Central limit theorem for random walks on nilpotent covering graphs with weak asymmetry

Hiroshi KAWABI (Keio University)

(jointwork with Satoshi ISHIWATA (Yamagata) & Ryuya NAMBA (Okayama)) arXiv:1808.08856

Workshop on Stochastic Analysis and Related Topics November 21, 2018 @ Okayama

RWs on Γ -nilpotent covering graphs

- \blacklozenge Γ : finitely generated torsion free nilpotent group of step r
 - torsion free: If $\gamma^n = 1_{\Gamma}$, then n = 0 (and $\gamma = 1_{\Gamma}$).
 - nilpotent: There exists some $r \in \mathbb{N}$ such that

$$\Gamma \supset [\Gamma,\Gamma] \supset \cdots \supset \Gamma^{(r)}(:=[\Gamma,\Gamma^{(r-1)}]) = \{1_{\Gamma}\}$$

- A nilpotent covering graph X is a covering graph of a finite graph X₀ whose covering transformation group is Γ.
 In other words, Γ acts on X freely and the quotient graph X₀ = Γ\X is finite.
- \bigstar X is called a crystal lattice if Γ is abelian (r = 1).

Figure : Crystal lattices with $\Gamma = \langle \sigma_1, \sigma_2 \rangle \cong \mathbb{Z}^2$

<u>3D disctrete Heisenberg group</u>: $\Gamma = \langle \gamma_1, \gamma_2, \gamma_3, \gamma_1^{-1}, \gamma_2^{-1}, \gamma_3^{-1} \rangle$ $\gamma_1 \gamma_3 = \gamma_3 \gamma_1, \ \gamma_2 \gamma_3 = \gamma_3 \gamma_2, \ [\gamma_1, \gamma_2] (= \gamma_1 \gamma_2 \gamma_1^{-1} \gamma_2^{-1}) = \gamma_3$

- For an edge $e \in E$, the origin, the terminus and the inverse edge of e are denoted by o(e), t(e) and \overline{e} , respectively.
- $E_x := \{e \in E \mid o(e) = x\} (x \in V).$
- ♠ A RW on X is characterized by giving the transition probability $p: E \longrightarrow [0, 1]$ satisfying the Γ-invariance,

$$p(e) + p(\overline{e}) > 0, (e \in E), \quad \& \quad \sum_{e \in E_x} p(e) = 1, \ (x \in V).$$

 \implies This induces a time homogeneous Markov chain

 $(\Omega_x(X),\mathbb{P}_x,\{w_n\}_{n=0}^\infty),$

where $\Omega_x(X)$ stands for the set of all paths in X starting at x. A By Γ -invariance of p, we may consider the RW $(\Omega_{\pi(x)}(X_0), \mathbb{P}_{\pi(x)}, \{w_n\}_{n=0}^{\infty})$ $(\pi : X \to X_0$: covering map).

•
$$Lf(x):=\sum_{e\in E_x}p(e)fig(t(e)ig)$$
 : transition operator.

• *n*-step transition probability; $p(n, x, y) := L^n \delta_y(x)$.

Assumption (Irreducibility)

The Markov chain $\{w_n\}_{n=0}^{\infty}$ on X_0 is irreducible, that is, $\forall x, y \in V_0$, $\exists n = n(x, y) \in \mathbb{N}$ s.t. p(n, x, y) > 0.

Remark RW on X: irreducible \rightleftharpoons RW on X_0 : irreducible. **A** By the Perron-Frobenius theorem,

 $\exists ! m : V_0 \longrightarrow (0,1] : L$ -invariant measure, s.t.

$$\sum_{x\in V_0}m(x)=1$$
 & ${}^tLm(x)=m(x)$ $(x\in V_0).$

 \blacklozenge We also write $m: V \longrightarrow (0,1]$ for the lift of m to X.

• $\widetilde{m}(e) := p(e)m(o(e))$ (the conductance of $e \in E$).

