A FUNCTIONAL CENTRAL LIMIT THEOREM FOR NON-SYMMETRIC RANDOM WALKS ON STEP-r NILPOTENT COVERING GRAPHS

Ryuya Namba (Okayama University) (email: rnamba@s.okayama-u.ac.jp) (Joint work with S. Ishiwata (Yamagata University) and H. Kawabi (Okayama University))

A locally finite, connected and oriented graph X = (V, E) is called a Γ -nilpotent covering graph if X is a covering graph of a finite graph $X_0 = (V_0, E_0)$ with a covering transformation group Γ which is a torsion free, finitely generated and nilpotent group of step $r \ (r \ge 2)$. Here V is a set of all vertices and E is a set of all oriented edges in X. For $e \in E$, the origin, the terminus and the inverse edge of e are denoted by o(e), t(e) and \overline{e} , respectively. $E_x := \{e \in E \mid o(e) = x\}$ denotes the set of all edges whose origin is $x \in V$.

As is known, nilpotent covering graphs can be regarded as an extension of *crystal lattices* or *groups* of polynomial growth and the long time asymptotics for random walks (RWs) on them has been studied by several authors intensively and extensively (for instance, see [4, 1, 2]). We established a functional central limit theorem (FCLT; the Donsker-type invariance principle) for non-symmetric RWs on Γ nilpotent covering graphs from a viewpoint of discrete geometric analysis developed by Sunada [5] under the assumption that Γ is free of step two (see [3]). However, we can completely relax the assumption and obtain an improved result on the FCLT. In this talk, we revisit this problem as a continuation of [3].

Let us consider a Γ -nilpotent covering graph X = (V, E). We introduce a 1-step positive transition probability $p : E \longrightarrow (0, 1]$ which is invariant under Γ -actions. Then the transition probability p induces a RW $\{w_n\}_{n=0}^{\infty}$ with values in X. We may also consider the RW $\{\pi(w_n)\}_{n=0}^{\infty}$ on the quotient graph $X_0 = (V_0, E_0)$ by the Γ -invariance of p. Here $\pi : X \longrightarrow X_0$ is a covering map. Let $m : V_0 \longrightarrow (0, 1]$ be a normalized invariant measure on X_0 and we also write $m : V \longrightarrow (0, 1]$ for the Γ -invariant lift of m to X. Let $H_1(X_0, \mathbb{R})$ and $H^1(X_0, \mathbb{R})$ be the first homology group and the first cohomology group of X_0 , respectively. In order to measure the homological drift of the RW, we define the homological direction of the RW on X_0 by $\gamma_p := \sum_{e \in E_0} p(e)m(o(e))e \in H_1(X_0, \mathbb{R})$. We call the RW on X_0 (m-)symmetric if $p(e)m(o(e)) = p(\overline{e})(t(e))$ $(e \in E_0)$. It is clear that the RW is (m-)symmetric if and only if $\gamma_p = 0$.

By the celebrated theorem of Malćev, we find a connected and simply connected nilpotent Lie group G of step r such that Γ is isomorphic to the cocompact lattice in G. By virtue of the general theory of Lie algebras, its Lie algebra \mathfrak{g} may have the direct sum decomposition $\mathfrak{g} = \mathfrak{g}^{(1)} \oplus \mathfrak{g}^{(2)} \oplus \cdots \oplus \mathfrak{g}^{(r)}$ satisfying $[\mathfrak{g}^{(i)}, \mathfrak{g}^{(j)}] \subset \mathfrak{g}^{(i+j)}(i+j \leq r)$ and $\mathfrak{g}^{(i+1)} = [\mathfrak{g}^{(1)}, \mathfrak{g}^{(i)}] (i=1,\ldots,r-1)$. Now we take a canonical surjective linear map $\rho_{\mathbb{R}} : \mathrm{H}_1(X_0, \mathbb{R}) \longrightarrow \mathfrak{g}^{(1)}$ through the covering map π . By the discrete analogue of Hodge–Kodaira theorem (cf. [4]), an inner product

$$\langle\!\langle \omega,\eta\rangle\!\rangle_p := \sum_{e\in E_0} p(e)m(o(e))\omega(e)\eta(e) - \langle \omega,\gamma_p\rangle\langle\eta,\gamma_p\rangle \quad (\omega,\eta\in \mathrm{H}^1(X_0,\mathbb{R}))$$

associated with the transition probability p is induced from the space of (modified) harmonic 1-forms on X_0 to $\mathrm{H}^1(X_0, \mathbb{R})$. Using the canonical map $\rho_{\mathbb{R}}$, we construct a flat metric g_0 called the *Albanese metric* on $\mathfrak{g}^{(1)}$ from the inner product $\langle\!\langle \cdot, \cdot \rangle\!\rangle_p$. We consider a Γ -periodic realization $\Phi_0 : X \longrightarrow G$. In what follows, we take a reference point $x_* \in V$ such that $\Phi_0(x_*) = \mathbf{1}_G$. We call $\Phi_0 : X \longrightarrow G$ modified harmonic if

$$\sum_{e \in E_x} p(e) \log \Big(\Phi_0 \big(o(e) \big)^{-1} \cdot \Phi_0 \big(t(e) \big) \Big) \Big|_{\mathfrak{g}^{(1)}} = \rho_{\mathbb{R}}(\gamma_p) \quad (x \in V).$$

We note that such Φ_0 is uniquely determined, however, the modified harmonic realization has the ambiguity in the components corresponding to $\mathfrak{g}^{(2)} \oplus \cdots \oplus \mathfrak{g}^{(r)}$. More precisely, $\log(\Phi_0(x))|_{\mathfrak{g}^{(2)} \oplus \cdots \oplus \mathfrak{g}^{(r)}}$ ($x \in V$) is not be determined uniquely. The quantity $\rho_{\mathbb{R}}(\gamma_p)$ is called the *asymptotic direction*. We note that $\gamma_p = 0$ implies $\rho_{\mathbb{R}}(\gamma_p) = \mathbf{0}_{\mathfrak{g}}$, however, the converse does not hold in general.

