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Notation and terminology

(Ω,F , (Ft)t∈[0,1], P): filtrated probability space

(Bt)t∈[0,1] : Brownian motion on (Ω,F , (Ft)t∈[0,1], P)

(en)n∈N: CONS of L2([0, 1] ; C)

f : [0, 1]× Ω → C is random. ⇔
def

f is L([0, 1])⊗F -measurable.

For random functions X, Y and t ∈ (0, 1],

⟨X, Y⟩t : cross variation at t of X, Y (if exists),

[X]t = ⟨X, X⟩t : quadratic variation at t of X (if exists).

sgn z =

{
1 , 0 ≤ arg z < π

−1 , −π ≤ arg z < 0
(arg 0 := 0) for z ∈ C.

K : R or C
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SFCs and Questions

SFC:� �
a: random function on [0, 1].

(en, a dB): stochastic Fourier coefficient (SFC) of a(t) defined by

(en, a dB) :=
∫ 1

0
en(t)a(t, ω) dBt.� �

Remark: Definition of SFC depends on how stochastic integral∫
dBt is defined. But in this talk, assume

∫
dBt is Ogawa integral.

Question: Is a(t) identified from SFCs (en, a dB) ?
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SFCs and Questions

Extension

SFC:� �
a, b : random functions on [0, 1].

dX: stochastic differential defined by dXt= a(t, ω) dBt+b(t, ω) dt.

(en, dX): stochastic Fourier coefficient (SFC) of dX defined by

(en, dX) :=
∫ 1

0
en(t) dXt

=
∫ 1

0
en(t)a(t, ω) dBt +

∫ 1

0
en(t)b(t, ω) dt.� �

Question: Are a, b identified from SFCs (en, dX) ?
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Two notions of identification

Identification with (Bt)t∈[0,1]

Identification by making use of values of the underlying
Brownian motion (Bt)t∈[0,1].

Identification without (Bt)t∈[0,1]

Identification by making no use of values of the underlying
Brownian motion (Bt)t∈[0,1].
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Previous works (Identification from SFC-Os)

• Identification with (Bt)t∈[0,1]

· Skorokhod integral processes (H., Kazumi[5])

· Any random function of bounded variation (H.[1])

· Certain C-valued random functions (Ogawa,Uemura[4])

• Identification without (Bt)t∈[0,1]

· Non-negative AC random functions (Ogawa,Uemura[3])

· Any non-negative random function of bounded variation
(H.[1], extension of the result in [3])

· Certain C-valued random functions (Ogawa,Uemura[4])
(identification up to sign)
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Present work : Identification from SFC-Os

• Identifiability : The family of random functions identified in some sense
becomes a linear space.

=⇒
• Identification with (Bt)t∈[0,1]

Sums of


quasi-martingale

Skorokhod integral process

Hilbert-Schmidt integral transform of Wiener functional

• Identification without (Bt)t∈[0,1]

The above random functions except their sign

・Extensions of the results in [1,5]
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Definition of Ogawa integrals

Definition 1

f ∈ L0(Ω ; L2[0, 1])
φ = (φm)m∈N : (ordered) CONS of L2([0, 1] ; K)

Integral w.r.t. φ:
∫ 1

0 f dφB

∫ 1

0
f (t) dφBt : =

∞

∑
m=1

∫ 1

0
f (t)φm(t) dt

∫ 1

0
φm(t) dBt in prob.

Universal integral in K:
∫ 1

0 f duB

∫ 1

0
f (t) duBt : =

∫ 1

0
f (t) dφBt , if the RHS is independent of φ.

Remark K = R in this study.
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Ogawa integrability

A = { f ∈ L0([0, 1]× Ω) |Re f , Im f are of bounded variation a.s. },

M =
{ ∫ ·

0 g dB
∣∣∣ g ∈ L0(Ω ; L2[0, 1]),

g is (Ft)t∈[0,1]-progressively measurable
}
,

where
∫

dB : Itô integral.

Remark: f is quasi-martingale. ⇔
def

f ∈ A+M.
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Ogawa integrability

φ = (φm)m∈N : CONS of L2([0, 1] ; R)

Regularity of CONS

φ is regular. ⇔
def

sup
M∈N

∣∣∣ M
∑

m=1
φm φ̃m

∣∣∣
L2[0,1]

< ∞
(

φ̃m(t)=
∫ t

0 φm(s) ds
)
.

Theorem 1 (Ogawa[7](1985))

(1) Every quasi-martingale is φ-integrable. ⇔ φ is regular.