\blacklozenge We define the homological direction γ_p of the RW by

$$\gamma_p:=\sum_{e\in E_0}\widetilde{m}(e)e\in \mathrm{H}_1(X_0,\mathbb{R}).$$

$$\blacklozenge \mathsf{RW:} \ (m\text{-})\mathsf{symmetric} \stackrel{\mathsf{def}}{\Longleftrightarrow} \widetilde{m}(e) = \widetilde{m}(\overline{e}) \stackrel{\mathsf{iff}}{\Longleftrightarrow} \gamma_p = 0.$$

Our Problem

Functional CLT (Donsker type invariance principle)

♡ <u>Abelian case</u>: Ishiwata–K–Kotani ('17, JFA)

$$\Bigl(rac{\Phi_0(w_{[nt]})-[nt]
ho_{\mathbb R}(\gamma_p)}{\sqrt{n}}\Bigr)_{t\geq 0} \ \ \, \mathop{\Longrightarrow}\limits_{n
ightarrow\infty} \ \, (B_t)_{t\geq 0} \ \ \, ,$$
 where

 $\rho_{\mathbb{R}}: \mathrm{H}_{1}(X_{0}, \mathbb{R}) \twoheadrightarrow \Gamma \otimes \mathbb{R} (\cong \mathbb{Z}^{d} \otimes \mathbb{R} = \mathbb{R}^{d}),$ $\Phi_{0}: X \to (\Gamma \otimes \mathbb{R}, g_{0}) \text{ is the "standard realization", and}$ $(B_{t}): \text{ standard BM on } \Gamma \otimes \mathbb{R} \text{ with Albanese metric } g_{0}.$

In this talk, we discuss this problem for non-symmetric RWs on nilpotent covering graphs from a viewpoint of discrete geometric analysis developed by T. Sunada (with M. Kotani).

Scheme 1 : Replace the usual transition operator by "transition-shift operator"

to "delete" the diverging drift term. (cf. arXiv:1806.03804)

Scheme 2 : Introduce a one-parameter family of RWs on X

 $(\Omega_x(X),\mathbb{P}^{(arepsilon)}_x,\{w^{(arepsilon)}_n\}_{n=0}^\infty) \qquad (0\leqarepsilon\leq 1)$

to "weaken" the diverging drift term. (\longrightarrow This talk !)

 "Scheme 2" is applied to the study of the hydrodynamic limit of weakly asymmetric exclusion processes.

Nilpotent Lie group (as a continuous model)

A How to realize the Γ -nilpotent covering graph X into some continuous space ?

[Malćev ('51)] $\exists G = G_{\Gamma}$: connected & simply connected nilpotent Lie group such that Γ is isomorphic to a cocompact lattice in (G, \cdot) .

♠ By a certain deformation of the product · on G, we may assume that G is a stratified Lie group of step r. Namely, its Lie algebra (g, [·, ·]) satisfies

$$\mathfrak{g} = \bigoplus_{i=1}^{r} \mathfrak{g}^{(i)}; \quad [\mathfrak{g}^{(i)}, \mathfrak{g}^{(j)}] \begin{cases} \subset \mathfrak{g}^{(i+j)} & (i+j \leq r), \\ = \{0_{\mathfrak{g}}\} & (i+j > r), \end{cases}$$

and
$$\mathfrak{g}^{(i+1)} = [\mathfrak{g}^{(1)}, \mathfrak{g}^{(i)}]$$
 $(i = 1, \dots, r-1).$

♦ Example: 3-dim Heisenberg group $\mathbb{H}^3(\mathbb{R}) (= \mathbb{G}^{(2)}(\mathbb{R}^2))$

$$\begin{split} \triangleright \ \ \Gamma &= \mathbb{H}^{3}(\mathbb{Z}) := \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} : \, x, y, z \in \mathbb{Z} \right\} \Bigl(\bigoplus_{\text{lattice}} G = \mathbb{H}^{3}(\mathbb{R}) \Bigr). \\ \triangleright \ \ \mathfrak{g} &= \operatorname{Lie}(G) = \left\{ \begin{bmatrix} 0 & x & z \\ 0 & 0 & y \\ 0 & 0 & 0 \end{bmatrix} : \, x, y, z \in \mathbb{R} \right\}. \\ \triangleright \ \ X_{1} := \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ \ X_{2} := \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \ \ X_{3} := \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}. \\ \Bigl(\longrightarrow \ [X_{1}, X_{2}] = X_{3}, \ [X_{1}, X_{3}] = [X_{2}, X_{3}] = 0_{\mathfrak{g}}. \Bigr) \end{aligned}$$