We introduce the family of dilation operators $\{\tau_{\varepsilon}\}_{\varepsilon \geq 0}$ acting on G. Let $d_{\rm CC}$ denote the Carnot– Carathéodory metric on G. Note that $(G, d_{\rm CC})$ is not only a metric space but a geodesic space. Let $\mathcal{D}_n = \{k/n : k = 0, 1, \ldots, n\}$ be a (1/n)-partition of the time interval [0, 1] and set $\mathcal{Y}_{k/n}^{(n)} = \tau_{n^{-1/2}} \Phi_0(w_k)$ $(n \in \mathbb{N}, k = 0, 1, \ldots, n)$. Let $(\mathcal{Y}_t^{(n)})_{0 \leq t \leq 1}$ be the G-valued continuous stochastic process given by the $d_{\rm CC}$ -geodesic interpolation of $\{\mathcal{Y}_{k/n}^{(n)}\}_{k=0}^n$. We write

 $H^{1}_{\mathbf{1}_{G}}([0,1],G) = \{h : [0,1] \to G \mid h : \text{ absolutely continuous, } h_{0} = \mathbf{1}_{G} \text{ and } \|\dot{h}\|_{L^{2}} < \infty \}$

for the usual Cameron–Martin subspace of the path space, where we are convinced $\dot{h}(t)$ belongs to the evaluation $\mathfrak{g}_{h(t)}^{(1)}$ and $\|\dot{h}\|_{L^2} := \int_0^1 \|\dot{h}(t)\|_{\mathfrak{g}^{(1)}} dt$. We denote by $\|\cdot\|_{\alpha-\text{H\"ol}}$ the α -Hölder norm with respect to d_{CC} . For every small parameter $\varepsilon > 0$, we set

$$\mathcal{W}_{\mathbf{1}_{G}}^{1/2-\varepsilon}([0,1],G) = \overline{H^{1}_{\mathbf{1}_{G}}([0,1],G)}^{\|\cdot\|_{(1/2-\varepsilon)-\text{Höl}}}$$

Let $(Y_t)_{0 \le t \le 1}$ be the *G*-valued diffusion process which solves the SDE

$$dY_t = \sum_{i=1}^{d} V_i(Y_t) \circ dB_t^i + \beta(\Phi_0)(Y_t) \, dt, \quad Y_0 = \mathbf{1}_G$$

where $\{V_1, \ldots, V_d\}$ be an orthonormal basis of $(\mathfrak{g}^{(1)}, g_0)$, the drift coefficient $\beta(\Phi_0) \in \mathfrak{g}^{(2)}$ is defined by

$$\beta(\Phi_0) := \sum_{e \in E_0} p(e) m(o(e)) \log \Big(\Phi_0 \big(o(e) \big)^{-1} \cdot \Phi_0 \big(t(e) \big) \Big) \Big|_{\mathfrak{g}^{(2)}},$$

and $(B_t)_{0 \le t \le 1} = (B_t^1, \dots, B_t^d)_{0 \le t \le 1}$ is an \mathbb{R}^d -valued standard BM.

Then the refinement of the FCLT obtained in [3] is now stated as follows:

Theorem. (1) Let $\Phi_0, \widetilde{\Phi}_0$ be two modified harmonic realizations. Then $\beta(\Phi_0) = \beta(\widetilde{\Phi}_0)$ holds.

(2) Under the assumption that $\rho_{\mathbb{R}}(\gamma_p) = \mathbf{0}_{\mathfrak{g}}$, we have, for every $\varepsilon > 0$,

$$(\mathcal{Y}_t^{(n)})_{0 \le t \le 1} \Longrightarrow (Y_t)_{0 \le t \le 1} \text{ in } \mathcal{W}_{\mathbf{1}_G}^{1/2-\varepsilon}([0,1];G) \text{ as } n \to \infty.$$

References

- S. Ishiwata: A central limit theorem on a covering graph with a transformation group of polynomial growth, J. Math. Soc. Japan 55 (2003), pp. 837–853.
- S. Ishiwata, H. Kawabi and M. Kotani: Long time asymptotics of non-symmetric random walks on crystal lattices, J. Funct. Anal. 272 (2017), pp.1553–1624.
- [3] S. Ishiwata, H. Kawabi and R. Namba: Central limit theorems for non-symmetric random walks on nilpotent covering graphs, RIMS kôkyûroku. 2030 (2017), pp.9–16.
- M. Kotani and T. Sunada: Large deviation and the tangent cone at infinity of a crystal lattice, Math. Z. 254 (2006), pp. 837–870.
- [5] T. Sunada: Topological Crystallography with a Viewpoint Towards Discrete Geometric Analysis, Surveys and Tutorials in the Applied Mathematical Sciences 6, Springer Japan, 2013.