(2) If (1) holds, the φ-integral of any quasi-martingale coincides
with the symmetric integral (Ogawa, Storatonovich-Fisk).
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Framework of Wiener chaos

F B := σ(Bt | t ∈ [0, 1])

Lr,2
i : Sobolev space in L2((Ω,F B, P) ; L2[0, 1]i) with

differentiability index r for each i ∈ {0} ∪ N

Dt f (s) : H-derivative of f (s) ∈ L1,2
1∫ 1

0 f (t) δBt : Skorokhod integral of f (t) ∈ L1,2
1

TK f (t) :=
∫ 1

0 K(t, s) f (s) ds, f ∈ L1,2
1 , K ∈ L2([0, 1]2)
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Ogawa integrability

Theorem 2 (H.,Kazumi[2,1](2018,2017))

Suppose

1 φ : regular CONS of L2([0, 1] ; R),
2 e : [0, 1] → R; bounded variation,

3 Xt =
∫ t

0
f (s) δBs + TKg(t) + X0 , t ∈ [0, 1],

where f ∈ L2,2
1 , g ∈ L1,2

1 , X0 ∈ L1,2
0 , K ∈ L2([0, 1]2).

Then, eX is φ-integrable and the integral is given by∫ 1

0
e(t)Xt δBt +

1
2

∫ 1

0
e(t) f (t) dt+

∫ 1

0
e(t)

( ∫ t

0
Dt δXs +DtX0

)
dt.
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Previous results / Identification from SFC-Ou’s

a, b : [0, 1]× Ω → C ; random

Remark: Always assume b ∈ L2[0, 1] a.s.

Theorem 3 (H.[1](2017))

Suppose a ∈ A.
Let duYt = a(t) duBt + b(t) dt. Then,
(1) |a| is identified without (Bt)t∈[0,1] from ((en, duY))n∈N,

(2) a, b are identified with (Bt)t∈[0,1] from ((en, duY))n∈N.

Remark 1 |a|, a are reconstructed by Parseval-type transformation
and law of iterated logarithm.
Remark 2 |a|, a can be identified, even if ((en, duY))n∈N lacks its
finite elements (en, duY).
Remark 3 b is identified from ((en, duY))n∈N if a(t) is identified.
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Previous results / Identification from SFC-Oφ ’s

W =
{ ∫ ·

0 g δB
∣∣∣ g ∈ L2,2

1

}
+ span

{
TKh

∣∣∣ h ∈ L1,2
1 , sup

t∈[0,1]
|K(t, ·)|L2[0,1] < ∞

}
⊂ L1,2

1

Theorem (H.,Kazumi[5,1](2018,2017))

Suppose

1 φ : regular CONS of L2([0, 1] ; R),
2 ∀n ∈ N en ∈ BV[0, 1],
3 a ∈ W ,

4 b ∈ L0,2
1 .

Then, a, b are identified from ((en , dφY))n∈N,
where dφYt = a(t) dφBt + b(t) dt.
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Previous results / Identification from SFC-Oψ’s

Theorem (Ogawa,Uemura[8,4](2017))

Suppose a(t) and CONSs (en)n∈N, (ψm)m∈N, (χk)k∈N satisfy the
following:

1 ∃(λk)k∈N :∀k λk > 0,
∞
∑

k=1
λk < ∞, E

( ∞
∑

k=1

1
λk
⟨χk, a⟩2

L2[0,1]

)
<∞.

2 sup
k∈N,t∈[0,1]

|χk(t)| < ∞.

3 ∀n, m ∈ N enψm ∈ L2[0, 1].
Then,

(1) (sgn a)a is identified without (Bt)t∈[0,1] from ((en, a dψB))n∈N,

(2) a(t) is identified with (Bt)t∈[0,1] from ((en, a dψB))n∈N.

Remark (sgn a)a, a are reconstructed by Parseval-type
transformation and cross variation.
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Present work : Identification from SFC-Oφ’s

Main Assumption

1 CONS for Ogawa integral:

φ : regular CONS of L2([0, 1] ; R)

2 CONS for SFC:

∀n ∈ N Re en, Im en ∈ BV[0, 1]

W =
{ ∫ ·

0 g δB
∣∣∣ g ∈ L2,2

1

}
+ span

{
TKh

∣∣∣ h ∈ L1,2
1 , sup

t∈[0,1]
|K(t, ·)|L2[0,1] < ∞

}
L = A+M+W · · · Family of φ-integrable random functions
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Present work / Identifiability 1

Proposition 1

Suppose a ∈ L = A+M+W . Then, the following hold:

(1) l.i.p.
n→∞

∫ 1
0 vna dφB = 0 for every point sequence (vn)n∈N of

BV[0, 1] which converges to 0 in L2.

In particular,

(2) ( ∫ t

0
a dφB =

∞

∑
n=1

∫ t

0
en(s) ds (en, a dφB) in prob.

)
∀t ∈ [0, 1].

Therefore,

(3) for a dense subset S of [0, 1] and C ⊂ L ,

(i) c ∈ C is identified from ((en, c dφB))n∈N.