 $\triangleright \ G = \mathbb{H}^3(\mathbb{R}) : \text{a (free) nilpotent Lie group of step 2, i.e.,}$ $\mathfrak{g} = \mathfrak{g}^{(1)} \oplus \mathfrak{g}^{(2)}; \ \mathfrak{g}^{(1)} = \operatorname{span}_{\mathbb{R}}\{X_1, X_2\}, \ \mathfrak{g}^{(2)} := \operatorname{span}_{\mathbb{R}}\{X_3\}.$

• We identify G with \mathbb{R}^n through the canonical coordinates of the 1st kind:

$$G
i \exp\Big(\sum_{k=1}^r \sum_{\substack{i=1 \ \in \mathfrak{g}^{(k)}}}^{d_k} X_i^{(k)} X_i^{(k)}\Big)$$

$$\longleftrightarrow (x^{(1)}, x^{(2)}, \dots, x^{(r)}) \in \mathbb{R}^{d_1+d_2+\dots+d_r},$$

where

$$\begin{array}{l} \triangleright \ \mathfrak{g} = (\mathfrak{g}^{(1)}, \mathfrak{g}_0) \oplus \mathfrak{g}^{(2)} \oplus \cdots \oplus \mathfrak{g}^{(r)}. \\ \triangleright \ \mathfrak{g}^{(k)} = \operatorname{span}_{\mathbb{R}} \{ X_1^{(k)}, \dots, X_{d_k}^{(k)} \} \ (k = 1, \dots, r). \\ \triangleright \ x^{(k)} = (x_1^{(k)}, \dots, x_{d_k}^{(k)}) \in \mathbb{R}^{d_k} \cong \mathfrak{g}^{(k)} \ (k = 1, \dots, r). \end{array}$$

Construction of the Albanese metric on $\mathfrak{g}^{(1)}$

We induce a special flat metric on g⁽¹⁾, called the Albanese metric, by the following diagram:

$$\begin{split} (\mathfrak{g}^{(1)}, \mathfrak{g}_{0}) & \overset{\rho_{\mathbb{R}}}{\longrightarrow} \mathrm{H}_{1}(X_{0}, \mathbb{R}) \\ & \uparrow^{\mathrm{dual}} & \uparrow^{\mathrm{dual}} \\ \mathrm{Hom}(\mathfrak{g}^{(1)}, \mathbb{R})_{\stackrel{\iota}{t_{\rho_{\mathbb{R}}}}} & \mathrm{H}^{1}(X_{0}, \mathbb{R}) \cong (\mathcal{H}^{1}(X_{0}), \langle\!\langle \cdot, \cdot \rangle\!\rangle_{p}). \\ \triangleright \ \mathcal{H}^{1}(X_{0}) & := \left\{ \omega \in C^{1}(X_{0}, \mathbb{R}) \, : \sum_{e \in (E_{0})_{x}} p(e)\omega(e) = \langle \gamma_{p}, \omega \rangle \right\} \\ & \text{with} \ \langle\!\langle \omega, \eta \rangle\!\rangle_{p} := \sum_{e \in E_{0}} \widetilde{m}(e)\omega(e)\eta(e) - \langle \gamma_{p}, \omega \rangle \langle \gamma_{p}, \eta \rangle. \\ \triangleright \ \rho_{\mathbb{R}} : \mathrm{H}_{1}(X_{0}, \mathbb{R}) \longrightarrow \mathfrak{g}^{(1)} : \text{the surjective linear map defined by} \\ & \rho_{\mathbb{R}}([c]) := \log(\sigma_{c})|_{\mathfrak{g}^{(1)}} \quad \text{for} \ [c] \in \mathrm{H}_{1}(X_{0}, \mathbb{R}) \end{split}$$

s.t. $\sigma_c \in \Gamma(\hookrightarrow G)$ satisfies $\sigma_c \cdot o(\tilde{c}) = t(\tilde{c})$ on X.

