecEg

& Note that v, = 0 = 3,(®o) = 0.
(This drift arises from the non-symmetry of the given RW.)

g

Hiroshi KAWABI (Keio University) CLT for RWs on nilpotent covering graphs Nov 21, 2018 @ Okayama 24 / 25



& However, to our best knowledge, there seems to be few results
on CLTs in the nilpotent setting in which a g(!)-valued drift
appears in the generator of the limiting diffusion.

Q@ (Namba, in preparation): By combining Schemes 1 & 2, i.e.,

[,(E)f(a:, t)y = Z pe(e)f(t(e)7 t+ 1)’

ecFE.
Pef@,t) = f(r.(2F @) exn(th))), b€ g,
1 &
we also obtain a CLT with A = 3 Z V2 — pr(vp) — b.
=1

Q Applying the (g(")-)corrector-method (which is standard
in stochastic homogenization), we might prove Theorem 2

without the modified-harmonicity of ®{.
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