⇔
(ii) c ∈ C is identified from (

∫ t
0 c dφB))t∈S.
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Present work / Identifiability 1

Point of proof of (1):

Case of a ∈ A:

Follow the proof of Theorem 3(H.[1](2017))
(Itô-Nisio theorem, Doob’s L2-inequality).

Case of a =
∫ ·

0 g dB ∈ M:

Step 1. Apply Itô formula and Theorem 1(Ogawa[7](1985)) for vna.
Step 2. Apply limit properties of Itô integral and Lebesgue integral.

Case of a =
∫ ·

0 g δB + TKh ∈ W :

Step 1. Apply Theorem 2(H.,Kazumi[2,1](2018,2017)) for vna.
Step 2. Apply Wiener chaos theory.
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Identification by cross and quadratic variations

L
e,φ

PC =
{

a ∈ L0([0, 1]× Ω)
∣∣∣( ∫ t

0
a dφB =

∞

∑
n=1

∫ t

0
en(s) ds (en, a dφB) in prob. ,∫ t

0
|a(u)|2 du =

[ ∫ ·

0
a dφB

]
t
,∫ t∧s

0
a(u) du =

⟨∫ ·

0
a dφB, B·∧s

⟩
t

)
∀s, t ∈ [0, 1]

}

Remark: For a ∈ L
e,φ

PC ,

|a(t)| =
( d

dt

[ ∫ ·

0
a dφB

]
t

) 1
2

a(t) =
d
dt

⟨∫ ·

0
a dφB, B

⟩
t
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Formulas on quadratic variation

Theorem 4 (D.Nualart, E.Pardoux[6](1988))

For f ∈ L1,2
1 , [ ∫ ·

0
f δB

]
t
=

∫ t

0
| f (s)|2 ds, ∀t ∈ [0, 1].

Proposition 2
For f ∈ A, [ ∫ ·

0
f δB

]
t
=

∫ t

0
| f (s)|2 ds, ∀t ∈ [0, 1].

Kiyoiki Hoshino (Graduate School of Science, Osaka prefecture university)Identification from the SFCs of regularly Ogawa integrable random functions19th November, 2018 21 / 26



Main results

Proposition 3

A,M,W ⊂ L
e,φ

PC .

Theorem 5 (Identifiability 2)

L
e,φ

PC becomes a vector space.

Corollary 1

Suppose Re a, Im a ∈ L
e,φ

PC .

Let dφYt = a(t) dφBt + b(t) dt. Then,
(1) a, b are identified with (Bt)t∈[0,1] from ((en, dφY))n∈N,

(2) |Re a|, |Im a|, Re a Im a, (sgn a)a are identified without
(Bt)t∈[0,1] from ((en, dφY))n∈N by using

∀ f , g ∈ L
e,φ

PC

∫ t
0 f g dλ =

⟨∫ ·
0 f dφB,

∫ ·
0 g dφB

⟩
t.
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Closure property w.r.t. sum of random functions

with AC cross variation processes

Key to proof of Theorem 5:

Theorem 6

Qc =
{

X : [0, 1] → L0(Ω)
∣∣ ∃X̂ ∈ L0(Ω ; L2[0, 1])

∀s, t ∈ [0, 1] [X]t =
∫ t

0 |X̂|2 dλ, ⟨X, B·∧s⟩t =
∫ t∧s

0 X̂ dλ
}

is a vector subspace of L0(Ω)[0,1], where λ is Lebesgue measure.

Sketch of proof:

Let X, Y ∈ Qc. Prove [X + Y]t =
∫ t

0 |X̂ + Ŷ|2 dλ.

First, for Z ∈ D=
{ n

∑
j=1

rjB·∧tj1Aj

∣∣∣ rj ∈ C, tj ∈ [0, 1], Aj ∈ F
}
⊂Qc,

[αX + βZ]t =
∫ t

0 |αX̂ + βẐ|2 dλ, Ẑ =
n
∑

j=1
rj1[0,tj]

⊗ 1Aj .
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Closure property w.r.t. sum of random functions

with AC cross variation processes

Next, approximate Y by Y′ ∈ D. ∆X := Xt − Xs, ∆ = (s, t).

Using the trivial identity:

(∆X+∆Y′)2 −(∆X+∆Y)2=(∆Y′−∆Y)2+ 2(∆Y′−∆Y)(∆X+∆Y)

and Schwarz inequality, we have∣∣∣ ∑(∆X + ∆Y′)2 − ∑(∆X + ∆Y)2
∣∣∣

≤ ∑(∆Y′ − ∆Y)2 + 2(∑(∆Y′ − ∆Y)2 )
1
2 (∑(∆X + ∆Y)2 )

1
2 .

Here [X + Y′]t −→
Ŷ′→Ŷ

∫ t
0 |X̂ + Ŷ|2 dλ, [Y′ − Y]t −→

Ŷ′→Ŷ
0.

Therefore [X + Y]t =
∫ t

0 |X̂ + Ŷ|2 dλ. □
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