Harmonic realization of the graph X into G

 \clubsuit We consider a Γ-equivariant map $\Phi: X = (V, E) \longrightarrow G$:

$$\Phi(\gamma x) = \gamma \cdot \Phi(x) \quad (\gamma \in \Gamma, \, x \in V).$$

Definition [Modified Harmonic Realization]

A realization $\Phi_0: X \longrightarrow G$ is said to be modified harmonic if

$$\Delta \Bigl(\log \Phi_0 ig|_{\mathfrak{g}^{(1)}} \Bigr) (x) = oldsymbol{
ho}_{\mathbb{R}}(\gamma_p) \quad (x \in V),$$

where $\Delta := L - I$: the discrete Laplacian on X.

\$\lambda\$ Such \$\Delta_0\$ is uniquely determined up to \$\mathbf{g}^{(1)}\$-translation, however, it has the ambiguity in \$(\mathbf{g}^{(2)} ⊕ · · · ⊕ \$\mathbf{g}^{(r)}\$)\$-component!
 \$\rho_\mathbb{R}(\gamma_p)\$ is called the \$(\mathbf{g}^{(1)}\$-)\$asymptotic direction of the RW. (LLN): \$\lim_{n→\infty}\$ \$\frac{1}{n}\$ log \$\Delta_0(w_n) = \$\rho_\mathbb{R}(\gamma_p)\$\$
 \$\mathbf{W}\$ emphasize that

$$\gamma_p=0 \;\; \gtrless \;
ho_{\mathbb{R}}(\gamma_p)=0_{\mathfrak{g}}.$$

Dilation & the CC-metric on G

• We introduce the 1-parameter group of dilations $\{\tau_{\varepsilon}\}_{\varepsilon \geq 0}$ on G:

$$egin{aligned} G
i (x^{(1)},\!x^{(2)},\ldots,x^{(r)}) & \stackrel{ au_arepsilon}{\longmapsto} \ (arepsilon x^{(1)},arepsilon^2 x^{(2)},\ldots,arepsilon^r x^{(r)}) \in G. \end{aligned}$$

We equip G with the Carnot-Carathéodory metric: $d_{CC}(g,h) := \inf \left\{ \int_0^1 \|\dot{c}(t)\|_{g_0} dt \, \Big| \, c \in AC([0,1];G), \\ c(0) = g, \, c(1) = h, \, \dot{c}(t) \in \mathbf{g}_{c(t)}^{(1)} \right\} \quad (g,h \in G).$

 \blacklozenge $(G, d_{\rm CC})$ is not only a metric space but also a geodesic space.

Family of RWs with weak asymmetry

♦ For 0 ≤ ε ≤ 1, we define $p_{\varepsilon}(e) := p_{0}(e) + \varepsilon q(e) \quad (e \in E),$ where $p_{0}(e) := \frac{1}{2} \Big(p(e) + \frac{m(t(e))}{m(o(e))} p(\overline{e}) \Big) : m\text{-symmetric},$ $q(e) := \frac{1}{2} \Big(p(e) - \frac{m(t(e))}{m(o(e))} p(\overline{e}) \Big) : m\text{-anti-symmetric}.$

- A Namely, p_{ε} is defined by the linear interpolation between the symmetric transition probability p_0 and the given one $p = p_1$.
- $\vartriangleright \ \mathsf{RW} \ \mathrm{on} \ X: (\Omega_x(X), \mathbb{P}_x^{(\varepsilon)}, \{w_n^{(\varepsilon)}\}_{n=0}^\infty) \quad (0 \leq \varepsilon \leq 1).$

 \blacklozenge For $0 \leq arepsilon \leq 1$,

$$Dert \ \ L_{(arepsilon)}f(x) = \sum_{e\in E_x} p_arepsilon(e)fig(t(e)ig) \quad (x\in V,\,f:V\longrightarrow \mathbb{R}).$$

 $\triangleright \ g_0^{(\varepsilon)} : \text{Albanese metric on } \mathfrak{g}^{(1)} \text{ associated with } p_{\varepsilon}. \\ (\Longrightarrow \text{Continuity of the Albanese metric } g_0^{(\varepsilon)} \text{ w.r.t. } \varepsilon.) \\ \triangleright \ G_{(\varepsilon)} : \text{nilpotent Lie group whose Lie algebra is}$

$$(\mathfrak{g}^{(1)}, \underline{g}_0^{(\varepsilon)}) \oplus \mathfrak{g}^{(2)} \oplus \cdots \oplus \mathfrak{g}^{(r)}.$$

 $dash \ \Phi_0^{(arepsilon)}: X \longrightarrow G: \ (p_arepsilon ext{-}) ext{modified harmonic realization, i.e.,}$

$$(L_{(arepsilon)}-I)\Big(\log\Phi_0^{(arepsilon)}ig|_{\mathfrak{g}^{(1)}}\Big)(x)=arepsilon
ho_{\mathbb{R}}(\gamma_p)\quad (x\in V).$$

 $dash P_arepsilon: C_\infty(G) \longrightarrow C_\infty(X):$ scaling operator defined by

$$P_arepsilon f(x):=f\Big(au_arepsilon(arepsilon)ig) \qquad (x\in V,\, 0\leqarepsilon\leq 1).$$

Semigroup-CLT

We actually have, for
$$f\in C_0^\infty(G_{(0)})$$
,

$$rac{1}{Narepsilon^2}(oldsymbol{I}-oldsymbol{L}_{(arepsilon)}^N)P_arepsilon f\sim P_arepsilon oldsymbol{\mathcal{A}}_{(arepsilon)}f$$

as $N
ightarrow \infty$, $arepsilon \searrow 0$ and $N^2 arepsilon \searrow 0$ in some sense, where

$$\begin{split} \boldsymbol{\mathcal{A}}_{(\varepsilon)} &= \underbrace{-\frac{1}{2}\sum_{i=1}^{d_1}V_i^2}_{\text{sub-Laplacian on }\boldsymbol{G}_{(0)}} \underbrace{-\boldsymbol{\rho}_{\mathbb{R}}(\boldsymbol{\gamma}_p)}_{\in\boldsymbol{\mathfrak{g}}^{(1)}}\underbrace{-\boldsymbol{\beta}^{(\varepsilon)}(\boldsymbol{\Phi}_0^{(\varepsilon)})}_{\in\boldsymbol{\mathfrak{g}}^{(2)}},\\ \boldsymbol{\beta}^{(\varepsilon)}(\boldsymbol{\Phi}_0^{(\varepsilon)}) &:= \sum_{e\in E_0}\widetilde{m}_{\varepsilon}(e) \log\left(\boldsymbol{\Phi}_0^{(\varepsilon)}(o(e))^{-1}\cdot\boldsymbol{\Phi}_0^{(\varepsilon)}(t(e))\right)\Big|_{\boldsymbol{\mathfrak{g}}^{(2)}}. \end{split}$$

• Usually, the diverging drift term appears in $\mathfrak{g}^{(1)}$ -direction. However, it is weakened due to $\gamma_{p_{\varepsilon}} = \varepsilon \gamma_p$. Question What is the behavior of $eta^{(arepsilon)}(\Phi^{(arepsilon)}_0)$ as $arepsilon\searrow 0$?

Unfortunately, it is NOT expected that

$$\begin{split} \lim_{\varepsilon \searrow 0} \Phi_0^{(\varepsilon)}(x) &= \Phi_0^{(0)}(x) \qquad (x \in V). \\ \triangleright \ \exists \ \{ \Phi_0^{(\varepsilon)} \}_{0 \le \varepsilon \le 1} \text{ s.t. } \left\| \log \left(\Phi_0^{(\varepsilon)}(x)^{-1} \cdot \Phi_0^{(0)}(x) \right) \right|_{\mathfrak{g}^{(k)}} \right\|_{\mathfrak{g}^{(k)}} \longrightarrow \infty \\ \text{ for } k = 2, 3, \dots, r. \end{split}$$

🔶 We now impose

$$\begin{split} \overbrace{\sum_{x\in\mathcal{F}}m(x)\Big\{\log\Phi_0^{(\varepsilon)}(x)\big|_{\mathfrak{g}^{(1)}}-\log\Phi_0^{(0)}(x)\big|_{\mathfrak{g}^{(1)}}\Big\}=0,}\\ \text{ where }\mathcal{F}: \text{ a fundamental domain of }X. \end{split}$$

Key Proposition

Under (A1), we have $\lim_{\varepsilon\searrow 0}\beta^{(\varepsilon)}(\Phi_0^{(\varepsilon)})=0_{\mathfrak{g}}.$

By combining Proposition 1 with the Trotter approximation theorem, we obtain a semigroup-CLT.

Theorem 1. (Ishiwata-K-Namba, '18)

Under (A1), we have, for $0 \leq s \leq t$ and $f \in C_{\infty}(G)$,

$$\lim_{n \to \infty} \left\| L_{(n^{-1/2})}^{[nt]-[ns]} P_{n^{-1/2}} f - P_{n^{-1/2}} e^{-(t-s)\mathcal{A}} f \right\|_{\infty} = 0,$$

where \mathcal{A} is a 2nd order sub-elliptic operator on $G_{(0)}$ defined by

$$\mathcal{A} = -rac{1}{2} \sum_{i=1}^{d_1} V_i^2 -
ho_{\mathbb{R}}(\gamma_p).$$
 $arappi \{V_1, V_2, \dots, V_{d_1}\} : ext{ ONB of } (\mathfrak{g}^{(1)}, oldsymbol{g}^{(0)}_0).$

Functional CLT

▷ $x_* \in V$: a reference point s.t. $\Phi_0^{(0)}(x_*) = 1_G$. $\left(\frac{\text{Note}}{2}$: It is not always $\Phi_0^{(\varepsilon)}(x_*) = 1_G$ due to (A1).

$$\mathcal{X}_t^{(arepsilon,n)}(c):= au_arepsilonig(\Phi_0^{(arepsilon)}(w_{[nt]}^{(arepsilon)})(c)ig)$$

for $0 \leq t \leq 1$, $0 \leq \varepsilon \leq 1$, $n = 1, 2, \ldots$ and $c \in \Omega_{x_*}(X)$.

- ♦ We also define a G₍₀₎-valued continuous stochastic process $\mathcal{Y}^{(\varepsilon,n)} = (\mathcal{Y}^{(\varepsilon,n)}_t)_{0 \leq t \leq 1} \text{ by the } \frac{d_{CC}\text{-geodesic interpolation}}{d_{CC}\text{-geodesic interpolation}}$ (w.r.t. g₀⁽⁰⁾-metric) of {X^(ε,n)_{k/n}}ⁿ_{k=0} for every 0 ≤ ε ≤ 1.
- ♣ To show tightness of $\{\mathcal{Y}^{(n^{-1/2},n)}\}$, we need to impose an additional assumption on $(\Phi_0^{(\varepsilon)})_{0 \le \varepsilon \le 1}$.

(A2)
$$\exists C > 0 \text{ s.t. for } k = 2, 3, \dots, r,$$
$$\sup_{0 \le \varepsilon \le 1} \max_{x \in \mathcal{F}} \left\| \log \left(\Phi_0^{(\varepsilon)}(x)^{-1} \cdot \Phi_0^{(0)}(x) \right) \right|_{\mathfrak{g}^{(k)}} \right\|_{\mathfrak{g}^{(k)}} \le C.$$

- ♠ Intuitively, the situations that the "distance" between $\Phi_0^{(\varepsilon)}(x)$ and $\Phi_0^{(0)}(x)$ tends to be too big as $\varepsilon \searrow 0$ are removed under (A2).
- Under (A1) & (A2), we can show

$$\mathbb{E}^{\mathbb{P}_{x_{*}}^{(n^{-1/2})}} \Big[d_{\mathrm{CC}} \Big(\mathcal{Y}_{t}^{(n^{-1/2},n)}, \mathcal{Y}_{s}^{(n^{-1/2},n)} \Big)^{4m} \Big] \leq C(t-s)^{2m}$$

by combining the modified harmonicity of $\Phi_0^{(n^{-1/2})}$, several martingale inequalities and an idea (of the proof) of Lyons' extension theorem in rough path theory.

Theorem 2. (Ishiwata-K-Namba, '18)

Under (A1) & (A2), we obtain, for all $\alpha < 1/2$,

$$(\mathcal{Y}_t^{(n^{-1/2},n)})_{0\leq t\leq 1} \underset{n
ightarrow\infty}{\Longrightarrow} (Y_t)_{0\leq t\leq 1} \quad ext{in } C^{0,lpha}ig([0,1],G_{(0)}ig).$$

$$> (Y_t)_{0 \le t \le 1} : G_{(0)} \text{-valued diffusion process which solves} \\ dY_t = \sum_{i=1}^{d_1} V_i(Y_t) \circ dB_t^i + \rho_{\mathbb{R}}(\gamma_p)(Y_t) \, dt, \quad Y_0 = 1_G.$$

$$\,\triangleright\,\, C^{\mathbf{0},\boldsymbol{\alpha}}\big([0,1],G_{(0)}\big):=\overline{\mathrm{Lip}\big([0,1];G_{(0)}\big)}^{\|\cdot\|_{\boldsymbol{\alpha}}\text{-H\"ol}}:\, \mathsf{Polish, \ where}$$

$$\|w\|_{lpha ext{-H\"ol}} := \sup_{0\leq s < t\leq 1} rac{d_{ ext{CC}}(w_s,w_t)}{|t-s|^{lpha}} + d_{ ext{CC}}(1_G,w_0).$$

Some Comments

♠ ∃ many results on CLTs in which

sub-Laplacian + $g^{(2)}$ -valued drift

is captured as the generator of the limiting diffusion.

- Raugi ('78), Pap ('93), Alexopoulos ('02), ...
- Indeed, we obtained such a (functional) CLT for non-symmetric RWs on X by applying Scheme 1 (transition-shift scheme). As the generator of the limiting diffusion, we have

$$\begin{split} \boldsymbol{\mathcal{A}} &= -\frac{1}{2}\sum_{i=1}^{d_1}V_i^2 - \boldsymbol{\beta}_{\rho}(\Phi_0), \;\; \text{where} \\ \boldsymbol{\beta}_{\rho}(\Phi_0) &:= \sum_{e \in E_0}\widetilde{m}(e) \text{log} \left(\Phi_0(o(e))^{-1} \cdot \Phi_0(t(e)) \cdot e^{-\rho_{\mathbb{R}}(\gamma_p)} \right) \Big|_{\mathfrak{g}^{(2)}}. \end{split}$$

• Note that $\gamma_p = 0 \Longrightarrow \beta_{\rho}(\Phi_0) = 0_{\mathfrak{g}}$. (This drift arises from the non-symmetry of the given RW.)

- However, to our best knowledge, there seems to be few results on CLTs in the nilpotent setting in which a g⁽¹⁾-valued drift appears in the generator of the limiting diffusion.
- \heartsuit (Namba, in preparation): By combining Schemes 1 & 2, i.e.,

$$\begin{split} \mathcal{L}_{(\varepsilon)}f(x,t) &= \sum_{e \in E_x} p_{\varepsilon}(e)f\big(t(e),t+1\big), \\ \mathcal{P}_{\varepsilon}f(x,t) &= f\Big(\tau_{\varepsilon}\Big(\Phi_0^{(\varepsilon)}(x) \cdot \exp(tb)\Big)\Big), \ b \in \mathfrak{g}^{(2)}, \\ 1 \quad d_1 \end{split}$$

we also obtain a CLT with $\mathcal{A}=-rac{1}{2}\sum_{i=1}^{m}V_i^2ho_{\mathbb{R}}(\gamma_p)-b.$

 \heartsuit Applying the $(\mathfrak{g}^{(1)})$ -corrector-method (which is standard in stochastic homogenization), we might prove Theorem 2 without the modified-harmonicity of $\Phi_0^{(\varepsilon)}$.